数字逻辑实验报告1
数字逻辑实验报告实验
![数字逻辑实验报告实验](https://img.taocdn.com/s3/m/828310b24bfe04a1b0717fd5360cba1aa9118c7f.png)
一、实验目的1. 理解数字逻辑的基本概念和基本原理。
2. 掌握数字逻辑电路的基本分析方法,如真值表、逻辑表达式等。
3. 熟悉常用数字逻辑门电路的功能和应用。
4. 提高数字电路实验技能,培养动手能力和团队协作精神。
二、实验原理数字逻辑电路是现代电子技术的基础,它主要研究如何用数字逻辑门电路实现各种逻辑功能。
数字逻辑电路的基本元件包括与门、或门、非门、异或门等,这些元件可以通过组合和连接实现复杂的逻辑功能。
1. 与门:当所有输入端都为高电平时,输出端才为高电平。
2. 或门:当至少有一个输入端为高电平时,输出端为高电平。
3. 非门:将输入端的高电平变为低电平,低电平变为高电平。
4. 异或门:当输入端两个高电平或两个低电平时,输出端为低电平,否则输出端为高电平。
三、实验内容1. 实验一:基本逻辑门电路的识别与测试(1)认识实验仪器:数字电路实验箱、逻辑笔、示波器等。
(2)识别与测试与门、或门、非门、异或门。
(3)观察并记录实验现象,分析实验结果。
2. 实验二:组合逻辑电路的设计与分析(1)设计一个简单的组合逻辑电路,如加法器、减法器等。
(2)根据真值表列出输入输出关系,画出逻辑电路图。
(3)利用逻辑门电路搭建电路,进行实验验证。
(4)观察并记录实验现象,分析实验结果。
3. 实验三:时序逻辑电路的设计与分析(1)设计一个简单的时序逻辑电路,如触发器、计数器等。
(2)根据电路功能,列出状态表和状态方程。
(3)利用触发器搭建电路,进行实验验证。
(4)观察并记录实验现象,分析实验结果。
四、实验步骤1. 实验一:(1)打开实验箱,检查各电路元件是否完好。
(2)根据电路图连接实验电路,包括与门、或门、非门、异或门等。
(3)使用逻辑笔和示波器测试各逻辑门电路的输出,观察并记录实验现象。
2. 实验二:(1)根据实验要求,设计组合逻辑电路。
(2)列出真值表,画出逻辑电路图。
(3)根据逻辑电路图连接实验电路,包括所需逻辑门电路等。
数字逻辑设计实验报告
![数字逻辑设计实验报告](https://img.taocdn.com/s3/m/bdbacd5f02d8ce2f0066f5335a8102d276a261c1.png)
一、实验目的1. 理解和掌握数字逻辑设计的基本原理和方法。
2. 熟悉数字电路的基本门电路和组合逻辑电路。
3. 培养动手能力和实验技能,提高逻辑思维和解决问题的能力。
4. 熟悉数字电路实验设备和仪器。
二、实验原理数字逻辑设计是计算机科学与技术、电子工程等领域的基础课程。
本实验旨在通过实际操作,让学生掌握数字逻辑设计的基本原理和方法,熟悉数字电路的基本门电路和组合逻辑电路。
数字逻辑电路主要由逻辑门组成,逻辑门是数字电路的基本单元。
常见的逻辑门有与门、或门、非门、异或门等。
根据逻辑门的功能,可以将数字电路分为组合逻辑电路和时序逻辑电路。
组合逻辑电路的输出只与当前输入有关,而时序逻辑电路的输出不仅与当前输入有关,还与之前的输入有关。
三、实验内容1. 逻辑门实验(1)实验目的:熟悉逻辑门的功能和特性,掌握逻辑门的测试方法。
(2)实验步骤:① 将实验箱中的逻辑门连接到测试板上。
② 根据实验要求,将输入端分别连接高电平(+5V)和低电平(0V)。
③ 观察输出端的变化,记录实验数据。
④ 分析实验结果,验证逻辑门的功能。
2. 组合逻辑电路实验(1)实验目的:掌握组合逻辑电路的设计方法,熟悉常用组合逻辑电路。
(2)实验步骤:① 根据实验要求,设计组合逻辑电路。
② 将电路连接到实验箱中。
③ 根据输入端的不同组合,观察输出端的变化,记录实验数据。
④ 分析实验结果,验证电路的功能。
3. 时序逻辑电路实验(1)实验目的:掌握时序逻辑电路的设计方法,熟悉常用时序逻辑电路。
(2)实验步骤:① 根据实验要求,设计时序逻辑电路。
② 将电路连接到实验箱中。
③ 观察电路的输出变化,记录实验数据。
④ 分析实验结果,验证电路的功能。
四、实验结果与分析1. 逻辑门实验结果:通过实验,验证了逻辑门的功能和特性,掌握了逻辑门的测试方法。
2. 组合逻辑电路实验结果:通过实验,掌握了组合逻辑电路的设计方法,熟悉了常用组合逻辑电路。
3. 时序逻辑电路实验结果:通过实验,掌握了时序逻辑电路的设计方法,熟悉了常用时序逻辑电路。
数字逻辑实验报告金科
![数字逻辑实验报告金科](https://img.taocdn.com/s3/m/745f36ad4793daef5ef7ba0d4a7302768f996f05.png)
一、实验目的1. 理解数字逻辑的基本概念和基本原理。
2. 掌握常用数字逻辑门的功能和特性。
3. 学会使用数字逻辑电路设计简单功能电路。
4. 提高实验操作能力和分析问题、解决问题的能力。
二、实验器材1. 数字逻辑实验箱2. 逻辑门电路芯片3. 逻辑测试笔4. 连接线5. 逻辑分析仪6. 示波器三、实验原理数字逻辑是研究数字信号和数字系统的一门学科。
它主要研究数字电路的设计、分析和实现。
数字逻辑的基本元件包括逻辑门、触发器、寄存器等。
本实验主要涉及以下几种逻辑门:1. 与门(AND):只有当所有输入端都为高电平时,输出才为高电平。
2. 或门(OR):只要有一个输入端为高电平,输出就为高电平。
3. 非门(NOT):输入为高电平时,输出为低电平;输入为低电平时,输出为高电平。
4. 异或门(XOR):只有当两个输入端电平不同时,输出才为高电平。
四、实验内容1. 逻辑门功能测试(1)测试与门、或门、非门、异或门的功能。
(2)使用逻辑测试笔和逻辑门电路芯片,观察输入和输出之间的关系。
2. 组合逻辑电路设计(1)设计一个简单的组合逻辑电路,实现二进制加法功能。
(2)使用逻辑门电路芯片和连线,搭建电路。
(3)测试电路功能,验证其正确性。
3. 时序逻辑电路设计(1)设计一个简单的时序逻辑电路,实现计数功能。
(2)使用触发器、寄存器等时序逻辑元件,搭建电路。
(3)测试电路功能,验证其正确性。
五、实验步骤1. 准备工作(1)检查实验器材是否齐全,确保实验顺利进行。
(2)阅读实验指导书,了解实验原理和步骤。
2. 逻辑门功能测试(1)将逻辑门电路芯片插入实验箱。
(2)根据实验指导书,连接输入和输出端口。
(3)使用逻辑测试笔,观察输入和输出之间的关系。
3. 组合逻辑电路设计(1)根据设计要求,选择合适的逻辑门。
(2)使用连线,搭建组合逻辑电路。
(3)测试电路功能,验证其正确性。
4. 时序逻辑电路设计(1)根据设计要求,选择合适的时序逻辑元件。
上海大学数字逻辑实验报告
![上海大学数字逻辑实验报告](https://img.taocdn.com/s3/m/d87e0b62af45b307e871975f.png)
用逻辑代数的公理、定理、规则转换成最小项的方法进行变换,形成与非门的组合。A?b??A?b??Ab
3、实验步骤:
1)写出与非门构成或门的表达式。
2)按照表达式连接74Ls00的引脚。
3)拨动开关和观察二极管的变化,记录数据。
4、实验数据:
5、实验现象:
在或门中,只要一个输入为1,输出值就为1,绿灯亮;当两个输入均为0时,则输出值为0,红灯亮。
6、体会:
通过亲手操作与非门逻辑测试的实验,初步体会到了数字逻辑电路的基本链接和测试方法。从实验中,我感受到了自己的不足,犯了几个错误,比如说忘了连接电源
和接地。通过这次实验,加深了我对与非门的认识,很有收获。
二、用与非门构建或门实验
1、实验目的:
用与或门的逻辑电路构建或门的逻辑电路并且测试其功能。
6、体会
用与非门的逻辑电路构建或门的逻辑电路,其本质上来说就是三个与非门的叠加。在做实验之前,我并没有想到这点,因为这其中包括了A和A的与非以及b和b的与非。这无疑给我开阔了思路,对我以后实现其他的逻辑电路很有帮助。
三、mAxpLus操作初步实验
1、实验目的:
1)熟悉mAxp实验报告1
上海大学计算机学院
《数字逻辑实验》报告1
姓名xxx学号xxx教师xxx
时间xxx地点xxx机位xx
一、与非门74Ls00的逻辑功能测试实验
1、实验目的:
1)测试与非门74Ls00芯片的逻辑功能;
2)了解测试的方法与原理;
3)根据测试结果完成74Ls00的真值表。
2、原理:
实现基本逻辑运算和常用逻辑(:上海大学数字逻辑实验报告)运算的单元电路通称为逻辑门电路。实现“与非”运算的电子电路称为与非门。
数字逻辑电路实验报告
![数字逻辑电路实验报告](https://img.taocdn.com/s3/m/afbaca9248649b6648d7c1c708a1284ac85005d0.png)
数字逻辑电路实验报告数字逻辑电路实验报告引言:数字逻辑电路是现代电子科技中的重要组成部分,它广泛应用于计算机、通信、控制系统等领域。
本实验旨在通过实际操作,加深对数字逻辑电路原理的理解,并通过实验结果验证其正确性和可靠性。
实验一:基本逻辑门的实验在本实验中,我们首先学习了数字逻辑电路的基本组成部分——逻辑门。
逻辑门是数字电路的基本构建单元,它能够根据输入信号的逻辑关系,产生相应的输出信号。
我们通过实验验证了与门、或门、非门、异或门的工作原理和真值表。
以与门为例,当且仅当所有输入信号都为高电平时,与门的输出信号才为高电平。
实验中,我们通过连接开关和LED灯,观察了与门的输出变化。
实验结果与预期相符,验证了与门的正确性。
实验二:多位加法器的设计与实验在本实验中,我们学习了多位加法器的设计和实现。
多位加法器是一种能够对多位二进制数进行加法运算的数字逻辑电路。
我们通过实验设计了一个4位全加器,它能够对两个4位二进制数进行相加,并给出正确的进位和和结果。
实验中,我们使用逻辑门和触发器等元件,按照电路图进行布线和连接。
通过输入不同的二进制数,观察了加法器的输出结果。
实验结果表明,多位加法器能够正确地进行二进制数相加,验证了其可靠性。
实验三:时序电路的实验在本实验中,我们学习了时序电路的设计和实验。
时序电路是一种能够根据输入信号的时间顺序产生相应输出信号的数字逻辑电路。
我们通过实验设计了一个简单的时序电路,它能够产生一个周期性的脉冲信号。
实验中,我们使用计数器和触发器等元件,按照电路图进行布线和连接。
通过改变计数器的计数值,观察了脉冲信号的频率和周期。
实验结果表明,时序电路能够按照设计要求产生周期性的脉冲信号,验证了其正确性。
实验四:存储器的设计与实验在本实验中,我们学习了存储器的设计和实现。
存储器是一种能够存储和读取数据的数字逻辑电路,它在计算机系统中起到重要的作用。
我们通过实验设计了一个简单的存储器,它能够存储和读取一个4位二进制数。
数字逻辑实验报告
![数字逻辑实验报告](https://img.taocdn.com/s3/m/6b356e540a4e767f5acfa1c7aa00b52acfc79cea.png)
数字逻辑实验报告数字逻辑实验报告引言数字逻辑是计算机科学中的重要基础知识,通过对数字信号的处理和转换,实现了计算机的高效运算和各种复杂功能。
本实验旨在通过实际操作,加深对数字逻辑电路的理解和应用。
实验一:二进制加法器设计与实现在这个实验中,我们需要设计一个二进制加法器,实现两个二进制数的加法运算。
通过对二进制数的逐位相加,我们可以得到正确的结果。
首先,我们需要将两个二进制数输入到加法器中,然后通过逻辑门的组合,实现逐位相加的操作。
最后,将得到的结果输出。
实验二:数字比较器的应用在这个实验中,我们将学习数字比较器的应用。
数字比较器可以比较两个数字的大小,并输出比较结果。
通过使用数字比较器,我们可以实现各种判断和选择的功能。
比如,在一个电子秤中,通过将待测物品的重量与设定的标准重量进行比较,可以判断物品是否符合要求。
实验三:多路选择器的设计与实现在这个实验中,我们需要设计一个多路选择器,实现多个输入信号中的一路信号的选择输出。
通过使用多路选择器,我们可以实现多种条件下的信号选择,从而实现复杂的逻辑控制。
比如,在一个多功能遥控器中,通过选择不同的按钮,可以控制不同的家电设备。
实验四:时序电路的设计与实现在这个实验中,我们将学习时序电路的设计与实现。
时序电路是数字逻辑电路中的一种重要类型,通过控制时钟信号的输入和输出,实现对数据的存储和处理。
比如,在计数器中,通过时序电路的设计,可以实现对数字的逐位计数和显示。
实验五:状态机的设计与实现在这个实验中,我们将学习状态机的设计与实现。
状态机是一种特殊的时序电路,通过对输入信号和当前状态的判断,实现对输出信号和下一个状态的控制。
状态机广泛应用于各种自动控制系统中,比如电梯控制系统、交通信号灯控制系统等。
实验六:逻辑门电路的优化与设计在这个实验中,我们将学习逻辑门电路的优化与设计。
通过对逻辑门电路的布局和连接方式进行优化,可以减少电路的复杂性和功耗,提高电路的性能和可靠性。
数字逻辑实验报告
![数字逻辑实验报告](https://img.taocdn.com/s3/m/47784524f4335a8102d276a20029bd64783e62c8.png)
数字逻辑实验报告数字逻辑实验报告引言:数字逻辑是计算机科学中的基础知识,它研究的是数字信号的处理与传输。
在现代科技发展的背景下,数字逻辑的应用越来越广泛,涉及到计算机硬件、通信、电子设备等众多领域。
本实验旨在通过设计和实现数字逻辑电路,加深对数字逻辑的理解,并掌握数字逻辑实验的基本方法和技巧。
实验一:逻辑门电路设计与实现逻辑门是数字电路的基本组成单元,由与门、或门、非门等构成。
在本实验中,我们设计了一个4位全加器电路。
通过逻辑门的组合,实现了对两个4位二进制数的加法运算。
实验过程中,我们了解到逻辑门的工作原理,掌握了逻辑门的真值表和逻辑方程的编写方法。
实验二:多路选择器的设计与实现多路选择器是一种常用的数字逻辑电路,它可以根据控制信号的不同,从多个输入信号中选择一个输出信号。
在本实验中,我们设计了一个4位2选1多路选择器电路。
通过对多路选择器的输入信号和控制信号的设置,实现了对不同输入信号的选择。
实验过程中,我们了解到多路选择器的工作原理,学会了多路选择器的真值表和逻辑方程的编写方法。
实验三:时序逻辑电路的设计与实现时序逻辑电路是一种能够存储和处理时序信息的数字逻辑电路。
在本实验中,我们设计了一个简单的时序逻辑电路——D触发器。
通过对D触发器的输入信号和时钟信号的设置,实现了对输入信号的存储和传输。
实验过程中,我们了解到D触发器的工作原理,掌握了D触发器的真值表和逻辑方程的编写方法。
实验四:计数器电路的设计与实现计数器是一种能够实现计数功能的数字逻辑电路。
在本实验中,我们设计了一个4位二进制计数器电路。
通过对计数器的时钟信号和复位信号的设置,实现了对计数器的控制。
实验过程中,我们了解到计数器的工作原理,学会了计数器的真值表和逻辑方程的编写方法。
结论:通过本次实验,我们深入了解了数字逻辑的基本原理和应用方法。
通过设计和实现逻辑门电路、多路选择器、时序逻辑电路和计数器电路,我们掌握了数字逻辑实验的基本技巧,并加深了对数字逻辑的理解。
数字逻辑实验报告 【个人完成版】
![数字逻辑实验报告 【个人完成版】](https://img.taocdn.com/s3/m/4d52c200bb68a98271fefabc.png)
全加器真值表
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
0
1
1
0
1
1
0
0
1
0
1
0
1
0
1
1
1
0
0
1
1
1
1
1
1
用与非门和异或门实现全加器的电路图:
Bi
Ci-1
Ai
【实验数据记录及结果分析】
1)经测试,发现所有发光二极管发光时都是高电平,低电平时不发光。
2)对于本实验步骤2:
当X或Y等于1时,发光二极管与脉冲同步闪烁;
0
0
0
1
显然:
对于M
A0B0\A1B1
00
01
11
10
00
0
1
1
1
01
0
0
1
1
11
0
0
0
0
10
0
0
1
0
所以
思考:如果在此基础上增加一个主裁判,构成四人判决电路,应该如何设计?即,只有当三个副裁判中多数赞成且主裁判也赞成时有效。做出其真值表并设计组合电路。
设计:
在原有的三位表决器基础上增加一个输入,与原表决器的输出做与运算,即可实现四人判决功能。
实验地点:A2-402实验时间:2013.6.22/28
实验室名称:国家级计算机实验示范中心
实验
及组合逻辑电路实验
【实验名称】基本门电路的功能和特性及组合逻辑电路实验
【实验学时】4学时
数字逻辑实验报告
![数字逻辑实验报告](https://img.taocdn.com/s3/m/f6c65aec783e0912a3162a7d.png)
实验报告实验一基本门电路功能验证实验实验目的:验证与非门74LS00(或74HC00)、或非门74LS02)以及非门74LS04(或74HC04)逻辑功能1.验证与非门的逻辑功能实验器材:数字逻辑实验箱一个;数字万用表一个;5V电源一个;导线若干;实验原理:74LS00(或74HC00)为四个二输入端的与非门,74LS04(或74HC04)是六反相器。
其引脚分别如图1、2所示。
实验过程:参照引脚分布图,连接电路图,在电路图连接完成之前要断开电源。
1,2两个端口为输入端,1,2两个输入端接在控制端,通过波动上下开关来改变输入电阻的大小,通过控制2个输入端电平的高低。
3为输出端,接在信号显示管上,通过显示管来确定输出信号是否有效。
,用万能表测量出输出端的电平大小,并及时记录下实验结果。
图2 74LS00引脚分布图图1 74LS00引脚分布图实验结果:得到如下四组数据,根据数据得出真值表A(V) B(V) C(V)0.31 0.31 4.134.65 0.35 4.110.35 4.65 4.124.66 4.65 0.19实验结论:实验结果验证了与非门逻辑电路的功能,可以用一个图和真值表表示:2.验证或非门的逻辑功能实验器材:数字逻辑实验箱一个;数字万用表一个;5V电源一个;导线若干;实验原理:74LS02为四个二输入端的与非门,74LS04(或74HC04)是六反相器。
实验过程:参照引脚分布图,连接电路图,在电路图连接完成之前要断开电源。
1,2两个端口为输入端,1,2两个输入端接在控制端,通过波动上下开关来改变输入电阻的大小,通过控制2个输入端电平的高低。
3为输出端,接在信号显示管上,通过显示管来确定输出信号是否有效。
,用万能表测量出输出端的电平大小,并及时记录下实验结果。
实验结果:A(V) B(V) C(V)0.02 0.02 4.290.16 4.35 0.154.16 4.50 0.164.52 0.14 0.13实验结论:实验结果验证了或非门逻辑电路的功能,可以用一个图和真值表表示:3.验证非门的逻辑功能实验器材:数字逻辑实验箱一个;数字万用表一个;5V电源一个;导线若干;实验原理:74LS04(或74HC04)为四个二输入端的与非门,74LS04(或74HC04)是六反相器。
数字逻辑实验报告至诚
![数字逻辑实验报告至诚](https://img.taocdn.com/s3/m/96070ea2c9d376eeaeaad1f34693daef5ef713c3.png)
一、实验名称数字逻辑实验二、实验目的1. 理解和掌握数字逻辑的基本概念和基本电路。
2. 学会使用逻辑门进行逻辑运算。
3. 掌握组合逻辑电路的设计方法。
4. 通过实验加深对数字逻辑理论知识的理解。
三、实验原理数字逻辑是研究数字信号及其处理的理论,主要内容包括逻辑门、组合逻辑电路、时序逻辑电路等。
本实验主要围绕组合逻辑电路展开,通过实验加深对组合逻辑电路的理解。
四、实验仪器及材料1. 数字逻辑实验箱2. 逻辑门芯片(如74LS00、74LS04等)3. 逻辑开关4. 逻辑灯5. 逻辑测试笔6. 连接线7. 实验指导书五、实验内容及步骤1. 组合逻辑电路的设计与验证(1)设计一个简单的组合逻辑电路,如异或门、与门、或门等。
(2)根据设计要求,选择合适的逻辑门芯片。
(3)将逻辑门芯片插入实验箱,连接输入端和输出端。
(4)使用逻辑开关设置输入信号,观察逻辑灯的输出情况,验证电路的正确性。
2. 译码器和数据选择器的设计与验证(1)设计一个译码器,将输入的二进制信号转换为输出信号。
(2)设计一个数据选择器,根据输入信号选择相应的输出信号。
(3)根据设计要求,选择合适的译码器和数据选择器芯片。
(4)将芯片插入实验箱,连接输入端和输出端。
(5)使用逻辑开关设置输入信号,观察逻辑灯的输出情况,验证电路的正确性。
3. 组合逻辑电路的应用(1)设计一个交通灯控制器,控制红、黄、绿三个信号灯的亮灭。
(2)设计一个密码锁,输入正确的密码后,输出信号使门锁打开。
(3)根据设计要求,选择合适的逻辑门芯片。
(4)将芯片插入实验箱,连接输入端和输出端。
(5)使用逻辑开关设置输入信号,观察逻辑灯的输出情况,验证电路的正确性。
六、实验结果与分析1. 组合逻辑电路的设计与验证通过实验,成功设计并验证了异或门、与门、或门等基本组合逻辑电路。
在实验过程中,了解了逻辑门的工作原理,掌握了组合逻辑电路的设计方法。
2. 译码器和数据选择器的设计与验证成功设计并验证了译码器和数据选择器电路。
数字逻辑综合实验报告
![数字逻辑综合实验报告](https://img.taocdn.com/s3/m/c2b63e5ea7c30c22590102020740be1e640ecc58.png)
一、实验目的本次实验旨在通过实际操作,加深对数字逻辑基本原理和设计方法的理解,提高学生在数字电路设计、仿真和调试方面的实践能力。
通过完成以下实验任务,使学生掌握以下技能:1. 理解数字逻辑电路的基本概念和原理。
2. 掌握数字逻辑电路的设计方法和步骤。
3. 学会使用仿真软件进行电路设计和仿真测试。
4. 掌握数字逻辑电路的调试和优化方法。
二、实验内容本次实验主要包含以下三个部分:1. 组合逻辑电路设计:设计一个四位加法器,并使用Logisim软件进行仿真测试。
2. 时序逻辑电路设计:设计一个简单的计数器,并使用Verilog语言进行描述和仿真。
3. 数字逻辑电路综合应用:设计一个简单的数字信号处理器,实现基本的算术运算。
三、实验步骤1. 组合逻辑电路设计(1)分析题目要求,确定设计目标和输入输出关系。
(2)根据输入输出关系,设计四位加法器的逻辑电路。
(3)使用Logisim软件搭建电路,并设置输入信号。
(4)观察仿真结果,验证电路功能是否正确。
2. 时序逻辑电路设计(1)分析题目要求,确定设计目标和状态转移图。
(2)使用Verilog语言描述计数器电路,包括模块定义、输入输出定义、状态定义和状态转移逻辑。
(3)使用仿真软件进行测试,观察电路在不同状态下的输出波形。
3. 数字逻辑电路综合应用(1)分析题目要求,确定设计目标和功能模块。
(2)设计数字信号处理器电路,包括算术运算单元、控制单元和存储单元等。
(3)使用仿真软件进行测试,验证电路能否实现基本算术运算。
四、实验结果与分析1. 组合逻辑电路设计实验结果:通过仿真测试,四位加法器电路功能正常,能够实现两个四位二进制数的加法运算。
分析:在设计过程中,遵循了组合逻辑电路设计的基本原则,确保了电路的正确性。
2. 时序逻辑电路设计实验结果:通过仿真测试,计数器电路功能正常,能够实现从0到9的计数功能。
分析:在设计过程中,正确描述了状态转移图,并使用Verilog语言实现了电路的功能。
数字电路实验报告-组合逻辑电路(1)—仪器的使用及竞争与险象的观测
![数字电路实验报告-组合逻辑电路(1)—仪器的使用及竞争与险象的观测](https://img.taocdn.com/s3/m/5500cceb85254b35eefdc8d376eeaeaad1f31619.png)
数字逻辑电路实验实验报告学号:班级:姓名:实验1 组合逻辑电路(1)——仪器的使用和竞争险象的观测一实验内容1.1示波器测量探头补偿信号1.2示波器测量信号源输出的正弦波信号1.3示波器测量信号源输出的方波信号1.4测量示波器的带宽1.57400功能测试1.6竞争与险象的观测二实验原理2.1示波器的基本使用示波器是一种可显示电信号波形的测量工具,可按照显示信号的方式分为数字示波器和模拟示波器两类。
常用的数字示波器通过对模拟信号进行AD转换、采样、存储进而显示波形。
实验中使用的示波器为GDS2202E,有两个输入通道,带宽200MHz,其面板各分区的主要功能如下:1.垂直控制区:包含两通道的开关按钮、幅值量程调节旋钮、参考电平调节旋钮等,可调节两通道的垂直尺度和波形零点高度。
2.水平控制区:主要含时基调节旋钮和触发发位置调节旋钮,可以调节波形显示的时间尺度和触发点的水平位置。
3.触发控制区:可以配合菜单键调节触发电平、触发方式、触发边沿等,可选择自动或正常触发模式,或选择上升、下降或双边沿触发,可实现单次触发功能。
4.菜单区:可设置示波器耦合方式(交、直流和地)、带宽、幅值倍率等参数。
另外,示波器还提供了光标测量、信号参数测量等其他功能。
示波器探头有分压功能,可实现对输入信号的10:1幅值变换,借以实现更大的量程。
使用示波器观测稳定信号时,可使用Autoset键使波形稳定,或自行调节幅值、时基、触发等参数使波形稳定。
观察信号暂态时,则可使用单次触发模式,调节合适的触发参数以实现信号捕捉。
2.2信号源的基本使用信号发生器可用于以一定参数生成波形。
实验中使用的信号发生器为SDG2402X,可生成正弦波、方波、噪声波等常见波形和各种调制波形,有两个输出通道。
使用时,按下Waveforms键选择波形,之后可使用触摸屏幕、数字键、旋钮等配合方向键设置各种波形参数,之后按下对应通道的输出键即可使能输出。
2.3实验中粗略测量示波器带宽的原理分析一切实际系统均有上限截止频率,示波器也不例外。
数字逻辑实验报告
![数字逻辑实验报告](https://img.taocdn.com/s3/m/c2b1f78d48649b6648d7c1c708a1284ac85005c0.png)
一、实验目的1. 理解数字逻辑的基本概念和原理。
2. 掌握逻辑门电路的基本功能和应用。
3. 学会使用逻辑门电路设计简单的组合逻辑电路。
4. 培养实际动手能力和分析问题、解决问题的能力。
二、实验原理数字逻辑是研究数字电路的基本原理和设计方法的一门学科。
数字电路是由逻辑门电路组成的,逻辑门电路是实现逻辑运算的基本单元。
常见的逻辑门电路有与门、或门、非门、异或门等。
组合逻辑电路是由逻辑门电路组成的,其输出仅与当前的输入有关,而与电路的历史状态无关。
组合逻辑电路的设计方法主要有真值表法、逻辑函数法、卡诺图法等。
三、实验仪器与设备1. 数字逻辑实验箱2. 移动电源3. 连接线4. 逻辑门电路模块5. 计算器四、实验内容1. 逻辑门电路测试(1)测试与门、或门、非门、异或门的功能。
(2)测试逻辑门电路的输出波形。
2. 组合逻辑电路设计(1)设计一个4位二进制加法器。
(2)设计一个4位二进制减法器。
(3)设计一个4位二进制乘法器。
(4)设计一个4位二进制除法器。
五、实验步骤1. 逻辑门电路测试(1)将实验箱上相应的逻辑门电路模块插入实验板。
(2)根据实验要求,连接输入端和输出端。
(3)打开移动电源,将输入端接入逻辑信号发生器。
(4)观察输出波形,记录实验结果。
2. 组合逻辑电路设计(1)根据实验要求,设计组合逻辑电路的原理图。
(2)根据原理图,将逻辑门电路模块插入实验板。
(3)连接输入端和输出端。
(4)打开移动电源,将输入端接入逻辑信号发生器。
(5)观察输出波形,记录实验结果。
六、实验结果与分析1. 逻辑门电路测试实验结果如下:(1)与门:当两个输入端都为高电平时,输出为高电平。
(2)或门:当两个输入端至少有一个为高电平时,输出为高电平。
(3)非门:输入端为高电平时,输出为低电平;输入端为低电平时,输出为高电平。
(4)异或门:当两个输入端不同时,输出为高电平。
2. 组合逻辑电路设计实验结果如下:(1)4位二进制加法器:能够实现两个4位二进制数的加法运算。
数字逻辑实验报告
![数字逻辑实验报告](https://img.taocdn.com/s3/m/825590bffbb069dc5022aaea998fcc22bcd143d1.png)
数字逻辑实验报告本次实验旨在通过数字逻辑实验的设计和实现,加深对数字逻辑电路原理的理解,并通过实际操作提高动手能力和解决问题的能力。
在本次实验中,我们将学习数字逻辑实验的基本原理和方法,掌握数字逻辑实验的设计与调试技巧,提高实验操作的熟练程度。
首先,我们进行了数字逻辑实验的准备工作,包括熟悉实验设备和器材的使用方法,了解实验电路的基本原理和设计要求。
在实验过程中,我们按照实验指导书上的要求,逐步完成了数字逻辑实验电路的设计、搭建和调试。
在实验过程中,我们遇到了一些问题,但通过分析问题的原因并进行逐步排除,最终成功完成了实验。
其次,我们进行了数字逻辑实验电路的测试和验证。
通过使用示波器、逻辑分析仪等测试设备,我们对搭建好的数字逻辑电路进行了测试,验证了实验电路的正确性和稳定性。
在测试过程中,我们发现了一些问题,但通过仔细观察和分析,最终找到了解决问题的方法,并取得了满意的测试结果。
最后,我们总结了本次实验的经验和教训。
通过本次实验,我们深刻理解了数字逻辑电路的原理和实现方法,提高了实验操作的技能和水平,增强了动手能力和解决问题的能力。
在今后的学习和工作中,我们将继续努力,不断提高自己的专业能力和实践能力,为将来的发展打下坚实的基础。
通过本次实验,我们对数字逻辑实验有了更深入的了解,对数字逻辑电路的设计和实现有了更加丰富的经验,相信在今后的学习和工作中,我们能够更加熟练地运用数字逻辑知识,为实际工程问题的解决提供有力的支持。
总之,本次实验不仅增强了我们对数字逻辑实验的理解和掌握,也提高了我们的实验操作能力和解决问题的能力。
希望通过今后的学习和实践,我们能够不断提高自己的专业水平,为将来的发展打下坚实的基础。
数字逻辑大实验报告
![数字逻辑大实验报告](https://img.taocdn.com/s3/m/f833df72ec630b1c59eef8c75fbfc77da3699769.png)
一、实验背景数字逻辑是计算机科学和电子工程领域的基础学科,研究数字系统的设计和分析。
本次大实验旨在通过实际操作,加深对数字逻辑电路原理的理解,掌握逻辑门电路、组合逻辑电路和时序逻辑电路的设计与实现方法。
二、实验目的1. 理解并掌握数字逻辑电路的基本原理和设计方法。
2. 掌握常用逻辑门电路的功能和应用。
3. 熟悉组合逻辑电路和时序逻辑电路的设计与实现。
4. 提高实验操作能力和问题解决能力。
三、实验内容本次实验共分为三个部分:1. 逻辑门电路实验(1)实验目的:验证常用逻辑门电路的逻辑功能,熟悉各种门电路的逻辑符号。
(2)实验内容:- 测试与非门、或门、与门、异或门、同或门、非门等逻辑门电路的逻辑功能。
- 利用Multisim软件绘制逻辑门电路仿真图,验证逻辑功能。
2. 组合逻辑电路实验(1)实验目的:掌握组合逻辑电路的设计与实现方法。
(2)实验内容:- 设计并实现一个4位二进制加法器。
- 设计并实现一个4位二进制乘法器。
- 利用Multisim软件对设计结果进行仿真验证。
3. 时序逻辑电路实验(1)实验目的:掌握时序逻辑电路的设计与实现方法。
(2)实验内容:- 设计并实现一个异步复位计数器。
- 设计并实现一个同步复位计数器。
- 利用Multisim软件对设计结果进行仿真验证。
四、实验步骤1. 熟悉实验设备,了解实验原理。
2. 根据实验要求,设计电路图。
3. 利用Multisim软件绘制电路图,并进行仿真验证。
4. 将设计好的电路图下载到实验板上,进行实际操作。
5. 观察实验结果,分析实验数据。
五、实验结果与分析1. 逻辑门电路实验:实验结果显示,所有逻辑门电路的逻辑功能均符合预期,验证了实验原理的正确性。
2. 组合逻辑电路实验:- 4位二进制加法器实验:实验结果显示,加法器能够正确实现两个4位二进制数的加法运算。
- 4位二进制乘法器实验:实验结果显示,乘法器能够正确实现两个4位二进制数的乘法运算。
数字逻辑实验报告
![数字逻辑实验报告](https://img.taocdn.com/s3/m/7cf2e7537f21af45b307e87101f69e314332faa0.png)
数字逻辑实验报告实验介绍数字逻辑是计算机科学不可或缺的基础课程,本次实验我们将学习数字逻辑的基本概念,使用Verilog语言实现逻辑电路,并在数字仿真软件中模拟电路的运行过程。
实验目的•理解数字逻辑电路的基本概念和原理;•掌握Verilog语言的基本语法和编程技巧;•学会使用数字仿真软件模拟数字逻辑电路的运行过程。
实验过程实验一:组合逻辑电路的实现本实验中我们将使用Verilog语言实现一个简单的组合逻辑电路。
组合逻辑电路是由一些基本逻辑门连接而成的电路,这些逻辑门输出状态仅受输入状态影响,不受电路的历史状态影响,因此称为组合逻辑电路。
在本实验中,我们将使用Verilog语言实现一个简单的组合逻辑电路,具体如下:module combinational_logic(input a, b, c, output d, e);assign d = ~(a & b);assign e = ~(c | d);endmodule以上Verilog代码实现了一个简单的组合逻辑电路,在电路中有三个输入端口(a、b、c)和两个输出端口(d、e)。
其中d输出端口为(a & b)的反相值,e输出端口为(c | d)的反相值。
实验二:时序逻辑电路的实现时序逻辑电路是一种与历史状态相关的电路,因此称为时序逻辑电路。
与组合逻辑电路的不同之处,在于时序逻辑电路有一种状态元件,在时钟信号的驱动下更改其状态。
在本实验中,我们将使用Verilog语言实现一个简单的时序逻辑电路,具体如下:module sequential_logic(input clock, reset, input data, output reg q);always @(posedge clock or negedge reset) beginif(!reset) beginq <= 1'b0;endelse beginq <= data;endendendmodule以上Verilog代码实现了一个简单的时序逻辑电路,在电路中有两个输入端口(clock、reset)和一个输出端口(q)。
数字逻辑实验报告完整版
![数字逻辑实验报告完整版](https://img.taocdn.com/s3/m/f8fbd7f77c1cfad6195fa710.png)
华中科技大学计算机学院数字逻辑实验报告实验一组合逻辑电路的设计实验二同步时许逻辑电路设计实验三:异步时序逻辑电路设计姓名:学号:班级:指导老师:完成时间:实验一组合逻辑电路的设计一、实验目的1掌握组合逻辑电路的功能测试.2验证半加器和全加器的逻辑功能。
3学会二进制的运算规律。
二、实验器材74LS00 二输入四与非门、74LS04 六门反向器、74LS10 三输入三与非门、74LS86 二输入四异或门、74LS73 负沿触发JK触发器、74LS74 双D触发器。
三、实验内容内容A 一位全加全减器的实现。
电路做加法还是做减法由S控制。
当s=0时做加法运算,s=1时做减法运算,当作为全加器输入信号A、B和Cin分别作为加数、被加数和低位来的进位,F1和F2为合数和向上位的进位。
当作为全减器输入信号A、B和Cin分别作为减数、被减数和低位来的借位,F1和F2为差数和向上位的借位。
内容B 舍入与检测电路的设计。
用所给定的集成电路组件设计一个多输出逻辑电路,输入为8421码.F1为四舍五入输入信号,F2为奇偶检测输出信号。
当输入的信号大于或等于(5)10时,电路输出F1=1,其他情况为0;当输入代码中含1的个数为奇数是,输出F2=1,其他情况为0.框图如图所示:四、实验步骤内容A 一位全加全减器的实现。
由要求可得如下真值表:F1的卡诺图为: F2的卡诺图为:化简得F1=A○+B○+C, F2=.由F1和F2表达式画出电路图如下:根据电路图,连接电路。
接线后拨动开关,结果如图:内容B 舍入与检测电路的设计。
由题意,列出真值表如图:化简卡诺图得F1=, F2=A ○+B ○+C ○+D.由此画出电路图如下:按照所示的电路图连接电路,将电路的输出端接实验台的开关,通过拨动开关输入8421代码,电路输出接实验台显示灯。
每输出一个代码后观察显示灯,并记录结果如下表:接开关接灯五、试验体会1、化简包含无关变量的逻辑函数时,,由于是否包含无关项以及对无关项是令其值为1为0并不影响函数的实际逻辑功能,因此在化简时,利用这种任意性可以使逻辑函数得到更好的化简,从而使设计的电路得到更简2、多输出函数的组合逻辑电路,因为各函数之间往往存在相互联系,具有某些共同部分,因此应当将它们当做一个整体来考虑,而不应该将其截然分开。
数字逻辑实验报告1
![数字逻辑实验报告1](https://img.taocdn.com/s3/m/2787aada0508763231121241.png)
《数字逻辑实验》实验报告任课教师李成范实验者姓名易媛学号14121797实验组21实验时间周三11-13节实验指导教师李成范上海大学计算机工程与科学学院2015年9月25日上海大学计算机学院Array《数字逻辑实验》报告 1姓名易媛学号 14121797 教师李成范时间周三 10-13节地点计算机学院大楼704机房机位21一.与非门74LS00的逻辑功能测试实验1.实验目的1、熟悉TTL中、小规模集成电路的外形、管脚和使用方法;2、测试与非门74LS00的逻辑功能,并完成对应的真值表;3、了解测试的方法及原理。
2.原理逻辑门电路是实现基本逻辑运算和常用逻辑运算的单元电路,“与”和“非”的复合运算称为“与非”运算,实现“与非”逻辑功能的门电路称为“与非”门。
3.实验步骤1、将引脚1、2(A、B)分别连接到任意一个小开关插孔;引脚3(F)连接到任意一个发光二极管电平指示灯插孔;引脚7连接接地插孔;引脚14连接+5V电源插孔2、拨动开关组合A、B的值,观察二极管的变化。
4.实验数据与非门的逻辑功能5.实验现象(红灯亮表示输出为0,绿灯亮表示输出为1)在实验中发现只有当A和B都输入1时,红灯才亮,其余三种情况绿灯亮,符合与非逻辑运算。
6.体会在实验过程中,一开始是什么都不懂的,所以在老师要求做与非门测试实验时,完全不知所措,甚至理解为每一个输出的插孔都是一个非门,如果两引线叠加就是非A与非B,根据摩根定律可转换成或非门;两线分开即是非 A+非B,构成与非门,后来经过不断测试,以及与同学讨论,渐渐了解了与非门的功能,在利用与非门实现或非门逻辑电路时,若两引线分开就是非(A与B),即与非;若两引线叠加是非((A+B)与1),即或非门;细想这前后两种之间还是存在联系的,就是摩根定律。
了解了与非门的逻辑功能,以及输入输出逻辑关系,并熟悉其使用规则,对与非门与其他门电路之间的转换关系有了进一步的认知。
二.用与非门构建或门实验1.实验目的1、用与非门逻辑电路构建或门逻辑电路并测试其功能。
数字逻辑实验报告
![数字逻辑实验报告](https://img.taocdn.com/s3/m/ff7f7f9bba4cf7ec4afe04a1b0717fd5360cb2fd.png)
数字逻辑实验报告实验一 3-8译码器设计一、实验目的1.通过一个简单的 3-8 译码器的设计, 让学生掌握用原理图描述组合逻辑电路的设计方法。
2.掌握组合逻辑电路的软件仿真方法。
二.填写表格(亮或暗)(2)三. EDA平台下用原理图输入法设计组合电路的步骤。
(3)(1)在QuartusⅡ主界面下选择File->New命令, 然后选择Other File选项卡, 从中选择Vector Waveform File,建立一个空的波形编辑器窗口, 将此波形文件保存, 并勾选add file current project。
(4)在Name区域的对话框中单击Node Finder按钮。
(5)进行选择和设置, 完成节点添加。
(6)选择Edit->End Time命令, 将其设置为1.0us。
使用波形编辑器工具条编辑输入节点A,B,C的波形。
为节点A,B,C分别赋予周期为200ns,400ns,800ns的时钟波形, 初始电平为“0”。
然后通过View->Fit in Window显示输入波形全貌。
执行Tools->Simulator Tool命令, 进行设置, 单击Start进行仿真。
观察仿真结果, 检查是否与设计相符合。
四. 在仿真过程中, 为何设置A, B,C分别为周期为200ns,400ns,800ns的时钟信号?答: 将其周期设置成一定比例, 在仿真结果中便于观察与比较波形。
五.时序仿真波形中, 输出波形与输入波形是否同步变化?如何解释输出波形中存在的毛刺?答: 不是同步变化的。
输出波形中存在的毛刺是组合逻辑电路中的冒险现象, 主要是由于门电路的延迟时间产生的。
请总结实验中出现的问题, 你是如何解决的?答: (1)问题: 在为译码器的元件的管脚上添加连线时, 由于连接的线较多, 出现了线连接出错, 导致电路编译出错。
解决: 根据编译的提示找出了连接出错的地方, 然后重新连接再编译。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓名 xxx 学号 xxxxxxxx 教师 xxx
时间 xxx 地点xxx楼xxx机房机位
一.与非门逻辑功能测试实验
1.实验目的
1)熟悉TTL中、小规模集成电路的外形、管脚和使用方法。
2)了解和掌握基本逻辑门电路的输入与输出之间的逻辑关系及使用规则。
3)测试与非门74LS00芯片的逻辑功能。
4)根据测试结果完成74LS00的真值表1-4。
2.原理
实现基本逻辑运算和常用逻辑运算的单元电路通称为逻辑门电路。
实现“与非”运算的电子电路称为与非门。
根据制造工艺不同,逻辑门电路有两大类,一类是以晶体三极管为主要元件的双极型逻辑门电路,另一类是MOS场效应管为主要元件的MOSx型逻辑门电路。
根据门电路输出端结构不同,又分为基本输出门电路、开路输出门电路、三台门电路。
门电路用高电平表示逻辑值“1”,低电平表示逻辑值“0”。
只有相同类型的门电路,其电平才相匹配。
参照74LS00芯片的引脚,将引脚1、2(A、B)分别连接到任意一个小开关插孔上,引脚3(F)连接到任意一个发光二极管电平指示灯插孔,引脚7连接接地插孔,引脚14连接+5V电源插孔,这样就构成了一个与非门电路。
拨动开关(开关拨向下方为0,拨向上方为1)组合A、B的值,观察F(上方的发光二极管指示0,下方的发光二极管指示1)的结果。
3.实验步骤
1)将74LS00的输入引脚连接到任一开关,输出连接到任一对发光二极管。
引脚7连接“接地插孔”;引脚14连接+5V电源插孔。
2)拨动开关,观察二极管的变化,填表1-4。
4.实验数据
5.实验现象
在与非门中,只有当A和B的输入都为1时,输出才为0。
由于上方的灯亮
说明输出为0,下方的灯亮说明是1,所以只有在A和B的输入都为1时(即开关打在上方时),上方的等才会亮,其余时候都是下方的灯亮。
6.体会
通过学习、操作与非门逻辑功能测试实验,我初步体会到了数字逻辑电路的基本连接和测试方法,对测试了与非门的逻辑功能,且此元件工作正常。
此外我在实验中出现了线路连接错误,经同学与老师的指点后了解到了不同功能线路尽量用不同颜色的技巧,便于检查错误,而且在拔出导线时,应顺时针旋转,避免扯坏导线。
二.异或门逻辑功能测试实验
1.实验目的
1)、熟悉TTL中、小规模集成电路的外形、管脚和使用方法。
2)、了解和掌握基本逻辑门电路的输入与输出之间的逻辑关系及使用规则。
3)、测试异或门的逻辑功能。
4)、根据测试结果完成表1-7。
2.原理
实现基本逻辑运算和常用逻辑运算的单元电路通称为逻辑门电路。
实现“异或”运算的电子电路称为异或门。
根据制造工艺不同,逻辑门电路有两大类,一类是以晶体三极管为主要元件的双极型逻辑门电路,另一类是MOS场效应管为主要元件的MOSx型逻辑门电路。
根据门电路输出端结构不同,又分为基本输出门电路、开路输出门电路、三台门电路。
门电路用高电平表示逻辑值“1”,低电平表示逻辑值“0”。
只有相同类型的门电路,其电平才相匹配。
参照74LS86芯片的引脚,输入端1、2、4、5接电平开关,输出端A、B、Y 接电平显示发光二极管,就得到一个异或门电路。
3.实验步骤
1)、将74LS86的输入引脚连接到任意开关,输出连接到任意一个发光二极管;引脚7连接接地插孔;引脚14连接+5V电源插孔。
2)、拨动开关,观察二极管的变化,填表1-7。
4.实验数据
5.
实验现象 在异或门中,只有当12组或是45组中的一组输入变量相同时,输出函数值Y 为高电平H,此时下方的二极管发光;其余情况均为低电平L ,此时上方的二极管发光。
6. 体会
通过学习、操作异或门逻辑功能测试实验,对测试了异或门的逻辑功能,且此元件工作正常。
在这个异或门测试实验中,我发现比与非门的测试实验要复杂很多,导线也多很多,一不小心就会有差错导致测试部成功。
所以实验中必须要每个异或门电路的连接都正确,结果才会正确,在整个电路连接过程中也考验了我们的动手能力。
三. 复合门和基本门的关系实验
1. 实验目的
1)、用与非门分别构成与门、或门、非门等基本门并测试其功能。
2)、用与非门构成异或门并测试其功能。
2. 原理
从理论上讲,由与、或、非三种简单逻辑门电路可以实现各种逻辑功能。
最常用的复合逻辑门电路有与非门、或非门、与或非门、异或门等都是又简单逻辑门组合而成的电路。
3. 实验步骤
1)、写出与非门构成基本门和异或门的表达式或者电路图。
2)、按照表达式或者电路图连接74LS00的引脚。
3)、使用开关和发光二极管进行测试。
4)、画出接线电路图,记录结果。
4. 实验数据
或门逻辑表达式:B A B A B A F ⋅=+=+=
异或门逻辑表达式:B A B A B A B A B A B A B A F ⋅=+=+=⊕=
5.实验现象
在或门中,只要一个输入为H,输出值就为高电平H,下方的灯亮;当两个输入均为L时,则输出值为低电平L,上方的灯亮。
在异或门中,当两个输入变量的取值不同时,输出值为高电平H,此时,下方的灯亮;当两个输入变量的取值相同时,输出值为低电平L,此时,上方的灯亮。
6.体会
通过学习以与非门为基本电路原件,实现或门和异或门的逻辑功能的实验,对门与门之间的联系有了更加深刻的了解,在实现逻辑功能时有个更多的选择,也更加灵活。
在实验过程中,我遇到了困难,如线与线之间的连接问题等,怎样用与非够成与门、或门、非门等,要充分理解他们之间的关系,才能在连接时做到顺顺利利。
四.MAXPLUS操作初步实验
1.实验目的
1)熟悉MAXPLUS的操作步骤和环境。
2)在MAXPLUS中创建一个图形文件,包含一个异或门。
3)使用模拟软件工具进行模拟。
2.原理
学习使用可编程逻辑器件的开发工具MAX+PLUS II。
3.实验步骤
1)、仿照老师的演示完成一个实验过程。
2)、独立重复步骤1,并记录操作方式。
3)、独立创建一个包含两个或门的图形文件。
4)、用模拟软件对步骤3创建的图像文件进行模拟。
4.体会
初次使用MAXPLUS软件,好奇心是一定,我更对此款软件的功能佩服不已。
MAXPLUS软件可以省去我们实际连线和组成复杂电路的麻烦,不仅可以模拟实际电路更能减少不必要的错误。
在老师的指导下,我通过自己的模仿操作,我已初步学会了这款软件基本的设计电路,模拟的步骤。
但是在画电路图的过程中,值得注意的是,每个元器件之间的连接是否正确无误,不然在后续的编译、下载等过程中都会产生很多麻烦。