第八章常微分方程数值解
边值问题的数值解法
M b a 2 y xk y k h ,k 1, 2, ,n 1。 96
2
y 4 x 。因此,当 h 0 时,差分方程的解收敛到微分方 其中 M max a x b
y f x,y,y, y x,y sk,
这里的 s k 为
(8.6.3)
y
在 处的斜率。令 z y ,上述二阶方程可降为一阶方程组
y z, z f x,y,z ,
(8.6.4)
y a ,z a sk。
计算结果表明打靶法的效果是很好的,计算精度取决于所选取的初值问题数
值方法的阶和所选取的步长 h 的大小。不过,打靶法过分依赖于经验,选取试射 值,有一定的局限性。
第八章常微分方程数值解法
8.6.2 差分方法
差分方法是解边值问题的一种基本方法,它利用差商代替导数,将微分方程 离散化为线性或非线性方程组(即差分方程)来求解。 先考虑线性边值问题(8.6.2)的差分法。将区间 a,b 分成 n 等分,子区间的
s2
,同理得到 yb,s2 ,再判断它是否满足精度要求
y b,s2 。如此重复,直到某个 s 满足 y b,sk ,此时得到 k
的 y xi 和 yi z xi 就是边值问题的解函数值和它的一阶导数值。上述方程 好比打靶, s k 作为斜率为子弹的发射,y b 为靶心,故称为打靶法。
y xy 4 y 12 x 2 3x, 0 x 1, y 0 0,y 1 2,
其解的解析表达式为 y
x x 4 x 。来自解 先将该线性边值问题转化为两个初值问题
xy1 4 y1 12 x 2 3 x, y1 1 0, y1 0 0,y1 xy2 4 y2 0, y2 1 1。 y2 0 0,y2
第8章常微分方程数值解法
的解为
y ( x) e
x2
x 0
e dt
t2
但要计算它的值,还需要用数值积分的方法。如果要 对许多个 x 值计算解 y(x) 的近似值,那么工作量非常大。况 且实际计算不一定要求解析表达式,而是只需求在某些点 上满足精度的解的近似值或解的近似表达式就可以了。
由于高阶常微分方程可以转化为一阶常微分方程组,因 此,为了不失一般性,本章主要介绍一类一阶常微分方程初 值问题
的解来近似微分方程初值问题(8.2)的解,其 中 h (b- a) / 2 ,式(8.3)也称为欧拉公式。
欧拉法的几何意义是用一条自点 ( x0 , y0 ) 出发的 折线去逼近积分曲线 y f (x) ,如图8.1所示。 因此,这种方法又称为折线法。显然,欧拉法 简单地取折线的端点作为数值解,精度非常差。
float euler(float x0,float xn,float y0,int N) { float x,y,h; int i; x=x0; y=y0; h=(xn-x0)/(float)N; /* 计算步长 */ for(i=1;i<=N;i++) /* 欧拉公式 */ { y=y+h*func(x,y); x=x0+i*h; } return(y); }
8.4 龙格—库塔(Runge-Kutta)法 8.4.1 龙格—库塔法的基本思想
在欧拉法 yi 1 yi h f ( xi , yi ) (i 0,1,) 中,用解函数 y f (x) 在 点 x i 处的斜率 f ( xi , y i ) 计算从 yi 到 y i 1 的增量,y i 1 的表达式 与 y( xi 1 ) 的Taylor展开式的前二项相等,使方法只有一阶精度。 改进的欧拉法用两个点 x i ,x i 1 处的斜率 f ( xi , y i )、f ( xi 1 , yi 1 ) 的平均值计算增量,使方法具有二阶精度,即 y i 1 的表达式 与 y( xi 1 ) 的Taylor展开式的前三项相等。 由此龙格和库塔提出了一种间接地运用Taylor公式的方法, y (x) 即利用 在若干个待定点上的函数值和导数值做出线性组 合式,选取适当系数使这个组合式进行Taylor展开后与 y( xi 1 ) 的Taylor展开式有较多的项达到一致,从而得出较高阶的数 值公式,这就是龙格—库塔法的基本思想。
第8章 代数方程和常微分方程求解
8.2 常微分方程求解
求解微分方程必须事先对自变量的某些值规定出 函数或是导数的值。 若在自变量为零的点上,给出初始条件,称为初 值问题,最普遍的自变量是“时间”。例如,弹 性系统的自由振动,若以时间为零来限定位移和 速度,这是一个初值问题。 若在自变量为非零的点上,给出边界条件,称为 边值问题,最普遍的自变量是“位移”。例如, 描述梁弯曲变形的微分方程,边界条件总是规定 在梁的两端。
当 x 0 2 和 y 0 0 条件下的特解。 在此问题中,两个微分方程的MATLAB表达式为: e1:Dx+2*x-Dy=10*cos(t) e2:Dx+Dy+2*y=4*exp(-2*t) 初值条件表达式为: C1:x(0)=2 C2:y(0)=0
8.1 代数方程求解
8.1.1 代数方程图解法
符号绘图函数fplot()和ezplot()也可以用于图解 法求代数方程的根,它适用于求解维数较少的一 维方程或二维方程组。 对于一维方程图解,其解就是函数曲线与x轴交点 所对应的变量数值。如果有多个交点,则表示该 方程有多个解;如果没有交点,则表示该方程没 有解。 例如,在例5-3使用符号绘图函数绘制代数方程的 图形(图5-3左图)中可见,函数在区间[-5,5]内 与x轴有3个交点,因此该代数方程该区间内有3个 实根。
M文件运行结果: 采用矩阵左除或矩阵求逆求出线性方程组的解: xx (zx)= 1.0000 2.0000 3.0000 -1.0000 计算残量: r = 1.0e-014 * 0.0888 0.2220 -0.4441 0.1776 计算残量的模: R = 5.3475e-015
求常微分方程的数值解
求常微分方程的数值解一、背景介绍常微分方程(Ordinary Differential Equation,ODE)是描述自然界中变化的数学模型。
常微分方程的解析解往往难以求得,因此需要寻找数值解来近似地描述其行为。
求解常微分方程的数值方法主要有欧拉法、改进欧拉法、龙格-库塔法等。
二、数值方法1. 欧拉法欧拉法是最简单的求解常微分方程的数值方法之一。
它基于导数的定义,将微分方程转化为差分方程,通过迭代计算得到近似解。
欧拉法的公式如下:$$y_{n+1}=y_n+f(t_n,y_n)\Delta t$$其中,$y_n$表示第$n$个时间步长处的函数值,$f(t_n,y_n)$表示在$(t_n,y_n)$处的导数,$\Delta t$表示时间步长。
欧拉法具有易于实现和理解的优点,但精度较低。
2. 改进欧拉法(Heun方法)改进欧拉法又称Heun方法或两步龙格-库塔方法,是对欧拉法进行了精度上提升后得到的一种方法。
它利用两个斜率来近似函数值,并通过加权平均来计算下一个时间步长处的函数值。
改进欧拉法的公式如下:$$k_1=f(t_n,y_n)$$$$k_2=f(t_n+\Delta t,y_n+k_1\Delta t)$$$$y_{n+1}=y_n+\frac{1}{2}(k_1+k_2)\Delta t$$改进欧拉法比欧拉法精度更高,但计算量也更大。
3. 龙格-库塔法(RK4方法)龙格-库塔法是求解常微分方程中最常用的数值方法之一。
它通过计算多个斜率来近似函数值,并通过加权平均来计算下一个时间步长处的函数值。
RK4方法是龙格-库塔法中最常用的一种方法,其公式如下:$$k_1=f(t_n,y_n)$$$$k_2=f(t_n+\frac{\Delta t}{2},y_n+\frac{k_1\Delta t}{2})$$ $$k_3=f(t_n+\frac{\Delta t}{2},y_n+\frac{k_2\Delta t}{2})$$ $$k_4=f(t_n+\Delta t,y_n+k_3\Delta t)$$$$y_{n+1}=y_n+\frac{1}{6}(k_1+2k_2+2k_3+k_4)\Delta t$$三、数值求解步骤对于给定的常微分方程,可以通过以下步骤求解其数值解:1. 确定初值条件:确定$t=0$时刻的函数值$y(0)$。
常微分方程的数值解算法
常微分方程的数值解算法常微分方程的数值解算法是一种对常微分方程进行数值计算的方法,这可以帮助我们更好地理解和研究自然现象和工程问题。
在本文中,我们将介绍一些常用的数值解算法,探讨它们的优缺点和适用范围。
常微分方程(ODE)是描述自然现象和工程问题的重要数学工具。
然而,对于许多ODE解析解是无法求出的,因此我们需要通过数值方法对其进行求解。
常微分方程可以写作:y' = f(t, y)其中,y是函数,f是给定的函数,表示y随t的变化率。
这个方程可以写成初始值问题(IVP)的形式:y'(t) = f(t,y(t)),y(t0) = y0其中,y(t0)=y0是方程的初始条件。
解决IVP问题的典型方法是数值方法。
欧拉方法欧拉方法是最简单的一阶数值方法。
在欧拉方法中,我们从初始条件开始,并在t = t0到t = tn的时间内,用以下公式逐步递推求解:y n+1 = y n + hf (t n, y n)其中,f(t n,y n)是点(t n,y n)处的导数, h = tn - tn-1是时间间隔。
欧拉方法的优点是简单易懂,容易实现。
然而,它的缺点是在整个时间段上的精度不一致。
程度取决于使用的时间间隔。
改进的欧拉方法如果我们使用欧拉方法中每个时间段的中间点而不是起始点来估计下一个时间点,精度就会有所提高。
这个方法叫做改进的欧拉方法(或Heun方法)。
公式为:y n+1 = y n + h½[f(t n, y n)+f(tn+1, yn + h f (tn, yn))]这是一个二阶方法,精度比欧拉方法高,但计算量也大一些。
对于易受噪声干扰的问题,改进的欧拉方法是个很好的选择。
Runge-Kutta方法Runge-Kutta方法是ODE计算的最常用的二阶和高阶数值方法之一。
这个方法对定义域内的每个点都计算一个导数。
显式四阶Runge-Kutta方法(RK4)是最常用的Runge-Kutta方法之一,并已得到大量实践的验证。
边值问题的数值解法在具体求解常微分方程时-2022年学习资料
中南大学数学科学与计算技术学院-第八章常微分方程数值解法-=323-z2=-x32+4y2?-y20=0, 20=0。-取h=0.02,用经典R-K法分别求这两个方程组解yx和y2x的计算值y1:和-y2i,然后按 8.6.6得精确解-6=,t2=0.x-y21-的打靶法计算值》:,部分点上的计算值、精确值和误差列于表8 12。-版核防行:小人学影学烧
中南大学数学科学与计算技术学院-第八章常微分方程数值解法-值得指出的是,对于线性边值问题86.2,一个简单 实用的方法是用解-析的思想,将它转化为两个初值问题:-y"+pxyi+qxy =fx-ya=a,ya=0: 「片+px5+gxy2=0,-ly2a=a,y2a=l。-求得这两个初值问题的解yx和y2x,若y2b≠0 容易验证-a高-8.6.6-为线性两点边值问题8.6.2的解。-例8.7用打靶法求解线性边值问题-版核防行 小人学影学烧
中南大学数学科学与计算技术学院-第八章常微分方程数值解法-y”+y-4y=12x2-3x,0<x<1,-1 0=0,y1=2,-其解的解析表达式为yX=x4+x。-解先将该线性边值问题转化为两个初值问题-y0=0, 1=0,-y2+y%-4y2=0,-y20=0,y1=1。-令乙1=2=y?,将上述两个边值问题分别降为一 方程组初值问题-31=-x31+4y1+12x2-3x,-y,0=0,z10=0,-版权防行:小人学影学烧
中南大学数学科学与计算技术学院-第八章常微分方程数值解法-表8-12-Xi-yu-y2i-yx-y-yl-0.2--0.002407991-0.204007989-0.2016000053-,0.2016000 00-0.53×10-8-0.4--0.006655031-0.432255024-0.425600008 -0.4256000000-0.80x108-0.6-0.019672413-0.709927571-0. 2960000830.7296000000-0.83×108-0.145529585-1.06407038 -1.2096000058-1.2096000000-0.58x108-0.475570149-1.524 28455-2.00000000002.0000000000-例8.8用打靶法求解线性边值问题-4y"+y =2x3+16,-y2=8,y3=35/3。-要求误差不超过0.5×106,其解析解是yx=x2+8/x。 解对应于8.6.4的初值问题为-版凤防行:小人学数:学烧
第八章_常微分方程初值问题的单步法
为使局部截断误差为O(h ) ,应取
则
k j f ( xi c j h, y( xi c j h)) f ( xi c j h, y( xi ) hc j y( xi )) f ( xi c j h, y( xi ) hc j f ( xi , y( xi )))
f ( xi c j h, yi h a jm km )
f xx f xx ( xi , yi ), f yy f yy ( xi , yi ), f xy f xy ( xi , yi ),
由此得
k1 f , k2 f ( xi c2 h, yi c2 hk1 ) f ( xi , yi ) c2 h( f x k1 f y ) O(h ),
一. Euler方法
a x0 x1 x2 xN 1 xN b, ba x j x0 jh, h , j 1, 2, , N . N
y0 y ( x0 ), yi 1 yi hf ( xi , yi ), i 0,1, , N 1
一阶常微分方程初值问题的数值方法
------单步法
武汉大学数学与统计学院
一阶常微分方程初值问题的一般形式是:
y f ( x, y ), a x b (1) y(a) y0 D {( x, y ) a x b, c y d }
称f(x,y)在区域D上对y满足Lipschitz 条件是指:
定理显然得证.
8.1.2 一阶常微分方程初值问题的 Runge-Kutta方法
考虑一阶常微分方程初值问题
y f ( x, y ), a x b, y (a ) y0 ,
常微分方程数值解法
欧拉方法
总结词
欧拉方法是常微分方程数值解法中最基础的方法之一,其基本思想是通过离散化时间点上的函数值来 逼近微分方程的解。
详细描述
欧拉方法基于微分方程的局部线性化,通过在时间点上逐步逼近微分方程的解,得到一系列离散点上 的近似值。该方法简单易行,但精度较低,适用于求解初值问题。
龙格-库塔方法
总结词
影响
数值解法的稳定性对计算结果的精度和可靠 性有重要影响。
判断方法
通过分析数值解法的迭代公式或离散化方法, 判断其是否具有稳定性和收敛性。
数值解法的收敛性
定义
数值解法的收敛性是指随着迭代次数的增加, 数值解逐渐接近于真实解的性质。
影响
数值解法的收敛性决定了计算结果的精度和 计算效率。
分类
根据收敛速度的快慢,可以分为线性收敛和 超线性收敛等。
判断方法
通过分析数值解法的迭代公式或离散化方法, 判断其是否具有收敛性。
误差分析
定义
误差分析是指对数值解法计算过程中 产生的误差进行定量分析和估计的过 程。
分类
误差可以分为舍入误差、截断误差和 初始误差等。
影响
误差分析对于提高计算精度和改进数 值解法具有重要意义。
分析方法
通过建立误差传递公式或误差估计公 式,对误差进行定量分析和估计。
生物学
生态学、生物种群动态和流行病传播 等问题可以通过常微分方程进行建模
和求解。
化学工程
化学反应动力学、化学工程流程模拟 等领域的问题可以通过常微分方程进 行描述和求解。
经济学
经济系统动态、金融市场模拟和预测 等问题可以通过常微分方程进行建模 和求解。
02 常微分方程的基本概念
常微分方程的定义
常微分方程的数值解法
常微分方程的数值解法常微分方程是研究变量的变化率与其当前状态之间的关系的数学分支。
它在物理、工程、经济等领域有着广泛的应用。
解常微分方程的精确解往往十分困难甚至不可得,因此数值解法在实际问题中起到了重要的作用。
本文将介绍常见的常微分方程的数值解法,并比较其优缺点。
1. 欧拉方法欧拉方法是最简单的数值解法之一。
它基于近似替代的思想,将微分方程中的导数用差商近似表示。
具体步骤如下:(1)确定初始条件,即问题的初值。
(2)选择相应的步长h。
(3)根据微分方程的定义使用近似来计算下一个点的值。
欧拉方法的计算简单,但是由于误差累积,精度较低。
2. 改进欧拉方法为了提高欧拉方法的精度,改进欧拉方法应运而生。
改进欧拉方法通过使用两个点的斜率的平均值来计算下一个点的值。
具体步骤如下:(1)确定初始条件,即问题的初值。
(2)选择相应的步长h。
(3)根据微分方程的定义使用近似来计算下一个点的值。
改进欧拉方法相较于欧拉方法而言,精度更高。
3. 龙格-库塔法龙格-库塔法(Runge-Kutta)是常微分方程数值解法中最常用的方法之一。
它通过迭代逼近精确解,并在每一步中计算出多个斜率的加权平均值。
具体步骤如下:(1)确定初始条件,即问题的初值。
(2)选择相应的步长h。
(3)计算各阶导数的导数值。
(4)根据权重系数计算下一个点的值。
与欧拉方法和改进欧拉方法相比,龙格-库塔法的精度更高,但计算量也更大。
4. 亚当斯法亚当斯法(Adams)是一种多步法,它利用之前的解来近似下一个点的值。
具体步骤如下:(1)确定初始条件,即问题的初值。
(2)选择相应的步长h。
(3)通过隐式或显式的方式计算下一个点的值。
亚当斯法可以提高精度,并且比龙格-库塔法更加高效。
5. 多步法和多级法除了亚当斯法,还有其他的多步法和多级法可以用于解常微分方程。
多步法通过利用多个点的值来逼近解,从而提高精度。
而多级法则将步长进行分割,分别计算每个子问题的解,再进行组合得到整体解。
第8章--常微分方程边值问题的数值解法
第8章 常微分方程边值问题的数值解法8.1 引 言推论 若线性边值问题()()()()()(),,(),()y x p x y x q x y x f x a x b y a y b αβ'''=++≤≤⎧⎨==⎩ (8.1.2) 满足(1) (),()p x q x 和()f x 在[,]a b 上连续; (2) 在[,]a b 上, ()0q x >, 则边值问题(8.1.1)有唯一解。
求边值问题的近似解,有三类基本方法:(1) 差分法(difference method),也就是用差商代替微分方程及边界条件中的导数,最终化为代数方程求解;(2) 有限元法(finite element method);(3) 把边值问题转化为初值问题,然后用求初值问题的方法求解。
8.2 差分法8.2.1 一类特殊类型二阶线性常微分方程的边值问题的差分法设二阶线性常微分方程的边值问题为(8.2.1)(8.2.2)()()()(),,(),(),y x q x y x f x a x b y a y b αβ''-=<<⎧⎨==⎩其中(),()q x f x 在[,]a b 上连续,且()0q x ≥.用差分法解微分方程边值问题的过程是:(i) 把求解区间[,]a b 分成若干个等距或不等距的小区间,称之为单元;(ii) 构造逼近微分方程边值问题的差分格式. 构造差分格式的方法有差分法, 积分插值法及变分插值法;本节采用差分法构造差分格式;(iii) 讨论差分解存在的唯一性、收敛性及稳定性;最后求解差分方程. 现在来建立相应于二阶线性常微分方程的边值问题(8.2.1), (8.2.2)的差分方程. ( i ) 把区间[,]I a b =N 等分,即得到区间[,]I a b =的一个网格剖分:011N N a x x x x b -=<<<<=,其中分点(0,1,,)i x a ih i N =+=,并称之为网格节点(grid nodes);步长b a Nh -=. ( ii ) 将二阶常微分方程(8.2.2)在节点i x 处离散化:在内部节点(1,2,,1)i x i N =-处用数值微分公式2(4)1112()2()()()(),12i i i i i i i i y x y x y x h y x y x x h ξξ+---+''=-<< (8.2.3)代替方程(8.2.2)中()i y x '',得112()2()()()()()()i i i i i i i y x y x y x q x y x f x R x h +--+-=+,(8.2.4) 其中2(4)()()12i i h R x y ξ=. 当h 充分小时,略去式(8.2.4)中的()i R x ,便得到方程(8.2.1)的近似方程1122i i i i i i y y y q y f h +--+-=,(8.2.5)其中(),()i i i i q q x f f x ==, 11,,i i i y y y +-分别是11(),(),()i i i y x y x y x +-的近似值, 称式(8.2.5)为差分方程(difference equation),而()i R x 称为差分方程(8.2.5)逼近方程(8.2.2)的截断误差(truncation error). 边界条件(8.7.2)写成0,.N y y αβ==(8.2.6)于是方程(8.2.5), (8.2.6)合在一起就是关于1N +个未知量01,,,N y y y ,以及1N +个方程式的线性方程组:2211212211222111(2),(2),1,2,,1,(2).i i i i i N N N N q h y y h f y q h y y h f i N y q h y h f αβ-+----⎧-++=-⎪-++==-⎨⎪-+=-⎩(8.2.7)这个方程组就称为逼近边值问题(8.2.1), (8.2.2)的差分方程组(system of difference equations)或差分格式(difference scheme),写成矩阵形式2211122222223332222222111(2)11(2)11(2)11(2)11(2)N N N N N N y q h h f y q h h f y q h h f y q h h f y q h h f αβ------⎡⎤⎡⎤-+-⎡⎤⎢⎥⎢⎥⎢⎥-+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+⎢⎥⎢⎥⎢⎥-+-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. (8.2.8)用第2章介绍的解三对角方程组的追赶法求解差分方程组(8.2.7)或(8.2.8), 其解01,,,N y y y 称为边值问题(8.2.1), (8.2.2)的差分解(difference solution). 由于(8.2.5)是用二阶中心差商代替方程(8.2.1)中的二阶微商得到的,所以也称式(8.2.7)为中心差分格式(centered-difference scheme).( iii ) 讨论差分方程组(8.2.7)或(8.2.8)的解是否收敛到边值问题(8.2.1), (8.2.2)的解,估计误差.对于差分方程组(8.2.7),我们自然关心它是否有唯一解;此外,当网格无限加密,或当0h →时,差分解i y 是否收敛到微分方程的解()i y x . 为此介绍下列极值原理:定理8.2.1 (极值原理) 设01,,,N y y y 是给定的一组不全相等的数,设1122(),0,1,2,,i i i i i i i y y y l y q y q i N h +--+=-≥=.(8.2.9)(1) 若()0,1,2,,i l y i N ≥=, 则{}0Ni i y =中非负的最大值只能是0y 或N y ; (2) 若()0,1,2,,i l y i N ≤=, 则{}0Ni i y =中非正的最小值只能是0y 或N y .证 只证(1) ()0i l y ≥的情形,而(2) ()0i l y ≤的情形可类似证明. 用反证法. 记{}0max i i NM y ≤≤=,假设0M ≥, 且在121,,,N y y y -中达到. 因为i y 不全相等,所以总可以找到某个00(11)i i N ≤≤-,使0i y M =,而01i y -和01i y +中至少有一个是小于M 的. 此时0000000011222()2.i i i i i i i i y y y l y q y h M M M q M q M h +--+=--+<-=-因为00,0i q M ≥≥,所以0()0i l y <, 这与假设矛盾,故M 只能是0y 或N y . 证毕!推论 差分方程组(8.2.7)或(8.2.8)的解存在且唯一. 证明 只要证明齐次方程组11202()0,0,1,2,,1,0,0i i i i i i i N y y y l y q y q i N h y y +--+⎧=-=≥=-⎪⎨⎪==⎩ (8.2.10)只有零解就可以了. 由定理8.7.1知,上述齐次方程组的解01,,,N y y y 的非负的最大值和非正的最小值只能是0y 或N y . 而00,0N y y ==,于是0,1,2,,.i y i N == 证毕!利用定理8.2.1还可以证明差分解的收敛性及误差估计. 这里只给出结果: 定理8.2.2 设i y 是差分方程组(8.2.7)的解,而()i y x 是边值问题(8.2.1), (8.2.2)的解()y x 在i x 上的值,其中0,1,,i N =. 则有224()(),96i i i M h y x y b a ε=-≤-(8.2.11)其中(4)4max ()a x bM yx ≤≤=.显然当0h →时,()0i i i y x y ε=-→. 这表明当0h →时,差分方程组(8.2.7)或(8.2.8)的解收敛到原边值问题(8.7.1), (8.7.2)的解.例8.2.1 取步长0.1h =,用差分法解边值问题43,01,(0)(1)0,y y x x y y ''-=≤≤⎧⎨==⎩并将结果与精确解()()2222()3434x xy x e e ee x --=---进行比较.解 因为110N h ==,()4,()3q x f x x ==, 由式(8.2.7)得差分格式221222112289(240.1)30.10.1,(240.1)30.1,2,3,,8,(240.1)30.10.9,i i i i y y y y y x i y y -+⎧-+⨯+=⨯⨯⎪-+⨯+=⨯=⎨⎪-+⨯=⨯⨯⎩0100y y ==, 00.1,1,2,,9i x ih i i =+==, 其结果列于表8.2.1.从表8.2.1可以看出, 差分方法的计算结果的精度还是比较高的. 若要得到更精确的数值解,可用缩小步长h 的方法来实现.8.2.2 一般二阶线性常微分方程边值问题的差分法对一般的二阶微分方程边值问题1212()()()()()(),,()(),()(),y x p x y x q x y x f x a x b y a y a y b y b αααβββ'''++=<<⎧⎪'+=⎨⎪'+=⎩ (8.2.12) 假定其解存在唯一.为求解的近似值,类似于前面的做法,( i ) 把区间[,]I a b =N 等分,即得到区间[,]I a b =的一个网格剖分:011N N a x x x x b -=<<<<=,其中分点(0,1,,)i x a ih i N =+=,步长b a Nh -=. ( ii ) 对式(8.2.12)中的二阶导数仍用数值微分公式2(4)1112()2()()()(),12i i i i i i i iy x y x y x h y x y x x h ξξ+---+''=-<<代替,而对一阶导数,为了保证略去的逼近误差为2()O h ,则用3点数值微分公式;另外为了保证内插,在2个端点所用的3点数值微分公式与内网格点所用的公式不同,即21112012000022212()()()(),,1,2,,1,263()4()()()(),,23()4()3()()(),.23i i i i i i i N N N N N N N N y x y x h y x y x x i N h y x y x y x h y x y x x h y x y x y x h y x y x x h ξξξξξξ+-----⎧-''''=-<<=-⎪⎪-+-⎪''''=+<<⎨⎪⎪-+''''=+<<⎪⎩(8.2.13) 略去误差,并用()i y x 的近似值i y 代替()i y x ,(),(),()i i i i i i p p x q q x f f x ===,便得到差分方程组1111221001221211(2)(),1,2,,1,2(34),2(43),2i i i i i i i i i N N N N p y y y y y q y f i N h hy y y y h y y y y h αααβββ-++---⎧-++-+==-⎪⎪⎪+-+-=⎨⎪⎪+-+=⎪⎩(8.2.14)其中(),(),(),1,2,,1i i i i i i q q x p p x f f x i N ====-, i y 是()i y x 的近似值. 整理得12021222211222121(23)42,(2)2(2)(2)2,1,2,,1,4(32)2.i i i i i i i N N N h y y y h hp y h q y hp y h f i N y y h y h αααααβββββ-+---+-=⎧⎪---++==-⎨⎪-++=⎩ (8.2.15)解差分方程组(8.2.15),便得边值问题(8.2.12)的差分解01,,,N y y y .特别地, 若12121,0,1,0ααββ====,则式(8.2.12)中的边界条件是第一类边值条件:(),();y a y b αβ==此时方程组(7.7.16)为221112112211221211112(2)(2)2(2),(2)2(2)(2)2,2,3,,2,(2)2(2)2(2).i i i i i i i N N N N N N h q y hp y h f hp hp y h q y hp y h f i N hp y h q y h f hp αβ-+------⎧--++=--⎪---++==-⎨⎪---=-+⎩(8.2.16) 方程组(8.2.16)是三对角方程组,用第2章介绍的解三对角方程组的追赶法求解差分方程组(8.2.16),便得边值问题(8.2.12)的差分解01,,,N y y y .( iii ) 讨论差分方程组(8.2.16)的解是否收敛到微分方程的解,估计误差. 这里就不再详细介绍.例8.2.2取步长/16h π=,用差分法求下列边值问题的近似解,并将结果与精确解进行比较.精确解是1()(sin 3cos )10y x x x =-+. 解 因为(20)8N h π=-=,()1,()2,()cos p x q x f x x =-=-=, 由式(8.2.17)得差分格式()()()()()()()()()()()()()2122211222122216(2)216(1)216cos 16216(1)(0.3),216(1)2216(2)216(1)216cos 16,2,3,,6,216(1)2216(2)216cos 7i i i N N y yy y y i i y y πππππππππππππ-+--⎡⎤--⨯-++⨯-⎡⎤⎣⎦⎣⎦=--⨯-⨯-⎡⎤⎣⎦⎡⎤-⨯---⨯-++⨯-⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦==⎡⎤-⨯---⨯-⎡⎤⎣⎦⎣⎦=()()16216(1)(0.1),ππ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪-+⨯-⨯-⎡⎤⎣⎦⎩080.3,0.1y y =-=-, 00.1,1,2,,9i x ih i i =+==, 其结果列于表8.2.2.8.3 有限元法有限元法(finite element method)是求解微分方程定解问题的有效方法之一,它特别适用在几何、物理上比较复杂的问题. 有限元法首先成功地应用于结构力学和固体力学,以后又应用于流体力学、物理学和其他工程科学. 为简明起见,本节以线性两点边值问题为例介绍有限元法.考虑线性两点边值问题()(8.3.1)(8.3.2)()()()()(),,(),(),Ly p x y x q x y x f x a x b y a y b αβ⎧''⎪=-+=≤≤⎨==⎪⎩其中1()0,()0,C [,]p x q x p a b >≥∈, ,C[,]q f a b ∈.此微分方程描述了长度为b a -的可变交叉截面(表示为()q x )的横梁在应力()p x 和()f x 下的偏差()y x .8.3.1 等价性定理记{}221C [,]()C [,],(),()a b y y y x a b y a y b αβ==∈==, 引进积分()22()()[()]()()2()()d baI y p x y x q x y x f x y x x '=+-⎰. (8.3.3)任取21()C [,]y y x a b =∈,就有一个积分值()I y 与之对应,因此()I y 是一个泛函(functional),即函数的函数. 因为这里是,y y '的二次函数,因此称()I y 为二次泛函.对泛函(8.3.3)有如下变分问题(variation problem):求函数21C [,]y a b ∈,使得对任意21C [,]y a b ∈, 均有()()I y I y ≥, (8.3.4)即()I y 在y 处达到极小, 并称y 为变分问题(8.3.4)的解.可以证明:定理8.3.1(等价性定理) y 是边值问题(8.3.1), (8.3.2)的解的充分必要条件是y 使泛函()I y 在21C [,]a b 上达到极小,即y 是变分问题(8.3.4)在21C [,]a b 上的解. 证 (充分性) 设21C [,]y a b ∈是变分问题()I y 的解;即y 使泛函()I y 在21C [,]a b 上达到极小,证明y 必是边值问题(8.3.1), (8.3.2)的解.设()x η是2C [,]a b 任意一个满足()()0a b ηη==的函数,则函数21()()()C [,]y x y x x a b αη=+∈,其中α为参数. 因为y 使得()I y 达到极小,所以()()I y I y αη+≥,即积分()22()()[()()]()[()()]2()[()()]baI y p x y x x q x y x x f x y x x dxαηαηαηαη''+=+++-+⎰作为α的函数,在0α=处取极小值()I y ,故d()0d I y ααηα=+=. (8.3.5) 计算上式,得()()()()()022(8.d()d d ()[()()]()[()()]2()[()()]d d 2()[()()]()2()[()()]()2()()d 2()()()()()()()()d .bab abaI y p x y x x q x y x x f x y x x x p x y x x x q x y x x x f x x x p x y x x q x y x x f x x x ααααηααηαηαηααηηαηηηηηη===+''=+++-+'''=+++-''=+-⎰⎰⎰3.6)利用分部积分法计算积分[][]()()()d ()()d ()()()()()()()d ()()()d ,bbaab ba abap x y x x x p x y x x p x y x x x p x y x x x p x y x x ηηηηη'''='''=-''=-⎰⎰⎰⎰代入式(8.3.6),得()0(8.3.7)d()2()()()()()()d 0.d b a I y p x y x q x y x f x x x ααηηα'=⎡⎤⎣⎦'+=-+-=⎰因为()x η是任意函数,所以必有()()()()()()0p x y x q x y x f x ''-+-≡. (8.3.8)否则,若在[,]a b 上某点0x 处有()00000()()()()()0p x y x q x y x f x ''-+-≠,不妨设()00000()()()()()0p x y x q x y x f x ''-+->,则由函数的连续性知,在包含0x 的某一区间00[,]a b 上有()()()()()()0p x y x q x y x f x ''-+->.作002200000,[,]\[,],()()(),.x a b a b x x a x b a x b η∈⎧⎪=⎨--≤≤⎪⎩ 显然2()C [,]x a b η∈,且()()0a b ηη==,但()()()()()()()d ba p x y x q x y x f x x x η⎡⎤''-+-⎢⎥⎣⎦⎰ ()00()()()()()()d 0b a p x y x q x y x f x x x η⎡⎤''=-+->⎢⎥⎣⎦⎰,这与式(8.3.7)矛盾. 于是式(8.3.8)成立,即变分问题(8.3.4)的解y 满足微分方程(8.3.1), 且(),()y a y b αβ==故它是边值问题(8.3.1), (8.3.2)的解.(必要性) 设()y y x =是边值问题(8.3.1), (8.3.2)的解,证明y 是变分问题(8.3.4)的解;即:y 使泛函()I y 在21C [,]a b 上达到极小.因为()y y x =满足方程(8.3.1),所以()()()()()()0p x y x q x y x f x ''-+≡.设任意21()C [,]y y x a b =∈,则函数()()()x y x y x η=-满足条件()()0a b ηη==,且2()C [,]x a b η∈. 于是()()[]()222222()()()()()[()()]()[()()]2()[()()]d ()[()]()[()]2()()d 2()()()()()()()()d ()[()]()[()]d baba baaI y I y I y I y p x y x x q x y x x f x y x x x p x y x q x y x f x y x xp x y x x q x y x x f x x x p x x q x x xηηηηηηηηη-=+-''=+++-+'-+-''=+-++⎰⎰⎰()()()22222()()()()()()d ()[()]()[()]d ()[()]()[()]d .bb ba a bap x y x q x y x f x x x p x x q x x xp x x q x x x ηηηηη⎡⎤'''=--+++⎢⎥⎣⎦'=+⎰⎰⎰⎰因为()0,()0p x q x >≥,所以当()0x η≠时,()22()[()]()[()]d 0bap x x q x x x ηη'+>⎰, 即()()0I y I y ->.只有当()0x η≡时,()()0I y I y -=. 这说明y 使泛函()I y 在21C [,]a b 上达到极小. 证毕!定理8.3.2 边值问题(8.3.1), (8.3.2)存在唯一解.证明 用反证法. 若12(),()y x y x 都是边值问题(8.3.1), (8.3.2)的解,且不相等,则由定理8.3.1知,它们都使泛函()I y 在21C [,]a b 上达到极小,因而12()()I y I y > 且 21()()I y I y >,矛盾!因此边值问题(8.3.1), (8.3.2)的解是唯一的.由边值问题解的唯一性,不难推出边值问题(8.3.1), (8.3.2)解的存在性(留给读者自行推导).8.3.2 有限元法等价性定理说明,边值问题(8.3.1), (8.3.2)的解可化为变分问题(8.3.4)的求解问题. 有限元法就是求变分问题近似解的一种有效方法. 下面给出其解题过程:第1步 对求解区间进行网格剖分01,i n a x x x x b =<<<<<=区间1[,]i i i I x x -=称为单元,长度1(1,2,,)i i i h x x i n -=-=称为步长,1max i i nh h ≤≤=. 若(1,2,,)i h h i n ==,则称上述网格剖分为均匀剖分.给定剖分后,泛函(8.3.3)可以写成()22()()[()]()()2()()d baI y p x y x q x y x f x y x x '=+-⎰()12211()[()]()()2()()d i i nnx i x i i p x y x q x y x f x y x xS -=='=+-∑∑⎰记. (8.3.9)第2步 构造试探函数空间。
计算方法课件第八章常微分方程初值问题的数值解法
整体截断误差与局部截断误差的关系
定理:如果f(x,y)满足李普希兹(Lipschitz)条件
f(x ,y 1 )f(x ,y 2) L y 1y 2
且局部截断误差有界:
|R n|1 2h2M 2
(n1,2, )
则Euler法的整体截断误差n满足估计式:
ne(ba)L 0h 2L M 2(e(ba)L1)
分光滑。初值问题的解析解(理论解)用 y(x表n ) 示, 数值解法的精确解用 y表n 示。
常微分方程数值解法一般分为:
(1)一步法:在计算y n 1 时,只用到x n 1 ,x n和 y,n 即前一步的值。
(2)多步法:计算 y n 1 时,除用到 x n 1 ,x n 和 y n 以外,还要用 x n p 和 y n p (p1 ,2 k;k0) ,即前
其中L为李普希兹常数,b-a为求解区间长度,
M2 mayx(x) 。 axb
证明参见教材。
Remark:该定理表明,整体截断误差比局部截 断误差低一阶。对其它方法,也有类似的结论。
收敛性与稳定性
收敛性定义:如果某一数值方法对于任意固定的
xn=x0+nh,当h0(同时n )时有yn y(xn),
则称该方法收敛。 稳定性定义 定义 用一个数值方法,求解微分方程初值问 题时,对给定的步长h>0,若在计算 y n 时引入 误差 (n 也称扰动),但由此引起计算后面的 ynk(k1,2, )时的误差按绝对值均不增加,则 称这个数值方法是稳定的。
一般的显式rk方法可以写成型钢截面只需少量加工即可用作构件省工省时成本低但型钢截面受型钢种类及型钢号限制难于完全与受力所需的面积相对应用料较多其中为常数选取这些常数的原则是要求第一式的右端在处泰勒展开后按h型钢截面只需少量加工即可用作构件省工省时成本低但型钢截面受型钢种类及型钢号限制难于完全与受力所需的面积相对应用料较多上述公式叫做n级的rungekutta方法其局部截断误差为显然euler法是一级一阶rk方法
常微分方程数值解法
第八章 常微分方程的数值解法一.内容要点考虑一阶常微分方程初值问题:⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy微分方程的数值解:设微分方程的解y (x )的存在区间是[a,b ],在[a,b ]内取一系列节点a= x 0< x 1<…< x n =b ,其中h k =x k+1-x k ;(一般采用等距节点,h=(b-a)/n 称为步长)。
在每个节点x k 求解函数y(x)的近似值:y k ≈y(x k ),这样y 0 , y 1 ,...,y n 称为微分方程的数值解。
用数值方法,求得f(x k )的近似值y k ,再用插值或拟合方法就求得y(x)的近似函数。
(一)常微分方程处置问题解得存在唯一性定理对于常微分方程初值问题:⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy如果:(1) 在B y y A x x 00≤-≤≤,的矩形内),(y x f 是一个二元连续函数。
(2) ),(y x f 对于y 满足利普希茨条件,即2121y y L y x f y x f -≤-),(),(则在C x x 0≤≤上方程⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解存在且唯一,这里C=min((A-x 0),x 0+B/L),L 是利普希茨常数。
定义:任何一个一步方法可以写为),,(h y x h y y k k k 1k Φ+=+,其中),,(h y x k k Φ称为算法的增量函数。
收敛性定理:若一步方法满足: (1)是p 解的.(2) 增量函数),,(h y x k k Φ对于y 满足利普希茨条件.(3) 初始值y 0是精确的。
则),()()(p h O x y kh y =-kh =x -x 0,也就是有0x y y lim k x x kh 0h 0=--=→)((一)、主要算法 1.局部截断误差局部截断误差:当y(x k )是精确解时,由y(x k )按照数值方法计算出来的1~+k y 的误差y (x k+1)- 1~+k y 称为局部截断误差。
第八章常微分方程的初值问题
y(k) n1
)]
迭代法太麻烦,实际上,当h取得很小时,只让上式中 的第二式迭代一次就可以,即
改进的Euler法(也叫欧拉预估—校正法)
y(0) n1
yn
hf ( xn , yn )
预估算式
yn1
yn
h 2 [ f ( xn, yn )
f
(
xn1
,
y(0) n1
)]
校正算式
改进的Euler法=向前欧拉法+梯形法
x0
x
y( x) y( x0 )
f ( x, y( x))dx
x0
x
y( x) y( x0 )
f ( x, y( x))dx
x0
1、向前Euler法 y'( x) f ( x, y( x)), y( x0 ) y0
推导1:设节点为 xn x0 nh,(n 0,1,2, ) 用向前差分公式代替导数:
注1: 微分方程中用 D 表示对 自变量 的导数,如:
Dy
y'; D2y
y''; D3y
y'''
注2:如果省略初值条件,则表示求通解;
例 :求微分方程 dy 2 xy xe x2的通解,并验证。 dx
>> y=dsolve('Dy+2*x*y=x*exp(-x^2)','x') 结果为 y =(1/2*x^2+C1)*exp(-x^2)
xn
y( xn1) y( xn )
xn1 f ( x, y( x))dx
xn
用矩形代替右边的积分 y( xn1 ) y( xn ) hf ( xn , y( xn ))
第八章 常微分方程初值问题的解法
第八章常微分方程初值问题的解法在科学与工程问题中,常微分方程描述物理量的变化规律,应用非常广泛. 本章介绍最基本的常微分方程初值问题的解法,主要针对单个常微分方程,也讨论常微分方程组的有关技术.8.1引言本节介绍常微分方程、以及初值问题的基本概念,并对常微分方程初值问题的敏感性进行分析.8.1.1 问题分类与可解性很多科学与工程问题在数学上都用微分方程来描述,比如,天体运动的轨迹、机器人控制、化学反应过程的描述和控制、以及电路瞬态过程分析,等等. 这些问题中要求解随时间变化的物理量,即未知函数y(t),t表示时间,而微分方程描述了未知函数与它的一阶或高阶导数之间的关系. 由于未知函数是单变量函数,这种微分方程被称为常微分方程(ordinary differential equation, ODE),它具有如下的一般形式①:g(t,y,y′,⋯,y(k))=0 ,(8.1) 其中函数g: ℝk+2→ℝ. 类似地,如果待求的物理量为多元函数,则由它及其偏导函数构成的微分方程称为偏微分方程(partial differential equation, PDE). 偏微分方程的数值解法超出了本书的范围,但其基础是常微分方程的解法.在实际问题中,往往有多个物理量相互关联,它们构成的一组常微分方程决定了整个系统的变化规律. 我们先针对单个常微分方程的问题介绍一些基本概念和求解方法,然后在第8.5节讨论常微分方程组的有关问题.如公式(8.1),若常微分方程包含未知函数的最高阶导数为y(k),则称之为k阶常微分方程. 大多数情况下,可将常微分方程(8.1)写成如下的等价形式:y(k)=f(t,y,y′,⋯,y(k−1)) ,(8.2) 其中函数f: ℝk+1→ℝ. 这种等号左边为未知函数的最高阶导数y(k)的方程称为显式常微分方程,对应的形如(8.1)式的方程称为隐式常微分方程.通过简单的变量代换可将一般的k阶常微分方程转化为一阶常微分方程组. 例如对于方程(8.2),设u1(t)=y(t),u2(t)=y′(t),⋯,u k(t)=y(k−1), 则得到等价的一阶显式常微分方程组为:{u1′=u2u2′=u3⋯u k′=f(t,u1,u2,⋯,u k).(8.3)本书仅讨论显式常微分方程,并且不失一般性,只需考虑一阶常微分方程或方程组.例8.1 (一阶显式常微分方程):试用微积分知识求解如下一阶常微分方程:y′=y .[解] 采用分离变量法进行推导:①为了表达式简洁,在常微分方程中一般省略函数的自变量,即将y(t)简记为y,y′(t)简记为y′,等等.dy dt =y ⟹ dy y=dt , 对两边积分,得到原方程的解为:y (t )=c ∙e t ,其中c 为任意常数.从例8.1看出,仅根据常微分方程一般无法得到唯一的解. 要确定唯一解,还需在一些自变量点上给出未知函数的值,称为边界条件. 一种边界条件设置方法是给出t =t 0时未知函数的值:y (t 0)=y 0 .在合理的假定下,从t 0时刻对应的初始状态y 0开始,常微分方程决定了未知函数在t >t 0时的变化情况,也就是说这个边界条件可以确定常微分方程的唯一解(见定理8.1). 相应地,称y (t 0)=y 0为初始条件,而带初始条件的常微分方程问题:{y ′=f (t,y ),t ≥t 0y (t 0)=y 0 . (8.4)为初值问题(initial value problem, IVP ).定理8.1:若函数f (t,y )关于y 满足李普希兹(Lipschitz )条件,即存在常数L >0,使得对任意t ≥t 0,任意的y 与y ̂,有:|f (t,y )−f(t,y ̂)|≤L |y −y ̂| ,(8.5) 则常微分方程初值问题(8.4)存在唯一的解.一般情况下,定理8.1的条件总是满足的,因此常微分方程初值问题的解总是唯一存在的. 为了更清楚地理解这一点,考虑f (t,y )的偏导数ðf ðy 存在,则它在求解区域内可推出李普希兹条件(8.5),因为f (t,y )−f (t,y ̂)=ðf ðy (t,ξ)∙(y −y ̂) , 其中ξ为介于y 和y ̂之间的某个值. 设L 为|ðf ðy (t,ξ)|的上界,(8.5)式即得以满足.对公式(8.4)中的一阶常微分方程还可进一步分类. 若f (t,y )是关于y 的线性函数,f (t,y )=a (t )y +b (t ) ,(8.6) 其中a (t ),b (t )表示自变量为t 的两个一元函数,则对应的常微分方程为线性常微分方程,若b (t )≡0, 则为线性齐次常微分方程. 例8.1中的方程属于线性、齐次、常系数微分方程,这里的“常系数”是强调a (t )为常数函数.8.1.2 问题的敏感性对常微分方程初值问题,可分析它的敏感性,即考虑初值发生扰动对结果的影响. 注意这里的结果(解)是一个函数,而不是一个或多个值. 由于实际应用的需要,分析常微分方程初值问题的敏感性时主要关心t →∞时y (t )受影响的情况,并给出有关的定义. 此外,考虑到常微分方程的求解总与数值算法交织在一起、以及历史的原因,一般用“稳定”、“不稳定”等词汇说明问题的敏感性.定义8.1:对于常微分方程初值问题(8.4),考虑初值y 0的扰动使问题的解y (t )发生偏差的情形. 若t →∞时y (t )的偏差被控制在有界范围内,则称该初值问题是稳定的(stable ),否则该初值问题是不稳定的(unstable ). 特别地,若t →∞时y (t )的偏差收敛到零,则称该初值问题是渐进稳定的(asymptotically stable ).关于定义8.1,说明两点:● 渐进稳定是比稳定更强的结论,若一个问题是渐进稳定的,它必然是稳定的. ● 对于不稳定的常微分方程初值问题,初始数据的扰动将使t →∞时的结果误差无穷大. 因此为了保证数值求解的有效性,常微分方程初值问题具有稳定性是非常重要的.例8.2 (初值问题的稳定性): 考察如下“模型问题”的稳定性:{y ′=λy,t ≥t 0y (t 0)=y 0 . (8.7)[解] 易知此常微分方程的准确解为:y (t )=y 0e λ(t−t 0). 假设初值经过扰动后变为y 0+Δy 0,对应的扰动后解为y ̂(t )=(y 0+Δy 0)e λ(t−t 0),所以扰动带来的误差为Δy (t )=Δy 0e λ(t−t 0) .根据定义8.1,需考虑t →∞时Δy (t )的值,它取决于λ. 易知,若λ≤0,则原问题是稳定的,若λ>0,原问题不稳定. 而且当λ<0时,原问题渐进稳定.图8-1分三种情况显示了初值扰动对问题(8.7)的解的影响,从中可以看出不稳定、稳定、渐进稳定的不同含义.对例8.2中的模型问题,若考虑参数λ为一般的复数,则问题的稳定性取决于λ的实部,若Re(λ)≤0, 则问题是稳定的,否则不稳定. 例8.2的结论还可推广到线性、常系数常微分方程,即根据f (t,y )中y 的系数可确定初值问题的稳定性. 对于一般的线性常微分方程(8.6),由于方程中y 的系数为关于t 的函数,仅能分析t 取某个值时的局部稳定性.例8.3 (局部稳定性): 考察如下常微分方程初值问题的稳定性:{y ′=−10ty,t ≥0y (0)=1 . (8.8)[解] 此常微分方程为线性常微分方程,其中y 的系数为a (t )=−10t . 当t ≥0时,a (t )≤0,在定义域内每个时间点上该问题都是局部稳定的.事实上,方程(8.8)的解析为y (t )=e −5t 2,初值扰动Δy 0造成的结果误差为Δy (t )=Δy 0e −5t 2. 这说明初值问题(8.8)是稳定的.对于更一般的一阶常微分方程(8.4),由于其中f (t,y )可能是非线性函数,分析它的稳定性非常复杂. 一种方法是通过泰勒展开用一个线性常微分方程来近似它,再利用线性常微分方程稳定性分析的结论了解它的局部稳定性. 具体的说,在某个解函数y ∗(t)附近用一阶泰勒展开近似f (t,y ),f (t,y )≈f (t,y ∗)+ðf ðy(t,y ∗)∙(y −y ∗) 则原微分方程被局部近似为(用符号z 代替y ): 图8-1 (a) λ>0对应的不稳定问题, (b) λ=0对应的稳定问题, (c) λ<0对应的渐进稳定问题. (a) (b) (c)z′=ðfðy(t,y∗)∙(z−y∗)+f(t,y∗)这是关于未知函数z(t)的一阶线性常微分方程,可分析t取某个值时的局部稳定性. 因此,对于具体的y∗(t)和t的取值,常微分方程初值问题(8.4)的局部稳定性取决于ðfðy(t,y∗)的实部的正负号. 应注意的是,这样得到的关于稳定性的结论只是局部有效的.实际遇到的大多数常微分方程初值问题都是稳定的,因此在后面讨论数值解法时这常常是默认的条件.8.2简单的数值解法与有关概念大多数常微分方程都无法解析求解(尤其是常微分方程组),只能得到解的数值近似. 数值解与解析解有很大差别,它是解函数在离散点集上近似值的列表,因此求解常微分方程的数值方法也叫离散变量法. 本节先介绍最简单的常微分方程初值问题解法——欧拉法(Euler method),然后给出数值解法的稳定性和准确度的概念,最后介绍两种隐格式解法.8.2.1 欧拉法数值求解常微分方程初值问题,一般都是“步进式”的计算过程,即从t0开始依次算出离散自变量点上的函数近似值. 这些离散自变量点和对应的函数近似值记为:t0<t1<⋯<t n<t n+1<⋯y 0,y1,⋯y n,y n+1,⋯其中y0是根据初值条件已知的. 相邻自变量点的间距为 n=t n+1−t n, 称为步长.数值解法通常使用形如y n+1=G(y n+1,y n,y n−1,…,y n−k)(8.9) 的计算公式,其中G表示某个多元函数. 公式(8.9)是若干个相邻时间点上函数近似值满足的关系式,利用它以及较早时间点上函数近似值可算出y n+1. 若公式(8.9)中k=0,则对应的解法称为单步法(single-step method),其计算公式为:y n+1=G(y n+1,y n) .(8.10) 否则,称为多步法(multiple-step method). 另一方面,若函数G与y n+1无关,即:y n+1=G(y n,y n−1,…,y n−k),则称为显格式方法(explicit method),否则称为隐格式方法(implicit method). 显然,显格式方法的计算较简单,只需将已得到的函数近似值代入等号右边,则可算出y n+1.欧拉法是一种显格式单步法,对初值问题(8.4)其计算公式为:y n+1=y n+ n f(t n,y n) , n=0,1,2,⋯.(8.11) 它可根据数值微分的向前差分公式(第7.7节)导出. 由于y′=f(t,y),则y′(t n)=f(t n,y(t n))≈y(t n+1)−y(t n)n,得到近似公式y(t n+1)≈y(t n)+ n f(t n,y(t n)),将其中的函数值换为数值近似值,则得到欧拉法的递推计算公式(8.11). 还可以从数值积分的角度进行推导,由于y(t n+1)=y(t n)+∫y′(s)dst n+1t n =y(t n)+∫f(s,y(s))dst n+1t n,用左矩形公式近似计算其中的积分(矩形的高为s=t n时被积函数值),则有y(t n+1)≈y(t n)+ n f(t n,y(t n)) ,将其中的函数值换为数值近似值,便得到欧拉法的计算公式.例8.4 (欧拉法):用欧拉法求解初值问题{y ′=t −y +1y (0)=1. 求t =0.5时y (t )的值,计算中将步长分别固定为0.1和0.05.[解] 在本题中,f (t,y )=t −y +1, t 0=0, y 0=1, 则欧拉法计算公式为:y n+1=y n + (t n −y n +1) , n =0,1,2,⋯当步长h=0.1时,计算公式为y n+1=0.9y n +0.1t n +0.1; 当步长h=0.05时,计算公式为y n+1=0.95y n +0.05t n +0.05. 两种情况的计算结果列于表8-1中,同时也给出了准确解y (t )=t +e −t 的结果.表8-1 欧拉法计算例8.4的结果 h=0.1h=0.05 t ny n y (t n ) t n y n t n y n 0.11.000000 1.004837 0.05 1.000000 0.3 1.035092 0.21.010000 1.018731 0.1 1.002500 0.35 1.048337 0.31.029000 1.040818 0.15 1.007375 0.4 1.063420 0.41.056100 1.070320 0.2 1.014506 0.45 1.080249 0.5 1.090490 1.106531 0.25 1.023781 0.5 1.098737 从计算结果可以看出,步长取0.05时,计算的误差较小.在常微分方程初值问题的数值求解过程中,步长 n ,(n =0,1,2,⋯)的设置对计算的准确性和计算量都有影响. 一般地,步长越小计算结果越准确,但计算步数也越多(对于固定的计算区间右端点),因此总计算量就越大. 在实际的数值求解过程中,如何设置合适的步长达到准确度与效率的最佳平衡是很重要的一个问题.8.2.2数值解法的稳定性与准确度在使用数值方法求解初值问题时,还应考虑数值方法的稳定性. 实际的计算过程中都存在误差,若某一步的解函数近似值y n 存在误差,在后续递推计算过程中,它会如何传播呢?会不会恶性增长,以至于“淹没”准确解?通过数值方法的稳定性分析可以回答这些问题. 首先给出稳定性的定义.定义8.2:采用某个数值方法求解常微分方程初值问题(8.4),若在节点t n 上的函数近似值存在扰动δn ,由它引起的后续各节点上的误差δm (m >n )均不超过δn ,即|δm |≤|δn |,(m >n),则称该方法是稳定的.在大多数实际问题中,截断误差是常微分方程数值求解中的主要计算误差,因此我们忽略舍入误差. 此外,仅考虑稳定的常微分方程初值问题.考虑单步法的稳定性,需要分析扰动δn 对y n+1的影响,推导δn+1与δn 的关系式. 以欧拉法为例,先考虑模型问题(8.7),并且设Re(λ)≤0. 此时欧拉法的计算公式为②:y n+1=y n + λy n =(1+ λ)y n ,由y n 上的扰动δn 引起y n+1的误差为:δn+1=(1+ λ)δn ,要使δn+1的大小不超过δn ,则要求|1+ λ|≤1 . (8.12)② 对于稳定性分析以及后面的一些场合,由于只考虑一步的计算,将步长 n 记为 .。
常微分方程初值问题的的数值解法
本章讨论常微分方程初值问题的数值解法
2
考虑一阶常微分方程的初值问题
⎧ dy ⎪ = f ( x, y ) ⎨ dx ⎪ ⎩ y (a ) = y0
x ∈ [a, b]
只要 f (x, y) 在[a, b] × R1 上连续,且关于 y 满足 Lipschitz 条 件,即存在与 x, y 无关的常数 L 使对任意x∈[a, b] ,和y1, y2 ∈ R1 都有 | f ( x, y1) − f ( x, y2 ) | ≤ L| y1 − y2 | 在唯一解。 成立, 则上述问题存
⎧ ⎪ ⎨ ⎪ ⎩ y n +1 = yn + hf ( xn , yn ), h yn +1 = yn + [ f ( xn , yn ) + f ( xn +1 , y n +1 )] 2
改进的Euler方法:y0=1,
y1=y0+hf (x0, y0) =1.1, y1=1+01./2 ×[(1−2 ×0/1)+(1.1−2 ×0.1/1.1)] =1.095909, …… y11=…… y11=1.737869.
1 yn +1 = yn + h[ f ( xn , yn ) + f ( xn +1 , yn +1 )] 2
12
称之为梯形公式。这是一个隐式的计算公式,欲求的yn+1需 解一个方程。
3.截断误差
定义 在假设 yn = y(xn),即第 n 步计算是精确的前提下,考 虑的截断误差 εn+1 = y(xn+1) − yn+1 称为局部截断误差
⎧ y n +1 = y n + k1 ⎨ ⎩k1 = hf ( xn ,y n )
常微分方程数值解法
第八章 常微分方程数值解法教学目的 1. 掌握解常微分方程的单步法:Euler 方法、Taylor 方法和Runge-Kutta 方法;2. 掌握解常微分方程的多步法:Adams 步法、Simpson 方法和Milne 方法等;3. 了解单步法的收敛性、相容性与稳定性;多步法的稳定性。
教学重点及难点 重点是解常微分方程的单步法:Euler 方法、Taylor 方法和Runge-Kutta 方法和解常微分方程的多步法:Adams 步法、Simpson 方法和Milne 方法等;难点是理解单步法的收敛性、相容性与稳定性及多步法的稳定性。
教学时数 20学时 教学过程§1基本概念1.1常微分方程初值问题的一般提法常微分方程初值问题的一般提法是求函数b x a x y ≤≤),(,满足⎪⎩⎪⎨⎧=<<=)2.1()()1.1(),,(αa yb x a y x f dx dy其中),(y x f 是已知函数,α是已知值。
假设),(y x f 在区域},),{(+∞<≤≤=y b x a y x D 上满足条件: (1)),(y x f 在D 上连续; (2)),(y x f 在D 上关于变量y 满足Lipschitz 条件:2121),(),(y y L y x f y x f -≤-,21,,y y b x a ∀≤≤ (1.3)其中常数L 称为Lipschitz 常数。
我们简称条件(1)、(2)的基本条件。
由常微分方程的基本理论,我们有:定理1 当),(y x f 在D 上满足基本条件时,一阶常微分方程初值问题(1.1)、(1.2)对任意给定α存在唯一解)(x y 在],[b a 上连续可微。
定义1 方程(1.1)、(1.2)的解)(x y 称为适定的,若存在常数0>ε和0>K ,对任意满足条件εδ≤及εη≤∞)(x 的δ和)(x η,常微分方程初值问题⎪⎩⎪⎨⎧+=<<+=δηa a z b x a x z x f dx dz)(),(),((1.4)存在唯一解)(x z ,且}.{)()(δη+≤-∞∞K x z x y适定问题的解)(x y 连续依赖于(1.1)右端的),(y x f 和初值α。
实验八 常微分方程初值问题数值解法报告
实验八 常微分方程初值问题数值解法一、基本题科学计算中经常遇到微分方程(组)初值问题,需要利用Euler 法,改进Euler 法,Rung-Kutta 方法求其数值解,诸如以下问题:(1) ()⎪⎩⎪⎨⎧=-='004y xy y x y 20≤<x分别取h=0.1,0.2,0.4时数值解。
初值问题的精确解245x y e -=+。
(2) ()⎩⎨⎧=--='0122y y x y 01≤≤-x用r=3的Adams 显式和预 - 校式求解取步长h=0.1,用四阶标准R-K 方法求值。
(3)()()()100010321331221==-='⎪⎩⎪⎨⎧-='-='='y y y y y y y y y 10≤≤x用改进Euler 法或四阶标准R-K 方法求解取步长0.01,计算(0.05),(0.1y y y 数值解,参考结果 123(0.15)0.9880787,(0.15)0.1493359,(0.15)0.8613125y y y ≈-≈≈。
(4)利用四阶标准R- K 方法求二阶方程初值问题的数值解(I )()()⎩⎨⎧='==+'-''10,00023y y y y y 02.0,10=≤≤h x(II)()()()⎩⎨⎧='==+'--''00,10011.02y y y y y y 1.0,10=≤≤h x(III)()()⎪⎩⎪⎨⎧='=+='00,101y y e y y x 1.0,20=≤≤h x(IV)()()⎩⎨⎧='==+''00,100sin y y y y 2.0,40=≤≤h x二、应用题1. 小型火箭初始质量为900千克,其中包括600千克燃料。
火箭竖直向上发射时燃料以15千克/秒的速率燃烧掉,由此产生30000牛顿的恒定推力.当燃料用尽时引擎关闭。
8.1用改进的Euler方法解初值问题
第八章常微分方程数值解法8.1用改进的Euler 方法解初值问题:取步长h=0.1计算,并与准确解相比较。
⎩⎨⎧=≤<+=1)0(10,'y x y x y 12−−=x e y x 8.2用改进的Euler 方法解初值问题:取步长h=0.1计算y(0.5),并与准确解相比较。
⎩⎨⎧=−+=0)0('2y y x x y x e x x y −−+−=12习题8第八章常微分方程数值解法8.3对初值问题:证明Euler 公式和梯形公式求得的近似解分别为⎩⎨⎧=−=1)0('y y y ,)1(n n h y −=n n h h y ⎟⎠⎞⎜⎝⎛+−=22并证明当时,它们都收敛于准确解。
0→h x e x y −=)(8.4取h=0.2,用经典R-K 法求解下列初值问题:⎪⎩⎪⎨⎧=≤<+=1)0(10,13')2(y x x y y ⎩⎨⎧=≤<+=1)0(10,')1(y x y x y第八章常微分方程数值解法8.5证明对任意参数t ,下列R -K 公式是二阶的:))1(,)1((),(),()(213121321hK t y h t x f K thK y th x f K y x f K K K h y y n n n n n n n n −+−+=++==++=+8.6对试验方程,试证明如下方法给出的绝对稳定条件。
(2)经典R-K 公式:(1)改进的Euler 公式:1|2)(1|2≤++h h λλ)0('<=λλy y 1|24)(6)(2)(1|432≤++++h h h h λλλλ第八章常微分方程数值解法本节内容完毕,点击自动返回章目录!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
151第八章 常微分方程数值解在工程和科学技术的实际问题中,常常需求解常微分方程。
但由常微分方程理论可知,常微分方程中往往只有少数较简单和典型的方程可求出其解析解。
在大多数情况下,常微分方程只能用近似法求解。
这种近似解法可分为两大类:一类是近似解析法,如级数解法、逐次逼近法等;另一类则是数值解法,它给出方程在一些离散点上的近似解。
本章主要讨论一阶常微分方程的初值问题:()()⎪⎩⎪⎨⎧==0,y a y y x f dx dyb x a ≤≤ (8.1) 从理论上讲,只要方程中的()y x f ,连续且关于y 满足李普希兹(Lipschitz )条件,即存在常数L ,使()()2121,,y y L y x f y x f -≤-则常微分方程存在唯一解)(x y y =。
所谓微分方程数值解,就是求微分方程的解()x y 在一系列离散节点 b x x x x a n n =<<<<=-110处()i x y 的近似值i y ),,1,0(n i =. 相邻的两个节点之间的距离i i i x x h -=+1称为由i x 到1+i x 的步长,通常取为常数h 。
求数值解,首先应将微分方程离散化,常用的方法有: (1) 用差商代替微商 若用向前差商代替微商,即()()()()()i i i i i x y x f x y hx y x y ,1='≈-+ )1,,1,0(-=n i代入(8.1)中的微分方程,则得()1+i x y ()()()i i i x y x hf x y ,+≈152 记)(i x y 的近似值i y ,则由上式右端可计算出)(1+i x y 的近似值,即()i i i i y x hf y y ,1+=+ )1,,1,0(-=n i (8.2)(2) 数值积分法 利用数值积分法左矩形公式()()i i x y x y -+1=()()()i i x x y x hf dx x y x f i i,,1≈⎰+可得同样算法 ()i i i i y x hf y y ,1+=+(3) 用泰勒(Taylor )公式将函数)(x y 在i x 处展开,取一次Taylor 多项式近似,则得()()h x y x y i i +=+1()()i i x y h x y '+≈()()()i i i x y x hf x y ,+=从而也得到离散化得计算公式 ()i i i i y x hf y y ,1+=+§1 欧拉(Euler )方法1.1欧拉方法对一阶微分方程(8.1),把区间[]b a ,作n 等分:b x x x x a n n =<<<<=-110 , 则分点为 ih a x i +=, nab h -=),2,1(n i = 由以上讨论可知,无论用一阶向前差商,还是用数值积分法左矩形公式,或者用泰勒公式取前两项都可得到同样的离散化计算公式()i i i i y x hf y y ,1+=+并将初值条件代入,则得到数值算法:()()⎩⎨⎧=+=+a y y y x hf y y i i i i 01, ),2,1(n i = (8.3) 称其为欧拉方法。
几何上欧拉方法就是用一条折线近似表示曲线()x y y =(如图8-1)。
因此欧拉方法又称为欧拉折线方法。
153y图8-1 欧拉方法 1.2欧拉方法的误差估计定义1 假设)(i i x y y =为准确值,考虑计算一步所产生得误差,即用某种数值算法计算)(1+i x y 1+i y 所产生的误差()111+++-=i i i y x y R ,称为该数值算法的局部截断误差。
定义2 考虑用某种数值算法计算时,因前面的计算不准确而引起的准确解)(i x y 与数值解i y 的误差,()i i i y x y e -=称为该数值算法的整体截断误差。
设函数),(y x f 充分光滑,问题(8.1)的解()x y 在],[b a 上有二阶连续导数,由泰勒公式有()()h x y x y i i +=+1=()()()i i i y h x y h x y ξ''+'+221=()()i i i i y h y x hf y ξ''++221,所以154 ()111+++-=i i i y x y R =)(212i y h ξ'',1+<<i i i x x ξ (8.4) 定义3 如果一数值解法的局部截断误差为)(1+p h O ,则称该算法为p 阶算法。
当h 充分小时,由(8.4)知欧拉方法的局部截断误差为)(2h O ,因此欧拉方法是一个 一阶方法,计算结果的精度较差。
1.3 改进的欧拉方法由微分方程数值解的三种基本构造方法知,若取不同的差商(如向后差商),不同的数 值积分公式(如梯形公式),以及泰勒公式取前三项、四项等可得不同的算法。
如果用向后差商近似代替导数,则有()()()()()i i i i i x y x f x y hx y x y ,1='≈-- ),,1(n i =即 ()111,)()(++++≈i i i i y x hf x y x y )1,,1,0(-=n i所以有 ()111,++++=i i i i y x hf y y )1,,1,0(-=n i (8.5) (8.5)式称为隐式欧拉公式。
如果用梯形公式计算积分:()()()()()()[]11,,2,1+++≈⎰+i i i i x x x y x f x y x f hdx x y x f i i()()[]111,,2+++++=i i i i i i y x f y x f hy y (8.6) 且 ()111+++-=i i i y x y R = ()ξy h '''-3121(8.7)由于此方程为1+i y 的隐式方程,不易求解。
一般将其与欧拉方法联合使用,可得算法()()()()()()[]⎪⎩⎪⎨⎧++=+=+++++k i i i i i k i i i i i y x f y x f h y y y x hf y y 111101,,2, (8.8))1,2,1,0;,2,1,0(-==n i k按式(8.8)计算问题(8.1)的数值解时,如果每步只迭代一次,相当于将欧拉公式与梯形公式结合使用,即在实际计算中,当h 比较小时,常取一次迭代后的近似值()11+i y 为1+i y ,155于是有改进的欧拉方法⎪⎩⎪⎨⎧++=+=++++)]~,(),([2),(~1111i i i i i i i i i i y x f y x f h y y y x hf y y )1,2,1,0(-=n i (8.9) 例1 用欧拉方法和改进的欧拉方法求微分方程()[]7.0,0,10322∈⎪⎩⎪⎨⎧==x y xydx dy 的数值解(取h=0.1)。
解 由欧拉方法(8.3),得数值计算公式1+i y =i y +0.1×232i i y x 计算结果如表8-1由改进的欧拉方法(8.8),得数值计算公式⎪⎩⎪⎨⎧++=+=++++]~3232[05.0321.0~2112121i i i i i i i i i i y x y x y y y x y y 计算结果如表8-2表8-1x i 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 y i 1.0000 1.0069 1.0208 1.0391 1.0628 1.0923 1.1269 1.1643 误差 0.0000 0.0037 0.0077 0.0993 0.0120 0.0151 0.0189 0.0222表8-2x i 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 y i 1.0000 1.0033 1.0132 1.0292 1.0506 1.0773 1.1079 1.1422 误差 0.0000 0.0000 0.0000 0.0002 0.0020 0.0101 0.0122 0.0053例2 用欧拉法、改进欧拉法求微分方程数值解(h=0.1)。
156 ⎪⎩⎪⎨⎧=-='1)0(y y x y y解 由欧拉方法(8.3),得数值计算公式1+i y =i y +0.1⎪⎪⎭⎫⎝⎛-i i i y x y 由改进的欧拉方法(8.8),得数值计算公式⎪⎪⎩⎪⎪⎨⎧-+-+=-+=+++++)]~~()[(05.0)(1.0~11111i i i i i i i i i i i i i y xy y x y y y y x y y y计算结果如下§2 龙格-库塔(Runge -Kutta )方法2.1 泰勒展开法由于欧拉方法为一阶方法,为了提高算法的阶,有必要讨论更高阶的方法。
在泰勒展 开式中取更多的项,如取p +1项可得p 阶算法。
()p i p i i i i y p h y h y h y y !!221++''+'+=+157()()()i p p i yp h R ξ111!1++++= 其中()k i y )可用复合函数求导法则计算。
如p=2时得二阶泰勒方法()221(,),[]2!2i i i i i i i i i x y x y h h y y hy y y hf x y f f f +'''''=++=+++⋅2.2 龙格-库塔法为了避免计算高阶导数,龙格-库塔方法利用()y x f ,某些点处的值的线性组合构造计算公式,使其按泰勒公式展开后与初值问题解的泰勒展开式比较,有尽可能多的项相同。
龙格-库塔法的一般形式为:()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧++=++==++++=+h y h x f K h y h x f K y x f K K a K a K a h y y m i m i m i i i m m i i μλμλ,,,222122111 (8.10) 下面以二阶龙格-库塔法为例说明龙格-库塔法的构造过程。
二阶龙格-库塔公式为(8.11)其中221,,λa a 为待定参数。
事实上,将K 2在()i i y x ,处按泰勒公式展开,则()i i i i i y x hf a y hK a hK a y y ,122111+=++=++()()()()()],,,,[2222h O y x f yy x hf y x f x hy x f h a i i i i i i i i +∂∂+∂∂+λλ ()()()⎪⎩⎪⎨⎧++==++=+1222122111,,hK y h x f K y x f K K a K a h y y i i i i i i λλ158 ()()()()()()322221,,,,h O y x f y y x f y x f x h a y x hf a a y i i i i i i i i i +⎥⎦⎤⎢⎣⎡∂∂+∂∂+++λ=()()()()()322221h O x y h a x y h a a x y i i i +''+'++λ 另一方面()()h x y x y i i +=+1=()()()()3221h O x y h x y h x y i i i +''+'+于是为使局部截断误差的阶尽可能高,应使⎪⎩⎪⎨⎧==+2112221λa a a 方程组有无穷多组解,取定参数则得到许多具体的二阶龙格-库塔公式。