操作系统课程设计题目
操作系统课程设计--三级安全权限管理系统设计
操作系统课程设计--三级安全权限管理系
统设计
设计目标
本系统的设计目标是实现一个基于三级安全权限管理的计算机
操作系统。
通过该系统,可以对不同用户的权限进行管理和控制,
提高系统的安全性和稳定性。
系统特点
该系统的最大特点是具有三级安全权限管理,分别为系统管理员、普通用户和访客用户。
系统管理员可以拥有最高权限,可以对
系统进行各种设置和管理;普通用户可以进行常规操作,但不能进
行系统设置;访客用户只能进行访问操作,无法进行其他任何操作。
同时,该系统还具有以下特点:
1. 良好的用户体验:界面简洁明了,操作简单易懂。
2. 数据安全可靠:系统会对用户数据进行定期备份和恢复。
3. 防止病毒攻击:系统会对外部设备进行自动检测和杀毒。
系统结构
该系统由操作系统内核、权限管理模块、输入输出模块、文件管理模块、进程管理模块等多个模块构成。
具体的系统结构如下图所示:
![系统结构图](system-structure.png)
系统实现
在实现该系统的过程中,我们主要采用了以下技术和工具:
1. 操作系统:Linux操作系统
2. 编程语言:C++、Python
3. 软件工具:QT开发环境、MySQL数据库
另外,我们还需要进行系统测试和优化,以确保系统的稳定性和安全性。
结语
通过对三级安全权限管理系统的设计和实现,我们可以更好地理解计算机操作系统的结构和特点,掌握操作系统设计和实现的相关技术,提高我们的综合能力和创新能力。
《操作系统》课程设计
《操作系统》课程设计一、课程目标知识目标:1. 让学生掌握操作系统的基本概念,包括进程、线程、内存管理、文件系统等核心知识;2. 了解操作系统的历史发展,掌握不同类型操作系统的特点及使用场景;3. 掌握操作系统的性能评价方法和常用的调度算法。
技能目标:1. 培养学生运用操作系统知识解决实际问题的能力,如分析系统性能瓶颈、优化系统资源分配等;2. 培养学生具备基本的操作系统编程能力,如进程创建、线程同步、文件操作等;3. 提高学生的团队协作能力和沟通能力,通过小组讨论和项目实践,学会共同解决问题。
情感态度价值观目标:1. 培养学生对操作系统学科的兴趣,激发学生的学习热情,使其形成积极向上的学习态度;2. 培养学生具备良好的信息素养,尊重知识产权,遵循法律法规;3. 培养学生的创新精神和批判性思维,敢于质疑、勇于探索,形成独立思考的能力。
课程性质:本课程为计算机科学与技术专业的核心课程,旨在让学生掌握操作系统的基本原理和实现方法,提高学生的系统分析和编程能力。
学生特点:学生具备一定的编程基础和计算机系统知识,具有较强的逻辑思维能力和动手实践能力。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,通过案例分析和项目实践,帮助学生将所学知识内化为具体的学习成果。
在教学过程中,关注学生的学习进度和反馈,及时调整教学策略,确保课程目标的实现。
二、教学内容1. 操作系统概述:介绍操作系统的定义、发展历程、功能、类型及特点,对应教材第一章内容。
- 操作系统的起源与发展- 操作系统的功能与类型- 操作系统的主要特点2. 进程与线程:讲解进程与线程的概念、状态、调度算法,对应教材第二章内容。
- 进程与线程的定义与区别- 进程状态与转换- 进程调度算法3. 内存管理:分析内存管理的基本原理、策略和技术,对应教材第三章内容。
- 内存分配与回收策略- 虚拟内存技术- 页面置换算法4. 文件系统:介绍文件系统的基本概念、结构、存储原理,对应教材第四章内容。
期末 操作系统实验课程设计
操作系统实验课程设计(二)(参照实验五)学院:计算机科学与工程专业:信息管理工作与信息系统学号:2008142118 姓名:丁建东一、实验题目:设计一个Shell解释器二、实验目的:本设计的主要目的在于学会如何在Unix系统下创建进程和管理进程。
三、实验内容:实现一个简单的shell(命令行解释器),类似于bash, csh等。
要求实现的shell支持以下内部命令:1.cd <目录>更改当前的工作目录到另一个<目录>。
如果<目录>未指定,输出当前工作目录。
如果<目录>不存在,要求有适当的错误信息提示。
改命令应能够改变PWD的环境变量。
2.echo <内容>显示echo后的内容且换行。
3.help简短概要地输出你的shell的使用方法和基本功能。
4.jobs输出shell当前的一系列子进程,要求提供子进程的命名和PID号。
5.quit, exit, bye退出shell。
所有的内部命令应当优于在$PATH中同名的程序。
任何非内部命令必须请求shell创建一个新进程,且该子进程执行指定的程序。
这个新进程必须继承shell的环境变量和指定的命令行参数。
要求实现的shell支持以下内部命令:Batch Processing 如果shell启动带有一个文件名作为参数,打开该文件并执行文件里所有命令。
待所有进程全部结束退出shell。
四、实验思路:1.所用到的系统函数(1)打开目录void cd()API调用:int chdir(dir);getcwd(dir,dir_max);实现:改变当前目录,并判断目录是否存在。
(2)回应void echo()实现:用户输入字符串,以回车结束输入。
char echo_string[echo_len][echo_max];//用户输入命令,以空格符隔开,存为字符串数组按顺序输出用户输入的字符串。
(3)输出当前子进程Void jobs()API调用:shmget(),shmat()实现:开辟一个共享内存区,一旦创建一个子进程,就把该进程的进程ID和名字记字共享区里,在子进程结束的时候消除该记录。
linux课程设计大全
linux课程设计大全一、教学目标本课程的教学目标旨在让学生掌握Linux操作系统的基本知识、命令行操作、文件系统管理、用户和权限管理以及常见的Linux服务配置。
通过本课程的学习,学生将能够:1.理解Linux操作系统的基本概念和架构;2.熟练使用Linux命令行进行日常操作;3.掌握Linux文件系统的结构和权限管理;4.了解Linux中的用户管理和组管理;5.配置常见的Linux服务,如Apache、Nginx、MySQL等;6.掌握基本的安全防护措施,提高Linux系统的安全性。
二、教学内容本课程的教学内容主要包括以下几个部分:1.Linux概述:介绍Linux的发展历程、内核架构以及常见的Linux发行版;2.命令行操作:学习Linux命令行的基本操作,如文件导航、文件操作、文本处理等;3.文件系统管理:了解Linux文件系统的结构,学习文件权限管理、磁盘空间分配等;4.用户和权限管理:学习用户和组的创建、权限设置、默认权限设置等;5.Linux服务配置:掌握Apache、Nginx、MySQL等常见服务的配置和管理;6.系统安全:学习Linux系统安全的基本知识,如防火墙、SELinux等。
三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法相结合的方式,包括:1.讲授法:讲解Linux的基本概念、原理和命令;2.讨论法:学生针对实际问题进行讨论,提高解决问题的能力;3.案例分析法:分析实际案例,让学生了解Linux在实际应用中的操作和配置;4.实验法:设置实验环节,让学生动手操作,巩固所学知识。
四、教学资源为了支持本课程的教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:选用权威、实用的Linux教材,为学生提供系统的学习资料;2.参考书:提供丰富的参考书籍,方便学生课后自主学习;3.多媒体资料:制作课件、教学视频等,提高课堂效果;4.实验设备:准备足够的实验设备,确保每个学生都能动手实践。
操作系统课程设计项目参考
滴加碘液后
滴加碘液前
12/12/2021
第十二页,共二十三页。
消化(xiāohuà):在消化道内将食物分解成可吸收 (xīshōu)的成分的过程
(包括物理性消化和化学性消化)
吸收(xīshōu):营养物质通过消化道壁进入循环 系统的过程
12/12/2021
第十三页,共二十三页。
消化(xiāohuà)和吸收的过程
12/12/2021
第十九页,共二十三页。
练习(liànxí)
• 2、分析数据,指出(zhǐ chū)哪一部分消化道中消化液最多。
• 在每天摄入800克食物和1200毫升水的情况下, 消化腺大致分泌以下数量消化液。 1500毫升唾液 2000毫升胃液 1500毫升肠液 500毫升胆汁 1500毫升胰液
12/12/2021
第二十二页,共二十三页。
内容 总结 (nèiróng)
第二节。食物中的营养物质是在消化系统中被消化和吸收的。这粒西瓜籽在姗姗的消化道内, 经过了难忘的时光。它先遇到像轧钢机似的上、下尖硬的怪物,差点儿将它压得粉身碎骨。后来它
No 钻进了一条(yī tiáo)又长又窄的迷宫,它在这里走了很久,身边的许多物质都神秘地消失了。走出迷
唾液腺、胃腺(wèixiàn)、肝脏、胰腺、肠腺
1、淀粉在__口__腔__开始消化、蛋白质在____开始胃消化、脂肪在_______开始 消小化肠。
2、胆汁是一种消化液,但不含消化酶,起乳化脂肪的作用。
二、人体消化、吸收的主要器官—— _____小肠 能 训 练解
胰脏:分泌(fēnmì)胰液 肠腺:分泌肠液
肝脏:最大的腺体,分泌胆汁。 胆汁无消化酶,有乳化脂肪 的
作用。
第七页,共二十三页。
计算机操作系统课程设计题目及要求
一、设计题目
二、设计步骤
1.需求分析:了解基本原理,确定算法的基本功能,查找相关资料,
画出基本的数据流图;
2.总体设计:确定算法的总体结构、数据结构、模块关系和总体流程;
3.详细设计:确定模块内部的流程和算法步骤。
4.上机编码和调试;
5.实际数据运行测试与分析;
6.课程设计总结报告撰写。
三、课程设计报告撰写
课程设计报告主要内容:
①概述:设计主要完成的任务和解决的主要问题;
②设计的基本概念和原理;
③总体设计:实现的方法和主要技术路线;
④详细设计:使用主要控件、函数;
⑤测试与数据分析
⑥完成的情况、简要的使用说明;
⑦结果分析
⑧总结:特色、经验、教训和感受;
⑨参考文献
⑩。
操作系统课程设计题目
1.中文输入法程序
2.文件管理系统
3.线程管理(田坤航)
4.Windows进程多种同步案例演示
5.各种Window或Linux驱动程序编程
6.基于共享内存的进程之间的通信(曾智辉)
7.文件加密
8.PE文件结构解析
9.异常处理系统
10.作业管理
11.中断驱动程序
12.可执行程序的加壳和脱壳
13.LRU动态内存管理模拟
14.注册表管理程序
15.内存管理程序
16.多系统启动程序
17.CPU的保护运行模式切换操作
18.扫描病毒算法模拟
19.木马扫描算法
20.硬盘碎片清理程序
21.程序卸载工具
22.文件系统FAT、NTFS、光盘、U盘分析程序
23.程序补丁
24.程序插件
25.文件压缩程序
26.文件备份系统
27.文件切割和组合
28.CPU参数监控程序
29.进程监控工具
30.文件系统搜索
31.系统监控软件
32.计算机看门狗
33.文件同步软件
34.个人信息同步软件
35.DLL文件创建和安装。
操作系统课程设计题目
-操作系统性能调优策略
-多处理器系统
-多处理器系统的基本概念
-并行与分布式计算
-实时操作系统
-实时操作系统的特点与需求
-实时调度算法
-操作系统中的并发控制
-并发的基本概念
-互斥与同步机制
-课程设计进阶项目
-设计并实现一个简单的实时操作系统
-研究并发控制策略在操作系统中的应用
-分析多处理器系统中的负载均衡问题
4.章节四:内存管理
-内存分配与回收策略
-虚拟内存与分页机制
5.章节五:设备管理
-设备管理的基本原理
- I/O调度策略
6.章节六:文件系统
-文件与目录结构
-文件存储与访问控制
2、教学内容
-文件系统性能优化
-磁盘空间分配策略
-磁盘碎片整理方法
-操作系统安全性
-访问控制机制
-加密与认证技术
-操作系统实例分析
-探索操作系统在移动设备、物联网等新兴领域的应用案例
4、教学内容
-操作系统接口与用户交互
-命令行接口(CLI)与图形用户界面(GUI)
-操作系统提供的系统调用与服务
-操作系统的网络功能
-网络协议栈的基础知识
-操作系统在网络通信中的作用
-操作系统的虚拟化技术
-虚拟化技术的原理与应用
-虚拟机监控器(VMM)的作用与分类
-探讨操作系统在人机交互方面的未来发展趋势
-评估开源操作系统的标准化程度及其对行业的影响
操作系统课程设计题目
一、教学内容
本章节内容来自《操作系统》课程,针对高二年级学生,选择以下课程设计题目:
1.章节一:操作系统概述
-操作系统Hale Waihona Puke 基本概念-操作系统的历史与发展
课程设计操作系统
课程设计操作系统一、教学目标本课程旨在让学生掌握操作系统的基本原理和概念,了解操作系统的运行机制和功能,培养学生运用操作系统知识解决实际问题的能力。
具体目标如下:1.知识目标:(1)理解操作系统的基本概念、功能和作用;(2)掌握操作系统的运行机制,包括进程管理、内存管理、文件管理和设备管理;(3)了解操作系统的发展历程和主流操作系统的基本特点。
2.技能目标:(1)能够运用操作系统知识分析和解决实际问题;(2)具备基本的操作系统使用和维护能力;(3)掌握操作系统的基本配置和优化方法。
3.情感态度价值观目标:(1)培养学生对操作系统知识的兴趣和好奇心;(2)树立正确的计算机使用观念,提高信息素养;(3)培养学生团队协作、创新思考和持续学习的能力。
二、教学内容本课程的教学内容主要包括以下几个部分:1.操作系统概述:介绍操作系统的定义、功能、作用和分类;2.进程管理:讲解进程的概念、进程控制、进程同步与互斥、死锁等问题;3.内存管理:讲解内存分配与回收策略、虚拟内存、页面置换算法等;4.文件管理:讲解文件和目录的概念、文件存储结构、文件访问控制、磁盘空间分配等;5.设备管理:讲解设备驱动程序、I/O调度策略、中断处理和DMA传输等;6.操作系统实例分析:分析主流操作系统(如Windows、Linux)的基本特点和运行机制。
三、教学方法本课程采用多种教学方法相结合,以提高学生的学习兴趣和主动性:1.讲授法:讲解操作系统的基本概念、原理和知识点;2.讨论法:学生针对操作系统相关问题进行讨论,培养学生的思维能力和团队协作精神;3.案例分析法:分析实际案例,让学生了解操作系统在实际应用中的作用和意义;4.实验法:安排实验课程,让学生动手实践,巩固所学知识。
四、教学资源为实现课程目标,我们将采用以下教学资源:1.教材:选用权威、实用的操作系统教材,为学生提供系统、全面的知识体系;2.参考书:提供相关领域的参考书籍,拓展学生的知识视野;3.多媒体资料:制作精美的PPT课件,辅助讲解和展示操作系统的相关概念和实例;4.实验设备:配置相应的实验设备,让学生动手实践,提高操作能力。
操作系统课程设计模拟DOS文件的建立与使用
课程设计说明书题目: 模拟DOS文件的建立与使用院系:计算机科学与工程专业班级:计算机10-3学号: 91学生姓名:张杨杨指导教师:王琳2013年 1月 9 日安徽理工大学课程设计(论文)任务书计算机科学与工程学院计算机科学与技术系2012年 11月 20日安徽理工大学课程设计(论文)成绩评定表摘要操作系统是管理计算机硬件资源,控制其他程序运行并为用户提供交互操作界面的系统软件的集合。
操作系统是计算机系统的关键组成部分,负责管理与配置内存、决定系统资源供需的优先次序、控制输入与输出设备、操作网络与管理文件系统等基本任务。
文件管理是操作系统的五大职能之一,主要涉及文件的逻辑组织和物理组织,目录的结构和管理。
所谓文件管理,就是操作系统中实现文件统一管理的一组软件、被管理的文件以及为实施文件管理所需要的一些数据结构的总称(是操作系统中负责存取和管理文件信息的机构)文件管理是操作系统中一项重要的功能。
其重要性在于,在现代计算机系统中,用户的程序和数据,操作系统自身的程序和数据,甚至各种输出输入设备,都是以文件形式出现的。
可以说,尽管文件有多种存储介质可以使用,如硬盘、软盘,光盘,闪存,记忆棒,网盘等等,但是,它们都以文件的形式出现在操作系统的管理者和用户面前。
磁盘管理是一项计算机使用时的常规任务,它是以一组磁盘管理应用程序的形式提供给用户的,主要研究的问题包括磁盘调度的算法,访存时延,调度算法的优劣性和适用场合等等。
关键词:模拟dos文件的建立和使用,索引存贮,链式存贮,磁盘调度目录1 设计目的 (1)2 设计要求 (1)模拟设计DOS操作系统中磁盘文件的存储结构 (1)算法分析: (2)模拟设计便于直接存取的索引文件结构 (3)算法分析: (4)3 模拟算法的实现 (5)流程图 (5)主窗口(main函数) (5)直接存取的索引文件结构 (6)程序源代码 (7)运行效果图 (12)总结 (14)参考文献 (15)1 设计目的磁盘文件是磁盘上存储的重要信息,通过本实验模拟DOS文件的建立和使用情况,理解磁盘文件的物理结构。
操作系统课程设计报告题目及代码
题目一模拟操作系统设计设计一个模拟操作系统管理程序,实现以下管理功能:1.内存管理功能2.文件管理功能3.磁盘管理功能题目二虚拟存储器各页面置换算法的实现与比较内容:设计一个虚拟存储区和内存工作区,通过产生一个随机数的方法得到一个页面序列,假设内存给定的页面数由键盘输入,分别计算使用下述各方法时的内存命中率:先进先出算法〔FIFO〕、最近最少使用算法〔LRU〕、最正确淘汰算法〔OPT〕、最少页面算法〔LFU〕等。
题目三文件系统设计通过一个简单多用户文件系统的设计,加深理解文件系统的内部功能及内部实现。
内容:为Linu*系统设计一个简单的二级文件系统,以实现以下功能:1.可以实现以下几条命令(1)login 用户登录(2)dir 文件目录列表(3)creat 创立文件(4)delete 删除文件(5)open 翻开文件(6)close 关闭文件(7)read 读文件(8)write 写文件2.实验提示〔1〕首先确定文件系统的数据构造:主目录、子目录及活动文件等。
主目录和子目录都以文件的形式存放在磁盘,这样便于查找和修改。
〔2〕用户创立的文件,可以编号存储于磁盘上。
如file0、file1、file2……等,并以编号作为物理地址,在目录中进展登记。
[清华大学?操作系统教程? *丽芬编著题目四设计一个按时间片轮转法进程CPU调度的程序。
提示:〔1〕假设系统有5个进程,每个进程用一个进程控制块PCB来代表,PCB中包含进程名、指针、到达时间、估计运行时间、进程状态表。
其中,进程名即为进程进标识。
〔2〕为每一个进程设计一个要示运行时间和到达时间。
〔3〕按照进程到达的先后顺序排成一个循环队列,再设一个队首指针指向第一个到达的进程首址。
〔4〕执行处理机调度时,开场选择队首的第一个进程运行。
另外再设一个当前运行进程指针,指向当前正运行的进程。
〔5〕由于本实验是模拟实验,所以对被选中进程并不实际启运运行,只是执行:a.估计驼行时间减1b.输出当前运行进程的名字。
操作系统课程设计题目
辽宁科技大学操作系统课程设计指导书一、课程设计目的和要求本设计是专业基础课《操作系统》的课程设计。
由于操作系统课的学时有限,安排实验的次数不多。
为了进一步巩固实验成果,加强理论联系实际、分析问题、解决问题的能力,加深对操作系统的基本概念、原理、技术和方法的理解,特安排此次课程设计。
它是操作系统课程的实践环节。
由于具体的操作系统相当复杂,在短短的一周之内,不可能对所有管理系统进行详细地分析。
因此,选择了操作系统中最重要的管理之一进程管理(或进程的死锁、页面置换算法)作为本设计的任务。
另外,通过此次设计使学生在使用系统调用的同时,进一步了解系统内部是如何实现系统调用的全过程,使学生在更深层次上对操作系统有所了解。
要求:1.在具有自主版权的Linux环境下,用c或c++语言,以及相关的系统调用,编程实现进程的创建、控制、软中断通信、管道通信等功能。
2.利用某种高级语言编程实现银行家算法。
3.常用的页面置换算法有:最佳置换算法(Optimal)、先进先出法(Fisrt In First Out)、、最近最久未使用(Least Recently Used),至少实现其中的两种算法。
二、课程设计内容设计题目1:进程管理及理解(1)进程的创建编写一段程序,使用系统调用fork()创建两个子进程。
当此程序运行时,在系统中有一个父进程和两个子进程活动。
让每一个进程在屏幕上显示一个字符:父进程显示“a”;子进程分别显示字符“b”和“c”。
试观察记录屏幕上的显示结果,并分析原因。
(2)进程的控制修改已编写的程序,将每个进程输出一个字符改为每个进程输出一句话,再观察程序执行时屏幕上出现的现象,并分析原因。
如果在程序中使用系统调用lockf(),来给每一个进程加锁,可以实现进程之间的互斥,观察并分析出现的现象。
(3)①编制一段程序,使其实现进程的软中断通信。
要求:使用系统调用fork()创建两个子进程,再用系统调用signal()让父进程捕捉键盘上来的中断信号;当捕捉到中断信号后,父进程用系统调用kill()向两个子进程发出信号,子进程捕捉到信号后分别输出下列信息后终止:Child Process11 is Killed by Parent!Child Process12 is Killed by Parent!父进程等待两个子进程终止后,输出如下的信息后终止:Parent Process is Killed!②在上面的程序中增加系统调用signal(SIGINT,SIG_IGN)和signal (SIGQUIT,SIG_IGN),观察执行结果,并分析原因。
操作系统课程设计-管程的实现(生产者消费者问题)
操作系统课程设计2、管程的实现(生产者消费者问题)1.设计背景:管程是一种高级抽象数据类型,它支持在它的函数中隐含互斥操作。
结合条件变量和其他一些低级通信原语,管程可以解决许多仅用低级原语不能解决的同步问题。
例如,本实验中利用管程提供一个不会发生死锁的生产者消费者问题就是利用管程的很好的例子。
管程封装了并发进程或线程要互斥执行的函数。
为了让这些并发进程或线程在管程内互斥的执行,管程的实现必须隐含的具有锁或二值信号量。
如果没有条件变量,管程就不会有很有用,条件变量提供了一种对管程内并发协作进程的同步机制。
条件变量代表了管程中一些并发进程或线程可能要等待的条件。
一个条件变量管理着管程内的一个等待队列。
如果管程内某个进程或线程发现其执行条件为假,则该进程或线程就会被条件变量挂入管程内等待该条件的队列。
如果管程内另外的进程或线程满足了这个条件,则它会通过条件变量再次唤醒等待该条件的进程或线程,从而避免了死锁的产生。
所以,一个条件变量C应具有两种操作 C.wait()和C.signal()。
当管程内同时出现唤醒者和被唤醒者时,由于要求管程内的进程或线程必须互斥执行,因此就出现了两种样式的条件变量:Mesa Style(signal-and-continue): 唤醒者进程或线程继续执行,被唤醒者进程或线程等到唤醒者进程或线程阻塞或离开管程后再执行。
Hoare Style(signal-and-wait): 被唤醒者进程或线程立即执行,唤醒者进程或线程阻塞,直道被唤醒者阻塞或离开管程后再执行。
我们实验所做的就是在原来mesa样式的基础上进行Hoare样式的改进;这种样式也是我们实验中需要实现的样式。
2.设计目标验证并分析Nachos中Bridge管程是否能够正确的解决单行桥双向过桥问题。
定义和实现Hoare样式的条件变量Condition_H类利用Hoare样式的条件变量Condition_H,实现Ring类中定义的各个方法,使用Ring管程解决生产者/消费者问题。
操作系统课程设计题目
(除特别注明外,每组最多3人,先自由组合,并选定1个题目,再由老师作适当调整)课题一、银行家算法设计目的:死锁会引起计算机工作僵死,因此操作系统中必须防止。
本设计的目的在于使用高级语言编写和调试一个系统动态分配资源的简单模拟程序,了解死锁产生的条件和原因,并采用银行家算法有效地防止死锁的发生,以加深对课堂上所讲授的知识的理解。
设计要求:设计有n个进程共享m个系统资源的系统,进程可动态的申请和释放资源,系统按各进程的申请动态的分配资源。
系统能显示各个进程申请和释放资源,以及系统动态分配资源的过程,便于用户观察和分析,要求使用图形用户界面。
银行家算法的思路:1.进程一开始向系统提出最大需求量.2.进程每次提出新的需求(分期贷款)都统计是否超出它事先提出的最大需求量.3.若正常,则判断该进程所需剩余量(包括本次申请)是否超出系统所掌握的剩余资源量,若不超出,则分配,否则等待.4.银行家算法的数据结构.1)系统剩余资源量V[n],其中V[n]表示第I类资源剩余量.2)已分配资源量A[m][n],其中A[j][i]表示系统j程已得到的第i资源的数量.3)剩余需求量.C[m][n],其中C[j][i]对第i资源尚需的数目.5.银行家算法流程:当某时刻,某进程时,提出新的资源申请,系统作以下操作:1)判定E[n]是否大于C[j][n],若大于,表示出错.2)判定E[n]是否大于系统剩余量V[n],若大于,则该进程等待.3)若以上两步没有问题,尝试分配,即各变量作调整.4)按照安全性推测算法,判断,分配过后,系统是否安全,若安全,则实际分配,否则,撤消分配,让进程等待.6."安全性检测"算法对进程逐个扫描,先判断flag,看进程是否完成,如果完成则继续扫描,如果没有再判断当前系统是否满足进程所需要的分配额,如果满足则分配并当进程完成后回收资源,如果没有则扫描下一个进程。
扫描所有进程,如果所有的进程都能完成就表明是安全分配序列,如果没有,则分配不成功,不存在着安全序列。
华南理工网络教育操作系统(含课程设计)参考答案
D、进程提出I/O提出则重新调度
答题:A. B. C. D.(已提交)
5.(单选题)以下不属于面向系统的调度准则的是()
A、系统吞吐量高B、处理机利用率高C、各种资源平衡利用D、响应时间快
答题:A. B. C. D.(已提交)
6.(单选题)设有四个作业同时到达,每个作业的执行时间均为2小时,它们在一台处理机上按单道方式运行,则平均周转时间为( )
A、批处理作业必须提交作业控制信息
B、分时系统不一定都具有人机交互功能
C、从响应时间的角度看,实时系统与分时系统差不多
D、由于采用了分时技术,用户可以独占计算机的资源
答题:A. B. C. D.(已提交)
11.(判断题) Windows是一个单用户多任务操作系统()
答题:对.错.(已提交)
12.(判断题) UNIX是一个多用户多任务操作系统()
答题:对.错.(已提交)
13.(判断题)有了操作系统,计算机系统的资源利用率更高,用户使用计算机更方便()
答题:对.错.(已提交)
14.(判断题)当前三大操作系统类型是批处理系统、分时系统和实时系统()
答题:对.错.(已提交)
15.(判断题)操作系统是计算机软件和硬件资源的管理者()
答题:对.错.(已提交)
C、用户操作计算机更方便D、并行执行多个进程
答题:A. B. C. D.(已提交)
3.(单选题)历史上最早出现的操作系统是()
A、单道批处理系统B、多道批处理系统C、分时系统D、实时系统
答题:A. B. C. D.(已提交)
4.(单选题)实时操作系统必须在()内处理完来自外部的事件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题三设计一个虚拟存储区和内存工作区,编程序演示下述置换算法的具体实现过程,并计算访问命中率:
要求从主界面选择某算法,且以下算法都要实现
1、先进先出算法(FIFO)
2、最近最久未使用算法(LRU)
3、随机淘汰算法
参考程序:
#define TRUE 1
#define FALSE 0
#define INVALID -1
#define NULL 0
#define total_instruction 320
#define total_vp 32
#define clear_period 50
Typedef struct
{ int pn,pfn,counter,time;
}pl_type;//页面结构
Pl_type pl[32];//32个页面,每个页面10条记录
Typedef struct pfc_struct
{
Int pn,pfn;
Struct pfc_struct *next;
}pfc_type;// 页面控制结构
Pfc_type pfc[32], *freepf_head, *busypf_head, *busypf_tail;
Int diseffect, a[total_instruction];
Int page[total_instruction],offset[total_instruction];
Void initialize();
Void fifo();
Void lru();
Void opt();
main()
{
int s,i,j;
srand(10*getpid());//定义指令序列
s=(float)319*rand()/32767/32767/2+1;//产生一个随机数
for(i=0;i<total_instruction;i+=4)//产生319个指令流存到a[]中
{
if(s<0||s>319)
{printf(“when i= = %d,Error,s= = %d\n”,i,s);
exit(0);
}
a[i]=s;
a[i+1]=a[i]+1;
a[i+2]=(float)a[i]*rand()/32767/32767/2;
a[i+3]=a[i+2]+1;
s=(float)(318-a[i+2])*rand()/32767/32767/2+a[i+2]+2;
if((a[i+2]>318)||(s>319))
printf(“a[%d+2],a number which is : %d and s= =%d\n”,i,a[i+2],s); }
for(i=0;i<total_instruction;i++)//记录每条指令所属于的页号,
{ page[i]=a[i]/10;
offset[i]=a[i]%10;//每页装入10条指令后取模运算页号偏移值
}
for(i=4;i<=32;i++)
{
printf(“%2d page frames”,i);
fifo(i);
lru(i);
opt(i);
lfu(i);
nur(i);
printf(“\n”);
}
}
void initialize(total_pf)
//int total_pf;
{
int i;
diseffect=0;
for(i=0;i<total_vp;i++)//total_vp=32,每个页面10条记录,初始化页面{
pl[i].pn=i;
pl[i].pfn=INVALID;//面号?????
pl[i].counter=0;// counter为一个周期内访问该页面次数,time为访问时间。
pl[i].time=-1;
}
for(i=0;i<total_pf-1;i++)//初始化页面控制结构,
{
pfc[i].next=&pfc[i+1];// 实现页面的连接
pfc[i].pfn=i;//设置面号为i
}
pfc[total_pf-1].next=NULL;
pfc[total_pf-1].pfn=total_pf-1;
freepf_head=&pfc[0];// 空页面头的指针指向第一个页面
}
void fifo(total_pf)
//int total_pf;
{
int i,j;
pfc_type *p;
initialize(total_pf);
busypf_head=busypf_tail=NULL;// 忙页面队列的指针初始化为空
for(i=0;i<total_instruction;i++)
{
if(pl[page[i]].pfn== INVALID)
{diseffect+=1;
if(freepf_head==NULL)
{p=busypf_head->next;
pl[busypf_head->pn].pfn=INVALID;
freepf_head=busypf_head;
freepf_head->next=NULL;
busypf_head=p;
}
p=freepf_head->next;
freepf_head->next=NULL;
freepf_head->pn=page[i];
pl[page[i]].pfn=freepf_head->pfn;
if(busypf_tail==NULL)
busypf_head=busypf_tail=freepf_head; else
{ busypf_tail->next=freepf_head;
busypf_tail=freepf_head;
}
freepf_head=p;
}
}
printf(“fifo: %6.4f”,1-(float)diseffect/320);
}
void lru(total_pf)
int total_pf;
{
int min,minj,i,j,present_time;
initialize(total_pf);
present_time=0;
for(i=0;i<total_instruction;i++)
{
if(pl[page[i]].pfn==INVALID)
{diseffect++;
if(freepf_head==NULL)
{min=32767;
for(j=0;j<total_vp;j++)
if(min>pl[j].time&&pl[j].pfn!=INVALID)
{
min=pl[j].time;
minj=j;
}
freepf_head=&pfc[pl[minj].pfn];
pl[minj].pfn=INVALID;
pl[minj].time=-1;
freepf_head->next=NULL;
}
pl[page[i]].pfn=freepf_head->pfn;
pl[page[i]].time=present_time;
freepf_head=freepf_head->next;
}
else
pl[page[i]].time=present_time;
present_time++;
}
printf(“lru: %6.4f”,1-(float)diseffect/320); }
void opt(total_pf)
int total_pf;
{int i,j,max,maxpage,d,dist[total_vp];
pfc_type *t;
initialize(total_pf);
for(i=0;i<total_instruction;i++)
{
If(pl[page[i] ].pfn==INVALID)
{diseffect ++;
If(freepf_head==NULL)
{
For(j=0;j<total_vp;j++)
If(pl[j].pfn!=INVALID)
dist[j]=32767;
else dist[j]=0;
d=1;
for(j=i+1;j<total_instruction;j++)
{
if(pl[page[j]].pfn!=INVALID)
dist[page[j]]=d;
d++;
}
max=-1;
for(j=0;j<total_vp;j++)
if(max<dist[j])
{max=dist[j];
maxpage=j;}
freepf_head=&pfc[pl[maxpage].pfn];
freepf_head->next=NULL;
pl[maxpage].pfn=INVALID;
}
pl[page[i]].pfn=freepf_head->pfn;
freepf_head=freepf_head->next;
}
}
printf(“OPT:%6.4f”,1-(float)diseffect/320); }。