小学三角形知识点教师版

合集下载

解直角三角形——教师版(带完整答案)

解直角三角形——教师版(带完整答案)

(C).
2 2
(D). 2 2
2、如果 是锐角,且 cos
4 ,那么 sin 的值是( ) . 5
(C)
(A)
9 25
(B)
4 5
3 5
(D)
16 25
) .
3、等腰三角形底边长为 10 ㎝,周长为 36cm,那么底角的余弦等于( (A)
5 13
(B)
12 13Leabharlann (C)10 13(D) )
21.如图是五角星,已知 AC=a,求五角星外接圆的直径(结果用含三角函数的式子表示) 。
6 / 14
参考答案 一、选择题 1、B 2、C 3、A 4、D 5、B 6、B 7、C 8、A 9、A 10、A 二、填空题 11、
1 2
12、2.3
13、1.5 +20tan
14、13
15、3.93 米
s i nA
A的对边 a 斜边 c
B . 锐 角 A 的 邻 边 与 斜 边 的 比 叫 做 ∠ A 的 余 弦 , 记 为 cosA , 即
cos A
A的邻边 b 斜边 c A的对边 a A的邻边 b
C.锐角 A 的对边与邻边的比叫做∠A 的正切,记为 tanA,即 tan A
sin 2 A cos2 A 1
tanA tan(90°—A)=1 tanA=
sin A cos A
4 1.在 Rt△ABC 中,∠C=90°,sinA= 5 ,则 cosB 的值等于( b )
3 A. 5
4 B. 5
3 C. 4
5
D. 5
2.在正方形网格中, △ ABC 的位置如图所示,则 cos B 的值为( b

小学数学 三角形等高模型与鸟头模型(二).教师版

小学数学 三角形等高模型与鸟头模型(二).教师版

图⑴
图⑵
1
【例 1】 如图在 △ABC 中,D, E 分别是 AB, AC 上的点,且 AD : AB 2 : 5 , AE : AC 4 : 7 ,S△ADE 16 平方厘米, 求 △ABC 的面积.
A A
D E
D E
B
C
B
C
【考点】三角形的鸟头模型 【难度】2 星 【题型】解答 【解析】连接 BE , S△ADE : S△ABE AD : AB 2 : 5 (2 4) : (5 4) ,
③夹在一组平行线之间的等积变形,如右上图 S△ACD S△BCD ;
反之,如果 S△ACD S△BCD ,则可知直线 AB 平行于 CD .
④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.
以1份是 2 平方厘米, 25 份就是 50 平方厘米, △ABC 的面积是 50 平方厘米.由此我们得到一个重要的定 理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 【答案】50
【例 3】 如图所示,在平行四边形 ABCD 中,E 为 AB 的中点, AF 2CF ,三角形 AFE(图中阴影部分)的面积为 8 平方厘米.平行四边形的面积是多少平方厘米?
【考点】三角形的鸟头模型 【难度】4 星 【题型】解答 【解析】方法一:如下图,连接 BD,ED,BG,
有 EAD、 ADB 同高,所以面积比为底的比,有 SEAD
EA AB
S
ABD
2S ABD

同理 SEAH
AH AD

【第1部分】专题05《三角形》数学四升五衔接精编讲义(教师版)人教版

【第1部分】专题05《三角形》数学四升五衔接精编讲义(教师版)人教版

人教版数学四升五衔接讲义(复习进阶)专题05 三角形知识互联网知识导航知识点一:三角形的特性1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合).叫三角形。

2、从三角形的一个顶点到它的对边做一条垂线.顶点和垂足间的线段叫做三角形的高.这条对边叫做三角形的底。

三角形只有3条高。

重点:三角形高的画法:一落二移三画四标3、三角形具有稳定性。

如:自行车的三角架.电线杆上的三角架。

4、三角形三边的关系:三角形任意两边之和大于第三边。

三角形任意两边之差小于第三边。

两边之差〈第三边〈两边之和。

判断三条线段能不能组成三角形.只要看最短的两条边的和是不是大于第三条边。

5、为了表达方便.用字母A、B、C分别表示三角形的三个顶点.三角形可表示成三角形ABC。

知识点二:三角形的分类1、按照角大小来分:锐角三角形.直角三角形.钝角三角形。

2、按照边长短来分:三边不等的△.三边相等的△,等腰△(等边三角形或正三角形是特殊的等腰△)。

3、等边△的三边相等.每个角是60度。

(顶角、底角、腰、底的概念)4、三个角都是锐角的三角形叫做锐角三角形。

5、有一个角是直角的三角形叫做直角三角形。

6、有一个角是钝角的三角形叫做钝角三角形。

7、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。

8、两条边相等的三角形叫做等腰三角形。

9、三条边都相等的三角形叫等边三角形.也叫正三角形。

10、等边三角形是特殊的等腰三角形知识点三:三角形的内角和1、三角形的内角和是180°。

四边形的内角和是360°。

一个三角形中至少有两个锐角.每个三角形都至多有一个直角;每个三角形都至多有一个钝角。

可以根据最大的角判断三角形的类型。

最大的角是哪类角.就属于那类三角形。

最大的角是直角.就是直角三角形。

最大的角是钝角.就是钝角三角形。

2、图形的拼组:(1)当两个三角形有一条边长度相等时.就可以拼成四边形。

全等三角形的概念和性质及判定一-教师版

全等三角形的概念和性质及判定一-教师版

1 / 22【例1】 下列说法正确的是()A .全等三角形是指形状相同的三角形B .全等三角形是指面积相等的三角形C .全等三角形的周长和面积都相等D .所有的等边三角形都全等 【难度】★ 【答案】C【解析】A 错,形状相同,大小也要相同;B 错,面积相等不一定全等,反例同底等高 的三角形;D 错,大小不一定相等. 【总结】本题主要考查全等三角形的概念.【例2】 直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )A .形状相同B .周长相等C .面积相等D .全等【难度】★ 【答案】C【解析】等底同高,所以面积相等.【总结】本题主要考查同底等高的两个三角形的面积相等的运用.【例3】 如图所示,△ABC ≌△CDA ,且AB =CD ,则下列结论错误的是() A .∠1=∠2 B .AC =CA C .∠B =∠D D .AC =BC【难度】★ 【答案】D【解析】全等三角形对应角相等,对应边相等. 【总结】考察学生对全等三角形性质的理解及运用.【例4】 下列各条件中,不能作出唯一的三角形的是( )A .已知两边和夹角B .已知两角和夹边C .已知两边和其中一边的对角D .已知三边 【难度】★ 【答案】C【解析】C 选项是边边角,不能作为全等的判定条件. 【总结】考查全等三角形的判定定理的运用.例题解析21ABCD【例5】 练习画出下列条件的三角形:(1) 画,ABC ∆使40,45,4A B AB cm ∠=︒∠=︒=; (2) 画,ABC ∆使6,8,10AB cm BC cm AC cm ===; (3) 画,ABC ∆使4,3,45AB cm AC cm A ==∠=︒; (4) 画,ABC ∆使8,5,50AB cm AC cm B ==∠=︒. 【难度】★ 【答案】略 【解析】略.【例6】 下列说法:①形状相同的两个图形是全等形;②面积相等的两个三角形是全等三角形;③全等三角形的周长相等,面积相等;④在△ABC 和△DEF 中,若∠A =∠D ,∠B =∠E ,∠C =∠F ,AB =DE ,BC =EF ,AC =DF ,则两个三角形的关系,可记作△ABC ≌△DEF ,其中说法正确的是( ) A .1个 B .2个C .3个D .4个【难度】★★ 【答案】B【解析】(1)错,大小不一定相等;(2)面积相等不一定全等,反例同底等高;(3)对; (4)对,故选B .【总结】考察学生对全等三角形的概念及性质的理解. 【例7】 下列说法中错误的是()A .全等三角形的公共角是对应角,对顶角也是对应角B .全等三角形的公共边也是对应边C .全等三角形的公共顶点是对应顶点D .全等三角形中相等的边所对应的角是对应角,相等的角所对的边是对应边 【难度】★★ 【答案】C【解析】全等三角形的公共顶点不一定是对应顶点,两个全等三角形任意放置,使得三 角形的一个顶点与另一个三角形的不对应的顶点重合.【总结】考察学生对全等三角形的概念的辨析能力,以及正确的举反例.【例8】 如图所示,ABE ADC ABC ∆∆∆和是分别沿着AB AC 、边翻折形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为( ) A .80°B .100°C .60°D .45°【难度】★★α321ABCDEP3 / 22【答案】A【解析】设1=28x ∠,25x ∠=,33x ∠=,则36180x =,解得:5x =. 1140∴∠=︒,225∠=︒,315∠=︒, 22ABC ACB ∴∠∂=∠+∠212280=∠+∠=︒.【总结】考察学生对全等三角形的应用以及翻折知识的理解及运用.【例9】 如图,在矩形ABCD 中,AE 平分∠DAB 交DC 于点E ,连接BE ,过E 作EF ⊥BE交AD 于F .(1)∠DEF 和∠CBE 相等吗?请说明理由;(2)请找出图中与ED 相等的线段(不另添加辅助线和字母),并说明理由. 【难度】★★【答案】(1)相等;(2)ED BC AD ==.【解析】(1)90DEF CEB ∠+∠=︒,90CBE CEB ∠+∠=︒, DEF CBE ∴∠=∠(同角的余角相等) (2)AE 平分DAB ∠, 45DAE ∴∠=︒,DE AD ∴=.AD BC =, DE AD BC ∴==.【总结】考察学生对图形的理解和掌握,能够迅速的根据图形发现同角的余角相等,再 利用特殊的角度45得出等腰直角三角形,从而解题.【例10】 如图所示,30255ADF BCE B F BC cm ∆≅∆∠=︒∠=︒=,,,,14CD cm DF cm ==,.求:(1)1∠的度数;(2)AC 的长. 【难度】★★【答案】(1)1=55∠°;(2)4AC cm =. 【解析】(1)ADF BCE ≅,30A B ∴∠=∠=︒,AD BC =,155A F ∴∠=∠+∠=︒; (2)ADF BCE ≅,AD BC ∴=, 514AC AD CD cm ∴=-=-=.【总结】考察学生对全等三角形对应边相等,对应角相等的掌握,并且学会正确运用.【例11】 如图,在△ABC 中,∠A :∠B :∠ACB =2:5:11,若将△ABC 绕点C 逆时针旋转,试旋转前后的△A ’B ’C ’中的顶点B ’在原三角形的边AC 的延长线上,求∠BCA ’的度数. 【难度】★★ 【答案】40︒.【解析】设2A x ∠=,5B x ∠=,11ACB x ∠=,1ABC DEFABCA’B ’则18180x =, 解得:10x =, ∴110BCA ∠=,70BCB '∠=.110A CB ''∠=, 40BCA '∴∠=.【总结】考察学生对旋转的理解,注意利用全等三角形的性质进行解题.【例12】 如图,已知△ABC ≌△ADE ,BC 的延长线交AD 于点F ,交AE 的延长线于G ,∠ACB =1050,∠CAD =100,∠ADE =250,求∠DFB 和∠AGB 的度数. 【难度】★★【答案】∠DFB =85︒,∠AGB =45︒. 【解析】证明:ABC ADE ≅, 25ADE ABC ∴∠=∠=︒,50CAB EAD ∠=∠=︒, 10502585DFB ∴∠=︒+︒+︒=︒, 1801102545AGB ∠=︒-︒-︒=︒.【总结】本题主要考察学生对全等三角形的性质及三角形外角性质和内角和定理的综合 运用.【例13】 如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时.(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设∠AED 的度数为x , ∠ADE 的度数为y ,那么∠1,∠2的度数分别是多少?(用含有x 或y 的代数式表示)(3)∠A 与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律. 【难度】★★★【答案】(1)AED A ED '≅,A A '∠=∠, AED A ED '∠=∠,ADE A DE '∠=∠; (2)11802x ∠=-,21802y ∠=-; (3)()1122A ∠=∠+∠. 【解析】(3)证明:∵()180A x y ∠=-+,1+2=3602()x y ∠∠-+, ∴()1122A ∠=∠+∠. 【总结】本题一方面考查翻折的性质,另一方面考查全等三角形的性质及三角形内角和 定理的运用.ABC DEF G 21AB C DEA ’【例14】 如图(1)所示,把△ABC 沿直线BC 移动线段BC 那样长的距离可以变到△ECD的位置;如图(2)所示,以BC 为轴把△ABC 翻折180°,可以变到△DBC 的位置;如图(3)所示,以点A 为中心,把△ABC 旋转180°,可以变到△AED 的位置,像这样,只改变图形的位置,而不改变其形状大小的图形变换叫做全等变换. 在全等变换中可以清楚地识别全等三角形的对应元素,以上的三种全等变换分别叫平移变换、翻折变换和旋转变换,问题:如图(4),△ABC ≌△DEF ,B 和E 、C 和F 是对应顶点,问通过怎样的全等变换可以使它们重合,并指出它们相等的边和角.ABC DE(1)ABCD(2)A BCDE(3)ABC(4)DEF【难度】★★★【答案】翻折变换,平移变换或旋转变换,平移变换. 【解析】AB ED =,BC EF =,AC DF =.【总结】考察学生对图形的运动的理解和掌握,需要学生进行一定的空间想象.【例15】 如图,已知∠B =∠D ,∠1=∠2,AC =AE ,说明△ABC ≌△ADE 的理由. 【难度】★★ 【答案】见解析.【解析】证明:12∠=∠,12DAC DAC ∴∠+∠=∠+∠,即BAC DAE ∠=∠. 在ABC 和DAE 中,B D BAC DAE AC AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△ADE (A.A.S ).【总结】考察学生对全等三角形的判定条件的掌握.【例16】 如图,已知∠C =∠E ,BE =CD ,说明△ABE 与△ADC 全等的理由,AB 与AD相等吗?为什么? 【难度】★ 【答案】见解析.【解析】证明:在ABE 和ADC 中,A A C E BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,ABE ADC ∴≅(A.A.S ), AB AD ∴=.【总结】考察学生对全等三角形的判定及性质的综合运用.ABCDEF21AB CDE【例17】 如图,已知AD =BC ,AE =BE .说明AC =BD ,∠C =∠D 的理由. 【难度】★ 【答案】见解析. 【解析】证明:AD BC =,AE BE =,DE CE ∴=.在ACE 和BDE 中,AE BE = AEC BED ∠=∠, CE DE =ACE BDE ∴≅(S.A.S )AC BD ∴=,C D ∠=∠(全等三角形的对应边相等,对应角相等)【总结】考察学生对全等三角形的判定及性质的综合运用.【例18】 如图,已知AB =CD ,AD =BC ,说明∠A =∠C 的理由. 【难度】★ 【答案】见解析. 【解析】证明:连接BD 在ABD 和CDB 中,AB CD AD BC BD DB =⎧⎪=⎨⎪=⎩, (..)ABD CDB S S S ∴≅ A C ∴∠=∠(全等三角形的对应角相等)【总结】考察学生对全等三角形的判定及性质的综合运用.【例19】 如图,已知BD 是△ABC 的中线,B 、D 、E 、F 在一条直线上,且AE ∥CF ,说明△ADE 与△CDF 全等的理由. 【难度】★★ 【答案】见解析. 【解析】//AE CF , E EFC ∴∠=∠.∵BD 是△ABC 的中线, ∴AD CD =.在ADE 和CDF 中,E EFCADE FDC AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ADE CDF ∴≅(A.A.S ). 【总结】考察学生对全等三角形的判定条件的掌握.ABCDEABCDEFAB CD【例20】 如图,已知AC ∥BD ,AC =BD ,(1)说明△AOC 与△BOD 全等的理由;(2)说明EO =FO 的理由. 【难度】★★ 【答案】见解析. 【解析】证明:(1)//AC BD ,C D ∴∠=∠.在AOC 和BOD 中,C DAOC BOD AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, AOC BOD ∴≅(A.A.S ); (2)AOC BOD ≅, CO DO ∴=.在CEO 和DFO 中,C D CO DOCOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()CEO DFO ASA ∴≅, EO FO ∴=.【总结】考察学生对全等三角形的判定及性质的综合运用.【例21】 如图,CD ⊥AB 于D ,BE ⊥AC 于E ,OD =OE ,说明AB =AC 的理由. 【难度】★★ 【答案】见解析.【解析】CD AB BE AC ⊥⊥,, 90BDC DEC ∴∠=∠=︒. 在BDO 和CEO 中,BDC BEC DO EODOB COE ∠=∠⎧⎪=⎨⎪∠=∠⎩, (..)BDO CEO A S A ∴≅. DO EO ∴=,B C ∠=∠,BO CO =, BE CD ∴=.在ABE 和ACD 中,A A BE CDBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴ABE ≌ACD (A.S.A ), AB AC ∴=(全等三角形的对应边相等)【总结】本题主要考察学生对全等三角形的判定条件的掌握,注意利用多次全等.ABCDEFOABCDEO【例22】 如图,已知AD ∥BC ,BF ∥DE ,AE =CF .(1) △ADE 与△CBF 全等吗,为什么? (2) 说明AB =CD 的理由; (3) 图中有哪几对全等三角形? 【难度】★★ 【答案】见解析. 【解析】证明:(1)全等, //AD BC , DAC ACB ∴∠=∠.//BF DE ,DEF BFE ∴∠=∠, AED BFC ∴∠=∠.在AED 和BFC 中,DAC ACB AE CF AED BFC ∠=∠⎧⎪=⎨⎪∠=∠⎩, (..)ADE CBF A S A ∴≅; (2)ADE CBF ≅, AD BC ∴=.在ABC 和ADC 中AD BC DAC ACB AC AC =⎧⎪∠=∠⎨⎪=⎩,(..)ABC ADC S A S ∴≅, AB CD ∴=(全等三角形的对应边相等);(3)AED CFB ≅;DEC BFA ≅;ABC CDA ≅. 【总结】本题主要考察全等三角形的判定与性质的综合运用.【例23】 如图,已知AB =CD ,BM =CM ,AC =BD ,说明AM =DM 的理由. 【难度】★★ 【答案】见解析.【解析】在ABC 和BCD 中,AB CDAC BD BC BC =⎧⎪=⎨⎪=⎩, (..)ABC DCB S S S ∴≅, ABC BCD ∴∠=∠, 在ABM 和DCM 中,AB CD ABC BCD BM CM =⎧⎪∠=∠⎨⎪=⎩,(..)ABM DCM S A S ∴≅, AM DM ∴=. 【总结】本题主要考察全等三角形的判定与性质的综合运用,利用多次全等进行证明.AB CDMABCDEF【例24】 如图,∠1=∠2,AC =BD ,E 、A 、B 、F 在同一条直线上,说明:∠CAD =∠DBC 的理由. 【难度】★★ 【答案】见解析.【解析】12∠=∠, CAB DBA ∴∠=∠.在CAB 和DBA 中,AC BD CAB DBA AB AB =⎧⎪∠=∠⎨⎪=⎩, (..)CAB DBA S A S ∴≅, CBA DAB ∴∠=∠,又CAB DBA ∠=∠,CAD DBC ∴∠=∠.【总结】本题主要考察全等三角形的判定与角的和差的综合运用.【例25】 如图所示,AB =AC ,CE =BE ,连结AE 并延长交BC 于D ,说明AD ⊥BC 的理由. 【难度】★★ 【答案】见解析【解析】证明:在ABE 和ACE 中,AB AC BE CE AE AE =⎧⎪=⎨⎪=⎩,(..)ABE ACE S S S ∴≅, BAD CAD ∴∠=∠.在ABD 和ACD 中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩, (..)ABD ACD S A S ∴≅, 90ADB ADC ∴∠=∠=, AD BC ∴⊥.【总结】本题主要考查全等三角形的判定的综合运用,通过多次全等得到垂直.21ABC DEFABCDE【例26】 如图所示,BE 、CD 相交于O ,AB =AC ,AD =AE ,说明OD =OE 的理由. 【难度】★★ 【答案】见解析.【解析】证明:在ADC 和AEB 中, AD AE A A AB AC =⎧⎪∠=∠⎨⎪=⎩, ∴(..)ADC AEB S A S ≅ B C ∴∠=∠(全等三角形的对应角相等) AB CA =,AD AE =,BD CE ∴=.在BDO 和CEO 中,DOB COE ∠=∠ B C ∠=∠ BD CE =(..)BDO CEO A A S ∴≅, OD OE ∴=(全等三角形的对应边相等)【总结】本题主要考查全等三角形的判定的综合运用,注意对全等的多次运用.【例27】 如图,已知AB ⊥BD ,DE ⊥BD ,AB =CD ,BC =DE .试说明:AC ⊥CE ,若将CD 沿CB 方向平移得到图(2)(3)(4)(5)的情形,其余的条件不变, 结论AC 1⊥C 2E 还成立吗?请说明理由. 【难度】★★★ 【答案】见解析. 【解析】证明:(1)AB BD ⊥,DE BD ⊥, 90B D ∴∠=∠=︒在ABC 和CDE 中,AB CDB D BC DE =⎧⎪∠=∠⎨⎪=⎩, (..)ABC CDE S A S ∴≅, A ECD∴∠=∠.90A ACB ∠+∠=,90ACB ECB ∴∠+∠=, 即AC CE ⊥.ABCD EMAB C 2D EC 1AB C 1D EM AB C 2 DEM C 1MAB C 1D EC 2ABCDEO(2)12ABC C ED ≅, 2A E CD ∴∠=∠.190A AC B ∠+∠=,2190EC D AC B ∴∠+∠=, 1290C MC ∴∠=, 12AC C E ∴⊥.【总结】本题主要考察全等三角形的判定及垂直的综合运用,说理时注意分析.【例28】 如图,线段BE 上有一点C ,以BC 、CE 为边分别在BE 的同侧作等边三角形ABC 、DCE ,连结AE 、BD ,分别交CD 、CA 于Q 、P .(1)找出图中的一组相等的线段(等边三角形的边长相等除外),并说明你的理由; (2)取AE 的中点M 、BD 的中点N ,连结MN ,试判断△CMN 的形状. 【难度】★★★【答案】(1)BD AE =,(2)等边三角形. 【解析】(1)∵等边三角形ABC 和 等边三角形DCE , ∴BC AC =,CD CE =, BCA DCE ∠=∠=60°.BCA ACD DCE ACD ∴∠+∠=∠+∠,即BCD ACE ∠=∠.在BCD 和ACE 中,BC ACBCD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩, BCD ACE ∴≅(S.A.S ),BD AE ∴=(全等三角形的对应边相等); (2)BCD ACE ≅, DBE EAC ∴∠=∠.M 、N 分别为BD 、AE 的中点, BN ND ∴=,AM ME =,BD AE =, BN AM ∴=.在BCN 和ACM 中,BC ACCBN CAM BN AM =⎧⎪∠=∠⎨⎪=⎩, BCN ACM ∴≅(S.A.S ),CM CN ∴=,BCN ACM ∠=∠,60NCM BCA ∴∠==︒, CM CN =, ∴△CMN 是等边三角形.【总结】考察学生对全等三角形的判定条件的掌握,注意在复杂的图形中准确的找出全 等三角形及其对应条件.2121A BCDEQP ABCDEMNPQ【例29】 如图,△ABC 是等腰直角三角形,其中CA =CB ,四边形CDEF 是正方形,连接AF 、BD .(1)观察图形,猜想AF 与BD 之间有怎样的关系,并证明你的猜想;(2)若将正方形CDEF 绕点C 按顺时针方向旋转,使正方形CDEF 的一边落在△ABC 的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由. 【难度】★★★【答案】(1)AF BD =,AF BD ⊥;(2)成立.【解析】证明:(1)△ABC 是等腰直角三角形,四边形CDEF 是正方形,CF CD ∴=,AC BC =,90DCF ACB ∠=∠=, FCA DCB ∴∠=∠.在FCA 和DCB 中,CF CD FCA DCB AC CB=⎧⎪∠=∠⎨⎪=⎩,()FCA DCB SAS ∴≅.AF DB ∴=,DBC FAC ∠=∠.90DBC ABD BAC ∠+∠+∠=, 90FAC ABD BAC ∴∠+∠+∠=,AF BD ∴⊥.(2)成立,证明过程同(1).【总结】考察学生对全等三角形的判定条件的掌握,注意根据旋转图形的不变性进行解 题.【习题1】 下列命题中正确的是 ( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D .全等三角形对应角的平分线相等【难度】★ 【答案】D【解析】A 错,全等三角形对应边上的高相等;B 错,全等三角形对应边上的中线相等; C 错,全等三角形对应角的平分线相等;D 对. 【总结】考察学生对全等三角形的相关概念的理解.随堂检测ABC D E F【习题2】 如图,△ABD ≌△CDB ,且AB 、CD 是对应边;下面四个结论中不正确的是( )A .△ABD 和△CDB 的面积相等 B .△ABD 和△CDB 的周长相等C .∠A +∠ABD =∠C +∠CBD D .AD ∥BC ,且AD =BC 【难度】★ 【答案】C【解析】C 错,正确答案是∠A +∠ABD =∠C +∠CDB ,A ,B ,D 均对. 【总结】主要考察学生对全等三角形的概念的理解.【习题3】 如图,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD =7厘米,DM =5厘米,∠DAM =390,则AN =______厘米,NM =___________厘米,∠NAB =_______. 【难度】★【答案】7;5;12°.【解析】由翻折的性质,可得:ADM ANM ≅, 则7AN AD ==厘米,5MN DM ==厘米,39MAN MAD ∠=∠=, 故9023912NAB ∠=-⨯=.【总结】本题主要考查翻折性质与全等三角形性质的综合运用.【习题4】 尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( ) A .SAS B .ASA C .AAS D .SSS【难度】★ 【答案】D【解析】∵AC AD =,PC PD =,OP OP =,(..)DCP ODP S S S ∴≅【总结】根据画图考察学生对画图过程中不变性的理解和掌握.A BCDA BC DM NABCDPO【习题5】如图,CE⊥AB,DF⊥AB,垂足分别为E、F,(1)若AC//DB,且AC=DB,则△ACE≌△BDF,根据_________;(2)若AC//DB,且AE=BF,则△ACE≌△BDF,根据_________;(3)若AE=BF,且CE=DF,则△ACE≌△BDF,根据_________;(4)若AC=BD,AE=BF,CE=DF.则△ACE≌△BDF,根据_________.【难度】★★【答案】(1)A.A.S;(2)A.S.A;(3)S.A.S;(4)S.S.S.【解析】//AC BD,A B∴∠=∠,C D∠=∠,则(1)、(2)、(3)、(4)分别得证.【总结】考察学生对全等三角形的判定条件的熟练掌握.【习题6】如图,已知△ABC≌△ADE, ∠CAD=150,∠DFB=900,∠B=250.求∠E和∠DGB的度数.【难度】★★【答案】105E∠=︒,65DEG∠=︒.【解析】AD BG⊥,90AFB∴∠=︒(垂直的意义)15DAC∠=︒,75FCA∴∠=︒(互余的意义)105ACB∴∠=︒(邻补角的意义)ACB AED≅,105E ACB∴∠=∠=︒,25B D∠=∠=︒902565DGB∴∠=︒-︒=︒(互余的意义)【总结】考察学生对全等三角形的性质的理解,并且对邻补角和互余等知识点要熟练掌握并应用.【习题7】如图:A、E、F、C四点在同一条直线上,AE=CF,过E、F分别作BE⊥AC、DF⊥AC,且AB∥CD,AB=CD.试说明:BD平分EF.【难度】★★【答案】见解析.【解析】//AB CD,A C∴∠=∠,ABD CDB∠=∠在ABG和CDG中,ABD CDBAB CDA C∠=∠⎧⎪=⎨⎪∠=∠⎩,()ABG CGD ASA∴≅,AG CG∴=,AE CF=,EG GF∴=,BD∴平分EF.【总结】考察学生对全等三角形的性质及判定的理解及运用.ABCEDFA BCDEFGABDE FG【习题8】 如图所示,△ABC 绕顶点A 顺时针旋转,若∠B =40°,∠C =30°,(1)顺时针旋转多少度时,旋转后的△AB 'C '的顶点C '与原三角形的顶点B 和A 在同一直线上?(原△ABC 是指开始位置)(2)再继续旋转多少度时,点C 、A 、C '在同一直线上? 【难度】★★【答案】(1)110︒;(2)70︒.【解析】(1)1803040110CAB ∠=︒-︒-︒=︒; (2)18011070︒-︒=︒.【总结】考察学生对旋转的理解,注意旋转过程中的不变性.【习题9】 已知:如图,△ABC 是等边三角形,过AB 边上的点D 作DG ∥BC ,交AC于点G ,•在GD 的延长线上取点E ,使DE =DB ,连结AE 、CD . 试说明:△AGE ≌△DAC . 【难度】★★ 【答案】见解析. 【解析】ABC 是等边三角形.AB AC BC ∴==,60BAC ACB B ∠=∠=∠=(等边三角形的性质) //DG BC ,60ADG B ∴∠=∠=°,60AGD ACB ∠=∠=°, ADG AGD ∴∠=∠.ED DB =,又DG AD =, DE DG DB AD ∴+=+,即AB EG =.AB AC =,AC EG ∴=.在ADG 和ADC 中,AG ADAGE DAC EG AC =⎧⎪∠=∠⎨⎪=⎩,(..)AGE DAC S A S ∴≅∠.【总结】考察学生对全等三角形的判定的掌握和应用以及等边三角形的性质综合运用.ABCDE FG【习题10】 在∠O 的两边上分别取点A 、D 和B 、C ,连接AC 、BD 相交于P .(1)若∠A =∠B ,P A =PB ,试说明OA =OB 的理由; (2)若OA =OB ,P A =PB ,试说明PC =PD 的理由. 【难度】★★★ 【答案】见解析.【解析】(1)在ADP 和BCP 中,A BPA PBDPA CPB ∠=∠⎧⎪=⎨⎪∠=∠⎩, (..)ADP BCP A S A ∴≅,DP CP ∴=(全等三角形对应边相等). AP BP =, AC BD ∴=(等式性质). 在OAC 和ODB 中,O OA B AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,(..)AOC BOD A A S ∴≅,AO BO ∴=(全等三角形的对应边相等); (2)连接OP在AOP 和BOP 中,OA OBPA PB OP OP =⎧⎪=⎨⎪=⎩,(..)AOP BOP S S S ∴≅,A B ∴∠=∠,AP = BP (全等三角形的对应角相等、对应边相等). 在ADP 和PCB 中,A BAP PB APD CPB ∠=∠⎧⎪=⎨⎪∠=∠⎩(..)ADP PCB A S A ∴≅,PC PD ∴=(全等三角形的对应边相等). 【总结】考察学生对全等三角形的性质及判定的理解和掌握,注意多次全等的综合运用.ABCDP OABCDP O【习题11】 如图,△ABC 、△ADE 都是等腰直角三角形,绕着顶点A 旋转后位置如下:(1) 当C 、A 、D 在同一直线上,说明CE 与BD 有何关系?为什么?(2) 当△ADE 再继续旋转到(2)、(3)、(4)的位置后,CE 与BD 又有何关系. 【难度】★★★【答案】(1)CE BD =,CE BD ⊥;(2)CE BD =,CE BD ⊥.【解析】(1)证明:△ABC 、△ADE 都是等腰直角三角形,AD AE ∴=,AC AB =,90BAD CAB ∠=∠=︒(等边三角形的性质)在ADB 和AEC 中,AD AEDAE CAE AB AC =⎧⎪∠=∠⎨⎪=⎩,(..)ADB AEC S A S ∴≅,CE BD ∴=,ACE ABD ∠=∠(全等三角形的对应边相等,对应角相等)90ACE BCE CBE ∠+∠+∠=, 90ABD BCE CBE ∴∠+∠+∠=,CE BD ∴⊥.(2)CE BD =,CE BD ⊥,证明过程同上.【总结】本题主要考查等腰直角三角形的性质与全等三角形的判定和性质的综合运用, 注意认真分析题目中的条件.【作业1】 如图,△ABC ≌△ABD ,C 和D 是对应顶点,若AB =6cm ,AC =5cm ,BC =4cm ,则AD 的长为_________cm . 【难度】★ 【答案】5【解析】全等三角形的对应边相等,5AD AC ==. 【总结】本题主要考查全等三角形的性质.课后作业A BCDE(1)(2)ABDCE(3) (4)AB CE DABCDE ABCD【作业2】 如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF ===∠∠,,; ③B E BC EF C F ===∠∠∠∠,,; ④AB DE AC DF B E ===∠∠,,.其中,能使ABC DEF △≌△的条件共有 ( ) A .1组B .2组C .3组D .4组【难度】★ 【答案】C【解析】(1)S.S.S ;(2)S.A.S ;(3)A.S.A ;(4)S.S.A 不符合,所以正确答案 是(1)、(2)、(3),故选C .【总结】考察学生对全等三角形的判定定理的掌握.【作业3】 下列各条件中,不能作出唯一三角形的是( )A .已知两边和夹角B .已知两角和夹边C .已知两边和其中一边的对角D .已知三边 【难度】★ 【答案】C【解析】边边角不能作为全等三角形的判定条件.【作业4】 已知△ABC ≌△DEF ,若△ABC 的周长为32,AB =8,BC =12,DE =_______,DF =_______,EF = _______. 【难度】★★ 【答案】8;12;12. 【解析】△ABC ≌△DEF ,8DE AB ∴==,3212812DF AC ==--=,12EF BC ==. 【总结】本题主要考察全等三角形的性质的运用.ABCDEF【作业5】 如图△ACE ≌△DBF ,AE =DF ,CE =BF ,AD =8,BC =2.(1)求AC 的长度;(2)说明CE ∥BF 的理由. 【难度】★★【答案】(1)5;(2)见解析. 【解析】(1)△ACE ≌△DBF ,AC BD ∴=(全等三角形对应边相等)AB BC CD BC ∴+=+(等式性质),即AB CD =. 8AD =,2BC =,3AB CD ∴==, 5AC ∴=;(2)△ACE ≌△DBFECA DBF ∴∠=∠(全等三角形的对应角相等) //CE BF ∴(内错角相等,两直线平行)【总结】考察学生对全等三角形的性质的掌握及运用.【作业6】 如图,已知△ABC ≌△AED ,AE =AB ,AD =AC ,∠D -∠E =200,∠BAC =600,求∠C 的度数. 【难度】★★ 【答案】70︒.【解析】设E x ∠=,20D x ∠=+,△ABC ≌△AED , 60BAC EAD ∴∠=∠=︒,C D ∠=∠2060180x x ∴+++=︒,50x ∴=,70D ∴∠=︒, 70C ∴∠=︒.【总结】考察学生对全等三角形的性质的理解和运用,注意利用设未知数解题.【作业7】 如图,△DAC 和△EBC 均是等边三角形,点C 在线段AB 上,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论①△ACE ≌△DCB ;②CM =CN ;③AC =DN .其中正确的结论是_______________,证明正确的结论. 【难度】★★ 【答案】①和②正确.【解析】①△DAC 和△EBC 均是等边三角形, ∴AC DC =,BC EC =,60ACD BCE ∠=∠=︒, ACE DCB ∴∠=∠.在ACE 和DCB 中,AC CD ACE DCB EC BC =⎧⎪∠=∠⎨⎪=⎩, (..)ACE DCB S A S ∴≅;ABCDA BCD EMNABCDEF(2)ACE DCB≅,CAE CDB∴∠=∠(全等三角形的对应角相等)60ACD BCE∠=∠=︒,60DCE ACD∴∠=∠=︒.在ACM和DCN中,AC DCACD DCECAE BDC=⎧⎪∠=∠⎨⎪∠=∠⎩,ACM DCN∴≅(A.A.S)CM CN∴=(全等三角形的对应边相等)【总结】考察学生对全等三角形的性质及判定的理解和运用.【作业8】如图,AD⊥AB,AC⊥AE,且AD=AB,AC=AE.试说明:DC=BE,DC⊥BE.【难度】★★【答案】见解析.【解析】AD⊥AB,AC⊥AE,90DAB EAC∴∠=∠=︒(垂直的意义)DAC BAE∴∠=∠(等式性质)在DAC和BAE中,AD ABDAC BAEAC AE=⎧⎪∠=∠⎨⎪=⎩,(..)DAC ABE S A S∴≅DC BE∴=,B D∠=∠(全等三角形的对应角相等,对应边相等)设BE与DC交于点F,DGA BGC∠=∠,90D DGA∠+∠=,90B BGC∴∠+∠=,90BFG∴∠=︒,DC BE∴⊥(垂直的意义).【总结】考察学生对全等三角形的性质及判定及三角形内角和定理的综合运用,注意归纳总结证明垂直的方法.ABCDEFGE【作业9】 如图,已知AE =CF ,∠DAF =∠BCE ,AD =CB . (1)问△ADF 与△CBE 全等吗?请说明理由;(2)如果将△BEC 沿CA 边方向平行移动,可有图中3幅图,如上面的条件不变, 结论仍成立吗?请选择一幅图说明理由. 【难度】★★ 【答案】(1)全等; (2)成立,全等. 【解析】(1)AE CF =,AE EF CF EF ∴-=-,即AF CE =(等式性质).在ADF 和BCE 中,AF CEA C AD BC =⎧⎪∠=∠⎨⎪=⎩, (..)ADF BCE S A S ∴≅;(2)成立,证明过如(1).【总结】考察学生对全等三角形的性质及判定的理解和运用.【作业10】 如图,以△ABC 的边AB 、AC 为边向外作等边△ABD 和等边△ACE ,BE与CD 相交于点F .(1)请说明△ABE ≌△ADC 的理由; (2)求∠1的度数. 【难度】★★★【答案】(1)见解析;(2)1120∠=︒.【解析】(1)证明:在等边△ABD 和等边△ACE 中,AD AB =,AC AE =,60DAB CAE ∠=∠=︒,DAB BAC CAE BAC ∴∠+∠=∠+∠, DAC BAE ∠=∠即.在ABE 和DAC 中,AD ABDAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴(..)ABE ADC S A S ≅;(2)ABE ADC ≅, DCA BEA ∴∠=∠(全等三角形对应角相等)1DCE BEC ∠=∠+∠, 又DCA BEA ∠=∠ 1ACE AEB BEC ∴∠=∠+∠+∠6060120=︒+︒=︒.【总结】考察学生对全等三角形的性质及判定的理解和掌握,综合性较强,注意利用外 角进行适当的转化,把未知的角度转化为和题目有关的已知角,从而进行解题.ABCD EF A BCD E FAB CDEFC (A )BD。

(完整版)相似三角形最全讲义(教师版)

(完整版)相似三角形最全讲义(教师版)

相似三角形基本知识知识点一:放缩与相似形1.图形的放大或缩小,称为图形的放缩运动。

2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。

注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。

⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。

⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。

注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1.知识点二:比例线段有关概念及性质 (1)有关概念1、比:选用同一长度单位量得两条线段。

a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m :n (或n m b a =) 2、比的前项,比的后项:两条线段的比a :b 中。

a 叫做比的前项,b 叫做比的后项。

说明:求两条线段的比时,对这两条线段要用同一单位长度。

3、比例:两个比相等的式子叫做比例,如d cb a =4、比例外项:在比例dcb a =(或a :b =c :d )中a 、d 叫做比例外项。

5、比例内项:在比例d c b a =(或a :b =c :d )中b 、c 叫做比例内项。

6、第四比例项:在比例d c b a =(或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。

7、比例中项:如果比例中两个比例内项相等,即比例为a b b a =(或a:b =b:c 时,我们把b 叫做a 和d 的比例中项。

8.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即dcb a =(或a :b=c :d ),那么,这四条线段叫做成比例线段,简称比例线段。

(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)(2)比例性质1.基本性质: bc ad d cb a =⇔= (两外项的积等于两内项积) 2.反比性质:c da b dc b a =⇒= (把比的前项、后项交换) 3.更比性质(交换比例的内项或外项):()()()a bc d a c d c b d b a d bc a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项4.合比性质:ddc b b ad c b a ±=±⇒=(分子加(减)分母,分母不变) .注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a .5.等比性质:(分子分母分别相加,比值不变.) 如果)0(≠++++====n f d b nmf e d c b a ΛΛ,那么b a n f d b m ec a =++++++++ΛΛ. 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.知识点三:黄金分割1)定义:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果ACBCAB AC =,即AC 2=AB×BC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。

相似三角形解题方法、步骤(教师版)

相似三角形解题方法、步骤(教师版)

相似三角形解题方法、技巧、步骤 一、相似、全等的关系 全等和相似是平面几何中研究直线形性质的两个重要方面,全等形是相似比为1的特殊相似形,相似形则是全等形的推广.因而学习相似形要随时与全等形作比较、明确它们之间的联系与区别;相似形的讨论又是以全等形的有关定理为基础. 二、相似三角形(1)三角形相似的条件: ①;②;③.三、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.四、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例;找另一角两角对应相等,两三角形相似找夹边对应成比例两边对应成比例且夹角相等,两三角形相似找夹角相等两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例三边对应成比例,两三角形相似找一个直角斜边、直角边对应成比例,两个直角三角形相似找另一角两角对应相等,两三角形相似找两边对应成比例判定定理1或判定定理4找顶角对应相等判定定理1找底角对应相等判定定理1找底和腰对应成比例判定定理3e)相似形的传递性若△1∽△2,△2∽△3,则△1∽△3五、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。

具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。

例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC. 求证:BAACAF AE =(判断“横定”还是“竖定”?)例2、如图,CD 是Rt △ABC 的斜边AB 上的高,∠BAC 的 平分线分别交BC 、CD 于点E 、F ,AC ·AE=AF ·AB 吗? 说明理由。

解三角形之最值型【题集】-讲义(教师版)

解三角形之最值型【题集】-讲义(教师版)

解三角形之最值型【题集】转化为正弦型(1)(2)1.在中,,,分别为角,,的对边,且.求.若,求的最大值.【答案】(1)(2)..【解析】(1)(2) ,则,则,可得,因为,所以.由,得,其中,.由得,所以得最大值为,所以得最大值为.【标注】【知识点】和差角公式化简求值综合运用;两角和与差的余弦;正弦定理;正余弦定理综合求解边角2.在平面四边形中,已知,,,.(1)(2)求.求周长的最大值.【答案】(1)(2)..【解析】(1)(2)由条件即求的长,在中,设,,则,∵,∴,∴,整理得:,解得或,当时,可得,与矛盾,故舍去,∴.在中,设,则,∴,,∴,∴周长最大值为.【标注】【知识点】求边长相关最值或范围问题(1)(2)3.在中,角,,所对的边分别为,,,已知,.若,求.求面积的最大值.【答案】(1)(2)..【解析】(1)(2)由正弦定理得:.因为的内角和,,所以,因为,所以,因为,所以,当即时,面积取得最大值.【标注】【知识点】求面积最值或范围问题(1)(2)4.的内角,,的对边分别为,,,已知,且满足.求角的大小.求的最大值.【答案】(1)(2)..【解析】(1)(2)在中,由正弦定理可得,,又由余弦定理,∴,即,又,则.由正弦定理可得,∴,又,即,,,∴原式,其中,由,,∴一定存在使得,此时,此时最大为.【标注】【知识点】正余弦定理综合求解边角;求边长相关最值或范围问题均值不等式(1)(2)5.的内角,,的对边分别为,,,若,且外接圆的半径为.求角.求面积的最大值.【答案】(1)(2)..【解析】(1)(2)由正弦定理,有,∴,,,代入,得,则,即,由余弦定理得,∵,∴.由正弦定理得,由余弦定理得,∴,当且仅当时等号成立,∴,∴的最大值为.【标注】【知识点】三角形面积公式;正余弦定理综合求解边角;正弦定理(1)(2)6.在中,内角,,的对边分别是,,,且.求角的大小.若,求的最大值.【答案】(1)(2)..【解析】(1)(2)在中,∵,∴,由正弦定理,得,整理,得,∴,∴,又,∴.∵,∴,即,∵,∴,∴,∴,当且仅当时等号成立,∴的最大值为.【标注】【知识点】求边长相关最值或范围问题(1)(2)7.如图,在中,、、分别为的内角、、所对的边,外接圆的半径为,.求.求周长的最大值.【答案】(1)(2)..【解析】(1)(2)由正弦定理及,得,由,得,∴,∵,∴,∴.∵,∴.又外接圆的半径,∴,∴.∵,∴,由,得,∴,当且仅当时,等号成立.又∵,∴周长的最大值为.【标注】【知识点】余弦定理;正余弦定理综合求解边角(1)(2)8.在平面四边形中,,,.求的面积.设为的中点,且,求四边形周长的最大值.【答案】(1)(2)..【解析】(1)(2)连接,在中,由余弦定理得,设,则,即,解得或(舍去),所以,因此的面积.由为的中点,得为的边的中线,又,得,所以,所以,又,所以,当且仅当时等号成立,所以,即四边形的周长的最大值为.【标注】【知识点】求边长相关最值或范围问题9.如图,在平面四边形中,,,.(1)(2)求.求四边形面积的最大值.【答案】(1)(2)..【解析】(1)(2)∵,,均为锐角,∴,,∴,为直角三角形,∴,∴.由()知,,在中,由余弦定理得,∴,,,∴四边形面积的最大值为.【标注】【知识点】求面积最值或范围问题(1)(2)10.的内角,,的对边分别为,,,已知.求角的大小.若,求的面积的最大值.【答案】(1)(2)..【解析】(1)(2)由正弦定理得,所以,所以.,因为,即,所以,所以,当且仅当时,等号成立.所以的面积的最大值为.【标注】【知识点】三角形面积公式;正弦定理11.在中,内角,,所对的边分别为,,,是边的中点,若,且,求面积的最大值.【答案】.【解析】由题意及正弦定理得到,于是可得,又,,又因为是的中点,所以,故,则,则,当且仅当时等号成立,所以,即面积的最大值是.【标注】【知识点】求面积最值或范围问题(1)(2)12.在中,内角、、所对的边长分别为,,,.求角.若,求面积的最大值.【答案】(1)(2).面积的最大值为.【解析】(1)(2)由,可得:,,因为,所以,.由,得,,,所以,当时,面积的最大值为.【标注】【知识点】求面积最值或范围问题(1)(2)13.的内角,,的对边分别为,,,且.求.若,求面积的最大值.【答案】(1)(2)..【解析】(1)(2)由题意得,即,所以,因为,∴.由余弦定理得:,,故,则,当时,的面积最大值为.【标注】【知识点】求面积最值或范围问题(1)(2)14.在中,角,,的对边分别为,,,已知,.求的余弦值.求面积的最大值.【答案】(1)(2)..【解析】(1)由已知条件得:,由正弦定理得,则,即,由,整理得:,即,即,由,故.(2)由()知,则,由余弦定理得:,而,则,由得,即,所以,当时取等号.【标注】【知识点】求面积最值或范围问题;边角互化(利用正弦定理)(1)(2)15.设,,分别为锐角内角,,的对边,且满足,.求角的大小.求面积的最大值.【答案】(1)(2)..【解析】(1)(2)由可得,则即,所以有,又因为锐角,则.由(Ⅰ)可知,且有,由余弦定理可得:,则,.【标注】【知识点】求面积最值或范围问题(1)(2)16.已知在中,内角,,的对边分别为,,,且.求角的值.若的外接圆半径为,求面积的最大值.【答案】(1)(2).当时取最大值..【解析】(1)方法一:方法二:(2)∵,,,∵,则.由题:,,,,,,当时取最大值.由题:,∵,,则(当,取“”),.【标注】【知识点】正余弦定理综合求解边角(1)(2)17.在中,,,分别是角,,的对边,.求角的大小;若,求的面积的最大值.【答案】(1)(2)..【解析】(1)因为.可得,即,,.,(2),.由余弦定理得:,.即,当且仅当时取等号.,那么:的面积.的面积的最大值为.【标注】【知识点】求面积最值或范围问题(1)(2)18.已知,,是的内角,,,分别是角,,的对边,若.求角的大小.若,求面积的最大值.【答案】(1)(2)..【解析】(1)(2)由正弦定理及得由余弦定理,又,则.由()得,又,得,又可得,∴,当时取得等号,所以的面积最大值为.【标注】【知识点】求面积最值或范围问题(1)(2)19.在中,角,,所对的边分别为,,,已知.求的值.若,求的最小值.【答案】(1)(2)..【解析】(1)(2)由以及正弦定理可知,,即,因为,所以,所以.∵,∴.由余弦定理,可得:,又,可得,当且仅当时等号成立,即存在的最小值为.【标注】【知识点】求边长相关最值或范围问题(1)(2)20.在中,,,分别是角,,所对的边,且.求的值.若,当角最大时,求的面积.【答案】(1)(2)..【解析】(1)(2)∵,∴,由正弦定理得,,由余弦定理得,化简得,∴.因为,由知,,∴由余弦定理得,,即,且.根据重要不等式有,即,当且仅当时“”成立,∴.∴当角取最大值时,,.∴的面积.【标注】【知识点】求面积最值或范围问题(1)(2)21.在中,,,分别是角,,所对的边,且.求的值.若,求面积的最大值.【答案】(1)(2)..【解析】(1)(2)∵,∴,由正弦定理得,,由余弦定理得,化简得,∴.因为,由(I )知,,∴由余弦定理得,,根据重要不等式有,即,当且仅当时“”成立,∴.由,得,且,∴的面积.∵,∴.∴.∴的面积的最大值为.【标注】【知识点】求面积最值或范围问题;正余弦定理综合求解边角(1)22.已知的内角,,满足.求角.(2)若的外接圆半径为,求的面积的最大值.【答案】(1)(2).【解析】(1)(2)设内角,,所对的边分别为,,.根据及正弦定理,可得,得,所以,又因为,所以.设的外接圆半径为,则.因为,所以,所以,所以(当且仅当时取等号).故的面积的最大值为.【标注】【知识点】三角形面积公式;正余弦定理综合求解边角(1)(2)23.的内角,,的对边分别为,,,已知.求角;若点在边上,且,,求的最大值.【答案】(1)(2).的最大值.【解析】(1)(2)∵,由正弦定理可得,,即,∵,∴,∵,∴.令,,,∵,,∴,中,由余弦定理可得,∴,整理可得,,解不等式可得,,即的最大值.【标注】【知识点】求边长相关最值或范围问题;边角互化(利用余弦定理);边角互化(利用正弦定理)(1)(2)24.如图,在平面四边形中,,,,.若,求.求四边形面积的最大值.【答案】(1)(2)..【解析】(1)连接,在中,由余弦定理得:,(2)所以,又,所以为等腰三角形,作于,则,在中,,所以,所以.由题意知,在中,由余弦定理得,所以,又,当且仅当时等号成立,所以,所以,所以.所以.故四边形面积的最大值为.【标注】【知识点】求面积最值或范围问题;多个三角形拼接的解三角形问题;三角形面积公式(1)(2)25.在中,角,,的对边分别为,,,且.求角的大小.若的面积为,是钝角,求的最小值.【答案】(1)(2)或.的最小值为.【解析】方法一:(1)由已知得:,由正弦定理得:,∴,又在中,,∴,方法二:(2)∴或.∵,∴,∴,∴,∴,∴或.由,,可得:,又, ,当且仅当时取等号,∴的最小值为.【标注】【知识点】求边长相关最值或范围问题(1)(2)26.已知,,分别是三个内角,,所对的边,且.求角的大小.已知,求面积的最大值.【答案】(1)(2)..【解析】(1)(2)∵,,分别是三个内角,,所对的边,且,∴,即,解得(舍)或,解得.由()知,又,根据余弦定理得,把,,代入得,∴,解得,∴面积,∴的面积最大值为.【标注】【知识点】求面积最值或范围问题;SAS 类三角形(利用余弦定理)(1)(2)27.在中,角,,的对边分别为,,,且.求角;若的面积为,求的最小值.【答案】(1)(2)..【解析】(1)(2)由正弦定理可知:,,,,由,则,∴,由,,,,则;由,则,由,∴,当且仅当时取等号,∴,故的最小值为.【标注】【知识点】和差角公式化简求值综合运用;求边长相关最值或范围问题(1)(2)28.已知的内角,,的对边分别为,,,.求角;若,求的周长的最大值.【答案】(1)(2).周长的最大值为.【解析】(1)根据正弦定理,由已知得:,即,∴,∵,∴,∴,从而.∵,∴.(2)由()和余弦定理得,即,∴,即(当且仅当时等号成立).所以,周长的最大值为.【标注】【知识点】和差角公式化简求值综合运用;求边长相关最值或范围问题(1)(2)29.在中,角,,的对边分别为,,,且.求.若,求面积的最大值.【答案】(1)(2)..【解析】(1)(2)根据正弦定理得,即,则,即,由于,所以.根据余弦定理,,由于,即,所以面积,当且仅当时等号成立.故面积的最大值为.【标注】【知识点】正余弦定理综合求解边角;求面积最值或范围问题(1)(2)30.已知的内角、、的对边分别为、、其面积为,且.求角.若,,当有且只有一解时,求实数的范围及的最大值.【答案】(1)(2).,.【解析】(1)由己知.所以:,(2)由余弦定理得,所以,即,,,所以:,即:.由己知,当有且只有一解时,或,所以;当,.由余弦定理可得,所以,当且仅当时,等号成立.∴三角形面积为.【标注】【知识点】求面积最值或范围问题(1)(2)31.已知内角、、的对边分别为,,,若且.求角.求面积的最大值.【答案】(1)(2)..【解析】(1)(2)由可得,故,.由,,由余弦定理可得,由基本不等式可得,,当且仅当时,“”成立,从而,故面积的最大值为.【标注】【知识点】求面积最值或范围问题(1)(2)32.的内角,,的对边分别为,,,且满足,.角的大小.求周长的最大值.【答案】(1)(2)..【解析】(1)(2)依题意:,,,由正弦定理,得,,∵,∴,.依题意,,,,∴,∵,∴,,,∴,当且仅当时取等号.【标注】【知识点】余弦定理的其他应用(1)(2)33.在中,角,,所对的边分别为,,,已知.求角的大小.若,求的面积的最大值.【答案】(1)(2)..【解析】(1)(2)已知.正弦定理化简可得:.即.∵,.∴.即.∴.∵,.余弦定理:.可得:.∴,当且仅当时取等号.解得:.那么三角形面积.【标注】【知识点】求面积最值或范围问题(1)(2)34.在中,内角,,的对边分别为,,,已知.若,求和.求的最小值.【答案】(1)(2),..【解析】(1)(2)因为,代入,得,所以,,得,所以,.把余弦定理代入,得,解得,,当且仅当,即时,取最小值.【标注】【知识点】三角形面积公式;AAS 类三角形(利用正弦定理);SSS 类三角形(利用余弦定理)(1)(2)35.如图,在三角形中,,,,平面内的动点与点位于直线的异侧,且满足.求.求四边形面积的最大值.【答案】(1)(2).四边形面积的最大值为.【解析】(1)(2)在中,因,,,由余弦定理得:,所以,再由正弦定理得:,所以.由()知的面积为定值,所以当的面积最大时,四边形的面积取得最大值.在中,由,.方法:设,,则,于是,即,当且仅当时等号成立.故的面积取得最大值.又的面积,所以四边形面积的最大值为.方法:设,则,,所以,当时,的面积取得最大值.又的面积,所以四边形面积的最大值为.【标注】【知识点】求面积最值或范围问题(1)(2)36.在中,角、、所对的边分别为、、,已知.求的值.当角取最大值时,求的值.【答案】(1)(2)..【解析】(1)(2)由,∴,∴,化为,∴,∴.由于,则,,又,当且仅当,即时,取等号,可得的最大值为,可得,由正弦定理可得.【标注】【知识点】和差角公式化简求值综合运用。

三角形的内角和专题-教师版

三角形的内角和专题-教师版

三角形的内角和专题1.如图,DE分别交△ABC的边AB,AC于D、E,且交BC的延长线于F,∠B=66°,∠1=74°,∠2=46°,求∠3的度数.【答案】解:66∠=︒,Q,174∠=︒BA B∴∠=︒-∠-∠=︒,180140Q,∠=︒246∴∠=∠+∠=︒.A32862.如图,在海面上停着三艘船A、B、C,C船在A船的北偏西40°方向,B船在A船的南偏西80°方向,C船在B船的北偏东35°方向,从C船看到A、B两船,视线CA、CB 的夹角∠ACB是多少度?【答案】解:根据题意得:40∠=∠=︒.EBC BCGCAD ACG∠=∠=︒,35∴∠=∠+∠=︒.ACB BCG ACG753.如图,在△ABC中,O是高AD、BE的交点,若∠C=75°,求∠AOB的度数.【答案】解:Q 直角ACD ∆中,90907515CAD C ∠=︒-∠=︒-︒=︒, ∴在直角AOE ∆中,9015105AOB AEO CAD ∠=∠+∠=︒+︒=︒.4.如图,在△ABC 中, AD 是BC 边上的高,AE 是∠BAC 的平分线,(1)若∠B =63°,∠C =51°,求∠DAE 的度数.(2)若10B C ∠-∠=︒,求DAE ∠的度数.【答案】(1)易得66BAC ∠=︒,27BAD ∠=︒,∴33276DAE ∠=︒-︒=︒(2)()11802DAE B C BAD ∠=︒-∠-∠-∠ ()()1180902B C B =︒-∠-∠-︒-∠ ()12B C =∠-∠ 5=︒5.如图,AD 平分△ABC 的外角∠CAE ,(1)若2100∠=︒,330∠=︒,求1∠的度数;(2)求证:()13212∠=∠-∠.【答案】(1)40°;(2)依题意得()21312∠+∠=∠+∠ 整理可得:()13212∠=∠-∠。

全等三角形知识点总结(精选18篇)

全等三角形知识点总结(精选18篇)

全等三角形知识点总结(精选18篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、合同协议、条据书信、讲话致辞、规章制度、策划方案、句子大全、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts for everyone, such as work summaries, work plans, contract agreements, document letters, speeches, rules and regulations, planning plans, sentence summaries, teaching materials, other sample texts, etc. If you want to learn about different sample formats and writing methods, please pay attention!全等三角形知识点总结(精选18篇)全等三角形知识点总结第1篇全等三角形的课件一、教材分析(一)本节内容在教材中的地位与作用。

3三角形中的模型(一)(教师版)鸟头模型

3三角形中的模型(一)(教师版)鸟头模型

第三讲三角形中的模型专题解析本讲主要是通过等积变形体会鸟头模型的证明,并在复杂图形中找到鸟头模型来解决相关面积问题。

典型例题解析例1:用三种不同的方法,把任意一个三角形分成四个面积相等的三角形.解析:省略。

练习1(1)用三种不同的方法,把任意一个三角形分成六个面积相等的三角形.解析:省略。

(2)用三种不同的方法将任意一个三角形分成三个小三角形,使它们的面积比为1∶3∶4.(3)如图,BD长12厘米,DC长4厘米,B、C和D在同一条直线上。

求三角形ABD的面积是三角形ADC面积的多少倍?解析:12÷4=3(倍)(4)如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上。

求三角形ABD 的面积是三角形ADC 面积的多少倍?解析:12÷4=3(倍)(5)如右图,在梯形ABCD 中,AC 与BD 是对角线,其交点O ,问:△AOB 与△COD 面积是否相等?解析:相等。

(6)正方形ABCD 和正方形CEFG ,且正方形ABCD 边长为10厘米,则图中三角形BDF面积为多少平方厘米?解析:10÷2=5(平方厘米)(7)图中三角形AOB 的面积为15平方厘米,线段OB 的长度为OD 的3倍,求梯形ABCD的面积。

解析:15+5+15+45=80(平方厘米)(8)如右图,在平行四边形ABCD 中,直线CF 交AB 于E ,交DA 延长线于F ,若1=∆ADES ,求△BEF 的面积。

解析:△BEF 的面积为1。

(9)如图,三角形两边上的点都是各边上的五等分点。

问:阴影部分与空白部分的面积比为多少?解析:5x 4x 4x 3x 3x 2x 2x x x例2(1)已知三角形ADE 的面积是1,AD:AB=2:3,AE:AC=1:4,求三角形ABC 的面积。

解析:4×3÷(2×1)×1=6(2)在△ABC 中,D 在AB 的延长线上,BA DA 21=, E 在AC 的延长线上,EC EA 31=,两个三角形的总面积为250平方厘米。

解三角形考点与题型梳理教师版

解三角形考点与题型梳理教师版

解三角形考点与题型归纳总结考点1 正余弦定理考法一:正余弦定理选择1.ABC ∆中,角,,A B C 所对的边分别为,,a b c.若3,60a b A ===︒,则边c = 【解析】2222cos a c b cb A =+-213923cos60c c ⇒=+-⨯⨯︒,即2340c c --=,解得4c =或1c =-(舍).2.在ABC中,2c =,75A =︒,45B =︒,则ABC 的外接圆面积为 【解析】因为在ABC 中,75A =︒,45B =︒,所以60C =︒,又c =r ,则21sin c r C ===,因此ABC 的外接圆面积为214S r ππ==. 3.在△ABC 中,,sin sin sin a b cA B C++++等于【解析】由正弦定理a b c sinA sinB sinC ==,a sinA=;∴,,;则a b c sinA sinB sinC ++++=)3sinA sinB sinC sinA sinB sinC++++。

4.在中,,,,则 【解析】因为,所以,∴5.在中,,则的值为( ) 【解析】中,,∴,化简得,解得或(不合题意,舍去),∴.60A =a =sin 3a A =3b B =c C =ABC ∆25C =cos1BC =5AC =AB =23cos 2cos 125C C =-=-2222cos 32c a b ab C =+-=c AB ==ABC ∆12,4,cos 4BC AB C ===-AC ABC ∆12,4,cos 4a BC c AB C =====-2222cos c ab ab C =+-2120b b +-=3b =4b =3b AC ==考法二:边角互换1.在中,若,则角等于【解析】由正弦定理有,因为2sin sin 2sin sin a b A A B A =⇒=.因为sin 0A ≠,故2sin 1B =.即1sin 2B =,又()0,B π∈,故B 等于30°或150°. 2.已知ABC ∆的三个内角,,A B C 所对边长分别是,,a b c ,若sin sin sin B A C -=,则角B 的大小为____【解析】由正弦定理得b a c -=,化简得222cos 2a c b B ac +-==,故5π6B =. 3.在ABC ∆中,222sin sin sin sin sin A C B A B -+=⋅,则角C 的大小为【解析】根据正弦定理得到:222a c b ab -+=,根据余弦定理得到2222cos a c b ab C -+=.故1cos ,602C C ==︒. 4.在ABC 中,内角、、A B C 的对边长分别为a b c 、、,已知222a c b -=,且sin cosC 3cos sin A A C =,则b =_________.【解析】∵sin cos 3cos sin A C A C =;∴根据正弦定理与余弦定理可得:222222322a b c b c a a c ab bc+-+-⨯=⨯⨯,即22222c a b =-;∵222a c b -=,∴24b b =,∵0b ≠∴4b =。

第09讲 拓展四:三角形中周长(定值,最值,取值范围)问题 (精讲)(教师版)

第09讲 拓展四:三角形中周长(定值,最值,取值范围)问题 (精讲)(教师版)

第09讲 拓展四:三角形中周长(定值,最值,取值范围)问题 (精讲)目录第一部分:知识点精准记忆 第二部分:典型例题剖析高频考点一:周长(边长)定值 高频考点二:周长(边长)最值 高频考点三:周长(边长)取值范围第三部分:高考真题感悟1、基本不等式2a b+≤,在结合余弦定理求周长取值范围; 2、利用正弦定理化角核心技巧:利用正弦定理2sin a R A =,2sin b R B =,代入周长(边长)公式,再结合辅助角公式,根据角的取值范围,求周长(边长)的取值范围.高频考点一:周长(边长)定值1.(2022·河南洛阳·高二阶段练习(理))在ABC 中,角,,A B C 的对边分别为,,a b c ,22cos c b a B =+. (1)求角A ;(2)若2a =,ABC 面积)222S a b c =++,求△ABC 的周长. 【答案】(1)π3;(2)6(1)在ABC 中,∵22cos c b a B =+,∴由正弦定理可得2sin sin 2sin cos C B A B =+. 又∵()πC A B =-+,()sin sin C A B =+, ∴()2sin sin 2sin cos A B B A B +=+.整理得2cos sin sin A B B =. ∵sin 0B >,∴1cos 2A =,()0,πA ∈.∴π3A =.(2)∵)222S a b c =++,∴)2221sin 2bc A a b c =++,)224b c =++, 亦即2234bc b c =++.又由余弦定理知224b c bc +-=,∴4bc =. ∴()234b c bc +-=.∴4b c +=.∴ABC 的周长为6a b c ++=.2.(2022·江西·临川一中模拟预测(文))△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c.已知2a b ==. (1)若π6A =,求sin 2B ; (2)当A 取得最大值时,求△ABC 的周长. 【答案】(1)3(1)由正弦定理得 sin sin a b A B =sin 62sin B =,解得sin B =∵0πB <<,∴cos B =∴sin 22sin cos B B B ==; (2)由余弦定理得22221cos 24b c a c A bc c +-+==,∴2121442c c c c +≥=,当且仅当1c =时,等号成立,此时,△ABC的周长为33.(2022·广东惠州·高三阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c()sin A A b =. (1)求B ;(2)若3b =,ABCABC 周长.【答案】(1)3B π=(2)9(1)()sin A A b =,由正弦定理:sin sin sin a b cA B C==,()sin sin os n B A A C =, 又∵A B C π++=,∴()sin sin cos A B B A B A +=,∴cos sin sin sin cos A B A B B A B A =,∴cos sin sin A B A B =,∵0A π<<,∴sin 0A ≠,∴sin B B =,又∵0B π<<,∴tan B =3B π=.(2)由题意知1sin 2ABC S ac B ===△∴9ac = 由余弦定理得2222cos a c b ac B =+-,又∵3b =,3B π=,∴2222cos 18a c b ac B +=+=∴()222236a c a c ac +=++=,故6a c +=,所以ABC 的周长9a b c ++=.4.(2022·河南·模拟预测(理))在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知π3A =,4c =. (1)若sin cos B B -=ABC 外接圆的面积; (2)若a =,求ABC 的周长. 【答案】(1)8π(2)答案见解析(1)因为πsin cos 4B B B ⎛⎫-- ⎪⎝⎭所以π1sin 42B ⎛⎫-= ⎪⎝⎭,因为π3A =,所以203B π<<,所以54412B πππ-<-<则ππ46B -=,则5π12B =. 因为π3A =,所以ππ4C A B =--=. 设ABC 外接圆的半径为R,由正弦定理得42πsin sin 4c R C ===则R =ABC 外接圆的面积2π8πS R ==. (2)由余弦定理可得2222cos a b c bc A =+-, 代入数据,得213164b b =+-,解得1b =或3.当1b =时,ABC的周长为53b =时,ABC的周长为7+5.(2022·四川绵阳·高一期中)在ABC 中,内角A B C ,,的对边分别为a ,b ,c ,已知22232a cb ac +=+.(1)求cos B 的值; (2)若32BA BC →→⋅=,2b ac =,求ABC 的周长. 【答案】(1)3cos 4B =;(2)3.(1)解:由已知得:22232a cb ac +-=由余弦定理得2223cos 24b ac B ac +-==. (2)解:BA BC →→⋅33cos 42ac B ac ===,解得2ac =,所以22b ac ==,b = 由余弦定理知2222cos b a c ac B =+- , 于是()()22222cos 7a c ac ac B a c =+--=+-, 解得3a c +=,故ABC 的周长为36.(2022·辽宁·铁岭市清河高级中学高一期中)在ABC 中,()sin sin sin b B a A b c C =-+ (1)求角A 的大小(2)若BC 边上的中线AD =ABCS =ABC 的周长【答案】(1)23A π=;(2)8+(1)由已知sin sin ()sin b B a A b c C =-+, 由正弦定理得:222b a bc c =--, 由余弦定理得:2221cos 22b c a A bc +-==-, 在ABC 中,因为(0,)A π∈, 所以23A π=;(2)由1sin 2ABC S bc A ===△8bc =①,由(1)知222b a bc c =--,即2228b c a +=-②,在ABD △中,由余弦定理得:222()2cos 22a a c ADB =+-⋅⋅∠,在ADC 中,由余弦定理得:222()2cos 22a a b ADC =+-⋅⋅∠,因为cos cos ADB ADC ∠=-∠,所以222242a b c +=+③, 由①②③,得228,56,8a b c bc =+==,所以b c +=所以ABC 的周长8a b c ++=+7.(2022·河南省实验中学高一期中)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2C =sin 2A +cos 2B +sin A sin C . (1)求角B 的大小;(2)若b =B 的角平分线交AC 于D ,且BD =1,求ABC 的周长.【答案】(1)120°(2)4+(1)解:因为cos 2C =sin 2A +cos 2B +sin A sin C , 所以1﹣sin 2C =sin 2A +1﹣sin 2B +sin A sin C , 即sin 2B =sin 2A +sin 2C +sin A sin C , 由正弦定理得,b 2=a 2+c 2+ac ,由余弦定理得,cos B 222122a cb ac +-==-,由B 为三角形内角得B =120°;(2)由题意得: ABC ABD BCD S S S =+△△△,且∠ABD =∠CBD 12=∠B =60°,BD =1,所以111sin sin 60sin 60222ac B c BD a BD =⋅⋅+⋅⋅,=a +c ),即ac =a +c , 因为b =b 2=12=a 2+c 2﹣2ac cos120°=a 2+c 2+ac , 因为()()22222a c a c ac ac +=++=,所以ac=a +c =4或ac =﹣3(舍),故ABC 的周长为4+8.(2022·江苏南通·高一期中)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b =,(sin )n B A =,且.m n ⊥ (1)求A ;(2)若a =ABC ABC 的周长.【答案】(1)23π;(2)3(1)由m n ⊥,则sin cos 0a B A =,由正弦定理得:sin sin cos 0A B B A =,在ABC 中sin 0B >,故sin A A =,即tan A = 因为0A π<<,所以23A π=; (2)由余弦定理得2222cos a b c bc A =+-,即227b c bc ++=,可得()27b c bc +=+,又1sin 2ABCSbc A ==2bc =,则()29b c +=,即3b c +=,所以ABC 的周长为3高频考点二:周长(边长)最值一、解答题1.(2022·山西·高一阶段练习)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,△ABC 的面积为S ,且满足4tan tan tan S B C bc B ⋅⋅=⋅+tan 4bc C S ⋅+. (1)求角A 的大小;(2)若4a =,求△ABC 周长的最大值. 【答案】(1)π3(2)12(1)∵πA B C ++=,4tan tan tan tan 4S B C bc B bc C S =++, ∴()()tan tan tan tan 4tan tan tan tan 11tan tan bc B C B CS bc bc B C bc A B C B C++==-⋅=-⋅+=⋅--⋅,即sin 2sin cos Abc A bc A=⋅, ∵(0,π)sin 0A A ∈≠,∴1cos 2A =, ∴π3A =; (2)∵4a =,π3A =, ∴由余弦定理得2221cos 22b c a A bc +-==, 2216b c bc +-=,()2163b c bc +=+()()2216334b c b c bc ++-=≤⨯(当且仅当4b c ==时取“=”),即()21164b c +≤,8b c +≤, ∴b c +的最大值为8,a b c ++的最大值为12, ∴△ABC 周长的最大值为12.2.(2022·宁夏·平罗中学三模(文))已知函数()f x m n =⋅,向量()sin cos n x x x =+,()cos sin ,2sin m x x x =-,在锐角ABC 中内角,,A B C 的对边分别为,,a b c , (1)若()1f A =,求角A 的大小;(2)在(1)的条件下,a =c b +的最大值.【答案】(1)3A π=(2)(1)由题()22cos sin cos 2sin 26f x m n x x x x x π⎛⎫=⋅=-+=+ ⎪⎝⎭所以()2sin 216f A A π⎛⎫=+= ⎪⎝⎭,即1sin 262A π⎛⎫+= ⎪⎝⎭又因为0,2A π⎛⎫∈ ⎪⎝⎭,所以5266A ππ+=,3A π=.(2)由余弦定理2222cos a b c bc A =+-,代入数据得:223b c bc =+-,整理得到2222133324b c b cbc b cb c解得b c +≤b c ==.故c b +的最大值为3.(2022·山西运城·高一阶段练习)已知ABC 的内角,,A B C 所对的边分别为,,cos sin a b c B a B =+.(1)若8,a ABC =的面积为D 为边BC 的中点,求中线AD 的长度; (2)若E 为边BC 上一点,且1,:2:AE BE EC c b ==,求2b c +的最小值.【答案】(1)(1)cos sin sin C A B A B +,()cos sin cos sin sin A B A B A B A B A B +=+,sin sin sin A B A B =,(),0,π,sin 0,A B B ∈∴≠tan A ∴π3A =.ABC 的面积为1sin 162bc A bc ∴==.D 为边BC 的中点,()()222222111()216444AD AB AC AB AB AC AC c b ∴=+=+⋅+=++,又222,16,8b c a bc bc a +-===, 222641680b c a bc ∴+=+=+=, ()()222112880162444AD c b ∴=+⨯+=+=,即26AD =∴中线AD 的长度为(2)E 为边BC 上一点,:2:BE EC c b =, ()22,22c cBE BC AE AB AC AB c b c b∴=∴-=-++, 222c bAE AC AB c b c b∴=+++,即()22c b AE cAC bAB +=+, 222(2)(2)c b AE cAC bAB ∴+=+,又1AE =,2222222222(2)(2)427c b cAC bAB c b b c b c b c ∴+=+=++=,2c b ∴+,即21b c +=)2142244c b b c b c b c b c ⎛⎛⎫⎫∴+=++=++≥+= ⎪⎪⎝⎭⎭,当且仅当4c b b c =,即2b c ==故2b c +. 4.(2022·湖南·模拟预测)在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,已知222a c ac b +-=. (1)求角B ;(2)若b =2a c +的最大值.【答案】(1)π3B =(1)由222a c ac b +-=,得222a c b ac +-=, 由余弦定理可得2221cos 22a cb B ac +-==,因为0πB <<,所以π3B =.(2)在ABC 中,由(1)及b =,由正弦定理1sin sin sin a c b A C B ===, 所以sin a A =,sin c C =,所以2sin 2sin sin 2sin 3a c A C A A π⎛⎫+=+=++ ⎪⎝⎭2sin )A A A ϕ==+,其中0,2πϕ⎛⎫∈ ⎪⎝⎭,tan ϕ=因为2π03A <<,π02ϕ<<,所以存在角A 使得π2A ϕ+=,所以2a c +5.(2022·浙江·模拟预测)向量12sin ,2m x ⎛⎫= ⎪⎭,63cos ,22x n ⎛⎫=- ⎪ ⎪⎝⎭,函数()()2f x m m n =⋅+. (1)求函数()f x 的对称中心;(2)若函数1()()4g x f x =+在π,4a ⎡⎤-⎢⎥⎣⎦上有5个零点,求a 的取值范围;(3)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,ACB ∠的角平分线交AB 于点D ,且()f C 恰好为函数()f x 的最大值.若此时()CD f C =,求43a b +的最小值.【答案】(1)ππ1,1224k ⎛⎫+- ⎪⎝⎭(k ∈Z )(2)25π31π,1212⎡⎫⎪⎢⎣⎭(3)7(1)∵12sin ,2m x ⎛⎫= ⎪⎭,63cos ,22x n ⎛⎫=- ⎪ ⎪⎝⎭,∴52sin ,22m n x x ⎛⎫=+-⎪⎭+ ,∴()25π12sin cos 2sin 24624()f x m m x x x n x ⎛⎫=+-=-- ⎪⎝⎭=⋅+. 令π2π6x k -=得ππ(Z)122k x k =+∈,∴()f x 的对称中心为ππ1,1224k ⎛⎫+- ⎪⎝⎭(k ∈Z ).(2)当π4x =-时,π2π263x -=-,又()sin 26g x x π⎛⎫=- ⎪⎝⎭在π,4a ⎡⎤-⎢⎥⎣⎦上有5个零点,∴π4π25π6a ≤-<,∴a 的取值范围为25π31π,1212⎡⎫⎪⎢⎣⎭.(3)由()f C 恰好为函数()f x 的最大值可得17()2sin 2644f C C π⎛⎫=--= ⎪⎝⎭,即sin 216C π⎛⎫-= ⎪⎝⎭,∵0C π<<,则可解3C π=,则()74CD f C ==, 在ACD △中,由1sin sin 2CD ADA C =,可得78sin AD A =, 在BCD △中,由1sin sin 2CD BDB C =,可得78sin BD B =, ∴778sin 8sin c A B=+, 在ABC 中,sin sin sin a b cA B C==,则可得sin 1sin A a B ⎫=+⎪⎝⎭,sin 1sin B b A ⎫=+⎪⎝⎭,则sin sin 4311sin sin A B a b B A ⎫⎫+++⎪⎪⎝⎭⎝⎭sin sin sin sin A BB A=, ∵sin 0A >,sin 0B >,∴437a b +≥=,当且仅当2sin A B 等号成立,故43a b +的最小值为7. 6.(2022·广东东莞·高一期中)已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且222b c a bc +=+ (1)若8a =,8AB AC ⋅=,D 为边BC 上的中点,求AD ;(2)若E 为边BC 上一点,且1AE =,:2:BE EC c b =,求2b c +的最小值. 【答案】(1)26AD =(1)依题意得:2221cos 22b c a A bc +-==, 由1cos 82AB AC bc A bc ⋅===,得:16bc =∴222641680b c a bc +=+=+= ∵D 为边BC 的中点,∴()12AD AB AC =+ ∴()()222211244AD AB AC AB AB AC AC =+=+⋅+ ()()22112880162444c b =+⨯+=+=即26AD =(2)∵E 为边BC 上一点,:2:BE EC c b =, ∴222c bAE AC AB c b c b=+++, 即()22c b AE cAC bAB +=+, ∴()()22222c b AE cAC bAB +=+,又1AE =,∴()()222222222222427c b cAC bABc b b c b c b c +=+=++=,∴2c b +=,即21b c+∴)212222415b c b c b c b c c b ⎛⎛⎫⎫+=++=+++≥+= ⎪⎪⎝⎭⎭当且仅当22b c c b =,即b c ==取等号,故2b c +. 7.(2022·吉林·东北师大附中高一期中)在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,且cos cos 2cos a C c A b B +=.(1)当12AC =时,求ABC 面积的最大值;(2)当ABC 的面积为ABC 周长的最小值.【答案】(1)12(1)解:由cos cos 2cos a C c A b B +=及正弦定理可得()2sin cos sin cos cos sin sin sin B B A C A C A C B =+=+=, 因为()0,B π∈,则sin 0B >,所以,1cos 2B =,故3B π=.因为12b AC ==,由余弦定理可得222221442cos 2b a c ac B a c ac ac ac ac ==+-=+-≥-=,当且仅当12a c ==时,等号成立,故1sin 2ABC S ac B ==≤△故ABC 面积的最大值为(2)解:因为1sin 2ABC S ac B ===△16ac =,所以,b =,所以,812a b c a c ++=+,当且仅当4a c ==时,等号成立,故ABC 周长的最小值为12.8.(2022·全国·高三专题练习)在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且()()2sin 2sin 2sin a A b c B c b C =+++.(1)求A 的大小;(2)若sin sin 1B C +=,试判断ABC 的形状; (3)若2a =,求ABC 周长的最大值.【答案】(1)23A π=(2)等腰钝角三角形(3)最大值为2+(1)因为()()2sin 2sin 2sin a A b c B c b C =+++,根据正弦定理得()()2222a b c b c b c =+++,整理得222b c a bc +-=-由余弦定理可得2221cos 22b c a A bc +-==- 又()0,A π∈,所以23A π= (2)由(1)知23A π=,又sin sin 1BC +=得sin sin 13B B π⎛⎫+-= ⎪⎝⎭,即11sin sin sin sin 1223B B B B B B π⎛⎫-==+= ⎪⎝⎭, 因为0,3B π⎛⎫∈ ⎪⎝⎭,则2333B πππ<+<,23B ππ∴+=,即6B π=,6C π=,则ABC 为等腰钝角三角形;(3)由2a =,23A π=及余弦定理知()()()()222222232cos 44b c b c a b c bc A b c bc b c ++=+-=+-≥+-=则()2163b c +≤,知()max b c +=b c ==时等号成立所以2a b c ++≤因此ABC 周长的最大值为2+高频考点三:周长(边长)取值范围1.(2022·河南·南阳中学高一阶段练习)已知函数()2cos 22sin f x x x x =-+.(1)求函数()f x 的单调递减区间; (2)当0,2x π⎛⎫∈ ⎪⎝⎭时,求函数()f x 的值域;(3)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且()1f A =,a =2b c +的取值范围.【答案】(1)5,()36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)(2,1]-(3)(1)解:依题意,()2cos 212sin(2)16f x x x x π--=--,由3222,Z 262k x k k πππππ+≤-≤+∈,解得5,Z 36k x k k ππππ+≤≤+∈,所以函数()f x 的单调递减区间是5[,](Z)36k k k ππππ++∈; (2)解:由(1)知,当(0,)2x π∈时,52(,)666x πππ-∈-,则1sin(2)126x π-<-≤,2()1f x -<≤,所以函数()f x 的值域是(2,1]-;(3)解:由(1)知,()2sin(2)116f A A π=--=,即sin(2)16A π-=,而0A π<<,则112(,)666A πππ-∈-,因此,262A ππ-=,解得3A π=,由正弦定理得:2sin sin sin sin 3b c a B C A ====, 即2sin ,2sin b B c C ==,且23C B π=-,则224sin 2sin()35sin )B b c B B B B πϕ==+-++=,sin tan 0,2πϕϕϕϕ⎛⎫===∈ ⎪⎝⎭其中,tan 06πϕϕ∴<<,221,sin sin()2220,333BB ππϕϕϕϕπϕ<+<+=<+<∴,sin())2,1B B b c ϕϕ<≤≤+++∈, 所以b c +的取值范围是.2.(2022·辽宁·抚顺市第二中学三模)在①()()222sin 2sin B c a C b c a b -=+-,②23coscos cos 24A C A C --=,③tan tan A B =+这三个条件中,任选一个,补充在下面问题中,问题:在ABC 中,a ,b ,c 分别为角A ,B ,C所对的边,b =_______. (1)求角B ﹔ (2)求2ac -的范围.【答案】(1)任选一条件,都有3B π=(2)(-(1)选择①:∵()()222sin 2sin Bc a C b c a b-=+-, ∴由正弦定理可得:()22222cos c a c b c a bc A -=+-=,∴可得:22cos c a b A -=,可得:2c s 2o c A ab=-,∴由余弦定理可得:222222cos c a b c a b bcA -+-==, 整理可得:222c a b ac +-=,∴2221cos 222c a b ac B ac ac +-===,∵()0,B π∈,可得:3B π=选择②:,因为()21cos cos cos cos cos cos 22A C A CA C A C +---=- ()1cos 1cos cos sin sin 3224A C A C A C -+-+===,所以()()11cos ,cos cos 22A CB AC +=-=-+=,又因为()0,B π∈,所以3B π=;选择③tan tan A B =+,=又sin sin sin cos cos sin sin tan tan cos cos cos cos cos cos A B A B A B CA B A B A B A B++=+==tan tan A B =+sin cos cos C A B =, 因为sin 0C >,所以tan B 0B π<<,所以3B π=.(2)在ABC 中,由(1)及4sin sin sin b a c b B A C =====, 故4sin ,4sin a A c C ==,28sin 4sin 8sin 28sin 2si 4si n 3n a c A A A A A A C π⎛⎫-=---=-=- ⎪⎝⎭所以6sin 6A A A π⎛⎫=-=- ⎪⎝⎭因为203A π<<,则662A πππ-<-<1sin 1,266A A ππ⎛⎫⎛⎫-<-<--< ⎪ ⎪⎝⎭⎝⎭ 所以2a c -的范围为(-3.(2022·辽宁沈阳·三模)在①2sin cos cos 0a B b C c B --=,②222sin sin sin sin 0A B C A C -+=,③sin sin cos cos 0A C B A C -=三个条件中任选一个,补充到下面问题中,并解答.已知锐角ABC 的内角A ,B ,C ,的对边分别为a ,b ,c 满足_______(填写序号即可) (1)求B ﹔(2)若1a =,求b c +的取值范围.【答案】(1)6B π=(2)⎝ (1)解:选①,因为2sin cos cos 0a B b C c B --=,所以2sin sin sin cos sin cos 0A B B C C B --=,即()2sin sin sin cos sin cos sin sin A B B C C B B C A =+=+=, 又sin 0A ≠,所以1sin 2B =, 因为0,2B π⎛⎫∈ ⎪⎝⎭,所以6B π=;选②,因为222sin sin sin sin 0A B C A C -+=,所以2220a b c -+=,即222222cos b a c a c ac B =+=+-,所以cos B 因为0,2B π⎛⎫∈ ⎪⎝⎭,所以6B π=;选③,因为sin sin cos cos 0A C B A C -=,所以sin sin cos cos A C A C B -=,()sin sin cos cos cos cos B A C A C A C B =-=-+=,所以tan B =, 因为0,2B π⎛⎫∈ ⎪⎝⎭,所以6B π=;(2)解:由正弦定理sin sin sin a b cA B C==, 得sin 1sin 2sin B b A A==, ()sin sin cos sin sin 2sin A B C Ac A A A+===,则22cos 1cos 122sin 4sin cos 2tan 222A A b c A A AA ++=+=+=,由锐角ABC 得025062A C A πππ⎧<<⎪⎪⎨⎪<=-<⎪⎩,得32A ππ<<,则64A ππ<<,所以tan2A ⎫∈⎪⎪⎝⎭,从而(1tan A ∈, 所以b c +的取值范围为⎝.4.(2022·四川成都·高一期中(文))已知向量()sin ,cos a x x ωω=,()()3cos ,cos 0b x x ωωω=>,函数()12f x a b =⋅-的最小正周期为π. (1)求函数()f x 的最大值;(2)已知ABC的三个内角A ,B ,C 的对边分别为a ,b ,c ,满足a =()12f A =,求ABC 周长的取值范围. 【答案】(1)1(2)((1)()2113sin cos cos22f x a b x x x ωωω=⋅-=+-1π2cos 2sin 226x x x ωωω⎛⎫+=+ ⎪⎝⎭.因为()f x 的最小正周期为π,所以2ππ2ω=.所以1ω=.所以()πsin 26f x x ⎛⎫=+ ⎪⎝⎭.所以()f x 的最大值为1.(2)()π1sin 262f A A ⎛⎫=+= ⎪⎝⎭.因为()0,πA ∈,ππ13π2,666A ⎛⎫+∈ ⎪⎝⎭,所以π5π266A +=,π3A =. 由正弦定理可得2sin sin sin a b cA B C====,所以2sin b B =,2sin c C =.因为πA B C ++=,所以2π3C B =-,2π0,3B ⎛⎫∈⎪⎝⎭.所以2sin 2sin b c a B C ++=+2π2sin 2sin 3B B ⎛⎫=+-⎪⎝⎭3sin B B =π6B ⎛⎫=+ ⎪⎝⎭2π0,3B ⎛⎫∈ ⎪⎝⎭,所以ππ5π,666B ⎛⎫+∈ ⎪⎝⎭.所以π1sin ,162B ⎛⎫⎛⎤+∈ ⎪⎥⎝⎭⎝⎦.所以(π6B ⎛⎫+ ⎪⎝⎭.所以ABC 周长的取值范围为(. 5.(2022·四川成都·高一期中(理))已知向量()()()sin ,cos ,3cos ,cos 0a x x b x x ωωωωω==>,函数()12f x a b =⋅-(1)求函数()f x 的最大值; (2)ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c,满足a=()12f A =,求ABC 周长的取值范围. 【答案】(1)1;(2)(.(1)依题意,()21cos cos 2f x x x x ωωω=+-12cos22x x ωω=+sin 26x πω⎛⎫=+ ⎪⎝⎭,所以函数()f x 的最大值为1.(2)因函数()f x 与x 轴的三个连续交点的横坐标构成以2π为公差的等差数列,则()f x 的最小正周期为π,即22ππω=,解得1ω=,()sin 26f x x π⎛⎫+ ⎝=⎪⎭,有()1sin 262f A A π⎛⎫=+= ⎪⎝⎭,而()130,,2,666A A ππππ⎛⎫∈+∈ ⎪⎝⎭,因此,52,663A A πππ+==,在ABC中,由正弦定理得:2sin sin sin a b c A B C ====, 即2sin ,2sin b B c C ==,而22,0,33C B B ππ⎛⎫=-∈ ⎪⎝⎭,则2sin 2sin a b c B C ++=+22sin 2sin 3B B π⎛⎫=+-⎪⎝⎭3sin B B =6B π⎛⎫=+ ⎪⎝⎭ 因20,3B π⎛⎫∈ ⎪⎝⎭,则5,666B πππ⎛⎫+∈ ⎪⎝⎭,有1sin ,162B π⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦,于是有(6B π⎛⎫+ ⎪⎝⎭, 所以ABC周长的取值范围为(.6.(2022·河北·高一期中)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,向量()cos ,sin a B B =,()2cos cos ,2sin sin b A B A B =---,且a b ⊥.(1)求C ;(2)若6c =,求ABC 周长的取值范围. 【答案】(1)2π3C =(2)(12,6+ (1)解:因为向量()cos ,sin a B B =,()2cos cos ,2sin sin b A B A B =---,且a b ⊥, 所以()()cos 2cos cos sin 2sin sin 0B A B B A B -+--=,即()222cos cos sin sin sin cos B A B A B B -=+,即()2cos 2cos 1A B C +=-=, 即1cos 2C =-,因为()0,C π∈, 所以2π3C =. (2)由余弦定理得()22222361cos 222a b ab a b c C ab ab +--+-===-, 所以()22362a b ab a b +⎛⎫=+-≤ ⎪⎝⎭,当且仅当a b ==所以a b +≤又三角形的两边之和大于第三边,所以6a b +>, 所以ABC周长的取值范围为(12,6+.7.(2022·全国·高三专题练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足条件;4a =,222sin sin sin sin sin A B C B C +=+.(I )求角A 的值; (Ⅱ)求2b c -的范围. 【答案】(I )3π;(Ⅱ)()4,8-. (I )由222sin sin sin sin sin A B C B C +=+,利用正弦定理可得222a bc b c +=+,即222bc b c a =+- 故2221cos 222b c a bc A bc bc +-===,又(0,)A π∈,3A π∴=(Ⅱ)4a =,3A π=,利用正弦定理sin sin sin a b c A B C ===故b B =,sin()3c C B π==+122sin()+sin 32b c B B B B B π⎫∴-=+=⎪⎪⎝⎭4cos 4cos 8sin 6B B B B B B π⎛⎫=-=-=- ⎪⎝⎭ 在ABC 中,3A π=,故203B π<<662B πππ∴-<-<,1sin 126B π⎛⎫∴-<-< ⎪⎝⎭,48sin 86B π⎛⎫∴-<-< ⎪⎝⎭所以2b c -的范围是()4,8-8.(2022·全国·高三专题练习)已知向量1(sin ,1),3cos ,2m x n x ⎛⎫==- ⎪⎭.令函数()()f x m n m =+⋅.(1)求函数()f x 的最小正周期和单调递增区间;(2)ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,ACB ∠的角平分线交AB 于D .其中,函数()f C 恰好为函数()f x 的最大值,且此时()CD f C =,求3a b +的最小值.【答案】(1)()f x 的最小正周期为π,单调递增区间为,,63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)4 【详解】 (1)1(sin ,1),3cos ,2m xn x ⎛⎫==- ⎪⎭,1sin ,2m n x x⎛⎫+= ⎪⎝⎭∴()()1sin sin 2f x x x x ∴=+21sin cos 2x x x =+1cos 21222x x -=+ sin 216x π⎛⎫=-+ ⎪⎝⎭,则()f x 的最小正周期为22ππ=, 令222,262k x k k Z πππππ-+≤-≤+∈,解得,63k x k k Z ππππ-+≤≤+∈,故()f x 的单调递增区间为,,63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)由()f C 恰好为函数()f x 的最大值可得()sin 2126f C C π⎛⎫=-+= ⎪⎝⎭,即sin 216C π⎛⎫-= ⎪⎝⎭,0C π<<,则可解得3C π=,则()2CD f C ==, 在ACD △中,由1sin sin 2CD ADA C =,可得1sin AD A =, 在BCD △中,由1sin sin 2CD BDB C =,可得1sin BD B =, 11sin sin c A B∴=+, 在ABC中,1111sin sin sin sin sin a b c A B C A B +⎫====+⎪⎝⎭,则可得sin 1sin A a B ⎫=+⎪⎝⎭,sin 1sin B b A ⎫=+⎪⎝⎭,则sin sin sin sin 311sin sin sin sin A B A B a b B A B A ⎫⎫+=++=⎪⎪⎭⎝⎭sin 0,sin 0A B >>,34a b ∴+≥= 当且仅当sin sin A B =等号成立,故3a b +的最小值为4.一、解答题1.(2020·全国·高考真题(理))ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C . (1)求A ;(2)若BC =3,求ABC 周长的最大值. 【答案】(1)23π;(2)3+(1)由正弦定理可得:222BC AC AB AC AB --=⋅, 2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈,23A π∴=. (2)[方法一]【最优解】:余弦+不等式由余弦定理得:2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=, 即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+[方法二]:正弦化角(通性通法) 设,66ππαα=+=-B C ,则66ππα-<<,根据正弦定理可知sin sin sin a b cA B C ===所以sin )b c B C +=+sin sin 66ππαα⎤⎛⎫⎛⎫=++- ⎪ ⎪⎥⎝⎭⎝⎭⎦α=≤0α=,即6B C π==时,等号成立.此时ABC 周长的最大值为3+[方法三]:余弦与三角换元结合在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .由余弦定理得229b c bc =++,即2213924⎛⎫++= ⎪⎝⎭b c c.令13sin ,20,2b c c θπθθ⎧+=⎪⎛⎫∈⎨ ⎪⎝⎭⎪=⎩,得3sin b c θθ+=6πθ⎛⎫+≤ ⎪⎝⎭6C π=时,max ()b c += 所以ABC周长的最大值为3+2.(2017·全国·高考真题(理))△ABC 的内角、、A B C 的对边分别为a b c 、、,已知△ABC 的面积为23sin a A(1)求sin sin B C ;(2)若6cos cos 1,3,B C a ==求△ABC 的周长. 【答案】(1)2sin sin 3B C =(2) 3解析:(1)由题设得21sin 23sin a ac B A =,即1sin 23sin a c B A =. 由正弦定理得1sin sin sin 23sin AC B A=.故2sin sin 3B C =. (2)由题设及(1)得1cos cos sin sin ,2B C B C -=-,即()1cos 2B C +=-.所以23B C π+=,故3A π=. 由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即()239b c bc +-=,得b c +=故ABC 的周长为33.(2016·全国·高考真题(理))ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(1)求角C ;(2)若c =ABC S ∆=ABC ∆的周长.【答案】(1)3C π=(2)5解析:(1)由已知可得2cos (sin cos sin cos )sin C A B B A C += 12cos sin()sin cos 23π∴+=⇒=⇒=C A B C C C(2)11sin 622∆=⇒=⇒=ABC S ab C ab ab 又2222cos +-=a b ab C c2213a b ∴+=,2()255∴+=⇒+=a b a b ABC ∆∴的周长为5。

小升初培优讲义25 三角形和四边形--六年级一轮复习(知识点精讲+达标检测)(教师版)

小升初培优讲义25  三角形和四边形--六年级一轮复习(知识点精讲+达标检测)(教师版)

专题25 三角形和四边形1.三角形三角形的意义:由三条线段首尾顺次相接围成的封闭图形叫作三角形。

三角形的分类。

(1)按角来分。

名称 锐角三角形直角三角形钝角三角形图形特征三个角都是锐角 有一个角是直角 有一个角是钝角(2)按边来分。

名称 不等边三角形等腰三角形图形特征三条边都不相等有两条边相等三条边都相等(1)三角形不容易变形,具有稳定性。

(2)三角形的内角和是180°。

(3)三角形的任意两边之和大于第三边,两边之差小于第三边。

[提示]一个三角形中至少有两个锐角;任何三角形都有3条高。

2.四边形 四边形的分类。

名称 基本图形特征共同点 长方形两组对边分别平行且相等,四个角都是直角。

都是由四条线段围成的对边平行且相等的图形,对角相等。

正方形四条边都相等,四个角都是直角。

知识梳理平行四边形两组对边分别平行且相等。

梯形一般梯形边长短不一,角各不相等。

都是只有一组对边平行的四边形。

等腰梯形 两腰相等,两底角相等。

直角梯形一腰与两底的夹角都是90°。

四边形的周长和面积。

名称 图形 字母意义 特征周长公式 面积公式 正方形a-边长四条边都相等,四个角都是直角C = 4aS = a 2长方形a-长 b-宽 两组对边分别相等,四个角都是直角C = (a +b )×2S = ab平行四边形a-底 h-高两组对边分别平行且相等\ S = ah三角形a-底h-高两边之和大于第三边,三个内 \ S = 12ah梯形a-上底 b-下底 h-高只有一组对边平行 \S = 12(a +b )h【例1】下列各图形中,三角形的个数各是多少?【点拨分析】 因为底边上的任何一条线段都对应一个三角形(以顶点及这条线段的两个端点为顶点的三角形)、所以各图中最大的三角形的底边所包含的线段的条数就是三角形的总个数。

由前面数段段的方法可以求出三角形的总个数。

【答 案】图(1)中有三角形1+2=3(个)。

小学数学教案三角形分类(数学三角形的分类教案)

小学数学教案三角形分类(数学三角形的分类教案)

小学数学教案三角形分类(数学三角形的分类教案)关于小学数学教案范文三角形分类(数学三角形的分类教案篇一教材版本:人教版四年级下册第四单元《三角形的分类》教学目标:1、能够按三角形的内角不同对三角形进行分类,掌握锐角三角形、直角三角形、钝角三角形的特征。

2、认识等腰三角形、等边三角形,掌握它们的特征。

3、通过探究过程,体验独立思考、小组学习、动手操作的学习方法。

培养学生的观察、分析、比较、抽象概括能力。

教学重点:理解三角形的意义和按角、边的角度,把三角形分类。

教学难点:能够区别掌握各类三角形的特征以及区分各类三角形之间的关系学情分析:学生第一学段认识角、直角、锐角、钝角、平角、直角。

可见四年级的学生已经具备了一定的平面图形的知识,学习这一部分内容,对他们来说比较轻松和顺利。

所以,教师可充分放手让学生自学,学生可以通过自学、讨论,动手操作来掌握本节课的知识点。

学生亲自体验探索知识的形成过程,在体验中形成概念。

教学准备:白板多媒体,一副三角板,每个学习小组七个三角形。

教学过程:一、复习旧知,导入新课1、复习旧知(1)之前都学过哪些角?(2)屏幕上是什么角?(白板上有一个锐角,将角旋转至90度,至钝角,分别追问是什么角?)(3)如果在这个角的两条边上任取两个点,并连接起来,擦掉多余的部分,是个什么图形?(4)你对三角形都有哪些了解?2、导入新课(1)展示白板上的7个三角形,它们一样吗?什么都不一样?(2)其实众多的三角形里有很多也是同一类的。

今天老师和大家一起探究三角形的分类。

板书课题:三角形的分类(设计意图:通过对旧知识的复习,帮助学生系统思考,营造良好的学习氛围,让学生感受到给三角形分类的必要性。

为下面探究新知做好知识和氛围的准备)二、合作交流,探究新知1、探究三角形的分类(1)独立思考,你准备怎么分类?。

(2)小组交流,按照你的想法把白板上的7个三角形进行分类。

(3)小组合作,教师深入指导。

分好的同学交流思想。

最新小学奥数 三角形的等积变形教师版

最新小学奥数  三角形的等积变形教师版

A
乙 E

B
D
C
连接 AD.因为 BE=3,AE=6,所以 BE:AE=3:6=1:2,设甲部分的面积为 1 个单位,那么三角形
AED 的面积为 2 个单位,这样 ABD 的面积为 3 个单位,因为 BD:CD=1:1,所以三角形 ADC
的面积也为 3 个单位,这样乙部分的面积为 3+3-1=5 个单位,所以乙部分是甲部分面积的 5
,它们 所对的顶点同为 A 点,(也就是它们的高相等)那么这两个三角形的面积相
等. 同时也可以知道△ABC 的面积是△ABD 或△AEC 面积的 3 倍.
例如在右图中,△ABC 与△DBC 的底相同(它们的底都是 BC),它所对的两个顶 点 A、D 在与底 BC 平行的直线上,(也就是它们的高相等),那么这两个三角形 的面积相等.
-1-
例如右图中,△ABC 与△DBC 的底相同(它们的底都是 BC),△ABC 的高是△DBC 高的 2 倍(D 是 AB 中点,AB=2BD,有 AH=2DE),则△ABC 的面积是△DBC 面积的 2 倍.
上述结论,是我们研究三角形等积变形的重要依据. 例 1 用三种不同的方法,把任意一个三角形分成四个面积相等的三角形.
方法 2:如右图,先将 BC 二等分,分点 D、连结 AD,得到两个等积 三角形,即△ABD 与△ADC 等积.然后取 AC、AB 中点 E、F,并连结 DE、 DF.以而得到四个等积三角形,即△ADF、△BDF、△DCE、△ADE 等积.
-2-
例 2 用三种不同的方法将任意一个三角形分成三个小三角形,使它们的面积比 为及 1∶3∶4.
A
B
E
C
D
如图,连接 AD,因为 BC:CE=1:1,所以三角形 ACD 的面积:三角形 ABC 的面积=1:1, 所以三角形 ACD 的面积=1,三角形 ABD 的面积=2,因为 AB:BE=1:2,所以三角形 ADE 的 面积为 4. 5、三角形 ABC 被分成了甲、乙两部分,BD=DC=4,BE=3,AE=6,乙部分面积是甲部分面积的 几倍?

人教版数学四年级下册三角形的分类教案3篇

人教版数学四年级下册三角形的分类教案3篇

人教版数学四年级下册三角形的分类教案3篇〖人教版数学四年级下册三角形的分类教案第【1】篇〗三角形分类具体教案一、说教材1、教学内容九年义务教育六年制小学数学教科书(北师大版)四年级下册第24至25页的内容及相关练习题。

2、教材简析“三角形分类”是新课程教材中“空间与图形”领域内容的一部分。

学生在学习此内容之前,已经学习了三角形的认识,能够在物体的面中找出三角形,学习了角的知识,认识了常见的角,为学生学习三角形的特征从角和边的不同角度对三角形进行分类做好了有力的知识支撑。

三角形是最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,学好这部分内容,为学习其他多边形积累了知识经验,为进一步学习三角形的有关知识打下基础。

3、教学目标根据教材内容及学生的知识水平和心理年龄特点,制定了以下教学目标:(1)让学生通过学习活动,发现三角形和边的特征会给三角形的分类,理解并掌握各种三角形的特征。

(2)培养学生观察,操作和抽象概括能力。

(3)激发学生的主动参与意识,自我探索意识和创新精神。

4、教学重点、难点的确定根据《三角形分类》这一知识的地位和作用,本课设计的“观察、操作、比较、小组讨论”等教学环节都是为了使学生能近角和边的特点给三角形分类,因此这是教学重点。

根据学生的认识水平和年龄特点,如何引导学生归纳出各种三角形的特征,这是学生掌握本课知识的一个质的飞跃。

因而,“能理解并掌握各种三角形的特征”是本课教学的难点。

5、教学准备除了准备彩色卡纸,三角形平面图等,课前布置学生把课本P113图2的三角形剪下来。

二、说教法、学法根据新课标的要求和学生的实际,以直观教学为主,运用观察动手操作,小组讨论等多种方法,结合教材,让学生在“看一看”,“量一量”,“比一比”,“分一分”,“说一说”的自主探索过程中发挥学生相互之间的作用,让学生自己在动脑、动手、动口中促进思维的发展,培养学生的动手操作能力,语言表达能力和自学能力。

三角形的外心内心-教师版

三角形的外心内心-教师版

3.7三角形的外心内心【学习目标】1、能判定一条直线是否为圆的切线.2、会过圆上一点画圆的切线.会作三角形的内切圆和外接圆.一、旧知回顾1. 从直线和圆的公共点的个数来看:(1)_______________叫做直线和圆相切;(2)_______________叫做直线和圆相交;(3)_______________叫做直线和圆相离.2.如果圆的半径为r ,圆心到直线的距离为d ,则有①______________________d r ⇔<;②______________________;③______________________d r ⇔>.2.直线与圆的位置关系有几种①直线和圆的位置关系有三种:一, ,二, ,三, .②设圆的半径为r ,直线到圆心的距离为d ,则当d >r 时,直线与圆 ,则当d =r 时,直线与圆 ,则当d <r 时,直线与圆 .二、新知学习【知识点一】三角形的外心三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O 表示.【例题1】如图,已知点O 是ABC 的外心,∠40A =︒,连结BO ,CO ,则BOC ∠的度数是( ).A .60︒B .70︒C .80︒D .90︒【详解】ABC 的外接圆如下图∵∵40A =︒∵280BOC A ∠=∠=︒ 故选:C .【练习】在△ABC 中,如果点O 是外心,若∠A=80︒则∠BOC=【知识点二】三角形的内心三角形内心是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I ”表示.1.三角形的内切圆(1)定义:和三角形三边都相切的圆可以作出 ,并且只能作出 ,这个圆叫做三角形的内切圆。

三角形内切圆的圆心是三角形三条 的交点,叫做三角形的 这个三角形叫做圆的 三角形.(2)内心的性质:三角形的内心到三角形 相等;(3)三角形的内心都在三角形的(4)内切圆的做法:如下图从一块三角形材料中,能否剪下一个圆使其与各边都相切.2.和三角形三边都相切的圆可以作出____个,因为三角形_______________交于一点,这点为圆心,这点到三角形三边的距离_____,这个距离为_____,______和______都确定的圆只有一个.并且只能作出一个,这个圆叫做三角形的_________圆,内切圆的圆心是________________的交点,叫做三角形的______.3.锐角三角形、直角三角形、钝角三角形的内心都在三角形的_____,因为任意三角形三条_________的 交点一定在三角形的______.【例题2】如图,⊙O是△ABC的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC=【例题3】如图,在△ABC中,点O是内心,(1)若∠ABC=50°,∠ACB=70°,求∠BOC的度数(2)若∠A=80度,则∠BOC=(3)若∠BOC=110度,则∠A=变式:在△ABC中,如果点O是外心,若∠A=80度,则∠BOC=总结归纳:1.三角形的内心、外心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形2.三角形的外心与内心的区别:【课堂达标题】1.下列命题中,假命题是()A.直角三角形斜边上的中线等于斜边的一半B.等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合C.若AB BC=,则点B是线段AC的中点D.三角形三条边的垂直平分线的交点叫做这个三角形的外心解:A、直角三角形斜边上的中线等于斜边的一半,故为真命题;B、等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合,故为真命题;C、若在同一条直线上AB=BC,则点B是线段AC的中点,故为假命题;D、三角形三条边的垂直平分线的交点叫做这个三角形的外心,故为真命题;故选C.2如图,在ABC中,以A为圆心,任意长为半径画弧,分别交AB、AC于点M、N;再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P;连结AP并延长交BC于点D.则下列说法正确的是()A.AD BD AB+<B.AD一定经过ABC的重心C.BAD CAD∠=∠D.AD一定经过ABC的外心解:∵AD平分∵BAC,∵BAD CAD∠=∠,故C正确;在∵ABD中,由三角形三边关系可得AD BD AB+>,故A错误;由三角形的重心可知是由三角形三条中线的交点,所以AD不一定经过ABC的重心,故B选项错误;由三角形的外心可知是由三角形三条边的中垂线的交点,所以AD不一定经过ABC的外心,故D选项错误;故选C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形
知识点回顾
一、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。

二、三角形高:从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。

三角形只有3条高。

重点:三角形高的画法。

三、三角形的特性
1.物理特性:稳定性。

如:自行车的三角架,电线杆上的三角架。

2.边的特性:任意两边之和大于第三边。

3.角的特性:每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。

4.内角和:三角形的内角和等于180°;四边形的内角和是360°;五边形的内角和是540°
四、三角形的表达:为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。

五、三角形的分类及定义
按照角大小来分:锐角三角形,直角三角形,钝角三角形。

按照边长短来分:等边三角形、等腰三角形、三条边都不相等的三角形
三个角都是锐角的三角形叫做锐角三角形。

有一个角是直角的三角形叫做直角三角形。

(其他两个角必定是锐角)
有一个角是钝角的三角形叫做钝角三角形。

(其他两个角比定是锐角)
两条边相等的三角形叫做等腰三角形。

(等腰三角形的特点:两腰相等,两个底角相等) 三条边都相等的三角形叫等边三角形(正三角形) (等边△的三边相等,每个角是60度)
等边三角形是特殊的等腰三角形。

六、拼图:
用任意2个完全一样的三角形一定能拼成一个平行四边形。

用2个相同的直角三角形可以拼成一个长方形、一个平行四边形、一个大等腰三角形。

用2个相同的等腰直角的三角形可以拼成一个正方形、一个平行四边形、一个大的等腰的直角的三角形。

七、密铺:可以进行密铺的图形有长方形、正方形、三角形以及正六边形等。

当堂练习
一、用心选一选。

1、一个三角形有()条高。

A、1
B、3
C、无数
2、如果直角三角形的一个锐角是20°,那么另一个角一定是()。

A、20°
B、70°
C、160°
3、自行车的三角架运用了三角形的()的
特征。

A、稳定性
B、有三条边的特征
C、易变形
4、所有的等边三角形都是()三角形。

A、锐角
B、钝角
C、直角
5、在一个三角形中,∠1=120°∠2=36°,∠3=()
A、54°
B、24°
C、36°
二、填空.
1、三角形有()条边,()个角,()个顶点。

三角形的内角和是()。

2、等边三角形的每一个内角是()度。

3、一个等腰三角形的顶角是700,它的一个底角是()。

4、按照三角形中角的不同可以把三角形分为()三角形,
()三角形和()三角形。

5、一个三角形中至少有()个锐角。

6、等腰三角形的一个底角是400,它的顶角是()度。

7、一个直角与一个锐角的和一定是一个()角。

8、在一个三角形中,∠1=42°,∠2=29°,∠3=()。

这是一个()三角形。

9、在一个三角形的三个角中,一个是50度,一
个是80度,这个三角形既是()
三角形,又是()三角形。

10用长分别是5厘米、7厘米和()厘米的三根小棒一定能摆出一个三角形。

三、判断题。

(正确的画“√”,错误的画“×”)
1、等边三角形也叫正三角形。

……………………………………………()
2、等腰三角形可以是直角三角形。

………………………………………()
3、所有的等边三角形都是等腰三角形。

………………………()
4、一个顶角是80度的等腰三角形,一定是一个钝角三角形。

……()
5、三角形任意两边的和大于第三边。

……………………………()
6、任何两个相同的三角形都能拼成一个四边形。

………………()
7、锐角三角形都有三条高。

…………………………………………()8、一个三角形可能有两个钝角。

………………………………()
四、按要求做一做。

1、是三角形的打“√”,不是三角形的画“○”。

()()()()
2、按要求分一分。

锐角三角形有()
钝角三角形有()
直角三角形有()
等腰三角形有()
3、画出下面每个三角形底边上的高。

4.在点子图中分别画出一个锐角三角形、直角三角形、钝角三角形和等腰三角形。

5、求出三角形各个角的度数。

6、下面是三块三角形玻璃打碎后留下的碎片,你能判断出它们原来各是什么三角形吗?
7、等腰三角形的周长是40厘米,它的一条腰长12厘米,那么,它的底边长多少厘米?
8、从学校到少年宫有几种走法?哪条路最近?为什么?
9、一个一块等腰三角形广告牌,它的一个底角是65°,它的顶角是多少度?
10、王爷爷有一块菜地的形状是近似的等边三角形,一边长16cm。

如果在菜地的外面围上一圈篱笆,这个篱笆的周长大约是多少?
11、已知∠1、∠2、∠3是三角形ABC的三个内角,∠1=48°,∠2=72°,求∠3的度数。

按角分,这是个什么三角形?。

相关文档
最新文档