求数列通项公式的11种方法

合集下载

求数列通项公式的11种方法

求数列通项公式的11种方法

求数列通项公式的11种方法方法总述:一.利用递推关系式求数列通项的11种方法:累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、换元法(目的是去递推关系式中出现的根号)、 数学归纳法(少用)不动点法(递推式是一个数列通项的分式表达式)、 特征根法二.四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。

2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。

例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

求数列通项公式的十种常用方法

求数列通项公式的十种常用方法

求数列通项公式的十种常用方法一、构造法构造法是最常见的求解数列通项公式的方法,是根据已知的数列的前几项逐步构造出数列的通项公式的过程,主要包括归纳法、设数据项法、递推法等。

1.归纳法归纳法是根据已知数列中前几项,把同一个数列中的每一项视为全体项的一部分,由以已知项为特例,讨论出全体项的总体规律。

2.设数据项法设数据项法是根据数列的某项与它的前面几项的关系来建立通项公式的方法。

设数据项始终指代着形式未知却已给出它跟前几项关系的某一项,而根据设数据项得出的数列形式叫做设数据项形式,其通项公式就是设数据项形式的通项公式。

3.递推法递推法是根据数列中任一项与它的后面几项的关系,从已知项不断向前推出未知项,从而推出数列的通项公式的方法。

二、方程法方程法是利用数列的某一项与此数列的其它项的关系式组成的线性方程组或者非线性方程组,求解通项公式的概念,虽然它给出的通项公式也不易求解,但是它与构造法相比,可能会在某些情况下得到更简洁的通项公式,所以它也成为了求解数列通项公式常用的方法之一。

三、数学归纳法数学归纳法是一种利用一般性原理来更加正规地寻求数列通项公式的方法,它具有比构造法更多的优点,比如说,它可以处理更加复杂的情形(例如次通项不是已知项的一个常数倍)。

四、分析法分析法是指用分析几何和代数几何方法,通过考察数列中某几个项的构成方式,来推导出整个数列的通项公式的抽象方法。

五、导数比导数比是指根据数列的前几项来推算下一项的一种技巧,以项数为横坐标,相邻两项的比值为纵坐标构成一幅函数图象,然后根据曲线图象分析可以推出数列的某种规律,从而推出数列的通项公式。

六、逆序法逆序法是反其道而行之,以数列的最后一项为起点,根据已知的数列的前几项和最后一项的运算关系,得出最后一项的前一项,以此类推,一直到起始项,从而得出数列的通项公式的一种方法。

七、特殊函数解特殊函数解法是指利用特殊函数及其组合函数构成的数列通项公式的解法,在实际问题中,特殊函数有对数函数、指数函数、三角函数等,使用这些函数可以构成一种数列,从而求出数列的通项公式。

高中数学数列通项公式的求法技巧大全

高中数学数列通项公式的求法技巧大全

数列通项公式的求法技巧大全一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。

2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。

例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

求数列通项公式的十种方法,例题答案详解

求数列通项公式的十种方法,例题答案详解

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二. 四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三. 求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四. 求数列通项的基本方法是:累加法和累乘法。

五. 数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1. ---------------------------------------------- 适用于:。

心=“"+/(,?)这是广义的等差数列累加法是最基本的二个方法之一。

2. 若%+]-%= /(〃)(〃 > 2),«2 - a\ =/(1)则I*)两边分别相加得。

心一明 =文/0?)A.1例1已知数列{%}满足。

心=% + 2n + 1, %=1,求数列{%}的通项公式。

解:由S =缶+2// + 1得《土一%= 2〃 +1则% =(% 一%)+(%.| - %.2)+ •・• +(% - 务)+(% - 角)+ % =[2(〃一1) + 1] + [2(〃一2)+ 1] +…+ (2x2 + 1) +(2x1+ 1) + 1 =2[(〃一1) + (〃一2)+ …+ 2 +1] + (〃一1) +1(fi-l)n ,八, =2 +(〃一1) + 1=(〃一1)(〃+ 1) + 1=,?-所以数列{劣}的通项公式为% =〃七例2已知数列{%}满足%|=%+2x3"+l,《=3,求数列{丹}的通项公式。

解法一:由““I =ci n +2x3" +1 得为+[ -%=2x3" +1 则% =(% 一《I)+ (%| —《一2)+ • • • + (% - 缶)+(缶一妃 + % =(2X3”T +1)+(2X3"-2 +1)+ ...+(2x3?+ l) + (2x3】+1) + 3= 2(3/,-1+3n-2+.-- + 32+31) + (n-l) + 33(1—3”T)=2•- ]-、一 + (〃_1) + 3=3”一3+ 〃一1 + 3=3”+〃一1所以a n = 3" +〃一1.解法二:“,*=3%+2x3”+1两边除以3”“,得参=3 + : +名,an =(% _ 4-1)+(勺― , 3-2 %-3a3〃 3" )+(22^_4)+ ・.. +(查一 *%】a . 3〃-2 明 3〃-3 32 313/2 1、,2 1、,2 1、 2 13(—+ ) + ( — + r) + (— H + ■ . ■ + (— + -^r) + —3 3” 3 3〃-】 3 3心 3 32 32(n-1) ,11 1 11、「3 3" 3〃 3”-' 3〃-2 323“ 因此色=翌1 +剥一3")+1=空+- 1-33 2 2x3〃3〃32 1 1贝 ij a n = —x 〃x3" + —x3"——・3 2 2评注:已知4 =",匕由一。

求数列通项公式的11种方法

求数列通项公式的11种方法

求数列通项公式的11种方法数列通项公式是数学中一种重要的概念,它通过确定数列中任意一项的值来描述数列的规律。

它与算法不同,可在一定程度上减少计算量。

本文将介绍求数列通项公式的11种方法,帮助读者更好地理解数列通项公式的意义。

第一种方法是利用数列中已知项,来求数列通项公式。

比如,一个数列已知前五项a1,a2,a3,a4,a5,那么数列的通项公式为a1+a2+ a3+ a4+a5,通过求和得出该数列的公式。

第二种方法是使用特征系数展开式求数列通项公式。

比如,一个数列已知前五项a1,a2,a3,a4,a5,那么可以使用特征系数展开式求出该数列的通项公式:a1+2a2+3a3+4a4+5a5。

第三种方法是倒数展开式求数列通项公式。

比如,一个数列已知前五项a1,a2,a3,a4,a5,那么可以使用倒数展开式求出该数列的通项公式:a1+a2/2+a3/3+a4/4+a5/5。

第四种方法是由观察法求数列通项公式。

比如,一个数列已知前五项a1,a2,a3,a4,a5,那么可以通过观察发现,这是一个等比数列,则该数列的通项公式为a1qn-1,其中q为公比。

第五种方法是由增量法求数列通项公式。

比如,一个数列已知前五项a1,a2,a3,a4,a5,增量法可以用来求出a2=a1+d1,a3=a2+d2,a4=a3+d3,a5=a4+d4,其中d1,d2,d3,d4为增量。

将这四式代入原式:a1+a2+a3+a4+a5,即可求出该数列的通项公式:a1+(n-1)(d1+d2+d3+d4)/2+nd5。

第六种方法是由公因式法求数列通项公式。

比如,一个数列已知前五项a1,a2,a3,a4,a5,那么可以将这五项分别除以共同的因子,求出最小因式,例如给定数列a1,a2,a3,a4,a5=2,4,8,16,32,其中32是最大因子,将其他四项都除以32,得到d1=1/2,d2=1/4,d3=1/8,d4=1/16,将d1,d2,d3,d4代入原式a1+a2+a3+a4+a5,即可求出该数列的公式。

求数列通项公式的十种办法

求数列通项公式的十种办法

求数列通项公式的十种办法求数列的通项公式是数学中的一项重要工作。

下面列举了十种常用的求解数列通项公式的方法:1.递推法:这是最常见的一种方法。

通过观察数列中的规律,找出前一项与后一项之间的关系,并将其表达成递推公式,从而求得数列的通项。

例如斐波那契数列:F(n)=F(n-1)+F(n-2),其中F(n)表示第n项,F(n-1)表示第n-1项,F(n-2)表示第n-2项。

2.数列差法:如果数列的前后两项之间的差值有规律可循,可以通过观察差的变化规律来得到通项公式。

例如等差数列:a(n)=a(1)+(n-1)d,其中a(n)表示第n项,a(1)表示首项,d表示公差。

3.数列比法:如果数列的前后两项之间的比值有规律可循,可以通过观察比的变化规律来得到通项公式。

例如等比数列:a(n)=a(1)*r^(n-1),其中a(n)表示第n项,a(1)表示首项,r表示公比。

4.代数方程法:数列中的数可以看作方程中的未知数,通过列方程组求解,得到方程的解即为数列的通项公式。

例如斐波那契数列可以通过矩阵的特征值和特征向量求得。

5.数列求和法:如果数列是由一个个项的和组成的,可以通过数列的求和公式求得通项公式。

例如等差数列的前n项和:S(n)=[n/2]*[2a(1)+(n-1)d],其中[n/2]表示n除以2的整数部分,a(1)表示首项,d表示公差。

6.数列积法:如果数列可以表达为一系列项的连乘积的形式,可以通过求取连乘积的对数,再利用对数运算得到通项公式。

例如等比数列的前n项积:P(n)=a(1)^n*(r^n-1)/(r-1),其中a(1)表示首项,r表示公比。

7.查表法:如果数列的部分项已知,可以通过列出表格的方式观察规律,推测出通项公式。

例如自然数列:1,2,3,...,通过观察可得到通项公式:a(n)=n。

8.数学归纳法:数学归纳法是一种证明方法,但也可以用来求数列的通项公式。

首先证明数列的通项公式对n=1成立,然后假设对n=k也成立,通过数学归纳法证明对n=k+1也成立,从而得到通项公式。

初中数学求数列通项公式的十种方法

初中数学求数列通项公式的十种方法
例4已知数列 满足 ,求数列 的通项公式。
解:因为 ,所以 ,则 ,故
所以数列 的通项公式为
例5.设 是首项为1的正项数列,且 ( =1,2,3,…),则它的通项公式是 =________.
解:已知等式可化为:
( ) (n+1) ,即
时,
= = .
评注:本题是关于 和 的二次齐次式,可以通过因式分解(一般情况时用求根公式)得到 与 的更为明显的关系式,从而求出 .
练习2.已知数列 满足
,求数列 的通项
说明:(1)若方程 有两不同的解s , t,
则 , ,
由等比数列性质可得 , ,
由上两式消去 可得 .
(2)若方程 有两相等的解 ,则

,即 是等差数列,
由等差数列性质可知 ,
所以 .
例26、数列 满足 ,且 求数列 的通项。
解: ……①
令 ,解得 ,将它们代回①得,
分析:把已知关系通过 转化为数列 或 的递推关系,然后采用相应的方法求解。
例19已知数列 的各项均为正数,且前n项和 满足 ,且 成等比数列,求数列 的通项公式。
解:∵对任意 有
∴当n=1时, ,解得 或
当n≥2时, ⑵
-⑵整理得:
∵ 各项均为正数,∴
当 时, ,此时 成立
当 时, ,此时 不成立,故 舍去
令 ,则可化为 .然后转化为类型5来解,
.待定系数法:目的是把所求数列构造成等差数列
设 .通过比较系数,求出 ,转化为等比数列求通项.
注意:应用待定系数法时,要求p q,否则待定系数法会失效。
例7已知数列 满足 ,求数列 的通项公式。
解法一(待定系数法):设 ,比较系数得 ,

求数列通项公式的13种方法

求数列通项公式的13种方法

求数列通项公式的13种方法在数学中,数列是一组按照一定规律依次排列的数字集合。

求数列的通项公式是对该数列的每一项都能找到一个通用的公式来描述。

这篇文档将介绍13种求解数列通项公式的方法。

1. 模式观察法通过观察数列中数字的变化模式,尝试找出递推关系,并通过推测整理出数列的通项公式。

2. 公式转化法通过对数列进行一系列数学运算,如加减乘除、取幂次等,将数列转化成已知的常见数列,再推导出通项公式。

3. 递推法通过已知的前几项数值,推导出当前项和下一项之间的关系,进而获得数列的通项公式。

4. 二项展开法借助二项展开公式,将数列展开成多项式形式,从而得到数列的通项公式。

5. 求解差分方程法将数列转化为差分方程,通过求解差分方程得到数列的通项公式。

6. 系数法利用多项式系数之间的关系,通过观察系数之间的规律,推导出数列的通项公式。

7. 利用等差数列和等比数列性质对于满足等差数列或等比数列性质的部分数列,可以直接应用等差数列或等比数列的通项公式。

8. 利用级数展开对于部分数列,可以将其展开成级数形式,从而得到数列的通项公式。

9. 奇偶性分析法通过分析数列中数字的奇偶性规律,推导出数列的通项公式。

10. 利用生成函数通过构造数列的生成函数,将数列转化成幂级数形式,再求解得到数列的通项公式。

11. 递归关系法对于一些特殊的数列,可以通过递归关系推导出数列的通项公式。

12. 利用数学归纳法利用数学归纳法证明数列的通项公式的正确性。

13. 利用数值计算方法拟合通过计算机软件等数值计算方法,根据数列的前几项数值进行拟合,得到数列的通项公式。

以上是13种常用的求解数列通项公式的方法。

根据具体的数列情况和求解需要,选择合适的方法进行计算和推导。

> 注意:此文档中的内容仅供参考。

在确定数列的通项公式时,请务必进行独立决策,不要直接引用未经验证的内容。

---以上是对「求数列通项公式的13种方法」的介绍文档。

求数列通项公式的11种方法[学习]

求数列通项公式的11种方法[学习]

求数列通项公式的11种方法[学习]求数列通项公式的11种方法[学习]数列通项公式是数学中常见的一种概念,它可以帮助我们更好地理解数列的特征,并用于计算数列的和、积、最大值以及最小值等问题。

学习求数列通项公式的11种方法,可以帮助我们更好地理解数列的概念,并能够更加准确地计算数列的和、积、最大值以及最小值等问题。

下面就来介绍一下求数列通项公式的11种方法:1. 泰勒公式:泰勒公式是一种常用的求数列通项公式的方法,它可以利用数列前n项的值,通过对不同项进行求导和积分,来求出数列的通项公式。

2. 通项定理:通项定理是一种简单易懂的求数列通项公式的方法,它可以利用数列中初始项和公差,通过观察数列的每一项,找出数列的规律,然后求出数列的通项公式。

3. 求极限法:求极限法是一种重要的求数列通项公式的方法,它可以利用数列中前n项的值,通过极限的概念,来求出数列的通项公式。

4. 差分法:差分法是一种常用的求数列通项公式的方法,它可以利用数列中前n项的值,通过计算数列每项与前一项的差值,找出数列的规律,然后求出数列的通项公式。

5. 分类法:分类法是一种简单易懂的求数列通项公式的方法,它可以根据数列的特点,将数列分类,然后再根据各类数列的特点,求出数列的通项公式。

6. 幂级数法:幂级数法是一种重要的求数列通项公式的方法,它可以利用数列中前n项的值,通过将数列转化为幂级数,然后求出数列的通项公式。

7. 矩阵法:矩阵法是一种有效的求数列通项公式的方法,它可以利用数列中前n项的值,通过矩阵运算,求出数列的通项公式。

8. 特征值法:特征值法是一种重要的求数列通项公式的方法,它可以利用数列中前n项的值,通过计算数列的特征值,求出数列的通项公式。

9. 最优化法:最优化法是一种有效的求数列通项公式的方法,它可以利用数列中前n项的值,通过构造相应的优化模型,来求出数列的通项公式。

10. 启发式法:启发式法是一种创新性的求数列通项公式的方法,它可以利用数列中前n项的值,通过启发式算法,来求出数列的通项公式。

史上最全的数列通项公式的求法15种

史上最全的数列通项公式的求法15种

史上最全的数列通项公式的求法15种一、等差数列(Arithmetic sequence)1.基本公式:一个等差数列的通项公式为:an = a1 + (n-1)d其中an代表数列的第n项,a1代表数列的首项,d代表数列的公差。

2.另一种形式:等差数列的通项公式还可以表示为:an = a + (n-1) * (a2-a1)/2其中an代表数列的第n项,a代表数列的首项,a1代表数列的第二项,a2代表数列的前两项。

二、等比数列(Geometric sequence)1.基本公式:一个等比数列的通项公式为:an = a1 * r^(n-1)其中an代表数列的第n项,a1代表数列的首项,r代表数列的公比。

2.另一种形式:等比数列的通项公式也可以表示为:an = a * q^n其中an代表数列的第n项,a代表数列的首项,q代表数列的公比。

三、斐波那契数列(Fibonacci sequence)1.基本公式:一个斐波那契数列的通项公式为:Fn=(φ^n-(1-φ)^n)/√5其中Fn代表数列的第n项,φ代表黄金分割比(约1.618)。

2.矩阵法:斐波那契数列的通项公式还可以通过矩阵的形式表示:Fn=(A^n*F0),其中An是一个特定的矩阵,F0是初始向量。

四、调和数列(Harmonic sequence)1.基本公式:一个调和数列的通项公式为:an = 1/n其中an代表数列的第n项。

五、多项式数列(Polynomial sequence)一个多项式数列的通项公式为:an = an-1 + an-2 + ... + an-m其中an代表数列的第n项,an-1为前一项,an-2为前两项,an-m为前m项。

六、余弦数列(Cosine sequence)1.基本公式:一个余弦数列的通项公式为:an = a + b * cos(cn)其中an代表数列的第n项,a、b为常数,c为常数。

2.幂函数法:余弦数列的通项公式还可以表示为:an = a + b * cos(nθ)其中an代表数列的第n项,a、b为常数,θ为角度。

数列通项公式的十种求法

数列通项公式的十种求法

数列通项公式的十种求法方法一:直接法对于一些简单的数列,可以通过观察数列的规律,直接写出通项公式。

例如,对于等差数列an=3n+1,可以观察到每一项都是前一项加上3,因此可以直接写出通项公式。

方法二:递推法递推法是通过数列前一项和通项之间的关系式来推导通项公式。

例如,对于斐波那契数列an=an-1+an-2,可以通过给出前两项的值,然后通过关系式不断求解后续项的值,得到通项公式。

方法三:代数法对于一些特殊的数列,可以通过代数方式求解通项公式。

例如,对于等比数列an=2^n,可以通过代数方法得到通项公式。

方法四:数学归纳法数学归纳法是通过证明法来得到通项公式。

首先证明数列的前几项符合一些表达式,然后假设n=k时表达式成立,再证明n=k+1时也成立,从而得到通项公式。

方法五:求和法有些数列的通项公式可以通过求和公式得到。

例如,对于等差数列an=3n+1,可以通过求和公式求得前n项和Sn=3n(n+1)/2,然后推导出通项公式。

方法六:线性递推法对于一些特殊的数列,可以通过线性递推法求解通项公式。

线性递推法是通过设定通项公式的形式,然后求解出相应的系数。

例如,对于一阶等差数列an=ax+b,可以通过线性递推法求解出通项公式。

方法七:矩阵法矩阵法是通过将数列表示成矩阵的形式,然后通过矩阵运算求解出通项公式。

例如,对于数列an=2n+1,可以将其表示为一个2×2的矩阵,然后通过矩阵运算得到通项公式。

方法八:生成函数法生成函数法是通过定义一个函数来表示数列,然后通过函数运算求解出通项公式。

例如,对于斐波那契数列an=an-1+an-2,可以定义一个生成函数F(x)=a0+a1x+a2x^2+...,然后通过函数运算得到通项公式。

方法九:离散动力系统法离散动力系统法是通过建立数列的动力系统方程,然后求解出通项公式。

例如,对于一阶等差数列an=ax+b,可以将其表示为一个离散动力系统方程xn+1=axn+b,然后通过求解方程得到通项公式。

求递推数列的通项公式的十一种方法

求递推数列的通项公式的十一种方法

求递推数列的通项公式的十一种方法
递推数列是一种数学数列,其中每一项都是由前一项推算出来的。


项公式则是通过已知的数列项之间的关系,找出数列的整体规律,从而可
以直接计算任意一项的值。

下面将介绍11种方法来推导递推数列的通项公式。

1.递归定义法
递归定义法是通过规定数列的首项以及前面项与后面项之间的关系,
来表达出数列的通项公式。

2.直接求和法
直接求和法是通过将数列的前n项求和,并将结果化简得出通项公式。

3.递推关系法
递推关系法是通过规定数列前两项之间的关系,并将该关系推广到前
n项之间的关系,从而求出通项公式。

4.变量代换法
变量代换法是通过引入新的变量,将原数列表示成一个新的数列,从
而得到新数列的通项公式。

5.假设公式法
假设公式法是通过猜测数列的通项公式,并验证猜测的公式是否符合
已知项的规律。

6.拆项法
拆项法是通过拆解数列的项,将数列表示成两个或多个部分,再求和得出通项公式。

7.枚举法
枚举法是通过穷举数列的前几项,找出数列项之间的规律,推算出通项公式。

8.差分法
差分法是通过计算数列项之间的差值,找出数列项之间的规律,从而得到通项公式。

9.生成函数法
生成函数法是通过将数列视为多项式的系数,构造一个生成函数,再通过求导、积分等运算得到通项公式。

10.求和公式法
求和公式法是通过利用已知的数列求和公式,计算数列的前n项和,并化简得出通项公式。

11.对称性法
对称性法是通过观察数列的对称性,推断出数列的通项公式。

高中数学解题方法系列:数列中求通项的10种方法

高中数学解题方法系列:数列中求通项的10种方法

高中数学解题方法系列:数列中求通项的10种方法一、公式法例1已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。

解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。

二、累加法)(1n f a a n n =--例2已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。

例3已知数列{}n a 满足1132313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解:13231nn n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++,则111213333n n n n n a a +++-=+三、累乘法)(1n f a a n n=-例4已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式。

解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯ 所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯例5已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥ ,,求{}n a 的通项公式。

史上最全的数列通项公式的求法15种

史上最全的数列通项公式的求法15种

史上最全的数列通项公式的求法15种数列是数学中很重要的一种数学对象,它是由一系列的数按照一定的顺序排列而成。

数列通项公式是数列中的每一项与项号之间的关系式,可以通过该公式来求出数列的任意一项。

下面将介绍15种常见的数列通项公式的求法。

1.等差数列:等差数列是一种公差为常数的数列,通项公式为an = a1 + (n - 1)d,其中a1为首项,d为公差。

2.等比数列:等比数列是一种比值为常数的数列,通项公式为an = a1 * r^(n - 1),其中a1为首项,r为公比。

3. 斐波那契数列:斐波那契数列是一种特殊的数列,每一项是其前两项之和,通项公式为an = an-1 + an-2,其中a1 = 1,a2 = 14. 平方数列:平方数列是由平方数所组成的数列,通项公式为an = n^25. 立方数列:立方数列是由立方数所组成的数列,通项公式为an = n^36.等差立方数列:等差立方数列是一种公差为常数的立方数列,通项公式为an = a1 + (n - 1)^3,其中a1为首项。

7.等比立方数列:等比立方数列是一种比值为常数的立方数列,通项公式为an = a1 * r^(n - 1)^3,其中a1为首项,r为公比。

8. 焦比数列:焦比数列是一种特殊的数列,每一项是其前一项的反数,通项公式为an = -1 / an-1,其中a1为首项。

9. 调和数列:调和数列是一种特殊的数列,每一项是其前一项的倒数与项号之和的倒数,通项公式为an = 1 / (1 / a1 + n - 1),其中a1为首项。

10. 初等数列:初等数列是一种特殊的数列,每一项是其前一项与项号之和的和,通项公式为an = an-1 + n,其中a1为首项。

11.等差等比数列:等差等比数列是一种既是等差数列又是等比数列的数列,通项公式为an = a1 * (1 + (n - 1)d),其中a1为首项,d为公差。

12. 菲波拿契数列:菲波拿契数列是一种特殊的数列,每一项是其前一项与项号之和的差,通项公式为an = an-1 - n,其中a1为首项。

(完整版)求数列通项公式的十种方法

(完整版)求数列通项公式的十种方法

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11 种方法:累加法、累乘法、待定系数法、阶差法(逐差法) 、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号) 、数学归纳法、不动点法(递推式是一个数列通项的分式表达式) 、特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

、累加法1.适用于:a n 1 a n f (n) ------------------ 这是广义的等差数列累加法是最基本的二个方法之一。

2.若a n 1 a n f (n) (n 2) ,a2 a1 f (1)a3 a2 f (2) LLa n 1 a n f ( n)n两边分别相加得a n 1 a1 f (n )k1例1已知数列{a n }满足a n 1a n 2n 1, a i 1,求数列{a n }的通项公式。

解:由 a n 1 a n 2n 1 得 a n 1 a n 2n 1 则a n (a n a n 1) (a n 1 a n 2) L @3a 2) (a 2 aja 1 [2( n 1) 1] [2( n 2) 1]L (2 21) (2 11) 12[(n 1) (n 2) L 2 1] (n 1) 1 (n 1)n 2 (n 1) 12(n 1)( n 1) 1 2n2所以数列{a n }的通项公式为a n n 。

例2已知数列{a n }满足a n 1 a n 2 3n 1,印3,求数列 佝}的通项公式。

解法一:由a n 1 a n n 2 31 得 a n 1a n n2 31则a n (a * an 1)(a n 1 a n 2) L(a 3 a 2) (a 2 a 1) a 1n (2 3 1 1) (2 3n 21)L (2 32 31 1) (2 31) 312(33n2L 32 ;31)(n 1)3「(1 3n1)2(n 1) 31 3n3 3 n 133 n1所以a n 3n n 1.解法二:时3an 2 3 1两边除以3n1,得鄴J 3 3a n 2 n3 32132)3 32 3a3na n 3a n 1)a n 1(an 1a n 1a n 2) (a n 2(尹z a2 q 色(3231)33n )1)12门22(n 1)313n 3n13n2Lan 13n22答案:n数、分式函数,求通项 an .① 若f(n)是关于n 的一次函数,累加后可转化为等差数列求和 ② 若f(n)是关于n 的二次函数,累加后可分组求和 ; ③ 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和 ④ 若f(n)是关于n 的分式函数,累加后可裂项求和。

数列求通项公式的9种方法

数列求通项公式的9种方法

例14
已知 满足+2 = 3+1 − 2 ,2 = 2, 1 = 1,求 的通项公式
九、奇偶分项求通项公式
核心思想:
n为奇数时,设n=2k-1
n为偶数时,设n=2k
例15 数列 满足 = ቊ
2,为奇数时
,求 的通项公式。

2 ,为偶数时
变式训练15
n2

a n ,求 {an } 的通项公式.
n
变式训练 6 已知数列 {an } 满足 a1 1 , an1 2n an ,求 {an } 的通项公式.
变式训练 7 已知数列 {an } 满足 a1 1 , an n(an1 an ) ,求 {an } 的通项公式.
四、加法构造
数列求通项公式常见的9种方法
知识复习
1、等差数列通项公式: an=a1+ (n-1)d
an=am+(n-m)d
2、等比数列通项公式: an= a1·
qn-1
am= a1·qn-m
一、利用 an 与 Sn 关系求 an
S1,
n=1,
an=
Sn-Sn-1, n≥2.
例1
n+3.
已知数列{an}的前n项和Sn,求数列{an}的通项公式.(1)Sn=2n-1;(2)Sn=2n2+
17
3
变式训练 10 已知数列 {an } 满足 a1
, an an1 5( n 2) ,求 {an } 的通项公式.
2
2
五、倒数构造
型如 an1
m an

(m pq 0) 的数列直接取倒数
pan q

例 8 已知数列 {an } 满足 a1 1 , an1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求数列通项公式的11种方法方法总述:一.利用递推关系式求数列通项的11种方法:累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、换元法(目的是去递推关系式中出现的根号)、 数学归纳法(少用)不动点法(递推式是一个数列通项的分式表达式)、 特征根法二.四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。

2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。

例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解法一:由1231n n n a a +=+⨯+得1231nn n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.nn a n =+-解法二:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯- 练习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.答案:12+-n n练习2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:裂项求和n a n 12-=评注:已知a a =1,)(1n f a an n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项na .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。

例3.已知数列}{n a 中,>n a 且)(21nn n a n a S +=,求数列}{n a 的通项公式.解:由已知)(21nn n a na S +=得)(2111---+-=n n n n n S S nS S S ,化简有nS S n n =--212,由类型(1)有nS S n ++++= 32212,又11a S =得11=a ,所以2)1(2+=n n S n ,又0>n a 2)1(2+=n n s n ,,则2)1(2)1(2--+=n n n n a n此题也可以用数学归纳法来求解.二、累乘法1.适用于: 1()n n a f n a += ----------这是广义的等比数列 累乘法是最基本的二个方法之二。

2.若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 两边分别相乘得,1111()nn k a a f k a +==⋅∏例4 已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式。

解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}na 的通项公式为(1)12325!.n n n na n --=⨯⨯⨯例5.设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n (n =1,2, 3,…),则它的通项公式是n a =________.解:已知等式可化为:[]0)1()(11=-++++n n n n na a n a a0>n a (*N n ∈)∴(n+1)01=-+nn na a , 即11+=+n na a n n ∴2≥n 时,n n a a n n 11-=- ∴112211a a a a a a a a n n n n n ⋅⋅⋅⋅=--- =121121⋅⋅--⋅- n n n n =n 1.评注:本题是关于na 和1+n a 的二次齐次式,可以通过因式分解(一般情况时用求根公式)得到na 与1+n a 的更为明显的关系式,从而求出na .练习.已知1,111->-+=+a n na a n n ,求数列{an}的通项公式.答案:=n a )1()!1(1+⋅-a n -1.评注:本题解题的关键是把原来的递推关系式,11-+=+n na a n n 转化为),1(11+=++n n a n a 若令1+=n n a b ,则问题进一步转化为nn nb b =+1形式,进而应用累乘法求出数列的通项公式.三、待定系数法 适用于1()n n a qa f n +=+基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。

1.形如(,1≠+=+c d ca a n n ,其中a a =1)型(1)若c=1时,数列{n a }为等差数列;(2)若d=0时,数列{na }为等比数列;(3)若01≠≠且d c 时,数列{n a}为线性递推数列,其通项可通过待定系数法构造辅助数列来求.待定系数法:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得d c =-λ)1(,所以)0(,1≠-=c c dλ所以有:)1(11-+=-+-c d a c c d a n n 因此数列⎭⎬⎫⎩⎨⎧-+1c d a n 构成以11-+c da 为首项,以c 为公比的等比数列, 所以11)1(1-⋅-+=-+n n c c d a c d a 即:1)1(11--⋅-+=-c d c c d a a n n . 规律:将递推关系dca a n n +=+1化为)1(11-+=-++c da c c d a n n ,构造成公比为c 的等比数列}1{-+c d a n 从而求得通项公式)1(1111-++-=-+c da c c d a n n逐项相减法(阶差法):有时我们从递推关系dca a n n +=+1中把n 换成n-1有dca a n n +=-1,两式相减有)(11-+-=-n n n n a a c a a 从而化为公比为c 的等比数列}{1n n a a -+,进而求得通项公式. )(121a a c a a n n n -=-+,再利用类型(1)即可求得通项公式.我们看到此方法比较复杂.例6已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。

解法一:121(2),n n a a n -=+≥112(1)n n a a -∴+=+又{}112,1n a a +=∴+是首项为2,公比为2的等比数列12nna ∴+=,即21n n a =-解法二:121(2),n n a a n -=+≥121n n a a +∴=+两式相减得112()(2)n nn n a a a a n +--=-≥,故数列{}1n n a a +-是首项为2,公比为2的等比数列,再用累加法的……练习.已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a 。

答案:1)21(1+=-n n a2.形如:nn n q a p a +⋅=+1 (其中q 是常数,且n ≠0,1)①若p=1时,即:nn n q a a +=+1,累加即可.②若1≠p 时,即:nn n q a p a +⋅=+1,求通项方法有以下三种方向:i. 两边同除以1+n p .目的是把所求数列构造成等差数列即: nnn n n q p p q a p a )(111⋅+=++,令n n n pa b =,则nn n q p p b b )(11⋅=-+,然后类型1,累加求通项.ii.两边同除以1+n q . 目的是把所求数列构造成等差数列。

相关文档
最新文档