舵机资料

合集下载

舵机详解学习

舵机详解学习
2、整流帽舵- 在普通舵(一般是流型舵)的适当位置加装一个外型为 对称机翼剖面的回转体或近似于椭圆形的整流帽,由于整流帽填充了通 常是涡流低压区的空间,使得螺旋桨后部的乱流得到改善。这样不仅提 高推进效率,还能降低船尾的震动,据称在一般舵上加装整流帽后,可 以增加航速0.3- 0.5。
第10页/共52页
1.完成一次性操大舵,使CC‘在最大位置时间长,加快转舵速度; 2.避免控制点机件损坏;
第30页/共52页
2.五点式(带副杠杆式)
B
B
B
E
E
D
D
C
C
E
D
C'
C
有位移放大作用, 操小舵角时使控制 点C有较大的位移, 使变量泵有较大的 排量,使得转舵速 度快。
C'
A
A
A'
A
A'
第31页/共52页
第32页/共52页
第三节 液压舵机的转舵机构
分类: 1.往复式转舵机构 2.回转式转舵机构
第33页/共52页
1.往复式转舵机构
1)滑式转舵机构
第34页/共52页
滑式转舵机构特点 1)扭矩特性良好,承载能力较大; 2)撞杆与油缸的密封采用V字型,密封可靠,具有
自动补偿能力; 3)油缸精加工面少; 4)尺寸、重量大; 5)安装、检修比较麻烦
第3页/共52页
舵是舵手(驾驶人员)用来保持或改变船舶在水中运动 方向的专用设备。 舵有两大功能:
一是保持船舶预定航向的能力,称为航向稳定性; 二是改变船舶运动方向的能力,称回转性。 通常把二者统称为船舶的操纵性。
第4页/共52页
船舵主要由舵叶和舵杆组成,舵叶是产生水压力的部分, 舵杆的作用是转动舵叶和保证舵叶具有足够的强度)舵的 作用原理是当水流以某冲角冲至舵叶上时,便产生了流体 动力,此作用力通过舵杆传递并船体上,从而迫使船舶转 向,也就达到了调整航向的目的。

舵机工作原理

舵机工作原理

引言概述:舵机是一种常用于机械控制系统中的装置,主要用于控制运动装置的旋转或线性运动。

它在航空、机械工程、汽车、无人机等领域中都有广泛的应用。

本文将详细介绍舵机的工作原理,包括其结构、原理、控制信号等方面的内容。

正文:一、舵机的基本结构舵机通常由电机、减速器、位置传感器和电子控制电路等组成。

1. 电机:舵机一般采用直流电机,包括转子和定子。

电机通过转动来控制舵机的位置。

2. 减速器:舵机中的减速器用于减小电机的转速,并通过齿轮和齿条等机械传动装置将转动转化为线性或旋转运动。

3. 位置传感器:舵机常用的位置传感器有光电传感器和磁性传感器等,用于测量舵机的位置并反馈给电子控制电路。

4. 电子控制电路:舵机的电子控制电路负责接收控制信号,并根据控制信号控制电机和减速器的运转。

二、舵机的工作原理1. 控制信号输入:舵机的工作由控制信号决定,控制信号一般为脉冲宽度调制(PWM)信号。

信号的脉宽决定了舵机的位置。

2. 位置控制:控制信号被电子控制电路接收后,经过一定的处理,电子控制电路会根据控制信号的脉宽决定舵机的位置。

3. 反馈控制:舵机的位置传感器会不断测量舵机的位置,并将测量结果反馈给电子控制电路。

电子控制电路通过与目标位置的比较,调整电机和减速器的运转,以实现舵机的稳定控制。

4. 输出控制:根据电子控制电路的控制信号,舵机的电机和减速器会运转,从而实现位置的控制。

三、舵机的控制信号1. 脉宽范围:舵机的控制信号通常具有一个特定的脉宽范围,一般为1ms到2ms之间。

脉宽的最小值和最大值对应舵机的最左和最右位置。

2. 中立位置:控制信号的脉宽为舵机的中立位置。

舵机通过将控制信号设置为中立位置,可以保持在中间位置不动。

3. 工作速度:舵机的工作速度受控制信号的脉宽变化速度影响,脉宽变化越快,舵机的响应速度越快。

4. 工作精度:舵机的工作精度由控制信号和位置传感器的精度共同决定,控制信号的精度越高,舵机的工作精度越高。

舵机

舵机

选用原因:舵机也叫伺服电机,最早用于船舶上实现其转向功能,由于可以通过程序连续控制其转角,因而被广泛应用智能小车以实现转向以及机器人各类关节运动中,舵机是炮塔转向的控制机构,具有体积小、力矩大、外部机械设计简单、稳定性高等特点,无论是在硬件设计还是软件设计,舵机设计是炮塔控制部分重要的组成部分。

工作原理:控制电路板接受来自信号线的控制信号,控制电机转动,电机带动一系列齿轮组,减速后传动至输出舵盘。

舵机的输出轴和位置反馈电位计是相连的,舵盘转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进行反馈,然后控制电路板根据所在位置决定电机转动的方向和速度,从而达到目标停止。

其工作流程为:控制信号→控制电路板→电机转动→齿轮组减速→舵盘转动→位置反馈电位计→控制电路板反馈。

舵机的控制信号周期为20MS的脉宽调制(PWM)信号,其中脉冲宽度从0.5-2.5MS,相对应的舵盘位置为0-180度,呈线性变化。

也就是说,给他提供一定的脉宽,它的输出轴就会保持一定对应角度上,无论外界转矩怎么改变,直到给它提供一个另外宽度的脉冲信号,它才会改变输出角度到新的对应位置上如图7所求。

舵机内部有一个基准电路,产生周期为20MS,宽度1.5MS 的基准信号,有一个比出较器,将外加信号与基准信号相比较,判断出方向和大小,从而生产电机的转动信号。

由此可
见,舵机是一种位置伺服驱动器,转动范围不能超过180度,适用于那些需要不断变化并可以保持的驱动器中,比如说机器人的关节、飞机的舵面等。

图7 舵机输出转角与输入脉冲的关系。

舵机选型手册

舵机选型手册

舵机选型手册舵机选型手册是帮助用户选择适合其特定应用的舵机的重要参考资料。

本文旨在提供关于舵机选型的相关参考内容,并不包含链接。

1. 舵机简介:介绍舵机的基本原理和工作方式。

舵机是一种用于控制机械装置角度的装置,通过接收控制信号来控制舵机转动到指定位置。

舵机通常由电机、减速器和控制电路组成。

2. 电机类型:介绍常见的舵机电机类型,包括直流无刷电机、直流有刷电机和步进电机等,对比其优缺点和适用场景。

不同类型的电机具有不同的转速、转矩和效率特性,需要根据具体应用需求来选择。

3. 参数说明:详细解释舵机常见的参数,包括转矩、速度、分辨率和工作电压等。

转矩是舵机输出的力矩大小,速度是舵机旋转的速度,分辨率是舵机能够识别的最小控制脉冲宽度,工作电压是舵机可以正常工作的电压范围。

4. 外形尺寸:列举舵机常见的外形尺寸,包括长度、宽度、高度和安装孔距等。

舵机的外形尺寸对于安装和集成到设备中具有重要意义,需要根据实际应用空间来选择合适的尺寸。

5. 控制信号:介绍舵机控制信号的类型和格式,主要有脉宽调制(PWM)、串行通信(如I2C、SPI)和模拟信号输入等。

不同类型的控制信号有不同的控制精度和复杂度,需要根据实际应用需求来选择合适的控制方式。

6. 舵机品牌和供应商:列举一些知名舵机品牌和供应商,包括舵机的国内外制造商,在中国市场上的知名度和口碑等。

这些信息有助于用户了解舵机的市场竞争和可靠性等方面的综合情况。

7. 应用案例:提供一些典型的舵机应用案例,包括航模、机器人、摄影云台和电子产品等,介绍各个应用场景中舵机的选择和使用情况。

这些案例可以帮助用户参考相似应用中的舵机选型经验。

8. 选型指南:总结舵机选型的关键要点和步骤。

包括确定需求、根据转矩和速度要求筛选舵机、考虑外形尺寸和安装要求、选择合适的控制信号类型和电源电压等。

用户可以按照这些指南逐步选择合适的舵机。

9. 常见问题解答:回答一些常见的舵机选型问题,如如何在多个舵机中进行均衡负载、如何根据控制信号特性来选择舵机等。

常见舵机参数范文

常见舵机参数范文

常见舵机参数范文舵机是一种常用的电机控制设备,用于控制机械系统的位置、角度或速度。

以下是一些常见的舵机参数:1.额定电压(Rated Voltage):舵机通常工作于特定的电压范围内,额定电压是指舵机能够正常工作的电压值。

常见的额定电压有3V、5V和6V等。

2.工作速度(Operating Speed):工作速度是指舵机在没有负载的情况下旋转的速度,单位通常是秒/60度。

工作速度越快,舵机的响应速度就越快。

3.工作角度(Operating Angle):工作角度是指舵机可以旋转的角度范围。

常见的工作角度有180度和360度两种。

180度舵机可以旋转180度,而360度舵机可以旋转360度。

4.工作温度(Operating Temperature):工作温度是指舵机可以正常工作的温度范围。

舵机通常适用于0℃至+60℃的环境温度。

5.扭矩(Torque):扭矩是指舵机产生的转动力矩,单位通常是N·cm。

扭矩越大,舵机能够承受的负载就越大。

6.控制信号(Pulse Width):控制信号是指用来控制舵机转动角度的脉冲信号。

舵机通常采用PWM(脉宽调制)信号进行控制,脉宽的时间决定了舵机的转动角度。

7.工作电流(Operating Current):工作电流是指舵机在工作时消耗的电流。

舵机的工作电流一般会有一个峰值,峰值电流通常是舵机的启动电流。

8.尺寸(Dimensions):舵机的尺寸是指舵机的外形尺寸。

舵机通常有多种尺寸规格可供选择,包括长度、宽度和高度等。

9.重量(Weight):舵机的重量是指舵机的重量,单位通常是克。

舵机重量的大小会直接影响到系统的负载能力和响应速度。

10.精度(Accuracy):精度是指舵机能够精确控制位置或角度的能力。

舵机的精度越高,位置或角度控制就越准确。

舵机参数的选择需要根据实际应用需求进行,不同的应用场景可能需要不同的工作角度、工作速度和扭矩等参数。

综合考虑舵机的各项参数,选择适合的舵机可以提高系统的稳定性和准确性。

舵机知识分享

舵机知识分享

舵机知识分享一,舵机的分类1,按照舵机的工作信号来分类:航模舵机有数码舵机Digital Servo,模拟舵机Analog Servo。

(1)数码舵机是数字传输(数字舵机Digital Servo),灵活方便、可靠、兼容性好,抗干扰能力强,可方便实现双向通信,是必然的趋势;(2)模拟舵机是现有的PWM模拟传输(模拟舵机Analog Servo),即脉宽的变化直接代表控制矢量,容易受干扰;2,按照舵机的工作电压来分类:普通电压舵机(4.8-6V),高压舵机HV SERVO (6-7.4V);高压舵机HV SERVO(9.4-12V)。

高压舵机是工作电压高在6-7.4V;9.4-12V(以后高压舵机的工作电压应该还会更高的),高压舵机的优点就是发热小,反应更灵敏,扭力更大。

3, 按照是否防水来分类:全防水舵机,普通舵机。

(全防水舵机的视频)4,机器人专用舵机与模型舵机的区别机器人用的大部分舵机和模型舵机都是一样的,只是航模用舵机限制转角,一般是90-270°,有些机器人舵机的工作角度到达360度,360度舵机一般都是用到机器人上的。

二,舵机的结构(舵机的结构视频)1,外壳:外壳材料有金属,塑料,半金属半塑料三种。

(全金属外壳舵机,半金属半塑料外壳舵机,塑料外壳舵机)2,马达: 无刷马达,空心杯马达,铁心马达。

(无刷马达舵机,空心杯马达舵机,铁芯马达舵机)3,齿轮套件:舵机的齿轮材料(Gear Material)有塑料和金属之区分,金1 / 2属齿轮的舵机一般皆为大扭力及高速型,具有齿轮不会因负载过大而崩牙的优点。

4,动力输出轴:(1),动力输出轴材料有塑料和金属之分,大扭力的一般都采用金属材料。

(2),标准舵机的输出轴的齿数有以下三种:25T(FUTABA品牌的舵机),24T (HITEC品牌的舵机),23T (JR品牌的舵机)。

这个参数主要用来匹配舵臂的,因为常规舵臂的齿数也是:25T (FUTABA),24T(HITEC),23T(JR)这三种,只有舵机轴的齿数和舵臂的齿数一样才能使用。

舵机数据资料

舵机数据资料

五、PCA9685测量值 pulse_width
角度 实际值 计算值
190 2.59 2.59
180 2.48 2.48
135 2.0 1.985
90 1.49 1.49
45 1.0 0.995
date=4096*((angle*11)+500)/20000 #进行四舍五入运算 date=int(4096*((angle*11)+500)/(20000)+0.5)
pwm.set_pwm(channel, 0, date)
二、SG90厂家给出的技术数据:
尺寸:21.5mmX11.8mmX22.7mm
重量:9克 (1kg=1公斤=2斤)
无负载速度:0.12秒/60度(4.8V) 0.002s/度
堵转扭矩:1.2-1.4公斤/厘米(4.8V)
使用温度:-30~~+60摄氏度
死区设定:7us (7MHZ)
工作电压:4.8V-6V
date/4096=pulse_width/20 ->有上pulse_width的计算结果得date=4096*( ((angle*11)+500)/1000 )/20 -->int date=4096((angle*11)+500)/20000;
def set_servo_angle(channel, angle): #输入角度转换成12^精度的数值
-10 0.39 0.39
4、舵机控制系统工作稳定,PWM占空比 (0.5~2.5ms 的正脉冲宽度)和舵机的转角(-90°~90°)线性度较好
舵机的控制需要一个20ms左右的时基脉冲(1/0.020s=50HZ),该脉冲的高电平部分为0.5ms~2.5ms范围内的角度控制脉冲部分。以180度角度伺服为例,那么对应的控制关系是:

舵机知识

舵机知识

舵机是遥控模型控制动作的动力来源,不同类型的遥控模型所需的舵机种类也随之不同。

如何审慎地选择经济且合乎需求的舵机,也是一门不可轻忽的学问。

舵机是一种位置(角度)伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。

目前在高档遥控玩具,如航模,包括飞机模型,潜艇模型;遥控机器人中已经使用得比较普遍。

舵机是一种俗称,其实是一种伺服马达。

舵机最早出现在航模运动中。

在航空模型中,飞行机的飞行姿态是通过调节发动机和各个控制舵面来实现的。

举个简单的四通飞机来说,飞机上有以下几个地方需要控制:1.发动机进气量,来控制发动机的拉力(或推力);2.副翼舵面(安装在飞机机翼后缘),用来控制飞机的横滚运动;3.水平尾舵面,用来控制飞机的俯仰角;4.垂直尾舵面,用来控制飞机的偏航角;遥控器有四个通道,分别对应四个舵机,而舵机又通过连杆等传动元件带动舵面的转动,从而改变飞机的运动状态。

舵机因此得名:控制舵面的伺服电机。

不仅在航模飞机中,在其他的模型运动中都可以看到它的应用:船模上用来控制尾舵,车模中用来转向等等。

由此可见,凡是需要操作性动作时都可以用舵机来实现。

一般来讲,舵机主要由以下几个部分组成,舵盘、减速齿轮组、位置反馈电位计5k、直流电机、控制电路板等。

舵机的基本结构是这样,但实现起来有很多种。

例如电机就有有刷和无刷之分,齿轮有塑料和金属之分,输出轴有滑动和滚动之分,壳体有塑料和铝合金之分,速度有快速和慢速之分,体积有大中小三种之分等等,组合不同,价格也千差万别。

例如,其中小舵机一般称作微舵,同种材料的条件下是中型的一倍多,金属齿轮是塑料齿轮的一倍多。

需要根据需要选用不同类型。

为了适合不同的工作环境,有防水及防尘设计的舵机;并且因应不同的负载需求,舵机的齿轮有塑胶及金属之区分,金属齿轮的舵机一般皆为大扭力及高速型,具有齿轮不会因负载过大而崩牙的优点。

较高级的舵机会装置滚珠轴承,使得转动时能更轻快精准。

滚珠轴承有一颗及二颗的区别,当然是二颗的比较好。

舵机介绍

舵机介绍

什么是舵机舵机是遥控模型控制动作的动力来源,不同类型的遥控模型所需的舵机种类也随之不同。

如何审慎地选择经济且合乎需求的舵机,也是一门不可轻忽的学问。

本文章主要探讨适合各等级直升机各工作部位所使用的舵机,至於其它种类的模型,如飞机、车、船,则不在本篇文章讨论范围之内。

舵机的构造舵机主要是由外壳、电路板、无核心马达、齿轮与位置检测器所构成。

其工作原理是由接收机发出讯号给舵机,经由电路板上的IC判断转动方向,再驱动无核心马达开始转动,透过减速齿轮将动力传至摆臂,同时由位置检测器送回讯号,判断是否已经到达定位。

位置检测器其实就是可变电阻,当舵机转动时电阻值也会随之改变,藉由检测电阻值便可知转动的角度。

一般的伺服马达是将细铜线缠绕在三极转子上,当电流流经线圈时便会产生磁场,与转子外围的磁铁产生排斥作用,进而产生转动的作用力。

依据物理学原理,物体的转动惯量与质量成正比,因此要转动质量愈大的物体,所需的作用力也愈大。

舵机为求转速快、耗电小,於是将细铜线缠绕成极薄的中空圆柱体,形成一个重量极轻的五极中空转子,并将磁铁置於圆柱体内,这就是无核心马达。

为了适合不同的工作环境,有防水及防尘设计的舵机;并且因应不同的负载需求,舵机的齿轮有塑胶及金属之区分,金属齿轮的舵机一般皆为大扭力及高速型,具有齿轮不会因负载过大而崩牙的优点。

较高级的舵机会装置滚珠轴承,使得转动时能更轻快精准。

滚珠轴承有一颗及二颗的区别,当然是二颗的比较好。

目前新推出的FET 舵机,主要是采用FET(Field Effect Transistor)场效电晶体。

FET 具有内阻低的优点,因此电流损耗比一般电晶体少。

技术规格厂商所提供的舵机规格资料,都会包含外形尺寸(mm)、扭力(kg-cm)、速度(秒/60°)、测试电压(V)及重量(g)等基本资料。

扭力的单位是kg-cm,意思是在摆臂长度 1 公分处,能吊起几公斤重的物体。

这就是力臂的观念,因此摆臂长度愈长,则扭力愈小。

舵机资料

舵机资料

[技术资料]舵机及舵机的精确控制,分辨率2us以下,7路以上舵机及舵机的控制1.什么是舵机:在机器人机电控制系统中,舵机控制效果是性能的重要影响因素。

舵机可以在微机电系统和航模中作为基本的输出执行机构,其简单的控制和输出使得单片机系统非常容易与之接口。

舵机是一种位置(角度)伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。

目前在高档遥控玩具,如航模,包括飞机模型,潜艇模型;遥控机器人中已经使用得比较普遍。

舵机是一种俗称,其实是一种伺服马达。

还是看看具体的实物比较过瘾一点:2.其工作原理是:控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。

它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。

最后,电压差的正负输出到电机驱动芯片决定电机的正反转。

当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。

当然我们可以不用去了解它的具体工作原理,知道它的控制原理就够了。

就象我们使用晶体管一样,知道可以拿它来做开关管或放大管就行了,至于管内的电子具体怎么流动是可以完全不用去考虑的。

3.舵机的控制:舵机的控制一般需要一个20ms左右的时基脉冲,该脉冲的高电平部分一般为0.5ms~2.5ms范围内的角度控制脉冲部分。

以180度角度伺服为例,那么对应的控制关系是这样的:0.5ms--------------0度;1.0ms------------45度;1.5ms------------90度;2.0ms-----------135度;2.5ms-----------180度;请看下形象描述吧:这只是一种参考数值,具体的参数,请参见舵机的技术参数。

小型舵机的工作电压一般为4.8V或6V,转速也不是很快,一般为0.22/60度或0.18/60度,所以假如你更改角度控制脉冲的宽度太快时,舵机可能反应不过来。

舵机

舵机

2020/4/25
主讲 赵伟
5
在近代船舶上常装设侧推装置,以提高低速航行时的操
纵性能,侧推效果与航行速度有关。低速时,侧推效果 较好,可能产生的转船力矩MC=PT·L1在喷射水柱后侧产 生的低压区,效率损失不大。在高速时,侧推效果较差,
喷射水柱后侧产生的低压区将产生明显的效率损失。
当在船舶首尾装设侧推装置 时(分别称为首推器和尾推器), 若两者向相反方向同时发出侧 推力,则可使船舶绕重心原地 转向。
可以有效地代替船舶舵 的功能,使船舶灵敏地 转向和倒航,具有良好 的操纵机动性能
目前已经被大量应用在 各种拖船,工程船舶和 各种特殊船舶上。
主讲 赵伟
8
(二)对舵机的基本要求
1、满足船舶操纵性能要求
舵机应能保征足够大的转舵力矩,在任何航行条件 下,确保正常工作。在最大航速时,能够将舵转动 到最大舵角位置。
其它附件有舵角指示器,压力表,温度表等。
2020/4/25
主讲 赵伟
12
2020/4/25
主讲 赵伟
13
(四)舵机的类型
按动力来源分,舵机有人力机械操纵舵机,手动液压舵机(动
力为人力,利用油液传递动力)、蒸汽舵机、电动舵机和电动液 压舵机(油泵机组将电动机电能转化为液压能,并依靠液压能进 行转舵,简称液压舵机)等五种。
曾在中,小型船舶上使用,转舵力矩一般不大于160kN·m。 中间采用蜗杆蜗轮减速传动机构。
2020/4/25
主讲 赵伟
15
2020/4/25
主讲 赵伟
16
电动机械式舵机
用一个大齿圈代替扇形 齿弧,使舵能够左右转 动更大的角度,用于主 动舵。
舵柱可左右转动90(即 2X 90)。电动机通过齿 轮传动两对蜗杆蜗轮, 并由两个对称的小齿轮 同时将转舵力矩传递到 与舵柱直接连接的大齿 圈上。传递力矩的机件 受力小均衡。

舵机数据资料

舵机数据资料

舵机数据资料一、舵机:1、1MHZ=1us 1KHZ=1000us 1HZ=1000 000us 1/60HZ=166ms2、1ms<=脉宽<=2ms --> 1KHZ<=脉宽<=500HZ3、PWM周期信号20ms;舵机转向左极限角度,正脉冲为2ms,负脉冲为20ms-2ms=18ms4、舵机控制系统工作稳定,PWM占空比 (0.5~2.5ms 的正脉冲宽度)和舵机的转角(-90°~90°)线性度较好舵机的控制需要一个20ms左右的时基脉冲(1/0.020s=50HZ),该脉冲的高电平部分为0.5ms~2.5ms范围内的角度控制脉冲部分。

以180度角度伺服为例,那么对应的控制关系是:0.5ms-------------0度; 2.5%1.0ms------------45度; 5.0%1.5ms------------90度; 7.5%2.0ms-----------135度; 10.0%2.5ms-----------180度;12.5% C/(180-0)=HL/(2.5-0.5) --> C=90L 一度等于90有效部分脉冲长度比例#2^12精度角度转换成数值#angle输入的角度值(0--180) #pulsewidth高电平占空时间(0.5ms--2.5ms) #/1000将us转换为ms #20ms时基脉冲(50HZ)pulse_width=((angle*11)+500)/1000; //将角度转化为500(0.5)<-->2480(2.5)的脉宽值(高电平时间) angle=180时pulse_width=2480us(2.5ms)date/4096=pulse_width/20 ->有上pulse_width的计算结果得date=4096*( ((angle*11)+500)/1000 )/20 -->int date=4096((angle*11)+500)/20000;def set_servo_angle(channel, angle): #输入角度转换成12^精度的数值date=4096*((angle*11)+500)/20000 #进行四舍五入运算date=int(4096*((angle*11)+500)/(20000)+0.5)pwm.set_pwm(channel, 0, date)二、SG90厂家给出的技术数据:尺寸:21.5mmX11.8mmX22.7mm重量:9克(1kg=1公斤=2斤)无负载速度:0.12秒/60度(4.8V) 0.002s/度堵转扭矩:1.2-1.4公斤/厘米(4.8V)使用温度:-30~~+60摄氏度死区设定:7us (7MHZ)工作电压:4.8V-6V三、位置等级有1024个,有效角度范围180度,控制的角度精度是可以达到180/1024度约0.18度了,从时间上看其实要求的脉宽控制精度为2000/1024us约2us。

详细的舵机控制原理资料

详细的舵机控制原理资料
(1)当其未转到目标位置时,将全速向目标位置转动。 (2)当其到达目标位置时,将自动保持该位置。 所以对于数字舵机而言,PWM 信号提供的是目标位置,跟踪运动要靠舵机本身。 (3)像 HG0680 这样的模拟舵机需要时刻供给 PWM 信号,舵机自己不能锁定目标位置。 所以我们的控制系统是一个目标规划系统。
0.5ms-2.5ms 0.5ms-30ms
舵机角度= 0.74×N PWM = 0.5 + N×DIV;(DIV=8us)
角度
0
45
90
135
180
N
0
3E
7D
BB
FA
PWM
0.5ms
1ms
1.5ms
2ms
2.5ms
3 / 15
3

(2)HG14-M 舵机的运动协议
舵机的转动方向为:
逆时针为正转
Φ
共 185 度,分为 250 个位置,每个位置叫 1DIV。
则:185÷250 = 0.74 度 / DIV
PWM 上升沿函数: 0.5mS + N×DIV 0uS ≤ N×DIV ≤ 2mS
0.5mS ≤ 0.5Ms+N×DIV ≤ 2.5mS
2 / 15
2
二.单舵机拖动及调速算法
1.舵机为随动机构
Φ对应 N 值 N=#00H,Φ=0 度 N=#F5H,Φ=180 度
1 ≤ N ≤ 245
运动时可以外接较大的转动负载,舵机输出扭矩较大,而且抗抖动性很好,电位器的线 性度较高,达到极限位置时也不会偏离目标。
4 / 15
4
2.目标规划系统的特征
(1)舵机的追随特性
角度
△ф фA

舵机

舵机

舵机
先抄一段说明:舵机,又称伺服马达,是一种具有闭环控制系统的机电结构。

舵机主要是由外壳、电路板、无核心马达、齿轮与位置检测器所构成。

其工作原理是由控制器发出PWM(脉冲宽度调制)信号给舵机,经电路板上的IC处理后计算出转动方向,再驱动无核心马达转动,透过减速齿轮将动力传至摆臂,同时由位置检测器(电位器)返回位置信号,判断是否已经到达设定位置,一般舵机只能旋转180度。

舵机结构图
舵机有3根线,棕色为地,红色为电源正,橙色为信号线,但不同牌子的舵机,线的颜色可能不同。

舵机的转动的角度是通过调节PWM(脉冲宽度调制)信号的占空比(1.占空比是指高电平在一个周期之内所占的时间比率。

2. 正脉冲的持续时间与脉冲总周期的比值。

例如:正脉冲宽度1μs,信号周期10μs的脉冲序列占空比为0.1。

即:脉冲的宽度除以脉冲的周期称为占空比。

)来实现的,标准PWM(脉冲宽度调制)信号的周期固定为20ms(50Hz),理论上脉宽分布应在1ms到2ms之间,但是,事实上脉宽可由0.5ms到2.5ms之间,脉宽和舵机的转角0°~180°相对应。

船舶液压舵机资料

船舶液压舵机资料
15 14
a
o
2
3
a

o

13
4
11
12
7
10 9
8 接浮动杆控制点A
5 6
图8-14 直流伺服电机式遥控系统原理图 1-舵轮;2-操舵电位计;3-反馈电位计;4-齿轮齿条;5-锥齿轮副;6-丝杆;7-导杆;8-滑块螺母;9-蜗轮;10行星齿轮;11-蜗杆;12-直流伺服电动机;13-直流电动机激磁绕组;14-交流电动机;15-直流发电机;16-直流发 电机激磁绕组;17-放大器
特点:
①双作用活塞代替单作用撞杆,油缸利用率提高, 外形尺寸和重量减小
②结构简单,安装方便
③因采用双作用活塞,对其加工工艺及密封性要求 较高
④检查和更换密封件不如撞杆式方便,铰接处磨损 较大时也会出现撞击
⑤油路中须采用容积补偿措施
⑥扭矩特性不好,多用于功率不大的舵机中
二、回转式转舵机构
1-舵杆 2-缸体 3-转毂 4-转叶 5-定叶 6-油管
4. 转舵扭矩M:
舵机施加于舵杆上的扭矩。舵匀速转动时,M=Ma +Mf
M(f—0—.15舵~0各.2支0)承M处a 的 总 摩 擦 扭 矩 , 平 衡 舵 一 般 Mf=
舵机的公称转舵扭矩:在最大舵角输出的最大扭矩
综述:
1) 转船力矩Ms比水动力矩Ma大得多,它们都 与A及v2成正比
2) 正航偏舵时Ma和Ms随舵角α变化的规律
液压伺服:将信号转换成伺服油缸活塞杆的位移, 再通过浮动杆式追随机构控制主油泵的变量机 构,以实现远距离操舵
2.动作原理:
限位开关:限制伺服活塞的最大移动位置,以限 制最大操舵角
3.各阀的作用:
①油路锁闭阀2:换 向阀回中时锁闭油 路;锁闭备用油路

舵机知识总结和注意点(自我总结)

舵机知识总结和注意点(自我总结)

舵机知识总结(自我总结)1,舵机的工作电压对性能有重大的影响,舵机推荐的电压一般都是4.8V或6V。

2,舵机的控制脉冲周期20ms,脉宽从0.5ms-2.5ms,分别对应-90度到+90度的位置。

{0.5ms对应45°}3,需要解释的是舵机原来主要用在飞机、汽车、船只模型上,作为方向舵的调节和控制装置。

所以,一般的转动范围是45°、60°或者90°,这时候脉冲宽度一般只有1ms-2ms之间。

4,另外要记住一点,舵机的转动需要时间的,因此,程序中时间的变化不能太快,不然舵机跟不上程序。

根据需要,选择合适的延时,返复调试,可以让舵机很流畅的转动,而不会产生像步进电机一样的脉动。

5,舵机的速度决定于你给它的信号脉宽的变化速度。

如果你要求的速度比较快的话,舵机就反应不过来了;将脉宽变化值线性到你要求的时间内,一点一点的增加脉宽值,就可以控制舵机的速度了。

5,前面提到,舵机转角控制需要将两个八位寄存器合成为一个十六位寄存器。

当输入脉冲周期为20ms时,占空比为2.5%时,转角为-90°占空比为5%时,转角为-45°占空比为7.5%时,转角为-0°占空比为10%时,转角为45°占空比为12.5%时,转角为90°附上控制舵机转角90°程序:#include <hidef.h> /* common defines and macros */#include "derivative.h" /* derivative-specific definitions *///PWM初始化//实现舵机90度转,占空比为12.5%void PWM_Init(void){PWME=0x00; //禁止PWM模块PWMCTL_CON01=1; //0和1联合成16位PWM;PWMCAE_CAE1=0; //选择输出模式为左对齐输出模式PWMPOL_PPOL1=1; //先输出高电平,计数到DTY时,反转电平PWMPRCLK = 0X00; //clockA不分频,clockA=busclock=16MHz;PWMSCLA = 8; //对clock A进行2*8=16分频;pwm clock=clockA/16=1MHz;PWMCLK_PCLK1 = 1; //选择clock SA做时钟源PWMPER01 = 20000; //周期20ms;50Hz;(可以使用的范围:50-200hz)PWMDTY01 = 2500; //高电平时间为2.5ms; 单位1usPWME_PWME1 = 1;}void main(void){/* put your own code here */PWM_Init();while(1);}。

舵机文档

舵机文档

一、简介舵机本质上是可定位的微行马达,即微型伺服马达。

当它接收到一个位置指令,就会运动到指定的位置。

常用于个人机器人模型的可控运动关节,我们也常称这种关节为自由度。

具有高力矩、控制简单、装配灵活、相对经济的特点。

二、内部结构包括一个小型直流马达、一个变速齿轮、一个反馈可调电位器及一块电子控制板。

其中,高速转动的直流马达提供原动力,带动变速齿轮组,使之产生高扭力的输出,齿轮组的变速比愈大,伺服马达的输出扭力也愈大,也就是说能承受的重量愈大,但转动的速度也愈低。

三、工作原理这种微型伺服马达是一个典型的闭环控制系统。

减速齿轮组由马达驱动,其输出端带动一个线性的比例电位器做位置检测,该电位器把转角坐标转换为一比例电压反馈给控制线路板,控制线路板将其与输入的控制脉冲信号比较,产生纠正脉冲,并驱动马达正向或反向的转动,使齿轮组的输出位置与期望值相符,令纠正脉冲趋于0,从而达到使伺服马达精确定位的目的。

四、控制方法1、控制线:标准的微型伺服马达有三条控制线,分别为电源线、地线、控制线。

本舵机三条线中,红色为电源线、黑色为地线、黄色为控制线。

工作电源一般在4—6V,但该电源应尽可能与处理系统的电源隔离(因为伺服马达会产生噪声)。

甚至小伺服马达在重载时会拉低放大器电压,所以整个系统的电源供应比例应合理。

2、控制信号:要控制马达转动一定角度,应输入一个周期性的正向脉冲信号,这个周期性脉冲信号的高电平时间通常在1—2ms之间,低电平时间在5—20ms之间,并不是很严格。

周期为20ms脉冲信号的正向脉冲宽度与马达输出臂位置的关系:五、伺服马达的运动速度伺服马达的瞬时运动速度是由其内部的直流马达和变速齿轮组的配合决定的,在恒定的电压驱动下,其数值唯一。

但其平均运动速度可通过分段停顿的控制方式来改变,例如,可把动作幅度位90度的转动细分为128个停顿点,通过每个停顿点的时间长短来控制0—90度变化的平均速度。

六、注意事项1、绝不可加载让伺服马达输出位置超过90度的脉冲信号,否则会损坏马达的输出限位机构或减速齿轮组等机械部件。

舵机知识汇总

舵机知识汇总

舵机知识汇总舵机基础知识最近几年国内机器人开始起步发展,很多高校、中小学都开始进行机器人技术教学。

小型的机器人、模块化的机器人、组件式的机器人是教学机器人的首选。

在这些机器人产品中,舵机是最关键,使用最多的部件。

根据控制方式,舵机应该称为微型伺服马达。

早期在模型上使用最多,主要用于控制模型的舵面,所以俗称舵机。

舵机接受一个简单的控制指令就可以自动转动到一个比较精确的角度,所以非常适合在关节型机器人产品使用。

仿人型机器人就是舵机运用的最高境界。

一、舵机的结构舵机简单的说就是集成了直流电机、电机控制器和减速器等,并封装在一个便于安装的外壳里的伺服单元。

能够利用简单的输入信号比较精确的转动给定角度的电机系统。

舵机安装了一个电位器(或其它角度传感器)检测输出轴转动角度,控制板根据电位器的信息能比较精确的控制和保持输出轴的角度。

这样的直流电机控制方式叫闭环控制,所以舵机更准确的说是伺服马达,英文servo。

舵机的主体结构如下图所示,主要有几个部分:外壳、减速齿轮组、电机、电位器、控制电路。

简单的工作原理是控制电路接收信号源的控制信号,并驱动电机转动;齿轮组将电机的速度成大倍数缩小,并将电机的输出扭矩放大响应倍数,然后输出;电位器和齿轮组的末级一起转动,测量舵机轴转动角度;电路板检测并根据电位器判断舵机转动角度,然后控制舵机转动到目标角度或保持在目标角度。

舵盘上壳齿轮组中壳控制电路下壳控制线电机图一舵机的结构舵机的外壳一般是塑料的,特殊的舵机可能会有金属铝合金外壳。

金属外壳能够提供更好的散热,可以让舵机内的电机运行在更高功率下,以提供更高的扭矩输出。

金属外壳也可以提供更牢固的固定位置。

图二金属外壳齿轮箱有塑料齿轮、混合齿轮、金属齿轮的差别。

塑料齿轮成本底,噪音小,但强度较低;金属齿轮强度高,但成本高,在装配精度一般的情况下会有很大的噪音。

小扭矩舵机、微舵、扭矩大但功率密度小的舵机一般都用塑料齿轮,如Futaba3003,辉盛的9g微舵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

舵机资料整理一、舵机简介及构造舵机(英文叫Servo):它由直流电机、减速齿轮组、位置检测器和控制电路组成的一套自动控制系统。

通过发送信号,指定输出轴旋转角度。

舵机一般而言都有最大旋转角度(比如180度),与普通直流电机的区别主要在:直流电机是一圈圈转动的,模拟舵机只能在一定角度内转动,不能整圈转(数字舵机可以在舵机模式和电机模式中切换,没有这个问题)。

普通直流电机无法反馈转动的角度信息,而舵机可以,用途也不同,普通直流电机一般是整圈转动做动力用,舵机是控制某物体转动一定角度用(比如机器人的关节)。

工作原理:控制电路板接受来自信号线的控制信号(PWM),控制电机转动,电机带动一系列齿轮组,减速后传动至输出舵盘。

舵机的输出轴和位置反馈电位计是相连的,舵盘转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进行反馈,然后控制电路板根据所在位置决定电机的转动方向和速度,实现目标运动到指定位置。

常见的舵机厂家有:日本的Futaba、JR、SANWA等,国产的有北京的新幻想、吉林的振华等。

现举Futaba S3003来介绍相关参数,以供大家设计时选用。

之所以用3003是因为这个型号是市场上最常见的,也是价格相对较便宜的一种(以下数据摘自Futaba产品手册)。

尺寸(Dimensions):40.4×19.8×36.0 mm重量(Weight):37.2 g工作速度(Operating speed):0.23 sec/60°(4.8V) ,0.19 sec/60°(6.0V)输出力矩(Output torque):3.2 kg.cm (4.8V) ,4.1 kg.cm (6.0V)舵机具有以下一些特点:>体积紧凑,便于安装;>输出力矩大,稳定性好;>控制简单,便于和数字系统接口;正是因为舵机有很多优点,所以,现在不仅仅应用在航模运动中,已经扩展到各种机电产品中来,在机器人控制中应用也越来越广泛。

舵机的形状和大小多的让人眼花缭乱,大致可分下面这几种(如下图所示)。

最右边的是常见的标准舵机,中间两个小的是微型舵机,左边魁梧的那个是大扭力舵机。

图上这几种舵机都是三线控制(黑:地线;红:电源线;棕:信号线)。

制作机器人常用的舵机有下面几种,而且每种的固定方式也不同,如果从一个型号换成一个型号,整个机械结构都需要重新设计。

第一种是MG995,优点是价格便宜,金属齿轮,耐用度也不错。

缺点是扭力比较小,所以负载不能太大,如果做双足机器人之类的这款舵机不是很合适,因为腿部受力太大。

做做普通的机械手还是不错的。

第二种是SR 403,这款舵机是因MG995做双足机器人抖动太厉害,摸索找到的,经过测试,制作双足机器人不错,至少不抖了。

优点是扭力大,全金属齿轮,价格也还算便宜。

第三种就是传说中的数字舵机AX12+,这个是久经考验的机器人专用舵机。

除了价格高,使用RS485串口通信(控制板就得换数字舵机专用控制板),其他都是优点。

下图是一个普通模拟舵机的分解图,其组成部分主要有齿轮组、电机、电位器、电机控制板、壳体这几大部分。

控制板主要是用来驱动电机和接受电位器反馈回来的信息;电机是动力的来源;电位器是通过其旋转后产生的电阻的变化,把信号发送回电机控制板,使其判断输出轴角度是否输出正确;齿轮组的作用主要是力量的放大,使小功率电机产生大扭矩。

舵机底壳拆开后就可以看到,主要是电机与控制板:控制板拿起来后下方是与控制板连接的电位器:从顶部来看电机与电位器,与电机齿轮直接相连的为第一级放大齿轮:经过一级齿轮放大后,再经过二、三、四级放大齿轮,最后通过输出轴输出:通过上面两图可以很清晰的看到,本舵机是4级齿轮放大机构,就是通过这么一层层的把小的力量放大,使得这么一个小小的电机能有15KG的扭力。

二、舵机控制系统舵机的控制信号为周期是20ms的脉宽调制(PWM)信号,其中脉冲宽度从0.5ms-2.5ms,相对应舵盘的位置为0-180度,呈线性变化。

也就是说,给它提供一定的脉宽,它的输出轴就会保持在一个相对应的角度上,无论外界转矩怎样改变,直到给它提供一个另外宽度的脉冲信号,它才会改变输出角度到新的对应的位置上。

舵机内部有一个基准电路,产生周期20ms,宽度1.5ms的基准信号,有一个比较器,将外加信号与基准信号相比较,判断出方向和大小,从而产生电机的转动信号。

因此,舵机是一种位置伺服的驱动器,转动范围不能超过180度,适用于那些需要角度不断变化并可以保持的驱动当中。

脉冲的参数有最小值,最大值和频率。

一般而言,舵机的基准信号定义的位置为中间位置。

舵机有最大转动角度,中间位置的定义就是从这个位置到最大角度与最小角度的量完全一样。

最重要的一点是,不同舵机的最大转动角度可能不相同,但是其中间位置的脉冲宽度是一定的,那就是1.5ms。

如下图:角度是由来自控制线的持续的脉冲所产生,使用脉冲宽度调制来控制角度大小。

脉冲的长短决定舵机转动多大角度。

例如,1.5毫秒脉冲会到转动到中间位置(对于180°舵机来说,就是90°位置)。

当控制系统发出指令,让舵机移动到某一位置,并让他保持这个角度,这时外力的影响不会让其角度产生变化,但是这个是有上限的,上限就是他的最大扭力。

除非控制系统不停的发出脉冲稳定舵机的角度,舵机的角度不会一直不变。

当舵机接收到一个小于1.5ms的脉冲,输出轴会以中间位置为标准,逆时针旋转一定角度。

接收到的脉冲大于1.5ms情况相反。

不同品牌,甚至同一品牌的不同舵机,都会有不同的最大值和最小值。

一般而言,最小脉冲为1ms,最大脉冲为2ms。

如下图:舵机的控制信号是一个脉宽调制信号,很方便和数字系统进行接口。

只要能产生标准的控制信号的数字设备都可以用来控制舵机,比方单片机、FPGA、ARM 等。

舵机的转动需要时间的,因此,程序中时间的变化不能太快,不然舵机跟不上程序。

根据需要,选择合适的延时,返复调试,可以让舵机很流畅的转动,而不会产生像步进电机一样的脉动。

舵机的速度决定于你给它的信号脉宽的变化速度。

如果你要求的速度比较快的话,舵机就反应不过来了;将脉宽变化值线性到你要求的时间内,一点一点的增加脉宽值,就可以控制舵机的速度了。

当然,具体这一点一点到底是多少,就需要做试验了,不合适的话,舵机就会向步进电机一样一跳一跳的转动了,尝试改变这“一点”,使你的舵机运动更平滑。

还有一点很重要,就是舵机在每一次脉宽值改变的时候总会有一个转速由零增加再减速为零的过程,这就是舵机会产生像步进电机一样运动的原因。

三、数字舵机VS模拟舵机数字舵机(Digital Servo)和模拟舵机(Analog Servo)在基本的机械结构方面是完全一样的,主要由电机、减速齿轮、位置检测器、控制电路等组成,而数字舵机和模拟舵机的最大区别则体现在控制电路上,数字舵机的控制电路比模拟舵机的多了微处理器(MCU)。

数字舵机区别于传统的模拟舵机,模拟舵机需要给它不停的发送PWM信号,才能让它保持在规定的位置或者让它按照某个速度转动,数字舵机则只需要发送一次PWM信号就能保持在规定的某个位置。

模拟舵机在空载时,没有动力被传到舵机马达。

当有信号输入使舵机移动,或者舵机的摇臂受到外力的时候,舵机会作出反应,向舵机马达传动动力(电压)。

这种动力实际上每秒传递50次,被调制成开/关脉冲的最大电压,并产生小段的动力。

当加大每一个脉冲的宽度的时候,如电子变速器的效能就会出现,直到最大的动力/电压被传送到马达,马达转动使舵机摇臂指到一个新的位置。

然后,当舵机电位器告诉电子部分它已经到达指定的位置,那么动力脉冲就会减小脉冲宽度,并使马达减速。

直到没有任何动力输入,马达完全停止。

模拟舵机的“缺点”是:假设一个短促的动力脉冲,紧接着很长的停顿,并不能给马达施加多少激励,使其转动。

这意味着如果有一个比较小的控制动作,舵机就会发送很小的初始脉冲到马达,这是非常低效率的。

这也是为什么模拟舵机有“无反应区”的存在。

比如说,舵机对于发射机的细小动作,反应非常迟钝,或者根本就没有反应。

模拟舵机是直流伺服电机控制器芯片一般只能接收50Hz频率左右的PWM 外部控制信号,太高的频率就无法正常工作了。

若PWM外部控制信号为50Hz,则直流伺服电机控制器芯片获得位置信息的分辨时间就是20ms,比较PWM控制信号正比的电压与反馈电位器电压得出差值,该差值经脉宽扩展后驱动电机动作,也就是说由于受PWM外部控制信号频率限制,最快20ms才能对舵机摇臂位置做新的调整。

数码舵机通过MCU可以接收比50Hz频率快得多的PWM外部控制信号,就可在更短的时间分辨出PWM外部控制信号的位置信息,计算出PWM信号占空比正比的电压与反馈电位器电压的差值,去驱动电机动作,做舵机摇臂位置最新调整。

不管是模拟还是数码舵机,在负载转矩不变时,电机转速取决于驱动信号占空比大小而与频率无关。

数字舵机在以下两点与模拟舵机不同:1)处理接收机的输入信号的方式(数字舵机使用信号预处理方式);2)控制舵机马达初始电流的方式,减少无反应区(对小量信号无反应的控制区域),增加分辨率以及产生更大的固定力量。

相对于传统模拟舵机,数字舵机的两个优势是:1)因微处理器的关系,数字舵机可以在将动力脉冲发送到舵机马达之前,对输入的信号根据设定的参数进行处理。

这意味着动力脉冲的宽度,就是说激励马达的动力,可以根据微处理器的程序运算而调整,以适应不同的功能要求,并优化舵机的性能。

2)数字舵机以高得多的频率向马达发送动力脉冲。

就是说,相对与传统的50脉冲/秒,现在是300脉冲/秒。

虽然,以频率高的关系,每个动力脉冲的宽度被减小了,但马达在同一时间里收到更多的激励信号,并转动得更快。

这也意味着不仅仅舵机马达以更高的频率响应发射机的信号,而且“无反应区”变小;反应变得更快;加速和减速时也更迅速、更柔和;数字舵机提供更高的精度和更好的固定力量。

相关文档
最新文档