大一线性代数试题
大一线性代数期末考试试题

大一线性代数期末考试试题一、选择题(每题2分,共10分)1. 向量空间的定义中,下列哪一项不是其公理化系统的一部分?A. 向量加法的封闭性B. 向量的数乘封闭性C. 向量加法的交换律D. 存在非零零向量2. 设A是一个3阶方阵,且满足A^2 - 2A + I = 0,其中I是3阶单位矩阵。
则A^3的值为:A. AB. 2AC. 3AD. 03. 在线性代数中,下列哪个矩阵是不可逆的?A. 单位矩阵B. 对角矩阵C. 行最简矩阵D. 行阶梯矩阵4. 特征值和特征向量的定义中,下列说法正确的是:A. 特征向量可以是零向量B. 每个特征值都有对应的特征向量C. 一个矩阵的特征值是唯一的D. 一个矩阵可能没有特征值5. 设T是一个线性变换,且T保持向量加法和数乘,那么T是一个:A. 线性变换B. 非线性变换C. 仿射变换D. 恒等变换二、填空题(每题2分,共10分)6. 若向量v = (1, 2, 3),向量w = (x, y, z),且v与w垂直,则x + y + z = _______。
7. 设矩阵A = (\*, \*, \*; \*, \*, \*; \*, \*, \*),若A的行列式为0,则称A为奇异矩阵,否则称为非奇异矩阵。
对于3阶方阵,其行列式计算公式为:det(A) = \*\*\* - \*\*\* + \*\*\* - \*\*\*+ \*\*\*。
8. 在求解线性方程组时,若系数矩阵的秩小于增广矩阵的秩,则该方程组是_______的。
9. 设P是n阶置换矩阵,那么P的行(或列)向量中,有_______个1,n-_______个0。
10. 对于一个n维向量空间,其基可以通过_______个线性无关的向量来构造。
三、简答题(每题10分,共30分)11. 请简述线性相关与线性无关的定义,并给出一个例子说明两者的区别。
12. 给出一个具体的3维向量空间,并说明其基和维数。
13. 解释何为矩阵的秩,并举例说明如何计算一个矩阵的秩。
线性代数大学试题及答案

线性代数大学试题及答案一、选择题(每题5分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的伴随矩阵|adj(A)|的值为()。
A. 4B. 8C. 2D. 1答案:B2. 若向量a=(1, 2, 3),向量b=(2, 3, 4),则向量a和向量b的点积为()。
A. 11B. 12C. 13D. 14答案:C3. 设矩阵A和矩阵B为同阶方阵,且AB=I,则矩阵A和矩阵B互为()。
A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 正交矩阵答案:B4. 设矩阵A为3阶方阵,且A的特征多项式为f(λ)=λ(λ-1)(λ-2),则矩阵A的特征值为()。
A. 0, 1, 2B. 0, 1, 3C. 1, 2, 3D. 2, 3, 4答案:A二、填空题(每题5分,共20分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的行列式|A|=______。
答案:-22. 设向量a=(1, 2),向量b=(3, 4),则向量a和向量b的叉积为向量c=(______, ______)。
答案:-2, 63. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],矩阵B=\[\begin{bmatrix}2 & 1 \\ 4 & 3\end{bmatrix}\],则矩阵A和矩阵B的乘积AB=______。
答案:\[\begin{bmatrix}10 & 11 \\ 22 & 25\end{bmatrix}\]4. 设矩阵A的特征值为λ1=2,λ2=3,则矩阵A的特征多项式为f(λ)=______(λ-2)(λ-3)。
答案:(λ-2)(λ-3)三、解答题(每题10分,共60分)1. 已知矩阵A=\[\begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\],求矩阵A的逆矩阵。
大学数学线性代数题库及答案解析

大学数学线性代数题库及答案解析1. 求解方程组a) 3x + 2y - z = 7-x + 3y + 2z = -112x - y + 4z = 5解析:首先,我们可以使用增广矩阵表示方程组:[ 3, 2, -1, 7;-1, 3, 2, -11;2, -1, 4, 5 ]接下来,通过行初等变换将矩阵化为阶梯形:[ 3, 2, -1, 7;0, 7/4, 3/4, -21/4;0, 0, 9/7, 4/7 ]从第三行可以得到 z = 4/7,代入第二行可得 y = -21/7,再代入第一行可以得到 x = 3。
因此,方程组的解为 x = 3, y = -3, z = 4/7。
b) 2x + 3y + 2z = 10x - y + z = 44x + 2y + z = 12解析:同样,我们使用增广矩阵表示方程组:[ 2, 3, 2, 10;1, -1, 1, 4;4, 2, 1, 12 ]通过行初等变换将矩阵化为阶梯形:[ 2, 3, 2, 10;0, -5, -1, -6;0, 0, 0, 0 ]从第二行可以得到 -5y - z = -6,即 z = -6 + 5y。
我们可以令 y = t,其中 t 为任意常数。
则得到 z = -6 + 5t。
将 z 的值代入第一行可以得到x = 4 - 3t。
因此,方程组的解可以表示为 x = 4 - 3t, y = t, z = -6 + 5t。
2. 求解线性方程组的向量空间a) 给定矩阵 A = [1, 2, -1; 2, 4, -2; 3, 6, -3],求解 A 的列空间。
解析:列空间由矩阵 A 的列向量张成。
我们可以计算矩阵 A 的列向量组的极简形式:[ 1, 2, -1;2, 4, -2;3, 6, -3 ]通过初等行变换得到:[ 1, 2, -1;0, 0, 0;0, 0, 0 ]可以看出,第一列是主列,而第二列和第三列都是自由列。
因此,矩阵 A 的列空间可以表示为 Span{[1, 2, -1]}。
大学线代期末试题及答案

大学线代期末试题及答案一、选择题(每题5分,共20分)1. 设A为3阶方阵,且|A|=2,则|2A|等于多少?A. 4B. 8C. 16D. 32答案:B2. 若矩阵A可逆,则下列说法正确的是:A. A的行列式为0B. A的行列式不为0C. A的逆矩阵不存在D. A的逆矩阵是唯一的答案:B3. 向量组α1, α2, α3线性无关,则下列说法正确的是:A. 这三个向量可以构成一个平面B. 这三个向量可以构成一个空间C. 这三个向量可以构成一个直线D. 这三个向量可以构成一个点答案:B4. 设A是n阶方阵,如果A的特征值为λ,则下列说法正确的是:A. λ是A的最小特征值B. λ是A的最大特征值C. λ是A的特征值D. λ不是A的特征值答案:C二、填空题(每题5分,共20分)1. 若矩阵A的秩为2,则矩阵A的行列式|A|等于______。
答案:02. 设向量组α1, α2, α3线性相关,则至少存在不全为零的实数k1, k2, k3使得k1α1 + k2α2 + k3α3 = ______。
答案:03. 若A是3阶方阵,且A的迹等于6,则A的特征值之和等于______。
答案:64. 设向量空间V中有两个子空间U和W,若U与W的交集只包含零向量,则称U和W为______。
答案:互补子空间三、解答题(每题15分,共40分)1. 已知矩阵A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],求A的逆矩阵。
答案:首先计算A的行列式,|A| = 1*4 - 2*3 = -2。
然后计算A的伴随矩阵,即\[\begin{pmatrix} 4 & -2 \\ -3 & 1\end{pmatrix}\]。
最后,A的逆矩阵为\[\begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}\] / (-2) = \[\begin{pmatrix} -2 & 1 \\1.5 & -0.5 \end{pmatrix}\]。
大一线性代数练习题

线性代数(一)一.填空题(4x6=24分)1.计算3阶行列式21141183--=- - 4 。
2.已知排列1r46s97t3为奇排列,则r ,s ,t 的取值分别为 。
3.用行列式的性质计算:xy x y y x yx x yxy+++= -X^2-Y^2-XY 。
4.设A 为3阶方阵,而且2A =-,则=A A T 4=*A A1*4A A --=(注:*A 为A 的伴随矩阵.)5.设1114001205A B ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,, 则=AB ;T B A = ;=2A ;n A = 。
6. 设矩阵A 满足24A A E O +-=,则()1A E --= 。
二.选择题(4x9=36分) 1.12021k k -≠-的充分必要条件是(c )。
A 、1k ≠- B 、3k ≠ C 、31k k ≠≠-且 D 、31k k ≠≠-或 2、如果1112132122233132331a a a D a a a a a a ==,1111121312121222331313233423423423a a a a D a a a a a a a a -=--,那么1D =()。
A 、8 B 、-12 C 、24 D 、-243.如果304050x ky z y z kx y z +-=⎧⎪+=⎨⎪--=⎩有非零解,则()A 、01k k ==或B 、01k k ==-或C 、11k k ==-或D 、31k k =-=-或 4.设,(2)A B n n ≥为阶方阵,则必有( ).A 、AB A B +=+ B 、AB BA =;C 、 A B B A =;D 、 BA AB =.5.设cdb aa cb d ad b cd c b aD =4,则=+++44342414A A A A ( )。
A 、0; B 、1; C 、2)(d c b a +++; D 、22222)(d c b a +++. 6.设11121314212223243132333441424344a a a a a a a a A a a a a a a a a ⎛⎫ ⎪ ⎪= ⎪⎪ ⎪⎝⎭,14131211242322213433323144434241a a a a a a a a B a a a a a a a a ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭, 1001010000101000P ⎛⎫ ⎪ ⎪= ⎪⎪ ⎪⎝⎭,21000001001000001P ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭,其中A 可逆,则1B -等于( )。
大一线代试题及答案

大一线代试题及答案一、选择题(每题2分,共10分)1. 线性代数中,向量空间的维数是指:A. 向量空间中的向量个数B. 向量空间中的基的个数C. 向量空间中任意向量的分量数D. 向量空间中最大的线性无关向量组的向量个数答案:D2. 对于任意的矩阵A,行列式|A|等于:A. 矩阵A的迹B. 矩阵A的秩C. 矩阵A的逆的负数D. 矩阵A的主对角元素的乘积答案:A3. 如果一个矩阵A可逆,那么下列哪个选项是正确的?A. |A| = 0B. A的秩小于A的阶数C. A的行列式不为零D. A的转置矩阵不可逆答案:C4. 对于n维向量空间中的任意两个向量,它们:A. 一定线性相关B. 一定线性无关C. 可以线性相关也可以线性无关D. 以上都不对答案:C5. 矩阵的特征值是:A. 矩阵的对角线元素B. 矩阵的迹C. 满足方程Ax = λx的非零向量x对应的λD. 矩阵的行列式的值答案:C二、填空题(每题3分,共15分)6. 向量组α1, α2, ..., αk的秩为r,那么这组向量的极大无关组中包含的向量个数为________。
答案:r个7. 设A是一个m×n矩阵,B是一个n×m矩阵,若AB=I(单位矩阵),则称矩阵B为矩阵A的________。
答案:左逆矩阵8. 若向量β1, β2, ..., βs能由向量组α1, α2, ..., αt线性表示,且向量组α1, α2, ..., αt也能由向量组β1, β2, ...,βs线性表示,则称向量组α1, α2,..., αt和向量组β1,β2, ..., βs________。
答案:等价9. 设矩阵A的特征多项式为f(λ)=λ^2 - aλ + b,那么矩阵A的迹为________。
答案:a10. 对于任意的n阶方阵A,|A^T| = |A|________。
答案:相等三、解答题(共75分)11. (15分)已知矩阵A和B满足AB=BA,证明(A+B)^2 = A^2 + B^2 + 2AB。
线性代数大学试题及答案

线性代数大学试题及答案一、选择题(每题2分,共20分)1. 向量空间的基是该空间的一组向量,它们满足以下哪些条件?A. 线性无关B. 向量空间中的任何向量都可以由基向量线性组合得到C. 向量空间中的任何向量都可以由基向量线性表示D. 所有选项答案:D2. 矩阵A的秩是指:A. A的行向量组的秩B. A的列向量组的秩C. A的转置矩阵的秩D. 所有选项答案:D3. 下列哪个矩阵是可逆的?A. 零矩阵B. 任何2x2的对角矩阵,对角线上的元素不全为零C. 任何3x3的单位矩阵D. 任何4x4的对称矩阵答案:B4. 线性变换可以用矩阵表示,当且仅当:A. 该变换是线性的B. 该变换是可逆的C. 变换的基向量线性无关D. 变换的输出空间是有限维的答案:C5. 特征值和特征向量是线性变换的基本概念,其中特征向量是指:A. 变换后长度不变的向量B. 变换后方向不变的向量C. 变换后保持不变的向量D. 变换后与原向量成比例的向量答案:D6. 矩阵的迹是:A. 矩阵主对角线上元素的和B. 矩阵的行列式的值C. 矩阵的秩D. 矩阵的逆的转置答案:A7. 以下哪个矩阵是正交矩阵?A. 单位矩阵B. 任何对称矩阵C. 任何对角矩阵D. 任何行列式为1的方阵答案:A8. 矩阵的行列式可以用于判断矩阵的:A. 可逆性B. 秩C. 特征值D. 迹答案:A9. 线性方程组有唯一解的条件是:A. 系数矩阵是可逆的B. 系数矩阵的秩等于增广矩阵的秩C. 方程的个数等于未知数的个数D. 所有选项答案:B10. 以下哪个矩阵是对称矩阵?A. 单位矩阵B. 对角矩阵C. 任何方阵的转置D. 任何方阵与其转置的乘积答案:D二、填空题(每题2分,共10分)1. 矩阵的______是矩阵中所有行(或列)向量生成的子空间的维数。
答案:秩2. 如果矩阵A和B可交换,即AB=BA,则称矩阵A和B是______的。
答案:可交换3. 一个向量空间的维数是指该空间的______的个数。
线性代数大学试题及答案

线性代数大学试题及答案### 线性代数大学试题及答案#### 一、选择题(每题2分,共20分)1. 设矩阵A是3阶方阵,且|A| = 5,下列哪个矩阵是A的伴随矩阵?A. [1, 2, 3][4, 5, 6][7, 8, 9]B. [1, 4, 7][2, 5, 8][3, 6, 9]C. [1, 2, 3][2, 5, 8][3, 6, 5]D. [1, 2, 3][4, 5, 7][5, 6, 8]2. 向量组的线性相关性是指:A. 向量组中至少有一个向量是0向量B. 向量组中存在不全为0的向量,使得它们线性组合为0向量C. 向量组中任意向量都是其他向量的线性组合D. 向量组中任意向量都不是其他向量的线性组合3. 矩阵的特征值是指:A. 矩阵的对角线上的元素B. 方阵A的非零解x满足Ax = λx的λC. 矩阵的行列式D. 矩阵的迹...(此处省略其他选择题)#### 二、简答题(每题10分,共20分)1. 解释什么是线性空间,并给出一个不是线性空间的例子。
2. 说明什么是矩阵的秩,并解释如何计算一个矩阵的秩。
#### 三、计算题(每题15分,共30分)1. 给定矩阵A:```[2, 1, 1][1, 3, 1][1, 1, 2]```计算矩阵A的行列式,并判断矩阵A是否可逆。
2. 已知向量v1 = (1, 2, 3)^T和v2 = (4, 5, 6)^T,求这两个向量的点积。
#### 四、证明题(每题15分,共20分)1. 证明如果矩阵A和矩阵B可交换,即AB = BA,则矩阵A和B的特征值可以同时对角化。
2. 证明线性变换的核与像的维数之和等于定义域的维数。
#### 五、应用题(每题15分,共10分)1. 某公司有三种产品,其成本和售价如下表所示:| 产品 | 成本 | 售价 |||||| A | 10 | 15 || B | 20 | 30 || C | 5 | 10 |公司希望最大化利润,且每种产品的销售量不超过其成本的两倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(1553=⨯分)
1.若A 为三阶正定矩阵,321,,ααα为三维非零列向量且0
=j T i A αα(3,2,1,,=≠j i j i ),则 。
(A )321,,ααα线性相关;
(B )321,,ααα线性无关;
(C )321,,ααα可能线性相关,也可能线性无关;
(D )只有当321,,ααα均为单位向量时,321,,ααα才线性无关.
2.若A 经过初等行变换为B ,则 。
(A )A 的行向量组与B 的行向量组等价;
(B )A 的列向量组与B 的列向量组等价;
(C )A 的行向量组与B 的列向量组等价;
(D )A 的列向量组与B 的行向量组等价.
3.设三阶矩阵⎪⎪⎪⎭
⎫ ⎝⎛=3232γγαA ,
⎪⎪⎪⎭⎫ ⎝⎛=322γγβB ,其中32,,,γγβα均为三维行向量,已知18=A ,2=B ,则=-B A 。
(A )1 ; (B) 2 (C) 3; (D) 4.
4.向量组s ααα,,,21Λ线性无关的充分条件是 (A ) s ααα,,,21Λ均不是零向量
(B ) s ααα,,,21Λ中有部分向量线性无关
(C ) s ααα,,,21Λ中任意一个向量均不能由其余1-s 个向量线性表示
(D ) 有一组数021====s k k k Λ,使得s s k k k ααα+++Λ2211=0
5.设V 是n 元齐线性方程组0=AX 的解空间,且r A rank =)(,则解空间V 的维数为
(A )r V =dim ; (B )r V >dim ; (C )r n V ->dim ; (D )r n V -=dim
二、填空题(1553=⨯分)
6.已知四阶方阵),,,(4321αααα=A ,且4321ααααβ+++=。
则方程组β=Ax 的一个解向量为 .
7. 向量组⎪⎪⎪⎭⎫ ⎝⎛=1111α,⎪⎪⎪⎭⎫ ⎝⎛=5202α,
⎪⎪⎪⎭⎫ ⎝⎛=7423α的一个最大线性无关组是 .
8. 当k = 时,向量⎪⎪⎪⎪⎪⎭⎫ ⎝⎛3012与⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-k 121的内积为2.
9.设齐次线性方程组为021=+++n x x x Λ,则它的基础解系中所含向量的个数为 .
10.当k = 时,向量⎪⎪⎪⎪⎪⎭⎫ ⎝⎛3012与⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-k 121是正交向量组.
三、计算题(60610=⨯分)
1.设
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=2135212b a A 的一个特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1111ξ, 求数b a ,及A 的全体特征值与特征向量.
2.求向量组 )3,1,2,1(1=T a ,)6,5,1,4(2---=T a ,)7,4,3,1(3---=T a 的秩,并求一个
最大无关组。
3.设
⎪⎪⎭⎫ ⎝⎛--=82593122A ,求一个24⨯矩阵B ,使0=AB ,且2)(=B R .
4.设向量空间3V 的基为 T 1)1,1,1,1(=α, T 2)1,1,1,1(-=α, T 3)1,1,1,1(--=α
求T )1,1,2,1(=α在该基下的坐标.
5.求由()()()0,1,1,1,0,1,1,1,0321===ααα所生成的线性空间.
6.3R 中的两个基为),1,2,5(),4,1,3(),1,7,3(),3,3,2(),1,2,1(21321====ββααα= )6,1,1(3-=β.求从321,,ααα到321,,βββ的过渡矩阵P .
四、证明题(1052=⨯)
1.设*ξ是方程组b AX =的一个解向量,r n b -≠ξξξΛ,,,021是其对应的齐次方程
组0=AX 的基础解系。
证明:
(1)*21,,,ξξξξr n -Λ线性无关;
(2) ***2*1,,,ξξξξξξξ+++-r n Λ线性无关.
2.设有两个线性无关的向量组A :r ααα,,,21Λ;B :r βββ,,,21Λ 且A 可由B 线性表示,求证A 与B 等价.。