第五章抽样推断分析方法

合集下载

抽样推断的一般问题抽样误差

抽样推断的一般问题抽样误差
三、抽样平均误差
抽样平均误差是抽样平均数或抽样成数的标准差,反映了抽样指标与总体指标的平均误差程度。
例如:假设总体包含1、2、3、4、5,五个数字。
则:总体平均数为 =(1+2+3+4+5)/5=3
现在,采用重复抽样从中抽出两个,组成一个样本。可能组成的样本数目:25个。
如:(1+3)/2=2、(1+4)/2=2.5、(2+4)/2=3、(3+5)/2=4…
二、抽样推断的内容
参数估计:参数估计是依据所获得的样本观察资料,对所研究现象总体的水平、结构、规模等数量特征进行估计。
假设检验:假设检验是利用样本的实际资料来检验事先对总体某些数量特征所作的假设是否可信的一种统计分析方法。
三、有关抽样的基本概念
(一)总体和样本
总体:又称全及总体。指所要认识的研究对象全体。总体单位总数用“N”表示。
上式可变形为:Δ=tμ(极限误差是t倍的抽样平均误差)
例题二:某厂生产一种新型灯泡共2000只,随机抽出400只作耐用时间试验,测试结果
平均使用寿命为4800小时,样本标准差为300小时,求抽样推断的平均误差?
解:已知:N=2000n=400σx=300 =4800
则:
计算结果表明:根据部分产品推断全部产品的平均使用寿命时,采用不重复抽样比重复抽样的平均误差要小。
②抽样平均数的标准差仅为总体标准差的
③可通过调整样本单位数来控制抽样平均误差。
例题:假定抽样单位数增加2倍、0.5倍时,抽样平均误差怎样变化?
解:抽样单位数增加2倍,即为原来的3倍
则:
即:当样本单位数增加2倍时,抽样平均误差为原来的0.577倍。
抽样单位数增加0.5倍,即为原来的1.5倍

审计学课件第5章 审计抽样方法

审计学课件第5章 审计抽样方法

第二部分 教学内容
第二节 统计抽样的基本内容
一、总体和样本 二、抽样误差 三、审计结论 四、样本的项目的选取
■ (一)审计结论的精确限度
■ 审计结论的精确限度是指统计抽样所做出 的审计结论与总体实际情况之间所允许的 误差范围。
■ (二)审计结论的可靠程度
■ 审计结论的可靠程度是指统计抽样做出的 审计结论可以信赖的程度,也就是总体的 实际情况落在审计结论精确限度内的可能 性,即概率。
■ 属性抽样过程大致有以下几个方面:
■ 一、确定抽样的性质和目标 二、 确定抽样总体 三、确定预计差错率 四、确定精确度和可靠程度 五、确定样本容量 六、审查样本项目 七、根据样本审查结果推断总体
第二部分 教学内容
第三节 属性抽样
一、确定抽样的性质和目标 二、 确定抽样总体 三、确定预计差错率 四、确定精确度和可靠程度 五、确定样本容量 六、审查样本项目 七、根据样本审查结果推断总体
■ 根据其选取部分业务资料的方法不同,审 计抽样可分为任意抽样、判断抽样和统计 抽样三种。
第二部分 教学内容
第一节 审计抽样方法概述
一、审计抽样的含义和分类 二、抽样风险和非抽样风险
■ (一)任意抽样,是指审计人员在不考虑 总体的性质和特点,也不考虑应抽取多少 样本的条件下,任意从总体中抽取一部分 业务资料作为样本,并以此样本的审查结 果来推断总体的一种审计抽样方法。
第二部分 教学内容
第四节 变量抽样
一、明确抽样项目,划定总体范围 二、确定样本容量 三、抽取样本 四、审查样本项目 五、根据样本审查结果推算总体
■ 主要通过复核、计算审查样本项目,包括独立计算 样本项目数值(货币金额),向与之有关的外界单 位函证,核对交易业务凭证等,确定样本项目的实 际审计值,判断其错误与否及错误金额大小,并按 照抽样审计的目的,计算样本项目的平均值、错误 数额等,以备推断总体使用。

统计学中的抽样与推断

统计学中的抽样与推断

统计学中的抽样与推断在统计学中,抽样与推断是非常重要的概念。

它们涉及到我们如何从一小部分样本中推断出整个总体的特征。

在这篇文章中,我们将讨论抽样的不同方法以及如何使用样本数据进行推断。

一、抽样方法在统计学中,我们通常使用以下三种抽样方法:1. 简单随机抽样这是最基本的抽样方法。

简单随机抽样意味着从总体中随机抽出样本,每个样本被抽样的概率相等。

这种方法可以确保样本的代表性。

例如,如果我们要调查一个城市的人口,我们可以从人口登记簿中随机抽取一定数量的人口作为样本。

2. 分层抽样分层抽样是把总体划分为若干个层次,然后从每个层次中随机抽取样本。

这个方法可以减小代表性偏差。

例如,如果我们要调查一个城市的人口,我们可以按照不同的年龄段对总体进行分层,然后从每个年龄段中随机抽取一定数量的人口作为样本。

3. 系统抽样这是从总体中按照一定的规则抽样。

例如,如果我们要调查一个工厂中的员工,我们可以按照员工的工号顺序每隔一定数量抽取一个员工作为样本。

二、样本统计量的计算在进行统计推断之前,我们需要先计算样本统计量。

样本统计量是样本数据的数量指标,可以代表总体的特征。

常见的样本统计量包括:1. 样本均值样本均值是样本数据的平均值。

它可以代表总体的平均值。

例如,我们可以从一个城市的人口中随机抽取一部分人口,计算他们的平均收入,这个平均收入就是样本均值。

2. 样本标准差样本标准差是样本数据的标准差。

它可以代表总体的方差。

例如,我们可以从一个工厂中随机抽取一部分产品,计算它们的重量,这个重量的标准差就是样本标准差。

三、参数估计我们通常使用抽样中的样本统计量来估计总体参数。

例如,我们可以使用样本均值来估计总体均值,使用样本标准差来估计总体标准差。

常见的参数估计方法包括:1. 点估计点估计是用样本统计量来估计总体参数的方法。

例如,我们可以使用样本均值来估计总体均值,使用样本标准差来估计总体标准差。

2. 区间估计区间估计是用一个区间来估计总体参数的方法。

第五章 抽样

第五章 抽样

• 二是抽样要求不同:配额注重量的分配, 而判断抽样注重质的分配 • 三是抽样方法不同:配额抽样的方法复杂 精密,而判断抽样的方法简单、易行。
(二)独立控制配额抽样
• 独立控制配额抽样规定按独立的控制特征 分配并抽取样本。 • 例如,假设某调查项目需要对客户进行调 查,选定的控制特征为年龄、性别、和收 入三种,确定的样本数为360个。其独立控 制配额抽样如下表:
五、抽样数目的确定
• 第一,总体中各单位之间标志值的变异程 度; • 第二,允许误差的大小,允许误差又称为 极限误差或最大可能误差,是抽样误差的 范围。用 ∆ 来表示,公式为 ∆ =tµ ,式中t代 表概率度是指扩大或缩小抽样误差范围的 倍数, µ 代表抽样误差。 • 第三,不同的抽样方法也会影响抽样数目。
• 2、分层随即抽样:是把调查总体按其属性不 、分层随即抽样: 同分为若干层次然后在各层中随即抽取样本的 技术。例如:调查人口,可按年龄、收入、职 业、居住位置等标志划分不同的阶层。 • 3、分群随即抽样:又称整群抽样,是把调查 、分群随即抽样: 总体区分为若干个群体,按后用单纯随机抽样 法,从中抽取某些群体进行全面调查的技术。 • 4、系统随即抽样 、系统随即抽样:又称等距离抽样,它是在 总体中先按一定标志顺序排列,并根据总体单 位数和样本单位数计算出抽样距离,然后按相 同的距离或间隔抽选样本单位的技术。
四、固定样本连续抽样调查法
• (一)固定样本连续调查法的含义和特点 • 定义:是把选定的样本单位固定下来,长 期进行调查。 • 优点:调查对象稳定,可以及时、全面取 得各种可靠的资料;费用低效果好。 • 缺点:调查对象登记、记账的工作量很大, 长年累月记录,负担较重。
• • • • • • • •
二、分层随即抽样技术及其应用

抽样推断分析方法

抽样推断分析方法

第五章抽样推断分析方法第一部分习题一、单项选择题1.抽样调查是()A.资料的搜集方法B.推断方法C.资料的搜集方法和推断方法D.全面调查2.抽样调查的目的在于()A.了解抽样总体的全面情况B.用样本指标推断全及总体指标C.了解全及总体的全面情况D.用全及总体指标推断样本指标3.抽样调查与典型调查的主要区别是()A.所研究的总体不同B.调查对象不同C.调查对象的代表性不同D.调查单位的选取方式不同4.抽样应遵循的原则是()A.随机原则B.准确性原则C.系统原则D.及时性原则5.下列指标中为随机变量的是()A.抽样误差B.抽样平均误差C.允许误差D.样本容量6.下列指标中为非随机变量的是()A.样本均值B.样本方差C.样本成数D.样本容量7、样本是指()A.任何一个总体B.任何一个被抽中的调查单位C.抽样单元D.由被抽中的调查单位所形成的总体8.抽样框是指()A.总体B.样本C.由总体单位组成的名单或地图D.全部抽样单位组成的名单或地图9.抽样误差是指()A.在调查过程中由于观察、测量等差错所引起的误差B.在调查中违反随机原则出现的系统误差C.随机抽样而产生的代表性误差D.人为原因所造成的误差10.抽样极限误差是()A.随机误差B.一定可靠程度下抽样误差的最大绝对值C.最小抽样误差D.最大抽样误差的绝对值11.在其它条件相同的情况下,重复抽样的抽样平均误差和不重复抽样的相比()A.前者一定大于后者 B.前者一定小于后者C.两者相等D.前者可能大于、也可能小于后者12.估计误差的可靠性和准确度()A.是一致的B.是矛盾的C.成正比D.成反比13.抽样推断的精确度和极限误差的关系是()A.前者高说明后者小B.前者高说明后者大C.前者变化而后者不变D.两者没有关系14.点估计的优良标准是()A.无偏性、数量性、一致性B.无偏性、有效性、数量性C.有效性、一致性、无偏性D.及时性、有效性、无偏性15.在简单随机重复抽样下,欲使抽样平均误差缩小为原来的1/3,则样本容量应()A.增加8倍 B.增加9倍C.增加1.25倍D.增加2.25倍16.在简单随机重复抽样下,当误差范围Δ扩大一倍,则抽样单位数( )A.只需原来的1/2B.只需原来的1/4C.只需原来的1倍D.只需原来的2倍17.在500个抽样产品中,有95%的一级品,则在简单随机重复抽样下一级品率的抽样平均误差为( )A.0.9747%B.0.9545%C.0.9973%D.0.6827%18.若有多个成数资料可供参考时,确定样本容量或计算抽样平均误差应该使用( )A.数值最大的那个成数B.数值最小的那个成数C.0.5D.数值最接近或等于0.5的那个成数19.当有多个参数需要估计时,可以计算出多个样品容量n ,为满足共同的要求,必要的样本容量一般应是( )A.最小的n 值B.最大的n 值C.中间的n 值D.第一个计算出来的n 值20.反映样本指标与总体指标之间的平均误差程度的指标是( )A .平均数离差 B.概率度 C.抽样平均误差 D.抽样极限误差21.假设检验的基本思想可以用( )来解释。

第五章 抽样调查

第五章 抽样调查

第二种方案:洛阳市所有小学的名单(第一抽样框), 从中抽取10所学校(抽样单位是学校);被抽中 学校的所有班级名单(第二抽样框),每个学校抽 10个班级,共抽取100个班级。(抽样单位是 班级);被抽中班级的所有学生名单(第三抽样 框),每个班级抽20名学生,共抽取2000名 学生,(抽样单位是学生).
18-30 31-50 50以上 小计 总计
200

缺点 虑其中的几种,不可能做出很细的分类
1. 分层不可能兼顾总体的众多属性,只能考 2. 总体分布变化的最新信息不容易得到,因
而配额的合理性很难保证
3. 主观性很大。如一个访问员会本能地避免 访问难以找到的受访者。
四、滚雪球抽样(Snowball Sampling)
(4)依据从随机数表中选出的数码,到抽样 框中寻找它所对应的元素。 练习: 试用简单随机抽样方法在洛阳师范学院抽取 2000名学生。 请思考:操作的难点是什么?
优点:概率抽样的理想类型,简单易行,误差小。 缺点: 1. 需要为总体每个要素编号,当总体所含个 体的数目太多时采用这种方法费时费力; 2. 总体内分类明显时,这种抽样无法按类别 特征自动分配样本数,若想保证样本的代表性,必 须增大样本量,使工作量增大。

院系——专业——班级——学生
抽样框 抽样单位 院系 专业 班级
第一抽样框:所有院系的名单 第二抽样框:抽中院系的所有专 业名单 第三抽样框:抽中专业的所有班 级名单
第四抽样框:抽中班级的所有学 生名单
学生
四、 抽样的原则

随机原则(random principle):在完全
排除主观上人为选择的前提下,使总体中 每一个单位有相同被抽中的机会。——概 率抽样

第5章__抽样推断

第5章__抽样推断

抽样误差的影响因素
(1)总体各单位标志变异程度。 (2)样本容量的大小。 (3)抽样方法。 (4)抽样的组织形式。
四、抽样极限误差
含义:
抽样极限误差指在进行抽样估计时,根据研究对象的变 异程度和分析任务的要求所确定的样本指标与总体指标 之间可允许的最大误差范围。
计算方法:
它等于样本指标可允许变动的上限或下限与总体指标 之差的绝对值。
则:
x
n
10 1(公斤) 100
即:当根据样本学生的平均体重估计全部学生的平均 体重时,抽样平均误差为1公斤。
例题二解 已知: N 2000, n 400, x 4800, 300
则:
x
n
300 15(小时) 400
x
2 1 n
3002 1
400
13.42(小时)
n N
-20
400
-15
225
-5
25
0
0
-15
225
-10
100
0
0
5
25
-5
25
0
0
10
100
15
225
0
0
5
25
15
225
20
400
0
2000
样本平均数的平均数( x )
x
样本可能数目
960 16
60元
所以 (x) X
样抽样平均误差x

x (x)2
样本可能数目
2000 11.18元 16
四个工人工资分别为40、50、70、80元
抽样平均误差 x
n
15.81 11.18元 2

自考社会研究方法第五章

自考社会研究方法第五章
假设总体所含个体数为N,样本所含个体数为n,则抽样距离应为 K=N/n。如在一个900人的总体中,抽取150个人本,那么 K=900/150=6 (3)确定抽取元素的方法。如在900人的总体中抽取150人为样本, 从548开始,间距为6,那么样本就为554,560…… 等距抽样的缺陷: 如果抽样框是以与抽样间隔一致的循环方式排列的,则等距抽样 会由于周期性问题,使样本出现偏差。 因此,如果对于周期性排列的总体,要么采用简单随机抽样,要 么重新随机排列总体元素。
Page 23
3、确定分层抽样方法。
a、将所有总体元素按分层变量进行分层,并计算各层在总体中的比 例。如果是等比例分层抽样,则直接将总体比例视为样本比例;如果 采用不等比例抽样,则需对样本比例做一定的调整,最后按确定的样 本比例抽出适量的样本元素。
b、适用于等比例分层抽样。先将所有总体元素按分层变量分层,然 后将各层总体元素连续排列,最后对连续排列的总体元素进行等距抽 样。
Page 21
三、分层抽样
分层抽样是指研究者先把总体分为若干个同质的层,然后用简 单随机或系统抽样方法,从每层中抽取样本元素。
当样本规模不变的情况下,总体异质性越高,样本状态偏离总 体状态的机会就越大。在这种情况下,如果采用简单随机抽样 或系统抽样,就不一定得到真实的反映。采用分层的方法,将 一个异质性总体分为若干个同质性的层,从而减少抽样误差, 增大代表性。
Page 6
三、抽样的步骤
1、设计抽样方案 界定总体,对总体的范围和特征加以明确的说明,特别是要
明确目标总体的范围和特征;介绍抽样框的具体内容,即给 目标总体下一个操作化定义;确定样本所含个体数目,即样 本规模的大小;根据不同的目标总体,选择合适的抽样方法。 2、抽取样本 抽取样本是指抽样人员按照抽样方案中选定的抽样方法,从抽 样框中实际抽取总体元素,构成样本的过程。 抽样方法不同,实际抽样工作可以安排在实地调查前,也可以 与实地调查同步。前者适合总体规模较小,事先有比较完整抽 样框的情况;而后者则是比较适合总体规模较大,抽样采取多 阶段方式进行的情况。

统计学第5章抽样推断

统计学第5章抽样推断
就 是 由 样 本 指 标 直 接 代 替 全 及 指 标 , 不 考 虑
任 何 抽 样 误 差 因 素 。 即 用 x直 接 代 表 X , 用 p 直 接 代 表 P。
例 在 全 部 产 品 中 , 抽 取 100件 进 行 仔 细 检 查 , 得 到 平 均 重 量 x1002克 , 合 格 率 p98% , 我 们 直 接 推 断 全 部 产 品 的 平 均 重 量 X 1002克 , 合 格 率 P 98% 。
(1)
2
n
(1 )
12 2 (1
100
) 1.19 (千克 )
x
n
N
100 10000
(2) 若以概率 95.45%(t 2)保证,该农场 10000 亩小麦的平均
亩产量的可能范围为:
X : x 400 2 1.19 x
X (: 397 .62 ,402.38 ) (3) 若以概率 99.73%(t 3)保证,该农场 10000 亩小麦的平均
在重复抽样情况下:
p (1 p )
p
n
在不重复抽样情况下:
p (1 p ) n
(1 )
p
n
N

某玻璃器皿厂某日生产15000只印花玻璃 杯,现按重复抽样方式从中抽取150只进行 质量检验,结果有147只合格,其余3只为不 合格品,试求这批印花玻璃杯合格率(成数) 的抽样平均误差。
N15000n150
二、区间估计
根据样本指标和抽样误差去推断全及 指标的可能范围,它能说清楚估计的准 确程度和把握程度。
总体平均数和总体成数的估计
X :(x x, x x)
1的概率保证下:x tx
P:(pp, pp)
1的概率保证下: p tp

第5章抽样调查及参数估计(练习题)

第5章抽样调查及参数估计(练习题)

第五章抽样调查及参数估计5.1 抽样与抽样分布5.2 参数估计的基本方法5.3 总体均值的区间估计5.4 总体比例的区间估计5.5 样本容量的确定一、简答题1.什么是抽样推断?用样本指标估计总体指标应该满足哪三个标准才能被认为是优良的估计?2.什么是抽样误差,影响抽样误差的主要因素有哪些?3.简述概率抽样的五种方式二、填空题1.抽样推断是在随机抽样的基础上,利用样本资料计算样本指标,并据以推算总体数量特征的一种统计分析方法。

2.从全部总体单位中随机抽选样本单位的方法有两种,即重复抽样和不重复抽样。

3.常用的抽样组织形式有简单随机抽样、类型抽样、等距抽样、整群抽样等四种。

4.影响抽样误差大小的因素有总体各单位标志值的差异程度、抽样单位数的多少、抽样方法和抽样调查的组织形式。

5.总体参数区间估计必须具备估计值、概率保证程度或概率度、抽样极限误差等三个要素。

6.从总体单位数为N的总体中抽取容量为n的样本,在重复抽样和不重复抽样条件下,可能的样本个数分别是______________和_____________。

7.简单随机_抽样是最基本的抽样组织方式,也是其他复杂抽样设计的基础。

8.影响样本容量的主要因素包括总体各单位标志变异程度_、__允许的极限误差Δ的大小、_抽样方法_、抽样方式、抽样推断的可靠程度F(t)的大小等。

三、选择题1.抽样调查需要遵守的基本原则是( B )。

A.准确性原则 B.随机性原则 C.代表性原则 D.可靠性原则2.抽样调查的主要目的是( A )。

A.用样本指标推断总体指标 B.用总体指标推断样本指标C.弥补普查资料的不足 D.节约经费开支3.抽样平均误差反映了样本指标与总体指标之间的( B )。

A.实际误差 B.实际误差的平均数C.可能的误差范围 D.实际的误差范围4.对某种连续生产的产品进行质量检验,要求每隔一小时抽出10分钟的产品进行检验,这种抽查方式是( D )。

A.简单随机抽样 B.类型抽样 C.等距抽样 D.整群抽样5.在其他情况一定的情况下,样本单位数与抽样误差之间的关系是( B )。

856 第五章

856 第五章
先取得一份总体所有元素的名单(即抽样框) 将总体中所有元素一一按顺序编号 根据总体规模是几位数来确定从随机数表中选几位数码 以总体的规模为标准,对随机数表中的数码逐一进行衡量并决 定取舍 根据样本规模的要求选择出足够的数码个数 依据从随机数表中选出的数码,到抽样框中去找出它所对应的 元素
2 练习
对照附表中的随机数表,练习随机抽样。 要从5000个人(或其他分析单位)的总体中用简单随 机抽样的方法选取500个人作为样本进行调查。
在抽样框中,自A开始,每隔K个个体抽取一个个体,即所抽取个 体的编号分别为A,A十K,A十2K,…,A十(n一1)K
将这n个个体合起来,就构成了该总体的一个样本
001 011 021 031 … 091
002 012 022 032
092
003 013 023 033
093
√ √ √ √ √ 004 014 024 034
094
005 015 025 035
095
006 016 026 …..
096
007 017 027
097
008 018 028
098
009 019 029
099
010 020 030
100
随机起始的分层系统抽样
值得注意的是,系统抽样的一个十分重要的前提条件, 是总体中个体的排列,相对于研究的变量来说,应是 随机的,即不存在某种与研究变量相关的规则分布。 否则,系统抽样的结果将会产生极大的偏差。
2、等距随机抽样
等距抽样常常在新生入学时,根据随机的学 号进行等距抽样进行分班,也就是说样本的第 一个个体被随机选定后,其他的个体就可以按 一定规律选出来,这就是等距抽样的方法也叫 有序抽样。

医药统计学 第五章 抽样分布

医药统计学 第五章 抽样分布

3、总体参数(parameter): 总体X 的数字特征即总体的特征 指标。
eg: 、 。
(三)样本(sample):数理统计方法实质上是由局部来推 断整体,即通过一些个体的特征来推断总体的特征。 eg:观察某显像管厂所有显像管的平均寿命。
1、抽样研究(sampling):在实际工作中,所要研究的总 体无论是有限的还是无限的,通常都是采用抽样研究。
抽样:依照一定的规则从总体X 中抽取n个个体,然后对这
些个体进行测试或观察得到一组数据

目的:抽样研究的目的是用样本信息推断总体特征。
eg:
从上例的有限总体(浙江省2006年7岁健康男孩)中,按照随机化
原则抽取100名7岁健康男孩,他们的身高值
即为样本。因
此,从总体中抽取样本的过程为抽样,抽样方法有多种。
第四章 抽样分布
数理统计基本概念 抽样分布
学习目的和要求
掌握总体、样本、统计量、标准误等数理统计的基本概
念;查表求 2 分布、t 分布、F分布的临界值及其定理;
熟悉 X 的分布、 2分布、t 分布、F分布定义、性质和应
用。
数理统计的基本任务:
实验或 调查
以概率论为理论基础,通过样本提供的信息,对总 体的统计规律和特征进行估计与推断,其实用性较强。
1、 2分布(chi-square distribution):是指数分布的改进,
尤其当n较大时, 2分布可全面反映随机变量的分布。
eg: 寿命、保险等资料。
定义:设随机变量
为相互独立且服从标准
正态分布N(0,1),则称随机变量
2= X12 + X22 +X32 + … + … +Xn2

第五章《用样本推断总体》复习讲义(解析版)

第五章《用样本推断总体》复习讲义(解析版)

第五章 用样本推断总体(考点讲义)1.样本容量:样本中个体的数目叫做样本容量。

2.在用样本特性估计总体特性时,要注意一是样本要有代表性,二是样本容量要足够大。

3.求平均数的公式:123nx x x x x n++++=L【类型一】利用样本平均数估算总体数量【例1】为了创设全新的校园文化氛围,进一步组织学生开展课外阅读,让学生在丰富多彩的书海中,扩大知识源,亲近母语,提高文学素养.某校准备开展“与经典为友、与名著为伴”的阅读活动,活动前对本校学生进行了“你最喜欢的图书类型(只写一项)”的随机抽样调查,相关数据统计如下:请根据以上信息解答下列问题:(1)该校对_____名学生进行了抽样调查,m = _____n =_____(2)请将图1和图2补充完整,并求出扇形统计图中小说所对应的圆心角度数;(3)已知该校共有学生800人,利用样本数据估计全校学生中最喜欢科幻人数约为多少人?【解析】(1)用其它初一它的百分比即可;(2)用360∘乘以所占得百分比;(3)用样本估计总体.解:(1)20÷10%=200(名).由图1,得n=40,m=100-20-10-40=30答:该校对200名学生进行了抽样调查;m=30,n=40(2)如图:小说对应的圆心角度数为360∘×20%=72∘;(3)800×30%=240.答:全校学生中最喜欢小说的人数约为240名.【对应训练1】为了估计湖里有多少条鱼,小刚先从湖里捞出了100条鱼做上标记,然后放回湖里去.经过一段时间,带有标记的鱼完全混合于鱼群后,小刚又从湖里捞出200条鱼,如果其中15条有标记,那么估计湖里有鱼()A.1333条B.3000条C.300条D.1500条【答案】A【解析】在样本中“捕捞200条鱼,发现其中15条有标记”,即可求得有标记的所占比例,而这一比例也适用于整体,据此即可解答.【对应训练2】我国古代数学名著《九章算术》有“米谷粒分”.粮仓开仓收粮,有人送来谷米1608石,验得其中夹有谷粒.现从中抽取谷米一把,共数得256粒,其中夹有谷粒32粒,则这批谷米内夹有谷粒约是________石.【答案】201【解析】根据256粒内夹谷32粒,可得比例,再乘以1608石,即可得出答案.【解答】解:根据题意,得1608×32=201(石),256∴这批谷米内夹有谷粒约201石.【对应训练3】某山区中学280名学生参加植树节活动,要求每人植3至6棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:3棵;B:4棵;C:5棵;D:6棵,将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)这次调查一共抽查了________名学生的植树量;请将条形图补充完整;(2)被调查学生每人植树量的众数是________棵、中位数是________棵;(3)求被调查学生每人植树量的平均数,并估计这280名学生共植树多少棵?【解析】(1)由B类型的人数及其所占百分比可得总人数,总人数乘以D类型的对应的百分比即可求出其人数,据此可补全图形;(2)根据众数和中位数的概念可得答案;(3)先求出样本的平均数,再乘以总人数即可.【解答】(1)这次调查一共抽查植树的学生人数为8÷40%=20(人),D类人数=20×10%=2(人);条形图补充如图:(2)植树4棵的人数最多,则众数是4,共有20人植树,其中位数是第10、11人植树数量的平均数,则中位数是4,(3)x=4×48×562×7=5.3(棵),205.3×280=148(棵).答:估计这3280名学生共植树1484棵.【类型二】用样本估计总体【例2】为了提高学生的综合素养,某校开设了五门第二课堂活动课,按照类别分为:A“剪纸”、B“绘画”、C“雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如下两幅不完整的统计图.根据信息,回答下列问题:(1)本次调查的样本容量为________,统计图中的a=________,b=________;(2)通过计算补全条形统计图;(3)该校共有3000名学生,请你估计全校喜爱“雕刻”的学生人数.解:(1)样本容量为1815%=120,a=120×10%=12,b=120×30%=36.故答案为:120;12;36.(2)组频数:120―18―12―30―36=24(人),补全条形统计图如图所示:(3)3000×30120=750(人),答:该校喜爱“雕刻”约有750人.【跟踪训练1】在一个不透明的盒子中装有20个黄、白两种颜色的乒乓球,除颜色外其它都相同,小明进行了多次摸球试验,发现摸到白色乒乓球的频率稳定在0.2左右,由此可知盒子中黄色乒乓球约有…()A.2个B.4个C.18个D.16个【答案】D【跟踪训练2】质检部门从1000件电子元件中随机抽取100件进行检测,其中有2件是次品.试据此估计这批电子元件中大约有________件次品.【答案】20【解析】根据随机抽取100件进行检测,其中有2件是次品,可以计算出这批电子元件中大约有多少件次品.【跟踪训练3】书籍是人类进步的阶梯.为了解学生的课外阅读情况,某校随机抽查了部分学生本学期阅读课外书的册数,并绘制出如下统计图.(1)共抽查了多少名学生?(2)请补全条形统计图,并写出被抽查学生本学期阅读课外书册数的众数、中位数;(3)根据抽查结果,请估计该校1200名学生中本学期课外阅读5册书的学生人数.解:(1)12÷30%=40(名).(2)如图所示,由图知,众数为5,中位数为5.(3)∵抽查的样本中,课外阅读5册书的学生人数占14×100%=35%,40∴估计该校学生课外阅读5册书的学生人数约占35%,∴该校1200名学生中课外阅读5册书的学生人数约为1200×35%=420(人).【类型三】用样本频率估计总体频率【例3】中长跑(男生1000m,女生800m)是河南省某市中招体育考试的必考项目.甲、乙两校为了解本校九年级学生的训练情况,各随机抽取了20名九年级学生的中长跑模拟测试成绩(满分:30分),将成绩进行统计、整理与分析,过程如下:【收集数据】【整理数据】整理以上数据,得到模拟测试成绩x(分)的频数分布表.【分析数据】根据以上数据,得到以下统计量.根据以上信息,回答下列问题:(1)填空:a= ________,b=_________, m=________, n=________;(2)综合上表中的统计量,推断________校学生中长跑成绩更好,理由为________(写出一条即可)(3)若甲、乙两校各有800名学生,请估计两校中长跑模拟测试成绩不低于25分的学生一共有多少名?解:(1)由数据可得,a=7,b=8,m=24.75,n=23.4. 故答案为:7;8;24.75;23.4.(2)甲校学生成绩的平均数比乙校学生成绩的平均数高,且甲校学生成绩的方差比乙校学生成绩的方差小,成绩较稳定.(答案不唯一,合理即可)故答案为:甲.=720(名),(3)(800+800)×1082020答:估计两校中长跑模拟测试成绩不低于25分的学生一共有720名.【跟踪训练】今年是建党100周年,为了让全校学生牢固树立爱国爱党的崇高信念,某校开展了形式多样的党史学习教育活动,八、九年级(各有500名学生)举行了一次党史知识竞答(满分为100分),然后随机各抽取20名同学的成绩进行了收集、统计与分析,过程如下:【收集数据】两个年级抽取的20名同学的成绩如下表:八年级:7968878985598997898998938586899077898379九年级:8688979194625194877194789255979294948598【整理数据】将两个年级的抽样成绩进行分组整理:成绩x(分)50≤x<6060≤x<7070≤x<8080≤x<9090≤x<100八年级113114九年级2a b411【分析数据】抽样的平均数、众数、中位数、方差和优秀率(90分及以上为优秀)如下表:年级统计量平均数众数中位数方差优秀率八年级8589c80.420%九年级859491.5192d请根据以下信息,回答下列问题:(1)填空:a=________,b= ________,c=________,d=________;(2)请估计此次知识竞答中,八年级成绩优秀的学生人数;(3)小李同学认为九年级的整体成绩更好,请从至少两个方面分析其合理性.解:(1)由表中数据可知,九年级落在60≤x<70内的只有62,故a=1;九年级落在70≤x<80内的有71,78,故b=2;八年级成绩按照从小到大的顺序排列后,落在第10,11的数为87,89,∴中位数为88,故c=88;九年级90分及以上的学生有11人,∴九年级的优秀率为1120×100%=55%.故答案为:1;2;88;55%.(2)∵500×20%=100,∴估计此次知识竞答中,八年级成绩优秀的学生人数为100人.(3)九年级抽样成绩的众数,中位数和优秀率均高于八年级,说明九年级平均成绩更高,高分更多,因此九年级整体成绩更好.【类型四】用样本推断总体的实际应用【例4】某运动鞋经销商随机调查某校40名女生的运动鞋号码,结果如下表:鞋的号码35.53636.53737.5人数4616122现在该经销商要进200双上述五种运动鞋,你认为应该怎样进货比较合理?解析:先求出各鞋码所占比例,再乘200,即可得到所需进货数.解:由表中数据可知各鞋码的女生的比例,根据比例进货.需要进35.5码运动鞋:200×440=20(双),需要进36码运动鞋:200×640=30(双)需要进36.5码运动鞋:200×1640=80(双),需要进37码运动鞋:200×1240=60(双)需要进37.5码运动鞋:200×240=10(双)。

市场调查分析师考试《调查概论(中级)》章节题库-第五章 抽样方法【圣才出品】

市场调查分析师考试《调查概论(中级)》章节题库-第五章 抽样方法【圣才出品】
样方法就称为整群抽样。本题中,以家庭为群进行抽取,然后对抽取的每个家庭再进行调查。
8.用设计效果来评介设计方案的抽样效率,其效率的基准是( )。
A.简单随机抽样
B.系统抽样
C.类似内容的抽样
D.配额抽样
【答案】A
【解析】美国统计学家 Kish 提出了一个设计效果的指标,用英文字头简写为 Deff ,它
是把设计方案的抽样
方差与简单随机抽样的抽样方差进行比较。若设计方案的样的抽样方差用
2 srs

则 Deff
2 D
2 srs
。在 Deft 小于 1 时,表示设计方案的效率高于简单随机抽样;反之, Deff
大于 1 时表示设计方
4 / 25
圣才电子书 十万种考研考证电子书、题库视频学习平台
10.圆形系统抽样法适合用于( )。 A.总体单元数 N 被样本量 n 所整除的情况 B.总体单元数 N 不能被样本量 n 所整除的情况 C.总体单元按大小的顺序排列 D.总体单元不按大小顺序排列 【答案】B 【解析】如果 N 不能被 n 整除,则可以使用圆形系统抽样法来避免出现可能样本量不 一致的情况。圆形系统抽样法的优点每一个单元都有一个相同的被抽入样本的机会。

何单元入样。随意抽样的例子是“街道拦截”访问法,调查人员可以在街道上抽选一个碰巧 路过的人进行调查。
3.随意抽样假定总体是( )。 A.同质的 B.异质的 C.足够大的 C.很小的 【答案】A 【解析】随机抽样又称任意抽样,样本单元的抽选以无目的、随意的方式进行,几乎没 有或完全没有计划。随意抽样假定总体是同质的,如果总体各单元都相似,那么可以抽选任 何单元入样。

案的效率低于简单随机抽样。
9.用设计效果来评价设计方案的抽样效率,用来比较的是两个抽样方案的( )。 A.抽样方差 B.估计量 C.抽样标准误差 D.抽样分布 【答案】A

教育科学研究方法005第五章 抽样方法

教育科学研究方法005第五章 抽样方法
大,但也不允许随意,必须确认选取的样本是事先需要的,包含
的研究信息丰富。这种研究对象的选择作为背景知识应该反映在
最后的研究报告中。
思考题
1.结合自己的研究实践,你认为影响抽样误差的最主要因素是什么?
为什么?
2.你使用过以下哪种抽样方法?效果如何?
(1)简单随机抽样
(2)分层随机抽样
(3)最大差异抽样
(4)典型个案抽样
3.试比较不同抽样方法的优点与不足。
4.简单随机抽样和分层随机抽样有什么不同?举例说明。
5.随机抽样中分层随机抽样方法是如何进行的?举例说明。
6.当使用非随机抽样时,典型个案抽样和极端个案抽样有什么不同?
请各举一例详细说明。
7.如何评估抽样误差?
谢谢您的观看
Thank you
的统计量,标准误的表示方法不同。最常用的是均数的标准误,计算

公式为: = (s为样本标准差)

标准误可以说明不同样本之间的变异情况,也即不同样本的参差
情况。标准误用来衡量抽样误差。标准误越小,表明样本统计量与总
体参数的值越接近,用样本统计量推断总体参数的可靠度越高。抽样
误差应与登记性误差和系统偏误相区别。
(1)常用的随机抽样方法
教育研究中常用的随机抽样方法有简单随机抽样、等距抽
样、分层随机抽样、整群抽样四种。
(2)常用的非随机抽样方法
非随机抽样也称为有目的抽样。教育研究中常用的非随机
抽样有全面抽样、最大差异抽样、极端个案抽样、典型个案抽
样等类型。
三、抽样方法的选择
选择适当的抽样方法,首先,受制于研究的目的以及对总体
总体现象分类比较明显时,采用分层随机抽样比其他方法的抽样误

第五章抽样技术和方法

第五章抽样技术和方法
户按时填写寄还。 3.对固定调查户,每隔一定时间进行访问调查、指导,
检查记录,收集资料。 4.定期邀请固定调查户代表举行座谈会。
四、抽样调研
抽样调查的含义
• 抽样调查实际上是一种专门组织的非全面调查。它是按 照一定方式,从调查总体中抽取部分样本进行调查,用 所得的结果说明总体情况的调查方法。抽样调查是现代 市场调查中的重要组织形式,是目前国际上公认和普遍 采用的科学的调查手段。抽样调查的理论原理是概率论。 抽样调查分为随机抽样和非随机抽样两类
一、实验法的含义 二、实验法的应用步骤 三、选择实验设计 四、实验对象和实验环境的选择 五、实验过程的控制 六、实验法的特点、优缺点
一、实验法的含义
1、含义 • 实验法就是我们有意识地改变变量A,然后看变量B
是否随着变化。如果变量B随着变量A的变化而变化, 就说明变量A对变量B有影响。
2、实验调查的基本要素
1根据市场调查课题提出研究假设2进行实验设计确定实验方法3选择实验对象4进行实验5整理分析资料做实验检测得出实验结论1无对照组的事前事后设计前后连续对比试验法2有对照组的事后设计对照组与实验组对比实验法3有对照组的事前事后设计实验组与对照组前后对比实验1无对照组的事前事后设计含义
第三节 实验法及其应用
• 配额抽样按分配样本数额时的做法不同可以分为独立控制 配额抽样和相互控制配额抽样两种方式。
• 独立控制配额抽样
• 例:教材76页;
• 相互控制配额抽样
• 例:教材77页;
第三节 随机抽样调查
• 随机抽样是按照随机原则抽取样本,即在总体中 抽取单位时,完全排除了人的主观因素的影响,使每 一个单位都有同等的可能性被抽到。
• 实验效果就是消除非实验因素影响,而仅受实验因素影响的净实验效果

《统计学原理》第5章:抽样推断

《统计学原理》第5章:抽样推断
lim P( x X ) 1
n
抽样推断的基本原理
统计推断的理论基础—样本的概率分布
按一定方法随机抽取样本时,所有可能样本的 特征值及其所对应的概率分布情况
学生 A B C D E F G 成绩 30 40 50 60 70 80 90
按随机原则考虑顺序重复抽样抽选出4名学生。
抽样推断的一般问题
样本可能数目
按照一定的抽样方法和组织方式,从总体N中抽取n个 单位构成样本,一共可以抽出的不同样本的数量,一般 用M表示.
考虑顺序的不重复抽样 考虑顺序的重复抽样
M N! (N n)!
M Nn
不考虑顺序的不重复抽样 不考虑顺序的重复抽样
M N! n!(N n)!
全及指标与样本指标
•根据全及总体中各单位的标志值或标志属性计算得 来,反映总体某种特征的指标 •根据样本总体中各单位的标志值或标志属性计算得 来的综合指标.
抽样推断的一般问题
抽样方法
•重复抽样和不重复抽样
•考虑顺序的抽样和不考虑顺序的抽样
抽样推断的一般问题
抽样方法—重复抽样
从总体N个单位中随机抽取一个容量为n的样本,每 次抽取一个单位,把结果登记后再放回到总体中,重新 参加下一次的抽取.
抽出个体
登记特征
放回总体
继续抽取
抽样推断的一般问题
抽样方法—不重复抽样
从总体N个单位中随机抽取一个容量为n的样本, 每次抽取一个单位,把结果登记后不再放回到 总体参加下一次的抽取.
抽出 个体
登记 特征
继续 抽取
抽样推断的一般问题
抽样方法—考虑顺序的抽样
从总体N个单位中抽取n个单位构成样本,不但考虑样本 各单位成分的不同,而且还要考虑样本各单位的中选顺 序.

《抽样调查》第五章 整群抽样-课件ppt

《抽样调查》第五章  整群抽样-课件ppt

平方和 19 112
1 216 203 1 235 315
自由度 6 524 530
均方(方差)
sb2=3 185 sw2=2 321 s2=2 331
三、整群抽样效率分析及群的划分原则
在总体方差固定的条件下,整群抽样的精 度取决于群内相关系数,群内相关系数愈小, 即群内差异或群内方差愈大,则估计量的精度 愈高。
群间抽样,群内全查 层间全查,层内抽查
分组原则 缩小群间差异,
扩大层间差异,
扩大群内差异
缩小层内差异
分组目的 扩大抽样单元
缩小总体
分组结果 总方差=群间方差+群 总方差=层间方差+层
内方差
内方差
第二节 群大小相等的整群抽样
—对群进行简单随机抽样时的估计量与方差
❖ 一、符号说明 ➢ 总体群数 N(A) ,样本群数 n(a) ➢ 第i群中包含的总体单位数 M ➢ 总体第i群第j个单位指标值 Yij(i=1,2...N;j=1,2..M) ➢ 样本第i群第j个单位指标值 yij(i=1,2...n;j=1,2..M)
)(Yik Y Y )2
)
(
j
k)
ˆc
sb2
sb2 (M
s2 1)s2

c
M (N 1)Sb2 (NM 1)S 2 (M 1)(NM 1)S 2
c
1
S 2 S2
sb 2
M n 1
n i 1
( yi
y)2
s2
1 n
n i 1
si2
分析
c 的取值范围在[ 1 ,1]。
1 M
明群当内单元c 越0 相时似,;表明c群值完越全小是,随则机群的内;单c元值的越差大异,越表大。 当 c 0时,表示这个差异比随机分组时群内的差异

第五章 抽样估计

第五章  抽样估计
3.题型:(1)已知 ,求F(t)(2)已知F(t),求区间(实值求 )
步骤: 步骤:
例题1.(题型一)
某乡水道总面积2000亩,从中随机抽取40亩(重复抽样),每亩产量资料如下:
每亩产量(斤)
亩数
x
xf
(x- ) f
400—450
450—500
500—550
550—600
600—650
650—700
1)常用的参数和统计量(指标:平均指标和变异指标)
对于数量标志,计算平均指标和变异指标( )
对于品质标志,计算成数指标(结构相对指标)来表示某种性质的单位数在总体全部单位数中所占的比重。即p=(n1/n),则总体中不具有某种性质的单位数在总体中所占的比重为:q=1-p
如果进行对品质标志是非标志进行赋值,即:定义为“1”和“0”,则有:
(五)抽样估计的置信度
前面我们学习了两种误差,即平均误差和极限误差,这两种误差有着不同的含义。
抽样平均误差反映抽样误差一般水平,是样本资料和总体之间所有离差值的一个平均数。极限误差指进行抽样在统计工作前设立的一个误差最大值。二者的关系是 ( )用抽样误差概率度来表示的。
我们客观地承认,只要进行抽样调查,必然存在误差,并且根据经验或工作要求,我们可以设置一个误差最大值,但要使抽样调查结果一定符合误差在极限误差范围内,却并非能够实现。所以要保证误差不超过一定范围的,只能给一定程度的概率保证程度。抽样估计置信度就是表明抽样指标和总体指标的误差不超过一定范围的概率保证程度。
如:t=1 F(t)=P=68.27%查《正态分布概率分t=2 F(t)=F(2)=P=95.45%布表》
t=3 F(t)=F(3)=P=99.73%
t=1.64 F(t)=90%

第五章抽样检验

第五章抽样检验
1、用方案(n︱Ac,Re)对一批不合格品率为p的产品实施计 件检验,试计算接收概率L( p)
(提示:二项分布) 2、用方案(n︱Ac,Re)对一批单位产品不合格数为p的产品
实施计点检验,试计算接收概率L( p) (提示:泊淞分布)
第五章抽样检验
三、计数调整型抽样检验标准 《计数抽样检验程序第1部分:按接受质量限
第五章抽样检验
二、抽样检验原理
1 批质量的描述 2 抽样方案及其类型 3 抽样特性曲线 (OC曲线 ) 4 抽样方案的确定 5 思考题
第五章抽样检验
3 抽样特性曲线 (OC曲线 )
1、 OC曲线 ?设有一批产品N=8,其中不合格品数M=4,抽样方案(4︱2,3),请
问:该批产品经过抽样检验后被判为合格的可能性(或概率L(P=50%))有 多大? 2、OC曲线的影响因素
第五章抽样检验
5、镇江稳润光电公司发光二极管入库抽样检验案例
①确定产品质量特性要求、不合格分类及相应的批质量要求(次抽样) ④组成交验批N(本例N 取10000) ⑤检索GB/T2828获得抽样检验计划 ⑥执行抽样检验计划 备注: GB/T2828.1的表10给出了各字码所对应的一次抽样方案OC曲线
L(p)及其数值表,这些图表也可用于与等效的二次或五次抽样方案。 当然我们也可以用二项分布或帕淞分布进行计算。
第五章抽样检验
GB/T2828.1的OC曲线L(p)及其数值表
•本例查到的“光电参数”抽样方案(200︱1,2)OC曲线特 殊数值表如下:
• 注: GB/T2828.1中各方案的 L(p=AQL)设计在85%~98%之 间
所抽取的样本要能够代表总体,样本的质量特性指标在统计学意义上要能够反 映总体的质量特性指标 ?怎样才能使抽样具备代表性?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档