嵌入式课程设计温度传感器-课程设计
基于嵌入式的温度传感器的设计

目录第一章系统概要 (1)1.1 系统背景 (1)1.2 系统功能框图 (1)第二章系统硬件设计 (2)2.1 系统原理图 (2)2.2 单片机(MCU)模块 (2)2.2.1 MC908GP32单片机性能概述 (2)2.2.2 内部结构简图与引脚功能 (3)2.2.3 GP32最小系统 (5)2.3 传感器模块 (6)2.4 信号放大模块 (7)2.5 A/D转换模块 (7)2.5.1 进行A/D转换的基本问题 (7)2.5.2 A/D转换模块的基本编程方法 (8)2.5.3 A/D芯片TCL2543概述 (8)2.6 串行通信模块 (11)2.6.1 串行通信常用概念 (11)2.6.2 RS-232C总线标准 (12)第三章系统软件设计 (14)3.1 MCU方(C)程序 (14)3.1.1 A/D转换子程序 (14)3.1.2 串行通信子程序 (17)3.2 PC方(VB)程序 (19)3.3 PC方界面 (24)第四章系统测试 (24)第五章总结展望 (25)5.1 总结 (25)5.2 展望 (25)参考文献 (26)第一章系统概要1.1 系统背景温度是日常生活、工业、医学、环境保护、化工等领域遇到的一个物理量。
温度测量的基本方法是使用温度计直接读取。
最常见的测量温度的工具是各种各样的温度计,它们常常以刻读的形式表示温度的高低,人们必须通过读取刻度的多少来测量温度。
由于单片机在检测和控制系统中得到广泛的应用,利用单片机和温度传感器构成的电子式智能温度计就可以直接测量温度,得到温度的数字值并显示出来,既简单方便,又直观准确。
本次课程设计的目的是以MC908GP32单片机为核心设计出一个路温度测量系统。
设计将温度传感器采样得到的模拟信号转换成数字信号,通过串口在PC 的界面显示出来。
本次课程设计用温度传感器将被测温度转换为电量,经过放大滤波电路处理后,由模数转换器将模拟量转换为数字量,再与单片机相连,通过可编程键盘显示接口芯片实现温度限值的设定。
嵌入式系统课程设计温度检测报警系统

嵌入式系统课程设计姓名:班级:学号:.目录:一.系统要求二.设计方案三.程序流程图四.软件设计五.课程总结与个人体会.一、系统要求使用STM32F103作为主控CPU设计一个温度综合测控系统,具体要求:1、使用热敏电阻或者内部集成的温度传感器检测环境温度,每0.1秒检测一次温度,对检测到的温度进行数字滤波(可以使用平均法)。
记录当前的温度值和时间。
2、使用计算机,通过串行通信获取STM32F103检测到的温度和所对应的时间。
3、使用计算机进行时间的设定。
4、使用计算机进行温度上限值和下限值的设定。
5、若超过上限值或者低于下限值,则STM32进行报警提示。
.二、设计方案本次课程设计的要求是使用STM32F103设计一个温度测控系统,这款单片机集成了很多的片上资源,功能十分强大,我使用了以下部分来完成课程设计的要求:1、STM32F103内置了3个12位A/D转换模块,最快转换时间为1us。
本次课程设计要求进行温度测定,于是使用了其中一个ADC对片上温度传感器的内部信号源进行转换。
当有多个通道需要采集信号时,可以把ADC配置为按一定的顺序来对各个通道进行扫描转换,本设计只采集一个通道的信号,所以不使用扫描转换模式。
本设计需要循环采集电压值,所以使用连续转换模式。
2、本次课程设计还使用到了DMA。
DMA是一种高速的数据传输操作,允许在外部设备和储存器之间利用系统总线直接读写数据,不需要微处理器干预。
使能ADC的DMA接口后,DMA控制器把转换值从ADC数据寄存器(ADC_DR)中转移到变量ADC_ConvertedValue中,当DMA传输完成后,在main函数中使用的ADC_ConvertedValue的内容就是ADC转换值了。
3、STM32内部的温度传感器和ADCx_IN16输入通道相连接,此通道把传感器输出的电压值转换成数字值。
STM内部的温度传感器支持的温度范围:-40到125摄氏度。
利用下列公式得出温度温度(°C) = {(V25 - VSENSE) / Avg_Slope} + 25式中V25是 VSENSE在25摄氏度时的数值(典型值为1.42V))曲线的平均斜率(典型值为4.3mV/C是温度与Avg_SlopeVSENSE利用均值法对转换后的温度进行滤波,将得到的温度通过串口输出。
嵌入式课程设计-- 基于嵌入式系统的传感器环境检测

嵌入式系统软件开发课程设计报告题目:基于嵌入式系统的传感器环境检测学院: 物理与电子信息工程学院专业: 计算机科学与技术班级: 10计本姓名: 左凌轩学号: 10110013151 指导老师: 徐玉完成日期: 2013.3.30目录摘要 (I)Abstract (II)第一章设计目的 (3)1.1 掌握STM32嵌入式系统各功能模块的使用方法。
(3)1.2 掌握SHT1x温湿度传感器、BMP085气压传感器、GL5528光敏电阻、雨量传感器的数据采集与处理方法。
(3)1.3 掌握嵌入式系统上位机软件的实现方法。
(3)第二章课程设计要求 (3)2.1 嵌入式系统要求 (3)2.2 上位机要求 (3)第三章系统原理 (3)3.1硬件电路 (3)3.2 SHT1x温湿度传感器 (4)3.3 BMP085气压传感器 (4)3.4 GL5528光敏电阻 (4)3.5 雨量传感器 (5)第四章系统开发步骤 (5)4.1开发板模块初始配置 (5)4.2传感器模块初始配置 (5)4.3 UI、传感器数据读取显示以及串口传输 (5)4.4上位机串口软件编写以及测试 (6)4.5 整体测试和调试 (8)第五章总结 (11)第六章附录 (12)6.1 Comopeator(主界面) (12)6.2 history(查看历史界面) (22)摘要设计多传感器实现环境质量检测的多功能、实时数据保存以及查看,有利于各个领域在环境方面的检测和测试,方便在环境相应参数的调查和研究。
本文采用Stm32开发版、BMP085、SHT1X、光强、雨量等灵敏度较高的先进传感器分别检测温度、气压、湿度、光强、雨量,并在上位机中用C++实现实时显示和数据库的保存。
从设计中,各种检测和数据挖掘明显趋于简单。
关键词:传感器检测数据注:上位机关键代码见附录Abstract .Key Words:第一章设计目的1.1 掌握STM32嵌入式系统各功能模块的使用方法。
51温度传感器课程设计

51温度传感器课程设计一、课程目标知识目标:1. 学生能够理解温度传感器的基本原理,掌握51温度传感器的工作方式和特点。
2. 学生能够描述温度传感器在智能控制系统中的应用,并解释其重要性。
3. 学生能够运用数学知识,对温度传感器采集的数据进行分析和处理。
技能目标:1. 学生能够正确连接和配置51温度传感器,完成温度监测电路的搭建。
2. 学生能够编写程序,实现对温度的实时采集、显示和处理。
3. 学生能够运用问题解决策略,对温度控制系统的故障进行诊断和修复。
情感态度价值观目标:1. 学生对温度传感器和智能控制系统产生兴趣,增强对科学技术的热爱和好奇心。
2. 学生在合作探究中,培养团队精神和沟通能力,提高自信心和自主学习能力。
3. 学生认识到温度控制在日常生活和工业生产中的重要性,增强环保意识和责任感。
分析课程性质、学生特点和教学要求:本课程为初中信息技术课程,结合学生已有物理、数学知识,以实用性为导向,强调知识与实践相结合。
学生特点为好奇心强,喜欢动手实践,但理论知识掌握程度不一。
因此,教学要求注重理论与实践相结合,引导学生主动探究,提高学生的动手能力和解决问题的能力。
二、教学内容1. 温度传感器原理:介绍温度传感器的基本工作原理,包括热敏电阻的阻值随温度变化的特性,重点讲解NTC热敏电阻的原理及应用。
2. 51温度传感器介绍:详细讲解51温度传感器的结构、性能参数及使用方法,结合教材相关章节,使学生了解其在智能控制系统中的应用。
3. 温度监测电路搭建:指导学生按照教材步骤,正确连接和配置51温度传感器,完成温度监测电路的搭建,学习电路图识读和电子元件的使用。
4. 编程与数据处理:教授学生编写程序,实现对温度的实时采集、显示和处理,结合数学知识,对采集到的数据进行分析和计算。
5. 故障诊断与修复:培养学生运用问题解决策略,对温度控制系统的故障进行诊断和修复,提高学生的动手能力和实际操作技能。
6. 实践应用:结合实际案例,让学生了解温度控制在日常生活和工业生产中的应用,激发学生学习兴趣,提高学生的创新意识。
温度传感器课程设计

温度传感器课程设计
温度传感器是一种用于测量环境温度的设备,广泛应用于工业控制、医疗设备、家用电器等领域。
在现代科技发展迅速的背景下,温度传感器的应用越来越广泛,因此温度传感器的相关知识和技能也成为了许多工程技术人员必备的技能之一。
针对这一需求,设计一门“温度传感器课程”是非常有必要的。
这门课程旨在帮助学生掌握温度传感器的工作原理、类型、应用领域以及相关的电路设计和数据处理技术。
通过学习这门课程,学生将能够了解温度传感器的基本原理和性能指标,掌握温度传感器的选型和安装方法,以及温度传感器在实际工程中的应用技巧。
首先,课程将介绍温度传感器的基本原理和工作方式,包括热敏电阻、热电偶、红外线传感器等不同类型的温度传感器的工作原理和特点。
其次,课程将重点介绍温度传感器在工业控制、医疗设备、家用电器等领域的应用,以及在不同应用场景下的选型和安装技巧。
此外,课程还将介绍温度传感器的电路设计和数据处理技术,帮助学生掌握温度传感器信号的放大、滤波、数字化等技术。
在课程设计方面,可以采用理论教学与实践操作相结合的方式。
理论教学部分可以通过课堂讲授、案例分析、实验演示等方式进行,让学生在理论学习中获得系统的知识结构;实践操作部分可以通过实验课、实训课等形式进行,让学生在实际操作中掌握温度传感器的选型、安装、调试等技术技能。
总之,“温度传感器课程设计”旨在帮助学生系统掌握温度传感器的相关知识和技能,提高他们在工程技术领域的应用能力,促进温度传感器技术的应用与推广。
希望这门课程能够为学生们提供全面的学习平台,让他们在未来的工作中能够游刃有余地应用温度传感器技术,为社会发展做出更大的贡献。
数字温度传感器课程设计

数字温度传感器课程设计一、课程目标知识目标:1. 学生能理解数字温度传感器的基本工作原理,掌握相关的物理概念和术语。
2. 学生能描述数字温度传感器在智能控制系统中的应用,并列举至少三种实际应用场景。
3. 学生能解读数字温度传感器输出的数据,并进行简单的数据转换。
技能目标:1. 学生能够正确使用数字温度传感器进行温度测量,并完成数据采集。
2. 学生能够运用编程软件对数字温度传感器进行控制,实现对温度的实时监控。
3. 学生能够通过小组合作,设计并实施一个简单的数字温度传感器应用项目。
情感态度价值观目标:1. 学生能够认识到数字温度传感器在生活中的广泛应用,增强对科技的兴趣和认识。
2. 学生通过实践操作,培养动手能力、观察力和问题解决能力。
3. 学生在小组合作中,学会沟通与协作,培养团队精神和集体荣誉感。
课程性质:本课程为信息技术与物理学科的跨学科课程,注重理论联系实际,强调学生的动手操作和实际应用。
学生特点:初三学生具备一定的物理知识和信息技术基础,对新鲜事物充满好奇心,善于合作与交流。
教学要求:结合学生特点,注重理论与实践相结合,通过项目式学习,提高学生的实际操作能力和问题解决能力。
在教学过程中,关注学生的个体差异,给予个性化指导,确保课程目标的实现。
将目标分解为具体的学习成果,便于后续教学设计和评估。
二、教学内容1. 数字温度传感器基础知识:- 温度传感器原理与分类- 数字温度传感器的工作原理- 常见数字温度传感器的结构与性能2. 数字温度传感器的应用:- 数字温度传感器在智能控制系统中的应用- 实际应用场景案例分析- 数字温度传感器选型依据3. 数据采集与处理:- 数字温度传感器输出数据的读取与转换- 数据采集系统的搭建与编程- 温度监控系统的设计与实现4. 实践操作与项目设计:- 数字温度传感器的使用与调试- 小组合作进行温度测量与监控系统设计- 项目展示与评价教学大纲安排:第一课时:数字温度传感器基础知识学习第二课时:数字温度传感器应用案例分析第三课时:数据采集与处理方法学习第四课时:实践操作与项目设计教材关联章节:《信息技术》中关于传感器及其应用的相关章节;《物理》中关于温度及其测量、数据采集与处理的相关章节。
嵌入式系统课程设计温度检测报警系统解读

嵌入式系统课程设计姓名:班级:学号:目录:一.系统要求二.设计方案三.程序流程图四.软件设计五.课程总结与个人体会一、系统要求使用STM32F103作为主控CPU设计一个温度综合测控系统,具体要求:1、使用热敏电阻或者内部集成的温度传感器检测环境温度,每0.1秒检测一次温度,对检测到的温度进行数字滤波(可以使用平均法)。
记录当前的温度值和时间。
2、使用计算机,通过串行通信获取STM32F103检测到的温度和所对应的时间。
3、使用计算机进行时间的设定。
4、使用计算机进行温度上限值和下限值的设定。
5、若超过上限值或者低于下限值,则STM32进行报警提示。
二、设计方案本次课程设计的要求是使用STM32F103设计一个温度测控系统,这款单片机集成了很多的片上资源,功能十分强大,我使用了以下部分来完成课程设计的要求:1、STM32F103内置了3个12位A/D转换模块,最快转换时间为1us。
本次课程设计要求进行温度测定,于是使用了其中一个ADC对片上温度传感器的内部信号源进行转换。
当有多个通道需要采集信号时,可以把ADC配置为按一定的顺序来对各个通道进行扫描转换,本设计只采集一个通道的信号,所以不使用扫描转换模式。
本设计需要循环采集电压值,所以使用连续转换模式。
2、本次课程设计还使用到了DMA。
DMA是一种高速的数据传输操作,允许在外部设备和储存器之间利用系统总线直接读写数据,不需要微处理器干预。
使能ADC的DMA接口后,DMA控制器把转换值从ADC 数据寄存器(ADC_DR)中转移到变量ADC_ConvertedValue中,当DMA 传输完成后,在main函数中使用的ADC_ConvertedValue的内容就是ADC转换值了。
3、STM32内部的温度传感器和ADCx_IN16输入通道相连接,此通道把传感器输出的电压值转换成数字值。
STM内部的温度传感器支持的温度范围:-40到125摄氏度。
利用下列公式得出温度温度(°C) = {(V25 - VSENSE) / Avg_Slope} + 25式中V25是 VSENSE在25摄氏度时的数值(典型值为1.42V)Avg_Slope是温度与VSENSE曲线的平均斜率(典型值为4.3mV/C)利用均值法对转换后的温度进行滤波,将得到的温度通过串口输出。
基于单片机的电子式智能温度计设计 嵌入式系统课程设计

基于单片机的电子式智能温度计设计嵌入式系统课程设计计算机科学系课程设计报告环节名称:嵌入式系统课程设计姓名:学号:班级:时间: 2011-07-9地点: 1408/科技制作中心指导教师:一、任务和要求1、课程设计任务:(1).分组完成一个课题的制作。
(2).按要求完成课题的功能。
(3).绘制电路的原理图,使用Protues仿真软件进行仿真调试。
(4).利用Protel DXP2004 设计PCB电路图,并进行PCB板子的制作。
(5).进行元器件的焊接、装配,并进行硬件测试。
(6).进行软、硬件联机调试。
(7).安装成产品。
2、课程设计要求:本设计通过理论学习,资料查阅,软、硬件设计,系统调试等环节,巩固和提高所学的知识和应用水平,进一步学习和领会嵌入式电子产品开发方法和技巧,提高自己的分析问题和解决问题的能力,提高学生的实际动手能力。
学会提出问题,观察和分析问题,得到最终的科学方法。
培养团队合作精神,严谨的工作作风,务实的工作态度。
为今后的毕业设计,及从事嵌入式电子产品的设计与维护奠定坚实的基础。
二、内容和结果1、(1)设计意义:温度计是日常生活、工业、医学、环境保护、化工、石油等领域最常遇到的一个物理量。
测量温度的基本方法是使用温度计直接读取温度。
最常见到的测量温度的工具是各种各样的温度计,例如,水银玻璃温度计,酒精温度计,热电偶或热电阻温度计等。
它们常常以刻度的形式表示温度的高低,人们必须通过读取刻度值的多少来测量温度。
但是传统的温度计还不够准确,并且不太方便查看,所以数字的温度计开始应运而生,也开始扩大了使用的范围,所以这种温度计不仅有很大的市场,同时还有很大的使用价值。
利用单片机和温度传感器构成的电子式智能温度计就可以直接测量温度,得到温度的数字值,既简单方便,又直观准确。
(2)本人所做工作:1.首先是计划任务书的编写,然后进行protues原理图的绘制。
2.进行电源部分的设计。
3.显示与温度计算和主函数部分的程序编辑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
嵌入式系统原理与应用课程设计—基于ARM9的温度传感器学号:2012180401**班级:**************1班姓名:李*指导教师:邱*课程设计任务书班级: *************姓名:*****设计周数: 1 学分: 2指导教师: 邱选兵设计题目: 基于ARM9的温度传感器设计目的及要求:目的:1.熟悉手工焊锡的常用工具的使用及其维护与修理。
2.基本掌握手工电烙铁的焊接技术,能够独立的完成简单电子产品的安装与焊接。
熟悉电子产品的安装工艺的生产流程。
3.熟悉印制电路板设计的步骤和方法,熟悉手工制作印制电板的工艺流程,能够根据电路原理图,元器件实物设计并制作印制电路板。
4.熟悉常用电子器件的类别、型号、规格、性能及其使用范围,能查阅有关的电子器件图书。
5.能够正确识别和选用常用的电子器件,并且能够熟练使用普通万用表和数字万用表。
6.掌握和运用单片机的基本内部结构、功能部件、接口技术以及应用技术。
7.各种外围器件和传感器的应用;8.了解电子产品的焊接、调试与维修方法。
要求:1.学生都掌握、单片机的内部结构、功能部件,接口技术等技能;2.根据题目进行调研,确定实施方案,购买元件,并绘制原理图,焊接电路板,调试程序;3.焊接和写汇编程序及调试,提交课程设计系统(包括硬件和软件);.4.完成课程设计报告设计内容和方法:使用温度传感器PT1000,直接感应外部的温度变化。
使用恒流源电路,保证通过PT1000的电流相等,根据PT1000的工作原理与对应关系,得到温度与电阻的关系,将得到的电压放大20倍。
结合ARM9与LCD,将得到的参量显示在液晶屏上。
目录第一章绪论 (1)第二章系统总体结构 (2)2.1 硬件框图 (2)2.2 器件选用 (2)第三章硬件结构 (3)3.1 数据采集模块 (3)3.11 PT1000铂热电阻 (3)3.12 稳压二极管IN4728 (5)3.13 LM324 (6)3.2 数据处理模块 (6)3.21 STM32 (6)3.22TFT- LCD (8)3.23 ADC 控制寄存器 (9)第四章软件结构 (11)第五章总结 (16)第六章参考文献 (17)附录一 (18)附录二.............................................................................................错误!未定义书签。
附录三.............................................................................................错误!未定义书签。
第一章绪论温度是表征物体冷热程度的物理量、是自然界中和人类打交道最多的两个物理参数,无论是在生产实验场所,还是在居住休闲场所,温湿度的采集或控制都十分频繁和重要,而且,网络化远程采集温湿度并报警是现代科技发展的一个必然趋势。
温度的测量及控制对保证产品质量、提高生产效率、节约能源、生产安全、促进国民经济的发展起到非常重要的作用。
由于温度测量的普遍性,温度传感器的数量在各种传感器中居首位,约占50%。
温度传感器是通过物体随温度变化而改变某种特性来间接测量的。
不少材料、元件的特性都随温度的变化而变化,所以能作温度传感器的材料相当多。
温度传感器随温度而引起物理参数变化的有:膨胀、电阻、电容、而电动势、磁性能、频率、光学特性及热噪声等等。
随着生产的发展,新型温度传感器还会不断涌现。
铂电阻温度传感器是用来测量空气、土壤和水的温度传感器。
该传感器由精密级铂热电阻元件和经特殊工艺处理的防护套组成,并用四芯屏蔽信号电缆线从敏感元件引出用于测量,通常可以采用四线测量法测量,以减少导线电阻引起的测量误差。
本次实验使用PT1000铂热电阻直接感应外部环境的温度,PT1000根据温度与电阻的对应关系,通过STM32单片机对数据进行AD转换并且在LCD上显示数据。
第二章系统总体结构2.1 硬件框图本次实验包括的温度传感器主要由两个模块组成:数据采集模块和数据处理模块(硬件框图如图1)。
数据采集模块由恒流源电路和放大电路组成,采集到与温度有对应关系的电压值。
数据处理模块将数据模块的输出作为输入,使用STM32的AD转换,将数据转换为数字量显示在LCD上。
图1:传感器硬件框图2.2 器件选用在本次设计中,数据采集模块采用了PT1000铂热电阻、稳压二极管、电阻若干、以及运放四大类器件。
数据处理模块使用了STM32单片机和LCD显示屏2大部分。
本次设计的实物图见附录一。
第三章硬件结构3.1 数据采集模块数据采集模块主要负责采集温度的信息,根据温度为与电阻的对应关系,通过恒流源电路图,转化成温度与电压的关系。
最后经过放大器,将得到的电压值进行放大,作为数据处理模块的输入值。
电路图如图2所示:(实物图见附录一)。
图2 数据采集模块电路图3.11 PT1000铂热电阻设计原理pt1000是铂热电阻,它的阻值会随着温度的变化而改变。
PT后的1000即表示它在0℃时阻值为1000欧姆,在300℃时它的阻值约为2120.515欧姆。
它的工业原理:当PT1000在0摄氏度的时候他的阻值为1000欧姆,它的的阻值会随着温度上升它的阻值是成匀速增涨的。
电阻与温度的关系:=1000+TR8.3应用范围医疗、电机、工业、温度计算、阻值计算等高精温度设备,应用范围非常之广泛。
技术参数输入响应时间(模块内数据更新率)为1秒同步测量1路隔离的485, MODBUS RTU通讯协议采用RS-485二线制输出接口时,具有+15kV的ESD保护功能速率(bps)可在1200、2400、4800、9600、19200、38400、57600、115200中选择精度等级:0.2级供电电源:+7.5~30V功耗小于0.1W主机工作温度范围为-40℃~+85℃测量范围为-200℃~+200℃存贮条件为-40℃~+85℃(RH:5%~95%不结露)铂电阻RT曲线图表PT1000分度表3.12 稳压二极管IN4728工作原理稳压二极管的伏安特性曲线的正向特性和普通二极管差不多,反向特性是在反向电压低于反向击穿电压时,反向电阻很大,反向漏电流极小。
但是,当反向电压临近反向电压的临界值时,反向电流骤然增大,称为击穿,在这一临界击穿点上,反向电阻骤然降至很小值。
尽管电流在很大的范围内变化,而二极管两端的电压却基本上稳定在击穿电压附近,从而实现了二极管的稳压功能。
特性曲线特性参数1.Uz—稳定电压:指稳压管通过额定电流时两端产生的稳定电压值。
该值随工作电流和温度的不同而略有改变。
由于制造工艺的差别,同一型号稳压管的稳压值也不完全一致。
2.Iz—额定电流:指稳压管产生稳定电压时通过该管的电流值。
低于此值时,稳压管虽并非不能稳压,但稳压效果会变差;高于此值时,只要不超过额定功率损耗,也是允许的,而且稳压性能会好一些,但要多消耗电能。
3.Rz—动态电阻:指稳压管两端电压变化与电流变化的比值。
该比值随工作电流的不同而改变,一般是工作电流愈大,动态电阻则愈小。
4.Pz—额定功耗:由芯片允许温升决定,其数值为稳定电压Vz和允许最大电流Izm的乘积。
3.13 LM324LM324系列器件带有真差动输入的四运算放大器,具有真正的差分输入。
与单电源应用场合的标准运算放大器相比,它们有一些显著优点。
该四放大器可以工作在低到3.0伏或者高到32伏的电源下,静态电流为MC1741的静态电流的五分之一。
共模输入范围包括负电源,因而消除了在许多应用场合中采用外部偏置元件的必要性。
应用LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。
3.2 数据处理模块本模块将数据采集模块的输出作为输入,STM32将输入值的模拟量转化为数字量,显示在LCD上。
实物图见附录二:电路图见附录三:3.21 STM32开发板资源:◆ CPU:STM32F103RCT6,LQFP64,FLASH:256K,SRAM:48K;◆ 1 个标准的 JTAG/SWD 调试下载口◆ 1 个电源指示灯(蓝色)◆ 2 个状态指示灯(DS0:红色,DS1:绿色)◆ 1 个红外接收头,配备一款小巧的红外遥控器◆ 1 个 IIC 接口的 EEPROM 芯片,24C02,容量 256 字节◆ 1 个 SPI FLASH 芯片,W25Q64,容量为 8M 字节(即 64M bit)◆ 1 个 DS18B20/DS1820 温度传感器预留接口◆ 1 个标准的 2.4/2.8/3.5/4.3/7 寸 LCD 接口,支持触摸屏◆ 1 个 OLED 模块接口(与 LCD 接口部分共用)◆ 1 个 USB 串口接口,可用于程序下载和代码调试◆ 1 个 USB SLAVE 接口,用于 USB 通信◆ 1 个 SD 卡接口◆ 1 个 PS/2 接口,可外接鼠标、键盘◆ 1 组 5V 电源供应/接入◆ 1 组 3.3V 电源供应/接入口◆ 1 个启动模式选择配置接口◆ 1 个 2.4G 无线通信接口◆ 1 个 RTC 后备电池座,并带电池◆ 1 个复位按钮,可用于复位 MCU 和 LCD◆ 3 个功能按钮,其中 WK_UP 兼具唤醒功能◆ 1 个电源开关,控制整个板的电源◆ 3.3V 与 5V 电源 TVS 保护,有效防止烧坏芯片。
◆独创的一键下载功能◆除晶振占用的 IO 口外,其余所有 IO 口全部引出,其中 GPIOA 和 GPIOB 按顺序引。
特点1)小巧。
整个板子尺寸为8cm*10cm*2cm(包括液晶,但不计算铜柱的高度)。
2)灵活。
板上除晶振外的所有的IO 口全部引出,特别还有GPIOA 和GPIOB 的IO 口是按顺序引出的,可以极大的方便大家扩展及使用,另外板载独特的一键下载功能,避免了频繁设置B0、B1 带来的麻烦,直接在电脑上一键下载。
3)资源丰富。
板载十多种外设及接口,可以充分挖掘STM32 的潜质。
4)质量过硬。
沉金PCB+全新优质元器件+定制全铜镀金排针/排座+电源TVS 保护,坚若磐石。
5)人性化设计。
各个接口都有丝印标注,使用起来一目了然;接口位置设计安排合理,方便顺手。
资源搭配合理,物尽其用。
3.22TFT- LCDTFT-LCD 即薄膜晶体管液晶显示器。
其英文全称为:Thin Film Transistor-LiquidCrystal Display。
TFT-LCD 与无源 TN-LCD、STN-LCD 的简单矩阵不同,它在液晶显示屏的每一个象素上都设置有一个薄膜晶体管(TFT),可有效地克服非选通时的串扰,使显示液晶屏的静态特性与扫描线数无关,因此大大提高了图像质量。