(完整版)数学四年级下三角形知识点总结
小学数学四年级知识点(三角形)

1.什么是三角形?
三角形是由三条不在同一直线上的线段首尾顺次连结所组成的图形叫做三角形。
2.三角形的性质和特点。
三角形具有三个角、三条边、三个顶点、三条高。
三角形具有稳定性。
3.三角形的三条边关系:三角形的任意两边之和大于第三边。
(通常情况下判断三条线段是否能组成一个三角形,采用这种方法:取最小的两边之和与最长的一条边做比较,只要最小的两边之和大于最长的边,就一定能构成三角形。
)
4.三角形的高:就是从底边所对应的顶点,到底边上垂直
..距离,叫做三角形的高。
底底底
5.三角形的周长=三条边相加
6.三角形的面积=底×高÷2
7.三角形的内角和等于180度。
8.三角形的分类。
锐角三角形:三个角全都是锐角的三角形叫做锐角三角形。
直角三角形:其中有一个角为90度的三角形叫做直角三角形。
钝角三角形:其中有一个角为钝角的三角形叫做钝角三角形。
8.等腰三角形:在一个三角形中,有两条边一样长(或有两个角相等)的三角形叫做等腰三角形。
等腰三角形的特点:①两条腰的长度相等;②两个底角的度数相等;
③两条腰上的高长度相等。
9.等边三角形:在一个三角形中,三条边都一样长(或三个角的度数都相等)的三角形叫做等边三角形。
等边三角形的特点:①三条边的长度相等;②三个角的度数相等且都等于60度;③三条边上的高长度都相等。
10. ①顶角为60度的等腰三角形一定是等边三角形。
②有一个底角为60度的等腰三角形一定等边三角形。
【北师大版 小学四年级数学下册】三角形和四边形的知识点总结

1三角形由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
三角形具有稳定性 三角形内角和是180°组成三角形的两个条件: 三角形任意两边之和大于第三边 三角形任意两边之差小于第三边三角形分类 按角来分顶点 角角边顶点边边角 底高CBA三角形ABC:2锐角(0°<A<90°) 直角(90°) 钝角(90°<A<180°) 锐角三角形:三个角都是锐角直角三角形:有一个角是直角(其他两个角一定都是锐角) 钝角三角形:有一个角是钝角(其他两个角一定都是锐角)锐角三角形的三条高(三条虚线) 直角三角形的三条高(一条虚线加两条直角边)钝角三角形的三条高(三条虚线)底直角边CBA直角边 斜边CBACBA3按边分※已知三角形两条边各长a 、b (a>=b ),求第三边长度c 的范围方法:a-b<c<a+b例:已知一个三角形两边分别长5cm 和9cm ,第三边的长度范围是多少? 解:9-5<c<9+5(没有等号) 4<c<14如果第三边长度是整数,那么第三边可能是5、6、7、8、9、10、11、12、13cm例:已知一个三角形两边分别长5cm 和5cm ,第三边的长度范围是多少? 解:5-5<c<5+5(没有等号) 0<c<10如果第三边长度是整数,那么第三边可能是1、2、3、4、5、6、7、8、9cm顶角腰底 腰底角 底角边边边等边三角形(三条边都相等,每个角都是60°)等腰三角形(两条边相等,两个底角相等)※已知三条线段的长度,判断能不能组成三角形方法:将最短的两条线段长度相加,如果比最长的那条线段长,那么能组成三角形例:已知三条线段分别是7cm、4cm、2cm,它们能不能组成三角形?2+4<7 不能例:已知三条线段分别是5cm、5cm、5cm,它们能不能组成三角形?5+5>5 能(等边三角形/正三角形)例:已知三条线段分别是10cm、10cm、20cm,它们能不能组成三角形?10+10=20 不能※多边形内角和问题三角形:180°四边形:360°在四边形内部画一条线,将其4分成两个三角形,内角和=180°×2=360°五边形:540°在五边形内部画两条线,将其分成三个三角形,内角和=180°×3=540°六边形:720°在六边形内部画三条线,将其分成四个三角形,内角和=180°×4=720°5【三角形】1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。
四年级数学下册三角形知识点梳理与思维导图

直角:180° 钝角:180° 三角形的内角和180° 锐角:180°
长方形:360° 正方形:360°
四边形的内角和都是360°
其他四边形:360°
60°
定义:由三条线段围成的图形(每相邻两条线段的端点相连)
三角形的特性
认识三角形
高:从三角形的一个顶点到它的对边作一条垂线,顶点和垂 足之间的线段叫做三角形的高。这条对边叫做三角形的底
数数:三条边 三个顶点 三个角 三条高 三个底
三角形的特性 具有稳定性
两点间所有的连线中线段最短,这条线段的长度叫做两点间
的距离
按角分
直角三角形:一个直角,两个锐角。 钝角三角形:一个钝角,两个锐角。
三角形的分类
锐角三角形:三个角都是锐角。
三
按边分
等腰三角形:两条边相等(两底角相等)。
角
等边三角形(正三角形):三条边相等(三个内角相等,
形
都是60°)。
任意两边的和大于第三边
三角形的三边关系
任意两边的差小于第三边
三角形的内角和 四边形的内角和 多边形的内角和
数学四年级(下)认识三角形和四边形知识点总结练习题

数学四年级(下)认识三角形和四边形知识点总结练习题
认识三角形和四边形知识点总结+练习题
1、图形分类
2、三角形的特性
1、三角形内角和等于180。
2、三角形任意两边之和大于第三边。
3、三角形具有稳定性。
三、平行四边形、梯形的定义
平行四边形:两组对边分别平行的四边形叫平行四边形。
梯形:只有一组对边平行的四边形叫梯形。
四、四边形的特性
1、四边形不具有稳定性。
2、四边形内角和等于360。
五、等边三角形、等腰三角形、等腰直角三角形的关系
六、正方形、长方形、平行四边形的关系
七、练习题
1、算出下面各角的度数。
2、爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70度,它的顶角是多少度?
3、把下面这个三角形沿虚线剪成两个小三角形,每个小三角形的内角和是多少度?
4、在能拼成三角形的各小组小棒下面画√(单位cm)。
5、下面的哪种篱笆更牢固为什么?
6、在点子图上按要求画图。
7、在下面各图中画一条直线。
能分成两个直角三角形的是图()
能分成两个钝角三角形的试图()
能分成一个直角三角形和一个锐角三角形的是图()
8、下面图形各是什么三角形?
9、下面哪组小棒能摆成等腰三角形?单位:cm。
人教版四年级下册数学《直角三角形的性质》

人教版四年级下册数学《直角三角形的性
质》
简介
本文档介绍了人教版四年级下册数学教材中关于直角三角形的
性质的内容。
直角三角形的定义
直角三角形是一种特殊的三角形,其中有一个角度为90度。
直角三角形的性质
直角三角形具有以下性质:
1. 边长关系:直角三角形的斜边是直角的两条边之和。
2. 角度关系:直角三角形的直角边与斜边之间的夹角为90度,其他两个角之和也为90度。
3. 定理:直角三角形的斜边上的垂直直角平分该斜边。
判断直角三角形的方法
要判断一个三角形是否为直角三角形,可以使用以下方法:
1. 观察角度:判断该三角形是否有一个角为90度。
2. 观察边长:判断该三角形的边长是否符合直角三角形的边长关系。
3. 使用定理:如果已知一个三角形的斜边上存在一个垂直直角平分该斜边的点,那么该三角形就是直角三角形。
实例
举个例子来说明直角三角形的性质:如果一个三角形的两条直角边分别为3cm和4cm,那么可以判断这个三角形是一个直角三角形。
根据边长关系,斜边的长度为5cm(3cm + 4cm),且直角边与斜边之间的夹角为90度。
总结
直角三角形是一种特殊的三角形,具有边长关系和角度关系等性质。
通过观察角度、边长以及使用定理,我们可以判断一个三角形是否为直角三角形。
人教版四年级数学下第七讲 三角形(一)精讲精练 提升版

人教版四年级数学下第7讲三角形(一)提高篇知识点一:三角形的特性1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。
2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。
三角形只有3条高。
重点:三角形高的画法:一落二移三画四标3、三角形具有稳定性。
如:自行车的三角架,电线杆上的三角架。
4、三角形三边的关系:三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
两边之差〈第三边〈两边之和。
判断三条线段能不能组成三角形,只要看最短的两条边的和是不是大于第三条边。
5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。
知识点二:三角形的分类1、按照角大小来分:锐角三角形,直角三角形,钝角三角形。
2、按照边长短来分:三边不等的△,三边相等的△,等腰△(等边三角形或正三角形是特殊的等腰△)。
3、等边△的三边相等,每个角是60度。
(顶角、底角、腰、底的概念)4、三个角都是锐角的三角形叫做锐角三角形。
5、有一个角是直角的三角形叫做直角三角形。
6、有一个角是钝角的三角形叫做钝角三角形。
7、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。
8、两条边相等的三角形叫做等腰三角形。
9、三条边都相等的三角形叫等边三角形,也叫正三角形。
10、等边三角形是特殊的等腰三角形考点1:三角形的特性【典例1】(2020春•桐梓县期末)下面每组中三条线段,不能围成三角形的是()A.5m、7m、9m B.7dm、5dm、ldmC.4cm、8cm、5cm【典例2】(2020春•桐梓县期末)下面形状中具有稳定性的是()A.B.C.【典例3】(2020春•峄城区期末)把一根13厘米的小棒截成3根整厘米的小棒围成一个三角形.最长的一根小棒不能超过()厘米.【典例4】(2020春•浦城县期末)动物王国举行围篱笆比赛,()围的比较牢固.A.小熊B.公鸡C.小狗【典例5】(2020春•鄄城县期末)爷爷要给一块地围上篱笆,()形状的篱笆稳固不易变形.A.B.C.D.【典例6】(2020春•微山县期末)下面三种物品,利用了三角形稳定性的是()A.三角形花坛B.红领巾C.自行车的三角形车架考点2:三角形的分类【典例1】(2020春•邛崃市期末)如图中是锐角三角形.【典例2】(2019春•梁子湖区期末)在图中,一共有个钝角三角形,6个直角三角形,个等腰三角形,个等边三角形.【典例3】(2020春•灌阳县期末)红领巾按角分类属于三角形,按边分类属于三角形..【典例4】(2020春•洪山区期末)三角形如果有两个角是锐角,就一定是锐角三角形..(判断对错)综合练习一.选择题1.(2020秋•宁化县期中)任意一个三角形中,()有两个锐角。
赣榆县一小四年级数学下册 四 巧手小工匠——认识多边形三角形知识点总结1 青岛版六三制

三角形由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
三角形具有稳定性 三角形内角和是180°组成三角形的两个条件: 三角形任意两边之和大于第三边 三角形任意两边之差小于第三边三角形分类 按角来分锐角(0°<A<90°) 直角(90°) 钝角(90°<A<180°) 锐角三角形:三个角都是锐角直角三角形:有一个角是直角(其他两个角一定都是锐角) 钝角三角形:有一个角是钝角(其他两个角一定都是锐角)锐角三角形的三条高(三条虚线)直角三角形的三条高(一条虚线加两条直角顶点边底CBA三角形ABC:A边)钝角三角形的三条高(三条虚线)按边分底直角边CBA直角边CBCBA 底边等边三角形(三条边都相等,每个角都是等腰三角形(两条边相等,两个底角相等)※已知三角形两条边各长a、b(a>=b),求第三边长度c的范围方法:a-b<c<a+b例:已知一个三角形两边分别长5cm和9cm,第三边的长度范围是多少?解:9-5<c<9+5(没有等号) 4<c<14如果第三边长度是整数,那么第三边可能是5、6、7、8、9、10、11、12、13cm例:已知一个三角形两边分别长5cm和5cm,第三边的长度范围是多少?解:5-5<c<5+5(没有等号) 0<c<10如果第三边长度是整数,那么第三边可能是1、2、3、4、5、6、7、8、9cm※已知三条线段的长度,判断能不能组成三角形方法:将最短的两条线段长度相加,如果比最长的那条线段长,那么能组成三角形例:已知三条线段分别是7cm、4cm、2cm,它们能不能组成三角形?2+4<7 不能例:已知三条线段分别是5cm、5cm、5cm,它们能不能组成三角形?5+5>5 能(等边三角形/正三角形)例:已知三条线段分别是10cm、10cm、20cm,它们能不能组成三角形?10+10=20 不能※多边形内角和问题三角形:180°四边形:360°在四边形内部画一条线,将其分成两个三角形,内角和=180°×2=360°五边形:540°在五边形内部画两条线,将其分成三个三角形,内角和=180°×3=540°六边形:720°在六边形内部画三条线,将其分成四个三角形,内角和=180°×4=720°第八单元垂线与平行线1 认识射线和直线项目内容1.生活中有哪些物体可以近似地看成线段、射线、直线?2.笔直的马路给我们( )的形象,绷紧的琴弦可以近似地看作( ),电筒的光柱类似( )。
苏教版小学四年级数学下第7单元三角形、平行四边形和梯形知识点及易错题

七三角形、平行四边形和梯形一、三角形1.认识三角形:(1)生活中的三角形:生活中的三角形无处不在,如大桥的桥柱、斜拉索与桥面可以组成三角形。
生活中一些物体的包装盒的面,一些积木的面等都是三角形。
(2)画三角形:(步骤)①先画一条线段。
②再以第一条线段的一个端点为端点画第二条线段。
③最后连接另两个端点,围成封闭图形。
(3)三角形的特点:①三角形有3条边、3个角和3个顶点。
②三角形的3条边都是线段。
③三角形的三条线段要首尾相接地围起来。
(4)三角形的定义:三条线段首尾相接围成的图形叫作三角形。
(5)三角形各部分的名称:①围成三角形的三条线段就是三角形的边,每两条边所组成的角就是三角形的角,每个角的顶点就是三角形的顶点。
②三角形有3个顶点、3条边和3个角。
要点提示:三角形具有稳定性。
三角形是由三条线段首尾相接围成的图形。
易错点:过同一条直线上的3个点不能画出三角形;围成三角形的3个顶点不能在同一条直线上。
要点提示:如果有三条线段,而没有说是首尾相接围成的图形,就不是三角形。
(6)认识三角形的底和高:①从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。
(7)三角形高的画法:通常用三角尺画三角形的高。
①把三角尺的一条直角边与指定的底边重合。
②沿底边平移三角尺,直到另一条直角边与该底边相对的顶点重合。
③再从该顶点沿三角尺的另一条直角边向底边画一条虚线段,这条虚线段就是三角形的高。
④最后标上直角符号。
(8)解决问题:①运用类推法解决数三角形的问题:从三角形的一个顶点向对边引若干条线段,将三角形分成了若干个小三角形,所分成的三角形的个数与对边上的线段的条数相等。
如果对边被分成n段,则三角形有【n+(n-1)+(n-2)+…+1】个。
②运用分析法解决求用时最短的路线问题:要想使每次走的路线最短,就应从每个顶点向与对面路垂直的方向走,即点到对边的垂直线段最短。
2.三角形的三边关系:(1)在拼成的三角形中,任意两根小棒的长度一定大于第三根小棒的长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形
由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
三角形具有稳定性 三角形内角和是180°
组成三角形的两个条件: 三角形任意两边之和大于第三边 三角形任意两边之差小于第三边
三角形分类 按角来分
锐角(0°<A<90°) 直角(90°) 钝角(90°<A<180°) 锐角三角形:三个角都是锐角
直角三角形:有一个角是直角(其他两个角一定都是锐角) 钝角三角形:有一个角是钝角(其他两个角一定都是锐角)
顶点
边
底
C
B
A
三角形ABC:
锐角三角形的三条高(三条虚线) 直角三角形的三条高(一条虚线加两条直角边)
钝角三角形的三条高(三条虚线)
按边分
底
直角边
C
B
A
直角边C
B
A
C
B
A
底
边
等边三角形(三条边都相等,每个角都是60°)
等腰三角形(两条边相等,两个底角相等)
※已知三角形两条边各长a、b(a>=b),求第三边长度c的范围
方法:a-b<c<a+b
例:已知一个三角形两边分别长5cm和9cm,第三边的长度范围是多少?
解:9-5<c<9+5(没有等号) 4<c<14
如果第三边长度是整数,那么第三边可能是5、6、7、8、9、10、11、12、13cm
例:已知一个三角形两边分别长5cm和5cm,第三边的长度范围是多少?
解:5-5<c<5+5(没有等号) 0<c<10
如果第三边长度是整数,那么第三边可能是1、2、3、4、5、6、7、8、9cm
※已知三条线段的长度,判断能不能组成三角形
方法:将最短的两条线段长度相加,如果比最长的那条线段长,那么能组成三角形
例:已知三条线段分别是7cm、4cm、2cm,它们能不能组成三角形?
2+4<7 不能
例:已知三条线段分别是5cm、5cm、5cm,它们能不能组成三角形?
5+5>5 能(等边三角形/正三角形)
例:已知三条线段分别是10cm、10cm、20cm,它们能不能组成三角形?
10+10=20 不能
※多边形内角和问题
三角形:180°
四边形:360°
在四边形内部画一条线,将其
分成两个三角形,内角和=180°×2=360°
五边形:540°
在五边形内部画两条线,将其
分成三个三角形,内角和=180°×3=540°
六边形:720°
在六边形内部画三条线,将其
分成四个三角形,内角和=180°×4=720°。