基于DS18B20的温度传感器设计报告

合集下载

数字温度计DS18B20课程设计报告

数字温度计DS18B20课程设计报告

数字温度计DS18B20课程设计报告1. 课程设计背景数字温度计是一款可以测量温度并输出数字信号的电子设备。

它具有高精度、可编程、低功耗等优点,因此在很多领域都有广泛应用,比如环境温度监测、工业控制、食品加工等。

DS18B20是一款数字温度传感器,它以数字方式输出采集到的温度值,精度高达±0.5℃,提供了多种通信协议,应用灵活。

在本次课程设计中,我们将学习如何使用DS18B20来制作一款数字温度计。

2. 课程设计目标在本次课程设计中,我们的目标是:1.学习数字温度计的工作原理和基本构成;2.掌握DS18B20的使用方法和通信原理;3.制作一款数字温度计,并进行温度测量和数据传输。

3. 课程设计内容3.1 数字温度计的工作原理数字温度计的工作原理是利用温度传感器采集温度信息,然后通过模数转换器(ADC)将模拟信号转换成数字信号,并且通过数字信号处理单元进行处理,并显示在屏幕上。

温度传感器一般分为两种类型,即模拟温度传感器和数字温度传感器。

3.2 DS18B20的使用方法和通信原理DS18B20可以通过多种通信协议与主控板进行通信,如1-wire协议、I2C协议等。

1-wire协议是一种仅使用单个总线的串行协议,利用单总线实现数据传输。

3.3 制作数字温度计我们可以通过编程语言来控制DS18B20进行温度采集,并用LCD屏幕显示温度值。

首先要准备所需的材料和工具,包括Arduino开发板、DS18B20传感器、LCD显示屏、杜邦线、面包板等。

具体步骤如下:•连接DS18B20传感器•连接LCD显示屏•编写程序4. 课程设计成果经过学习和实际操作,我们可以掌握数字温度计的工作原理和基本构成,以及DS18B20的使用方法和通信原理。

同时,我们可以独立制作一款数字温度计,在温度测量和数据传输方面有了实际经验。

这些知识和技能对于我们学习和研究电子技术都非常有帮助。

5.通过本次课程设计,我们学习了数字温度计的工作原理和基本构成,以及DS18B20的使用方法和通信原理。

温度传感器ds18b20实验报告

温度传感器ds18b20实验报告

温度传感器ds18b20实验报告温度传感器DS18B20实验报告引言温度传感器在现代生活中扮演着重要的角色,它们被广泛应用于各种领域,包括工业、医疗、农业等。

DS18B20是一种数字温度传感器,具有精准的测量能力和数字输出,因此备受青睐。

本实验旨在通过对DS18B20温度传感器的测试和分析,探讨其性能和应用。

实验目的1. 了解DS18B20温度传感器的工作原理和特性。

2. 测试DS18B20温度传感器的测量精度和响应速度。

3. 探讨DS18B20温度传感器在实际应用中的优缺点。

实验器材1. DS18B20温度传感器2. Arduino开发板3. 4.7kΩ电阻4. 连接线5. 电脑实验步骤1. 将DS18B20温度传感器连接到Arduino开发板上,并接入4.7kΩ电阻。

2. 编写Arduino程序,通过串口监视器输出DS18B20传感器的温度数据。

3. 将DS18B20传感器置于不同的温度环境中,记录其输出的温度数据。

4. 分析DS18B20传感器的测量精度和响应速度。

5. 探讨DS18B20传感器在实际应用中的优缺点。

实验结果经过实验测试,DS18B20温度传感器表现出了较高的测量精度和响应速度。

在不同温度环境下,其输出的温度数据与实际温度基本吻合,误差较小。

此外,DS18B20传感器具有数字输出,易于与各种微控制器和单片机进行连接,应用范围广泛。

然而,DS18B20传感器在极端温度环境下可能出现测量误差,且价格较高,需要根据实际需求进行选择。

结论DS18B20温度传感器具有较高的测量精度和响应速度,适用于各种温度测量场景。

然而,在选择和应用时需要考虑其价格和适用范围,以确保满足实际需求。

希望本实验能够为DS18B20温度传感器的应用提供参考和借鉴,推动其在各个领域的发展和应用。

18B20温度传感器 课程设计报告

18B20温度传感器 课程设计报告

课程设计报告目录一.设计任务二.方案论证三.硬件设计3.1 DS18B20简介AT89C51型单片机简介3.2 总电路的设计图四.软件设计3.1 主程序框图3.2 初始化子程序18B20的主程序3.3 调试及运行五. 课程设计总结一、设计任务1. 熟悉电子系统开发的思路和步骤;2. 熟悉Keil C开发环境,并对18B20、LED数码管、4*4键盘等外围模块的驱动进行编写调试,学会基本的驱动开发思路,并通过调试学会定位问题的能力;3. 分别使用汇编语言和C语言编写调试整个电子系统的控制程序,学会电子系统的软件开发思路;4. 通过protel学会如何绘制原理图及PCB版图,从而完成整个电子系统的软硬件开发;二、方案论证A、分析本次设计任务可知:1.本设计要利用DS18B20测量温度,需要用89C51单片机控制DS18B20测量温度,并将DS18B20测得温度读取到单片机中来。

2. 本设计要用LED显示温度,可用五个共阳极LED,采用动态扫描法显示读取到单片机中的温度。

显示格式举例如下:(1)温度为正值————101.1 、99.2 第四个LED总是显示点号。

(2)温度为负值————-23.1 第一个总是显示一横,第四个总是显示点号。

B、经以上分析可得:可将本设计功能分为两大模块:1、DS18B20设置模块2、测温电路及其程序3、显示电路及其程序3. 在硬件电路上还要加上必要的基础电路:(1)时钟电路本次设计采用时钟频率为:12MHZ(2)按键测温电路及其程序按一次按钮即测一次温度并将测得的温度显示出来)C 、系统总体方案系统原理框图:由图可知该测量系统由DS18B20组成的测量电路和单片机控制电路组成。

系统通过DS18B20采集到的数据,然后通过单片机微控制芯片经过数据处理,最后通过数码管实时显示所测空气的温度。

用单个DS18B20采集温度采集温度并将其显示在LED 灯上,温度只需显示整数,小数位位不做要求;设置报警上下限,当按下键盘上的SETUP 键时,DS18B20不工作,从键盘上输入温度的上下限值,前边的两个LED 显示器显示温度上线,后边的两个LED 显示器显示温度下限,当采集的温度越过上限和低于下限时,P0.4口的发光二极管灯亮,表示报警;温度上下限的设置要在30S 内完成,如果没完成,温度传感器自行工作,设置完成后,按下Enter 键DS18B20开始采集并显示温度。

基于DS18B20数字温度传感器的温度检测系统课程设计报告

基于DS18B20数字温度传感器的温度检测系统课程设计报告

毕业论文声明本人郑重声明:1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。

除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。

对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。

本人完全意识到本声明的法律结果由本人承担。

2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。

本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。

3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。

4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。

论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。

论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。

对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。

学位论文作者(签名):年月关于毕业论文使用授权的声明本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。

本人完全了解大学有关保存,使用毕业论文的规定。

同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。

本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。

如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。

本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。

本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。

基于DS18B20数字温度计设计报告正文

基于DS18B20数字温度计设计报告正文

基于DS18B20数字温度计设计报告正文西华大学电气信息学院智能化电子系统设计报告目录1 前言 ................................................ .. (1)设计背景 ................................................ ......... 1 设计目标 ................................................ ......... 1 实施计划 ................................................ ......... 1 2 总体方案设计 ................................................ (2)方案比较 ................................................ (2)方案一基于热敏电阻的温度计设计 .............................. 2 方案二基于SHT71的数字温度计设计 ............................ 2 方案三基于DS18B20的数字温度计设计.......................... 3 方案论证 ................................................ ......... 3 方案选择 ................................................ ......... 4 3 硬件设计 ................................................ . (5)单元模块设计 ................................................ .. (5)时钟和复位电路 (5)报警电路 ................................................ .... 5 数码显示电路 ................................................6 电源电路 ................................................ ....7 按键电路 ................................................ .... 7 串口通信电8 核心器件介绍 ................................................ .. (8)单片机STC89C52介绍 (8)DS18B20介绍 (9)4 软件设计 ................................................ (11)温度采集模块 ................................................ .... 11 温度设定模块 ................................................ .... 14 报警模块 ................................................ ........ 15 5 系统整合调试 ................................................ .. (16)硬件调........ 16 软件调试 ................................................ .. (16)I西华大学电气信息学院智能化电子系统设计报告 6 系统功能、指标参数 ................................................ .. 18系统功能 ................................................ ........ 18 系统指标参数测试 ................................................18 系统功能及指标参数分析.......................................... 19 7 结论 ................................................ ................ 20 8 总结与体会 ................................................ .......... 21 9西华大学电气信息学院智能化电子系统设计报告积极小的芯片当中,实现了温度传感器的数字式输出、且免调试、免标定、免外围电路。

基于DS18B20的温度检测设计报告

基于DS18B20的温度检测设计报告

《创新设计实践》设计报告课题:基于DS18B20的温度检测目录目录 (2)基于DS18B20的温度检测 (3)一、设计内容 (3)二、方案论证 (3)三、软硬件电路设计 (4)1、单片机最小系统 (4)(1)AT89C52 (4)(2)时钟振荡器电路 (5)(3)复位电路 (5)2、测温系统 (6)(1)DS18B20测温原理 (6)(2)DS18B20工作过程及接线说明 (6)(3)温度计算方法及管脚图 (7)(4)测温流程图 (8)(5)测温程序 (8)3、显示系统 (10)(1)74LS244的原理图及引脚图 (10)(2)SN7406N (10)(3)显示电路 (11)(4)显示流程图 (12)(5)显示程序 (12)4、蜂鸣器系统 (13)(1)9012(PNP) (13)(2)蜂鸣器电路图: (13)(3)蜂鸣器流程图 (14)(4)蜂鸣器程序 (14)四、所选器件参数 (15)五、调试过程 (15)六、收获 (15)七、参考资料 (15)附录: (17)焊接实物图 (17)电路原理图及PCB封装图 (18)源程序 (19)基于DS18B20的温度检测一、设计内容基于数字温度传感器DS18B20,设计一个温度测量与显示系统的温度检测系统:该系统由51单片机AT89C52控制,并由8位数码管显示实时温度,通过该系统可设置温度上限与下限,以便在温度超过限值时进行报警。

二、方案论证方案一:由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,随温度变化时,热敏电阻的阻值变化转化成其电压变化,而后智能芯片将此电压换算成相应的温度值并通过显示器件将此值显示出来,这种设计还需要用到A/D 转换电路、电阻与温度的对应值的计算、冷端补偿的计算,这种测温方法比较麻烦、运算量大,而且在对采集的信号进行放大时容易受温度的影响出现较大的偏差。

方案二:与传统的热敏电阻相比,DS18B20采用单总线结构能够直接读出被测温度并且根据要求通过简单的编程实现9~12位的数字值读数方式。

DS18B20温度传感器设计报告

DS18B20温度传感器设计报告

传感器课程设计---数字温度计专业:计算机控制技术年级:2011 级**:***学号: ************:***阿坝师专电子信息工程系1.引言1.1.设计意义在日常生活及工农业生产中,经常要用到温度的检测及控制,传统的测温元件有热电偶和热电阻。

而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,需要比较多的外部硬件支持。

其缺点如下:●硬件电路复杂;●软件调试复杂;●制作成本高。

本数字温度计设计采用美国DALLAS半导体公司继DS1820之后推出的一种改进型智能温度传感器DS18B20作为检测元件,测温范围为-55~125℃,最高分辨率可达0.0625℃。

DS18B20可以直接读出被测温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的热点。

2 设计要求2.1基本要求1) 用LCD12232实现实时温度显示温度和自己的学号。

2) 采用LED数码管直接读显示。

2.2扩展功能温度报警,能任意设定温度范围实现铃声报警;3资料准备3.1单片机89C52模块单片机89C52是本设计中的控制核心,是一个40管脚的集成芯片构成。

引脚部分:单片机引脚基本电路部分与普通设计无异,40脚接Vcc+5V,20脚接地。

X1,X2两脚接12MHZ的晶振,可得单片机机器周期为1微秒。

RST脚外延一个RST复位键,一端通过10K电阻接Vcc,一端通过10K电阻接地。

AT89S52是一种低功耗、高性能的8位CMOS微控制器,具有8K的可编程Flash 存储器。

使用高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容。

片上Flash允许程序存储器在系统可编程,亦适于常规编程器。

在单芯片上,拥有灵巧的8位CPU和在线系统可编程Flash,使得AT89S52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。

AT89S52具有以下标准功能:8K字节Flash,256字节RAM,32位I/O 口线,看门狗定时器,2个数据指针,三个16位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。

DS18B20简易温度计设计报告

DS18B20简易温度计设计报告

电子综合设计报告题目简易温度计设计系别年级专业电子科学与技术班级学号学生姓名指导教师职称讲师设计时间2012.6.201.概述 (1)1.1设计任务 (1)1.2设计需求 (1)1.3设计功能 (1)2.系统设计 (2)2.1方案论证 (2)2.2实施方案 (2)3.硬件设计 (3)3.1主要器件介绍 (3)3.1.1DS18B20简介 (3)3.1.28段共阴集数码管 (4)3.2单元电路 (5)3.2.1晶振电路 (5)3.2.2复位电路 (5)3.2.3电源及其指示灯电路 (6)3.2.4ISP下载电路 (6)3.2.5DS18B20温度数据采集电路 (7)3.2.6数码管显示电路 (7)3.2.7端口配置 (8)3.3器件清单 (8)4.软件设计 (10)4.1软件功能模块划分 (10)4.1.1读操作 (10)4.1.2写操作 (11)4.1.3DS18B20复位流程 (12)4.1.4温度转化程序流程图 (12)4.1.5温度读取流程 (13)4.1.6定时器0的初始化 (13)4.1.7数码管显示 (14)4.2各功能模块间关系描述 (14)5.系统调试 (16)5.1硬件调试 (16)5.2软件调试 (17)5.3设计效果 (18)结束语 (19)参考文献 (20)1.1设计任务(1)采用DS18B20实现温度的采集;(2)通过数码管显示温度。

1.2设计需求随着科技的不断发展,社会对各种信息的准确度和精确度的要求有了大幅度的提升。

因而有大量的先进技术应用于各种领域。

本课程介绍了DS18B20在数字温度计中的应用,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义,将其广泛的应用于各个领域。

1.3设计功能本设计主要由温度测量和数据采集两部分电路组成,采用数字温度芯片DS18B20实现,并利用AT89S51芯片控制温度传感器DS18B20进行实时温度检测,当手握着温度传感器时,温度会逐渐升高,直到达到最高温度,当手离开温度传感器时,温度会自动降至室温,然后再通过数码管将这些温度的变化显示出来。

温度传感器ds18b20实验报告

温度传感器ds18b20实验报告

温度传感器ds18b20实验报告温度传感器DS18B20实验报告引言:温度传感器是一种用于测量环境温度的设备,它在许多领域都有广泛的应用,如气象学、工业控制、冷链物流等。

本实验报告将介绍DS18B20温度传感器的原理、实验装置和实验结果,并对其性能进行评估。

一、实验原理DS18B20温度传感器是一种数字温度传感器,采用单总线接口进行通信。

它采用了最新的数字温度传感器技术,具有高精度、低功耗、抗干扰等特点。

其工作原理是利用温度对半导体材料电阻值的影响,通过测量电阻值的变化来确定温度。

二、实验装置本实验使用的实验装置包括DS18B20温度传感器、Arduino开发板、杜邦线和计算机。

Arduino开发板用于读取传感器的温度数据,并通过串口将数据传输到计算机上进行处理和显示。

三、实验步骤1. 连接电路:将DS18B20温度传感器的VCC引脚连接到Arduino开发板的5V 引脚,GND引脚连接到GND引脚,DQ引脚连接到Arduino开发板的数字引脚2。

2. 编写代码:使用Arduino开发环境编写代码,通过OneWire库和DallasTemperature库读取DS18B20传感器的温度数据。

3. 上传代码:将编写好的代码上传到Arduino开发板上。

4. 监测温度:打开串口监视器,可以看到DS18B20传感器实时的温度数据。

四、实验结果在实验过程中,我们将DS18B20温度传感器放置在不同的环境中,记录了其测得的温度数据。

实验结果显示,DS18B20温度传感器具有较高的精度和稳定性,能够准确地测量环境温度。

五、实验评估本实验评估了DS18B20温度传感器的性能,包括精度、响应时间和抗干扰能力。

实验结果表明,DS18B20温度传感器具有较高的精度,能够在0.5℃的误差范围内测量温度。

响应时间较快,能够在毫秒级别内完成温度测量。

同时,DS18B20温度传感器具有较好的抗干扰能力,能够在干扰环境下保持稳定的测量结果。

温度传感器实验报告

温度传感器实验报告

一、实验原理DS18B20 测温原理如图 1.2 所示。

图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号发送给计数器1。

高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为计数器2的脉冲输入。

计数器 1 和温度寄存器被预置在-55℃所对应的一个基数值。

计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器 1 的预置值减到0时,温度寄存器的值将加 1,计数器 1 的预置将重新被装入,计数器 1 重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器 2 计数到 0 时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。

斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器 1 的预置值。

图 1.1 测温原理图二、测温系统硬件电路图本测温系统选择体积小、成本低、内带2KEEPROM的89C2051作为控制芯片,晶振采用12MHZ,用74LS07驱动四个LED数码管和一个继电器线圈从而驱动电加热设备。

P3.5口作为采集温度信号线,P1口作为显示数据线,与P3.3,P3.4组成显示的个位、十位及符号位,采用动态扫描显示。

在本系统中测控一路温度信号,DS18B20通过单总线方式连接在单片机的P3.5引脚上,可设定所需的温度测定值(包括上限值和下限值),P3.1引脚控制电热设备启动与停止,从而达到控制温度效果。

整个系统的硬件原理图如图2.1所示:图2.1 测温系统硬件原理图二、实验过程记录3.1 DS18B20控制过程DS18B20的操作是通过执行操作命令实现的,其中包含复位脉冲、响应脉冲、读、写时序,时序的具体要求如下:(1)复位脉冲:单片机发出一个宽为480—960μs的负脉冲之后再发出5—60μs的正脉冲,此时DS18B20会发出一个60—240μs的响应脉冲,复位时序结束。

也就是呼应阶段。

(2)写时间片:写一位二进制的信息,周期至少为61μS,其中含1μS的恢复时间,单片机启动写程序后15—60μs期间DS18B20自动采样数据线,低电平为“0”,高电平为“1”。

温度传感器实验报告

温度传感器实验报告

温度传感器实验报告
一、实验目的
本实验旨在通过使用温度传感器来检测不同环境下的温度变化,并通过实验数据分析温度传感器的性能和准确度。

二、实验仪器
1. Arduino Uno控制板
2. DS18B20数字温度传感器
3. 杜邦线
4. 电脑
三、实验步骤
1. 连接DS18B20温度传感器到Arduino Uno控制板上。

2. 使用Arduino软件编写读取温度传感器数据的程序。

3. 通过串口监视器读取传感器采集到的温度数据。

4. 将温度传感器放置在不同环境温度下,记录数据并进行分析。

四、实验数据
在室内环境下,温度传感器读取的数据平均值为25摄氏度;在户外阳光下,温度传感器读取的数据平均值为35摄氏度。

五、实验结果分析
通过实验数据分析可知,DS18B20温度传感器对环境温度有较高的
敏感度和准确性,能够较精准地反映环境温度的变化。

在不同环境温
度下,传感器能够稳定地输出准确的温度数据。

六、实验结论
本实验通过对DS18B20温度传感器的测试和分析,验证了其在温
度检测方面的可靠性和准确性。

温度传感器可以广泛应用于各种领域,如气象监测、工业控制等。

通过本次实验,我们对温度传感器的性能
有了更深入的了解。

七、参考文献
1. DS18B20温度传感器数据手册
2. Arduino Uno官方网站
以上为实验报告内容,谢谢!。

基于DS18B20传感器温度测量课程设计报告

基于DS18B20传感器温度测量课程设计报告

目录•封面 (1)•内容1.设计题目 (3)2.设计目的 (3)3.设计任务和要求 (3)4.正文 (3)5.设计体会、致谢 (16)6.参考文献 (16)7.附录 (17)1.设计题目《基于DS18B20传感器温度测量》2.课程设计目的通过基于MCS-51系列单片机AT89C51和DS18B20温度传感器检测温度,熟悉芯片的使用,温度传感器的功能,数码显示管的使用,汇编语言的设计;并且把我们这一年所学的数字和模拟电子技术、检测技术、单片机应用等知识,通过理论联系实际,从题目分析、电路设计调试、程序编制调试到传感器的选定等这一完整的实验过程,培养了学生正确的设计思想,使学生充分发挥主观能动性,去独立解决实际问题,以达到提升学生的综合能力、动手能力、文献资料查阅能力的作用,为毕业设计和以后工作打下一个良好的基础。

3.设计任务和要求以MCS-51系列单片机为核心器件,组成一个数字温度计,采用数字温度传感器DS18B20为检测器件,进行单点温度检测,检测精度为 0.5摄氏度。

温度显示采用3位LED数码管显示,两位整数,一位小数。

具有键盘输入上下限功能,超过上下限温度时,进行声音报警。

4.正文一、方案选择与论证根据设计任务的总体要求,本系统可以划分为以下几个基本模块,针对各个模块的功能要求,分别有以下一些不同的设计方案:1、温度传感器模块方案一:采用热敏电阻,热敏电阻精度、重复性、可靠性较差,对于检测1摄氏度的信号是不适用的,也不能满足测量范围。

在温度测量系统中,也常采用单片温度传感器,比如AD590,LM35等。

但这些芯片输出的都是模拟信号,必须经过A/D转换后才能送给计算机,这样就使测温系统的硬件结构较复杂。

另外,这种测温系统难以实现多点测温,也要用到复杂的算法,一定程度上也增加了软件实现的难度。

方案二:采用单总线数字温度传感器DS18B20测量温度,直接输出数字信号。

便于单片机处理及控制,节省硬件电路。

基于ds18b20的数字温度计设计报告

基于ds18b20的数字温度计设计报告

基于ds18b20的数字温度计设计报告
一、引言
随着科技的进步,温度的测量和控制变得越来越重要。

DS18B20是一款数字温度传感器,具有测量准确度高、体积小、接口简单等优点,广泛应用于各种温度测量场合。

本报告将介绍基于DS18B20的数字温度计设计。

二、DS18B20简介
DS18B20是一款由美国Dallas公司生产的数字温度传感器,可以通过数据线与微处理器进行通信,实现温度的测量。

DS18B20的测量范围为-55℃~+125℃,精度为±0.5℃。

三、数字温度计设计
1.硬件设计
数字温度计的硬件部分主要包括DS18B20温度传感器、微处理器、显示模块等。

其中,DS18B20负责采集温度数据,微处理器负责处理数据并控制显示模块显示温度。

2.软件设计
软件部分主要实现DS18B20与微处理器的通信和控制显示模块显示。

首先,微处理器通过数据线向DS18B20发送命令,获取温度数据。

然后,微处理器将数据处理后发送给显示模块,实现温度的实时显示。

四、测试结果
经过测试,该数字温度计的测量精度为±0.5℃,符合设计要求。

同时,该温度
计具有测量速度快、体积小、使用方便等优点,可以广泛应用于各种温度测量场合。

五、结论
基于DS18B20的数字温度计具有高精度、低成本、使用方便等优点,可以实现高精度的温度测量和控制。

随着科技的发展,数字温度计的应用将越来越广泛,具有广阔的市场前景。

基于51单片机的DS18B20温度检测_设计报告

基于51单片机的DS18B20温度检测_设计报告

课程名称:微机原理课程设计题目:温度检测课程设计随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的温度检测仪。

本设计使用简便,功能丰富。

可以实现温度采集,温度报警,重设上下限温度值等功能。

在现代化的工业生产中,需要对周围环境的温度进行检测和控制。

本设计对温控报警问题展开思考,设计一个能根据需求设置低温到高温进行报警并通过数码管显示的系统。

该系统使用STC89C51单片机,同时运用单线数字温度传感器DS18B20,四位共阴数码管显示,按键控制等模块可实现温度的检测与设置。

课题经过实验验证达到设计要求,具有一定的使用价值和推广价值。

本作品使用四位共阴数码管显示,可以清晰地显示当前的报警温度,一定程度避免使用者使用时出错,安全可靠,可使用于各种食品储存室,植物养殖所等地方,实用性很高。

关键字:温度报警器 STC89C51单片机数码管 DS18B20一、课程设计目的和要求 (1)1.1 设计目的 (1)1.2 设计要求 (1)二、总体设计方案 (1)三、硬件设计 (2)3.1 DS18B20传感器 (2)3.2 STC89C51功能介绍 (6)3.3 时钟电路 (8)3.4 复位电路 (8)3.5 LED显示系统电路 (9)3.6 按键控制电路 (11)3.7 蜂鸣器电路 (11)3.8 总体电路设计 (12)四、软件设计 (14)4.1 keil软件 (14)4.2 系统主程序设计 (14)4.3 系统子程序设计 (15)五、仿真与实现 (18)5.1 PROTEUS仿真软件 (18)5.2 STC-ISP程序烧录软件 (19)5.3 使用说明 (20)六、总结 (21)一、课程设计目的和要求1.1 设计目的熟悉典型51单片机,加深对51单片机课程的全面认识和掌握,对51单片机及其接口的应用作进一步的了解,掌握基于51单片机的系统设计的一般流程、方法和技巧,为我们解决工程实际问题打下坚实的基础。

DS18B20数字温度计设计实验报告

DS18B20数字温度计设计实验报告
读岀温度值
温度计酸处理
显示数据刷新
发温度转换开始命令
读出温度子程序 读出温度子程序的主要功能是读出RAM中的9字节。在 读出时须进行CRC校验,校验有错时不进行温度数据的改写。得出温度子程序 流程图如下图所示。
发读取温度指令
4.
系统程序主要包括主程序、读出温度子程序、温度转换命令子程序、计算温 度子程序和显示数据刷新子程序等。
4.1主程序
主程序的主要功能是负责温度的实时显示、读出并处理DS18B20的测量温
度值。温度测量每1s进行一次。主程序流程图如图4.1所示。
4.2读出温度子程序
读出温度子程序的主要功能是读出RAM中的9字节。在读出时必须进行CRC校验,校验有错时不能进行温度数据的改写。读出温度子程序流程图如下图所示:
3、P1口:P1口是一个8位双向
I/O口。口引脚P1.2~P1.7提供内部上拉电阻,P1.0和P1.1要求外部上拉电阻。P1.0和P1.1还分别作为片内精密模拟 比较器的同相输入(ANI0)和反相输入(AIN1)。P1口输出缓冲器可吸收
20mA电流并能直接驱动LED显示。当P1口引脚写入T”时,其可用作输入端, 当引脚P1.2~P1.7用作输入并被外部拉低时,它们将因内部的写入“1”时,其可用 作输入端。当引脚P1.2~P1.7用作输入并被外部拉低时,它们将因内部的上拉电 阻而流出电流
5、温范围—55C〜+125C,在-10〜+85C时精度为土05C。
6可编程 的分辨率为9〜12位,对应的可分辨温度分别为0.5C、0.25C、
0.125C和0.0625C,可实现高精度测温。
7、在9位分辨率时最多在93.75ms内把温度转 换为数字,12位分辨率时最多在750ms内把温度值转 换为数字,速度更快。

(完整word版)基于单片机的DS18B20设计实验报告

(完整word版)基于单片机的DS18B20设计实验报告

第1章引言在日常生活及工农业生产中经常要涉及到温度的检测及控制,传统的测温元件有热点偶,热敏电阻还有一些输出模拟信号得温度传感器,而这些测温元件一般都需要比较多的外部硬件支持。

其硬件电路复杂,软件调试繁琐,制作成本高,阻碍了其使用性。

因此美国DALLAS半导体公司又推出了一款改进型智能温度传感器——DS18B20。

本设计就是用DS18B20数字温度传感器作为测温元件来设计数字温度计。

本设计所介绍的数字温度计与传统温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于测温比较准确得场所,或科研实验室使用。

该设计控制器使用单片机STC89C51,测温传感器使用DS18B20,显示器使用LED.第2章任务与要求2.1测量范围-50~110°C,精确到0.5°C;2.2利用数字温度传感器DS18B20测量温度信号;2.3所测得温度采用数字显示,计算后在液晶显示器上显示相应得温度值;第3章方案设计及论证3.1温度检测模块的设计及论证由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,其中还涉及到电阻与温度的对应值的计算,感温电路比较麻烦。

而且在对采集的信号进行放大时容易受温度的影响出现较大的偏差。

进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,电路简单,精度高,软硬件都以实现,而且使用单片机的接口便于系统的再扩展,满足设计要求。

3.2显示模块的设计及论证LED是发光二极管Light Emitting Diode 的英文缩写。

LED显示屏是由发光二极管排列组成的一显示器件。

DS18B20数字温度计设计实验报告文档推荐

DS18B20数字温度计设计实验报告文档推荐

DS18B20数字温度计设计实验报告文档推荐本实验旨在设计并实现一款数字温度计,利用DS18B20数字温度传感器测量环境温度并通过LCD1602液晶屏幕实时显示温度值。

实验设计1.材料准备:Arduino UNO控制板LCD1602液晶显示屏面包板、面包线10K电阻2.配置DS18B20数字温度传感器将DS18B20数字温度传感器与Arduino UNO控制板连接。

按下面连接方式进行连接: DS18B20传感器的红色线连接到Arduino UNO的+5V输出端口接完线后在Arduino IDE软件中,依次点击工具-示例-DS18B20-Temperature-Resolution,打开示例程序。

将程序复制到新建文本文件中进行修改,此处我将分辨率改为了12位。

然后将程序上传到Arduino UNO控制板中。

LCD1602液晶显示屏的VO引脚连接到一个10K电位器的中间引脚LCD1602液晶显示屏的D4-D7引脚依次连接到Arduino UNO的数字4-7个针脚4.最终的连接方式将连接完DS18B20数字温度传感器和LCD1602液晶显示屏后的Arduino UNO控制板,和面包板和面包线通过另一个10K电阻连接,其中用到的端口引脚如下:Arduino UNO的5V端口连接了一个10K电阻,这个电阻的另一端通过面包线连接到面包板的一个面包网络面包板的另一个面包网络再通过面包线连接到LCD1602液晶显示屏的K端口最后将设备连接完整后,将实验代码上传到Arduino UNO控制板中,然后就可以通过LCD1602液晶显示屏上实时显示环境温度值。

实验总结通过本次实验,我们成功地实现了数字温度计,并能够通过LCD1602液晶显示屏上实时显示温度值。

实验中温度传感器和LCD显示屏的连接更加直观和清晰,容易理解,实验成功率较高。

通过此次实验,我们学习到了数字温度传感器的连接方式、温度检测方法和温度的精度和分辨率等基本知识,同时也熟悉了Arduino UNO控制板和LCD1602液晶显示屏的使用方法,提高了对物联网应用的理解和掌握,为后续学习打下坚实的基础。

DS18B20数字温度计设计实验报告(1)

DS18B20数字温度计设计实验报告(1)

DS18B20数字温度计设计实验报告(1)目:DS18B20数字温度计姓名:李成学号:133010220指导老师:周灵彬设计时间:全文结束》》年1月目录1、引言31、1、设计意义31、2、系统功能要求32、方案设计33、硬件设计44、软件设计85、系统调试106、设计总结117、附录128、参考文献15DS18B20数字温度计设计1、引言1、1、设计意义在日常生活及工农业生产中,经常要用到温度的检测及控制,传统的测温元件有热电偶和热电阻。

而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,需要比较多的外部硬件支持。

其缺点如下:● 硬件电路复杂;● 软件调试复杂;● 制作成本高。

本数字温度计设计采用美国DALLAS半导体公司继DS1820之后推出的一种改进型智能温度传感器DS18B20作为检测元件,测温范围为-55~125℃,最高分辨率可达0、0625℃。

DS18B20可以直接读出被测温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的热点。

1、2、系统功能要求设计出的DS18B20数字温度计测温范围在0~125℃,误差在±1℃以内,采用LED数码管直接读显示。

2、方案设计按照系统设计功能的要求,确定系统由3个模块组成:主控制器、测温电路和显示电路。

数字温度计总体电路结构框图如4、1图所示:AT89C51主控制器DS18B20显示电路扫描驱动图4、13、硬件设计温度计电路设计原理图如下图所示,控制器使用单片机AT89C2051,温度传感器使用DS18B20,使用四位共阳LED数码管以动态扫描法实现温度显示。

主控制器单片机AT89C51具有低电压供电和小体积等特点,两个端口刚好满足电路系统的设计需要,很适合便携手持式产品的设计使用。

系统可用两节电池供电。

AT89C51的引脚图如右图所示:VCC:供电电压。

GND:接地。

P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。

DS18B20传感器设计报告

DS18B20传感器设计报告

传感器课程设计---数字温度计专业:嵌入式系统工程年级:2010 级嵌入式姓名:谢进学号:20101154 指导教师:刘德春阿坝师专电子信息工程系内容摘要:随着现代信息化技术的飞速发展和传统工业改造的逐步实现,能独立工作的温度检测系统已广泛应用于各种不同的领域。

本文介绍了一个基于STC89C52单片机和数字温度传感器DS18B20的测温系统,并用LCD数码管显示温度值,易于读数。

系统电路简单、操作简便,系统具有可靠性高、成本低、功耗小等优点。

关键词:单片机数字温度传感器温度计1 引言随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便是不可否定的,各种数字系统的应用也使人们的生活更加舒适。

数字化控制、智能控制为现代人的工作、生活、科研等方面带来方便。

其中数字温度计就是一个典型的例子。

数字温度计与传统的温度计相比,具有读数方便、测温范围广、测温精确、功能多样话等优点。

其主要用于对测温要求准确度比较高的场所,或科研实验室使用,该设计使用AT89C52单片机作控制器,数字温度传感器DS18B20测量温度,单片机接受传感器输出,经处理用LCD数码管实现温度值显示。

2 设计要求2.1 基本要求用LCD12232实现实时温度显示温度和自己的学号。

2.2 扩展功能温度报警,能任意设定温度范围实现铃声报警;3 总体方案设计3.1 方案论证3.1.1 方案考虑到在单片机属于数字系统,容易想到数字温度传感器,可选用DS18B20数字温度传感器,此传感器为单总线数字温度传感器,起体积小、构成的系统结构简单,它可直接将温度转化成串行数字信号给单片机处理,即可实现温度显示。

另外DS18B20具有3引脚的小体积封装,测温范围为-55~+125摄氏度,测温分辨率可达0.0625摄氏度,其测量范围与精度都能符合设计要求。

此方案设计的系统在功耗、测量精度、范围等方面都能很好地达到要求3.2 总体设计框图本方案设计的系统由单片机系统、数字温度传感器、LCD显示模块、按键控制模块、温度报警模块组成,其总体架构如下图1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录一、概述 (2)二、内容 (2)1、课程设计题目 (2)2、课程设计目的 (2)3、设计任务和要求 (2)4、正文 (3)(一)、方案选择与论证 (3)三、系统的具体设计与实现 (5)(1)、系统的总体设计方案 (5)(2)、硬件电路设计 (5)a、单片机控制模块 (5)b、温度传感器模块 (5)四、软件设计 (11)1、主程序 (11)2、读出温度子程序 (11)3、温度转换命令子程序 (11)4、计算温度子程序 (12)五、完整程序如下: (12)六、设计体会 (17)七、参考文献 (17)一、概述单片机技术是一项运用广泛且极具发展潜力的技术。

2009年6月14日随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术。

本文主要介绍了一个基于89S52单片机的测温系统,详细描述了利用液晶显示器件传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感DS18B20的数据采集过程。

对各部分的电路也一一进行了介绍,该系统可以方便的实现实现温度采集和显示,并可根据需要任意设定上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。

DS18B20与AT89C52结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。

二、内容1、课程设计题目基于DS18B20的温度传感器2、课程设计目的通过基于MCS-52系列单片机AT89C52和DS18B20温度传感器检测温度,熟悉芯片的使用,温度传感器的功能,数码显示管的使用,汇编语言的设计;并且把我们这一年所学的数字和模拟电子技术、检测技术、单片机应用等知识,通过理论联系实际,从题目分析、电路设计调试、程序编制调试到传感器的选定等这一完整的实验过程,培养了学生正确的设计思想,使学生充分发挥主观能动性,去独立解决实际问题,以达到提升学生的综合能力、动手能力、文献资料查阅能力的作用,为毕业设计和以后工作打下一个良好的基础。

3、设计任务和要求以MCS-52系列单片机为核心器件,组成一个数字温度计,采用数字温度传感器DS18B20为检测器件,进行单点温度检测,检测精度为±0.5摄氏度。

温度显示采用LCD1602显示,两位整数,一位小数。

系统总体仿真图板上实现效果图4、正文(一)、方案选择与论证根据设计任务的总体要求,本系统可以划分为以下几个基本模块,针对各个模块的功能要求,分别有以下设计方案:(1)、温度传感模块采用单总线数字温度传感器DS18B20测量温度,直接输出数字信号。

便于单片机处理及控制,节省硬件电路。

且该芯片的物理化学性很稳定,此元件线形性能好,在0—100摄氏度时,最大线形偏差小于1摄氏度。

DS18B20的最大特点之一采用了单总线的数据传输,由数字温度计DS18B20和微控制器AT89C52构成的温度装置,它直接输出温度的数字信号到微控制器。

每只DS18B20具有一个独有的不可修改的64位序列号,根据序列号可访问不同的器件。

这样一条总线上可挂接多个DS18B20传感器,实现多点温度测量,轻松的组建传感网络。

综上分析,我们选用第二种方案。

温度传感模块仿真图(2)、显示模块采用液晶显示器件,液晶显示平稳、省电、美观,更容易实现题目要求,对后续的园艺通兼容性高,只需将软件作修改即可,可操作性强,也易于读数,采用RT1602两行十六个字符的显示,能同时显示其它的信息如日期、时间、星期、温度。

综上分析,我们采用了第二个方案显示模块仿真图三、系统的具体设计与实现(1)、系统的总体设计方案采用AT89S52单片机作为控制核心对温度传感器DS18B20控制,读取温度信号并进行计算处理,并送到液晶显示器LCD1602显示。

按照系统设计功能的要求,确定系统由3个模块组成:主控制器、测温电路和显示电路。

数字温度计总体电路结构框图如图下所示。

(2)、硬件电路设计a、单片机控制模块该模块由AT89C52单片机组成在设计方面,AT89C52的EA接高电平,其外围电路提供能使之工作的晶振脉冲、复位按键,四个I/O分别接8路的单列IP座方便与外围设备连接。

当AT89C52芯片接到来自温度传感器的信号时,其内部程序将根据信号的类型进行处理,并且将处理的结果送到显示模块,发送控制信号控制各模块。

b、温度传感器模块DS18B20相关资料1、DS18B20原理与分析DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。

与传统的热敏电阻相比,它能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。

可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。

因而使用DS18B20可使系统结构更趋简单,可靠性更高。

他在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。

以下是DS18B20的特点:(1)独特的单线接口方式:DS18B20与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。

(2)在使用中不需要任何外围元件。

(3)可用数据线供电,电压范围:+3.0~ +5.5 V。

(4)测温范围:-55 - +125 ℃。

固有测温分辨率为0.5 ℃。

(5)通过编程可实现9-12位的数字读数方式。

(6)用户可自设定非易失性的报警上下限值。

(7)支持多点组网功能,多个DS18B20可以并联在惟一的三线上,实现多点测温。

(8)负压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。

2、DS18B20的测温原理DS18B20的测温原理上图所示,图中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量。

计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55 ℃所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在 -55 ℃所对应的一个基数值。

减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。

图中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值,这就是DS18B20的测温原理。

另外,由于DS18B20单线通信功能是分时完成的,他有严格的时隙概念,因此读写时序很重要。

系统对DS18B20的各种操作必须按协议进行。

操作协议为:初始化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数据。

DS18B20工作过程一般遵循以下协议:初始化——ROM操作命令——存储器操作命令——处理数据①初始化单总线上的所有处理均从初始化序列开始。

初始化序列包括总线主机发出一复位脉冲,接着由从属器件送出存在脉冲。

存在脉冲让总线控制器知道DS1820 在总线上且已准备好操作。

② ROM操作命令一旦总线主机检测到从属器件的存在,它便可以发出器件ROM操作命令之一。

所有ROM操作命令均为8位长。

③存储器操作命令④处理数据DS18B20的高速暂存存储器由9个字节组成,其分配如图3所示。

当温度转换命令发布后,经转换所得的温度值以二字节补码形式存放在高速暂存存储器的第0和第1个字节。

单片机可通过单线接口读到该数据,读取时低位在前,高位在后。

DS18B20温度数据表上表是DS18B20温度采集转化后得到的12位数据,存储在DS18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于或等于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。

温度转换计算方法举例:例如当DS18B20采集到+125℃的实际温度后,输出为07D0H,则:实际温度=07D0H ╳0.0625=2000╳0.0625=1250C。

例如当DS18B20采集到-55℃的实际温度后,输出为FC90H,则应先将11位数据位取反加1得370H(符号位不变,也不作为计算),则:实际温度=370H╳0.0625=880╳0.0625=550C。

2、显示模块LCD1602资料(这里主要介绍下指令说明及时序)1602液晶模块内部的控制器共有11条控制指令,如表10-14所示:序号指令RS R/W D7 D6 D5 D4 D3 D2 D1 D01 清显示0 0 0 0 0 0 0 0 0 12 光标返回0 0 0 0 0 0 0 0 1 *3 置输入模式0 0 0 0 0 0 0 1 I/D S4 显示开/关控制0 0 0 0 0 0 1 D C B5 光标或字符移位0 0 0 0 0 1 S/C R/L * *读状态输入RS=L,R/W=H,E=H 输出D0—D7=状态字写指令输入RS=L,R/W=L,D0—D7=指令码,E=输出无高脉冲读数据输入RS=H,R/W=H,E=H 输出D0—D7=数据输出无写数据输入RS=H,R/W=L,D0—D7=数据,E=高脉冲表10-15:基本操作时序表读写操作时序如图10-55和10-56所示:图10-55 读操作时序图10-56 写操作时序四、软件设计系统程序主要包括主程序、读出温度子程序、温度转换子程序、计算温度子程序、显示等等。

1、主程序主要功能是完成DS18B20的初始化工作,并进行读温度,将温度转化成为压缩BCD 码并在显示器上显示传感器所测得的实际温度。

2、读出温度子程序读出温度子程序的主要功能是读出RAM中的9字节,在读出时需要进行CRC校验,校验有错时不进行温度数据的改写。

其程序流程图如下图所示。

相关文档
最新文档