信号与系统实验六

合集下载

信号与系统实验

信号与系统实验

实验一信号与系统认知一、实验目的1、了解实验室的规章制度、强化安全教育、说明考核方法。

2、学习示波器、实验箱的使用、操作知识;3、学习常用连续周期信号的波形以及常用系统的作用。

二、实验仪器1、信号与系统实验箱(本次实验使用其自带的简易信号源,以及实验箱上的“信号通过系统”部分。

)2、示波器三、实验原理1、滤波器滤波器是一种常用的系统,它的作用为阻止某些频率信号通过,或只允许某些频率的信号通过。

滤波器主要有四种:这是四种滤波器的理想状态,实际上的滤波器只能接近这些效果,因此通常的滤波器有一些常用的参数:如带宽、矩形系数等。

通带范围:与滤波器最低衰减处比,衰减在3dB以下的频率范围。

2、线性系统线性系统是现实中广泛应用的一种系统,线性也是之后课程中默认为系统都具有的一种系统性质。

系统的线性表现在可加性与齐次性上。

齐次性:输入信号增加为原来的a倍时,输出信号也增加到原来的a倍。

四、预习要求1、复习安全操作的知识。

2、学习或复习示波器的使用方法。

3、复习典型周期信号的波形及其性质。

4、复习线性系统、滤波器的性质。

5、撰写预习报告。

五、实验内容及步骤1、讲授实验室的规章制度、强化安全教育、说明考核方法2、通过示波器,读出实验箱自带信号源各种信号的频率范围(1)测试信号源1的各种信号参数,并填入表1-1。

(2)测试信号源2的各种信号参数,并填入表1-2。

3、测量滤波器根据相应测量方法,用双踪示波器测出实验箱自带的滤波器在各频率点的输入输出幅度(先把双踪示波器两个接口都接到所测系统的输入端,调节到都可以读出输入幅度值,并把两侧幅度档位调为一致,记录下这个幅度值;之后,将示波器的一侧改接入所测系统的输出端,再调节用于输入的信号源,将信号频率其调至表1-3中标示的值,并使输入信号幅度保持原幅度值不变。

观察输出波形幅度的变化,并与原来的幅度作比较,记录变化后的幅度值。

),并将相应数据计入表1-3中。

4、测量线性系统(1)齐次性的验证自选一个输入信号,观察输出信号的波形并记录输入输出信号的参数,将输入信号的幅度增强为原信号的一定倍数后,再对输入输出输出参数进行记录,对比变化前后的输出。

大连理工大学 信号与系统实验实验6 Simulink仿真连续时间系统 实验报告

大连理工大学 信号与系统实验实验6 Simulink仿真连续时间系统 实验报告

大连理工大学实验报告
学院(系):电信专业:电子信息工程班级:姓名:学号:组:
实验时间:实验室:创新园C221 实验台:
指导教师签字:成绩:
实验六:Simulink仿真连续时间系统
一、实验结果与分析
1.用Simulink仿真载波为简单正弦信号的幅度调制和相干解调。

解:Simulink模块图为
其中,Sine wave产生调制信号,Sine wave1产生直流信号,Sine wave2产生载波信号,Ran-dom Source产生噪声,Digital Filter Design为带通滤波器,Sine wave3产生本地载波信号,Digital Filter Design1为低通滤波器。

主要模块的参数为
主要模块的波形图和频谱图为
二、讨论、建议、质疑
Simulink为我们提供了一个非常直观的解决途径,只要我们能够得到系统函数,画出相应的方框图,就可以方便地描述整个系统,获得需要的信息。

比如在完成简单正弦信号的幅度调制和相干解调时,如果利用MATLAB编写程序,需要调用函数buttord和butter去构建带通和低通滤波器,这是非常繁琐的。

但是Simulink提供了滤波器模块,我们只需要改变其参数,这大大简化了整个过程。

但是在实验中也遇到了一些问题。

因为对Simulink并不是特别熟悉,所以在设计滤波器的时候会觉得很盲目。

比如在完成简单正弦信号的幅度调制和相干解调时,如果稍微改变滤波器的参数,得到的结果就与正确结果大相径庭。

西工大信号和系统_实验

西工大信号和系统_实验

西北工业大学
《信号与系统》实验报告
西北工业大学
.
上图分别是0<n<2N-1,M=4,5,7,10时,Xm[n]的图像。

由上图可看出,当M=4时,基波周期T=3;M=5时,基波周期T=12 M=10时,基波周期T=6;所以当M=4时,得到的最小整数周期为
Xm(n)=sin(2πMn/N)的频率w=2πM/N,由公式得周期T=2k k=1,2,...)。

当N/M为正整数时,最小周期T=N/M;当N/M为有理数时,都有最小周期T=N;当N/M为无理数时,该序列不是周期序列
b.
以上是代码,下图是运行结果
可得出结论:如果2*pi/w0不是有理数,则该信号不是周期的 1.3离散时间信号时间变量的变换
b. 代码如下:x=zeros(1,11); x(4)=2;
x(6)=1;
x(7)=-1;
x(8)=3;
n=-3:7;
n1=n-2;
n2=n+1;
n3=-n;
n4=-n+1;
y1=x;
X超前2得到y1,;x延时1得到y2;x倒置再延时1得到y3;x倒置再延时2得到y4.
发现了课本中的一个错误
和书上的图1.2是一致的。

b:正余弦函数分别定义如下:
T=4
a:。

《信号与系统》课程实验报告

《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。

上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。

t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。

三、实验步骤该仿真提供了7种典型连续时间信号。

用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。

图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。

界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。

控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。

图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。

在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。

在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。

矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。

图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。

信号与系统实验报告

信号与系统实验报告

电气学科大类2012 级《信号与控制综合实验》课程实验报告(基本实验一:信号与系统基本实验)姓名丁玮学号U201216149 专业班号水电1204 同组者1 余冬晴学号U201216150 专业班号水电1204 同组者2 学号专业班号指导教师日期实验成绩评阅人实验评分表基本实验实验编号名称/内容实验分值评分实验一常用信号的观察实验二零输入响应、零状态相应及完全响应实验五无源滤波器与有源滤波器实验六LPF、HPF、BPF、BEF间的变换实验七信号的采样与恢复实验八调制与解调设计性实验实验名称/内容实验分值评分创新性实验实验名称/内容实验分值评分教师评价意见总分目录1.实验一常用信号的观察 (1)2.实验二零输入响应、零状态响应及完全响应 (4)3.实验五无源滤波器与有源滤波器 (7)4.实验六 LPF、HPF、BPF、BEF间的转换 (14)5.实验七信号的采样与恢复 (19)6.实验八调制与解调 (29)7.实验心得与自我评价 (33)8.参考文献 (34)实验一常用信号的观察一.任务与目标1.了解常见信号的波形和特点;2.了解常见信号有关参数的测量,学会观察常见信号组合函数的波形;3.学会使用函数发生器和示波器,了解所用仪器原理与所观察信号的关系;4.掌握基本的误差观察与分析方法。

二.总体方案设计1.实验原理描述信号的方法有许多种,可以用数学表达式(时间的函数),也可以使用函数图形(信号的波形)。

信号可以分为周期信号和非周期信号两种。

普通示波器可以观察周期信号,具有暂态拍摄功能的示波器可以观察到非周期信号的波形。

目前,常用的数字示波器可以方便地观察周期信号及非周期信号的波形。

2.总体设计⑴观察常用的正弦波、方波、三角波、锯齿波等信号及一些组合函数的波形,如y=sin(nx)+cos(mx)。

⑵用示波器测量信号,读取信号的幅值与频率。

三.方案实现与具体设计1.用函数发生器产生正弦波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;2.用函数发生器产生方波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;3.用函数发生器产生三角波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;4.用函数发生器产生锯齿波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;5.用函数发生器产生两个不同频率的正弦波,分别设定波形的峰值及频率,用示波器叠加波形,并观察组合函数的波形。

信号与系统实验

信号与系统实验

信号与系统实验实验一 信号的时域基本运算一、 实验目的1.掌握时域内信号的四则运算基本方法;2.掌握时域内信号的平移、反转、倒相、尺度变换等基本变换;3.注意连续信号与离散信号在尺度变换运算上区别。

二、 实验原理信号的时域基本运算包括信号的相加(减)和相乘(除)。

信号的时域基本变换包括信号的平移(移位)、反转、倒相以及尺度变换。

(1) 相加(减): ()()()t x t x t x 21±= [][][]n x n x n x 21±= (2) 相乘: ()()()t x t x t x 21∙= [][][]n x n x n x 21∙=(3) 平移(移位): ()()0t t x t x -→ 00>t 时右移,00<t 时左移[][]N n x n x -→ 0>N 时右移,0<N 时左移(4) 反转:()()t x t x -→ [][]n x n x -→ (5) 倒相:()()t x t x -→ [][]n x n x -→ (6) 尺度变换: ()()at x t x →1>a 时尺度压缩,1<a 时尺度拉伸,0<a 时还包含反转[][]mn x n x → m 取整数1>m 时只保留m 整数倍位置处的样值,1<m 时相邻两个样值间插入1-m 个0,0<m 时还包含反转三、实验结果1、连续时间信号时域的基本运算 (1) 相加减X1(t)=t+2 , x2(t)=cos(2*pi*t) , x(t)=x1(t)+x2(t).验证:由理论得x(t)=t+2+cos(2*pi*t),而上图x(t)满足该表达式,故得证。

(2)相乘X1(t)=t+2 , x2(t)=cos(2*pi*t) , x(t)=x1(t)*x2(t).验证:由理论得x(t)=(t+2)*cos(2*pi*t),而上图x(t)满足该表达式,故得证。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、实验目的(1) 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法;(2)深刻理解和掌握非周期信号的傅里叶变换及其计算方法;(3) 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制;(4) 理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,并画出相应的幅频、相频响应曲线。

二、实验原理、原理图及电路图(1) 周期信号的傅里叶分解设有连续时间周期信号()f t ,它的周期为T ,角频率22fT,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。

傅里叶级数有三角形式和指数形式两种。

1)三角形式的傅里叶级数:01212011()cos()cos(2)sin()sin(2)2cos()sin()2n n n n a f t a t a t b t b t a a n t b n t 式中系数n a ,n b 称为傅里叶系数,可由下式求得:222222()cos(),()sin()T T T T nna f t n t dtb f t n t dtTT2)指数形式的傅里叶级数:()jn tn nf t F e式中系数n F 称为傅里叶复系数,可由下式求得:221()T jn tT nF f t edtT周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。

Matlab中进行数值积分运算的函数有quad函数和int函数。

其中int函数主要用于符号运算,而quad函数(包括quad8,quadl)可以直接对信号进行积分运算。

因此利用Matlab进行周期信号的傅里叶分解可以直接对信号进行运算,也可以采用符号运算方法。

quadl函数(quad系)的调用形式为:y=quadl(‘func’,a,b)或y=quadl(@myfun,a,b)。

其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告
实验名称:信号与系统实验
一、实验目的:
1.了解信号与系统的基本概念
2.掌握信号的时域和频域表示方法
3.熟悉常见信号的特性及其对系统的影响
二、实验内容:
1.利用函数发生器产生不同频率的正弦信号,并通过示波器观察其时域和频域表示。

2.通过软件工具绘制不同信号的时域和频域图像。

3.利用滤波器对正弦信号进行滤波操作,并通过示波器观察滤波前后信号的变化。

三、实验结果分析:
1.通过实验仪器观察正弦信号的时域表示,可以看出信号的振幅、频率和相位信息。

2.通过实验仪器观察正弦信号的频域表示,可以看出信号的频率成分和幅度。

3.利用软件工具绘制信号的时域和频域图像,可以更直观地分析信号的特性。

4.经过滤波器处理的信号,可以通过示波器观察到滤波前后的信号波形和频谱的差异。

四、实验总结:
通过本次实验,我对信号与系统的概念有了更深入的理解,掌
握了信号的时域和频域表示方法。

通过观察实验仪器和绘制图像,我能够分析信号的特性及其对系统的影响。

此外,通过滤波器的处理,我也了解了滤波对信号的影响。

通过实验,我对信号与系统的理论知识有了更加直观的了解和应用。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。

实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。

实验一:信号的基本特性与运算。

学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。

实验二:信号的时间域分析。

在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。

实验三:系统的时域分析。

学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。

由于b=2,故平移量为2时,实际是右移1,符合平移性质。

两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。

平移,伸缩变化都会导致输出结果相对应的平移伸缩。

2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。

两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。

二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。

两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。

3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。

两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。

三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。

2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。

两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。

信号与系统——信号的采样与恢复实验

信号与系统——信号的采样与恢复实验

实验六 信号与系统实验1.信号的采样与恢复实验1.1实验目的(1)熟悉信号的采样与恢复的过程(2)学习和掌握采样定理(3)了解采样频率对信号恢复的影响1.2实验原理及内容(1)采样定理采样定理论述了在一定条件下,一个连续时间信号完全可以用该信号等时间间隔上瞬时值表示,这些值包含该信号全部信息,利用这些值可以恢复原信号。

采样定理是连续时间信号与离散时间信号的桥梁。

采样定理:对于一个具有有限频谱且最高频率为max w 的连续信号进行采样,当采样频率s w >=2max w 时,采样函数能够无失真地恢复出原信号。

(2)采样信号的频谱连续周期信号经过周期矩形脉冲抽样后,抽样信号的频谱为)]([)2()(s n s s nw w j F nw Sa T A jw F -=∑+∞-∞=ττ 它包含了原信号频谱以及重复周期为s w 的原信号频谱的搬移,且幅度按)2(ττs nw Sa T A 规律变化。

所以抽样信号的频谱便是原信号频谱的周期性拓延。

(3)采样信号的恢复将采样信号恢复成原信号,可以是用低通滤波器。

低通滤波器的截止频率c f 应当满足max max f f f f x c -≤≤。

实验中采用的低通滤波器的截止频率固定为Hz RCf 8021≈=π (4)单元构成本实验电路由脉冲采样电路和滤波器两部分构成,滤波器部分不再赘述,其中采样保持部分电路由一片CD4052完成。

此电路有两个输入端,其中IN1端输入被采样信号,Pu 端输入采样脉冲。

1.3实验步骤本实验在脉冲与恢复单元完成。

(1)信号的采样1)使波形发生器第一路输出幅值3V 、频率10Hz 的三角波信号;第二路输出幅值5V 、频率100Hz 、占空比50%的脉冲信号,将第一路信号接入IN1端;作为输入信号,第二路信号接入Pu 端,作为采样脉冲。

2)用示波器分别测量IN1端和OUT1端,观察采样前后波形的差异。

3)增加采样脉冲的频率为200、500、800等值。

信号与系统课程实验报告

信号与系统课程实验报告

合肥工业大学宣城校区《信号与系统》课程实验报告专业班级学生姓名《信号与系统》课程实验报告一实验名称一阶系统的阶跃响应姓名系院专业班级学号实验日期指导教师成绩一、实验目的1.熟悉一阶系统的无源和有源电路;2.研究一阶系统时间常数T的变化对系统性能的影响;3.研究一阶系统的零点对系统响应的影响。

二、实验原理1.无零点的一阶系统无零点一阶系统的有源和无源电路图如图2-1的(a)和(b)所示。

它们的传递函数均为:10.2s1G(s)=+(a) 有源(b) 无源图2-1 无零点一阶系统有源、无源电路图2.有零点的一阶系统(|Z|<|P|)图2-2的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:10.2s1)0.2(sG(s)++=,⎪⎪⎪⎪⎭⎫⎝⎛++=S611S161G(s)(a) 有源(b) 无源图2-2 有零点(|Z|<|P|)一阶系统有源、无源电路图3.有零点的一阶系统(|Z|>|P|)图2-3的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:1s10.1sG(s)=++(a) 有源(b) 无源图2-3 有零点(|Z|>|P|)一阶系统有源、无源电路图三、实验步骤1.打开THKSS-A/B/C/D/E型信号与系统实验箱,将实验模块SS02插入实验箱的固定孔中,利用该模块上的单元组成图2-1(a)(或(b))所示的一阶系统模拟电路。

2.实验线路检查无误后,打开实验箱右侧总电源开关。

3.将“阶跃信号发生器”的输出拨到“正输出”,按下“阶跃按键”按钮,调节电位器RP1,使之输出电压幅值为1V,并将“阶跃信号发生器”的“输出”端与电路的输入端“Ui”相连,电路的输出端“Uo”接到双踪示波器的输入端,然后用示波器观测系统的阶跃响应,并由曲线实测一阶系统的时间常数T。

4.再依次利用实验模块上相关的单元分别组成图2-2(a)(或(b))、2-3(a)(或(b))所示的一阶系统模拟电路,重复实验步骤3,观察并记录实验曲线。

信号与系统 抽样定理实验

信号与系统 抽样定理实验

信号与系统实验报告实验六抽样定理实验六抽样定理一、实验内容:(60分)1、阅读并输入实验原理中介绍的例题程序,观察输出的数据与图形,结合基本原理理解每一条语句的含义。

2、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m=1Hz。

(1)分别显示原连续信号波形与F s=f m、F s=2f m、F s=3f m三种情况下抽样信号的波形;程序如下:dt=0、1;f0=0、2;T0=1/f0;fm=5*f0;Tm=1/fm;t=-10:dt:10;f=sinc(t);subplot(4,1,1);plot(t,f);axis([min(t),max(t),1、1*min(f),1、1*max(f)]);title('Ô­Á¬ÐøÐźźͳéÑùÐźÅ');for i=1:3;fs=i*fm;Ts=1/fs;n=-10:Ts:10;f=sinc(n);subplot(4,1,i+1);stem(n,f,'filled');axis([min(n),max(n),1、1*min(f),1、1*max(f)]); end运行结果如下:(2)求解原连续信号与抽样信号的幅度谱;程序: dt=0、1;fm=1;t=-8:dt:8;N=length(t);f=sinc(t);wm=2*pi*fm;k=0:N-1;w1=k*wm/N;F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1)); axis([0,max(4*fm),1、1*min(abs(F1)),1、1*max(abs(F1))]);for i=1:3;if i<=2 c=0;else c=1;endfs=(i+c)*fm;Ts=1/fs;n=-6:Ts:6;N=length(n);f=sinc(n);wm=2*pi*fs;k=0:N-1;w=k*wm/N;F=f*exp(-1i*n'*w)*Ts;subplot(4,1,i+1);plot(w/(2*pi),abs(F));axis([0,max(4*fm),0、5*min(abs(F)),1、1*max(abs(F))]); end波形如下:(3)用时域卷积的方法(内插公式)重建信号。

操作系统实验,实验6软中断信号及处理

操作系统实验,实验6软中断信号及处理

设置一个时间值(闹钟时间),在将来的某个时刻该时间值会被超过。 当所设置的时间值被超过后,产生SIGALRM信号 如果不忽略或不捕捉此信号,则其默认动作是终止该进程 每个进程只能有一个闹钟时间。如果在调用alarm时,以前已为该进 程设置过闹钟时间,而且它还没有超时,则该闹钟时间的余留值作 为本次alarm函数调用的值返回。以前登记的闹钟时间则被新值代换
#include<unistd.h> #include<signal.h>
void handler() { printf("hello\n");} int main() { int i; signal(SIGALRM,handler); alarm(5); for(i=1;i<7;i++){ printf("sleep %d ...\n",i); sleep(1); } }
else { /*父进程*/ sleep(3); kill(pid,SIGKILL); /*向子进程发送SIGKILL信号*/ printf("parent send signal to kill child!\n"); waitpid(pid,NULL,0); /*等待pid退出*/ printf("child process exit!\n"); exit(0); } }
信号事件的发生有两个来源
硬件来源,比如我们按下了键盘或者其它
硬件故障 软件来源,最常用发送信号的系统函数是 kill, raise, alarm和setitimer以及sigqueue 函数,软件来源还包括一些非法运算等操 作
Linux中有30个软中断信号和31个实时
软中断信号

信号与系统实验

信号与系统实验

实验一信号的时域描述一、实验目的1.学习利用Matlab工程软件实现信号的描述2.观察和掌握各种常用信号的波形3.通过仿真实验对连续和离散信号间的关系做深一步的理解二、原理说明在信号与系统课程中,对信号的时域分析一个重要的内容就是对信号进行描述,信号的数学描述和波形描述是实际中对信号进行分析经常要做的工作,对于简单的信号我们很容易可以得到它的这两种描述方法,但对于一些复杂或未知的信号,我们就必须借助于一定的工具对其进行分析。

三、预习要求1.常用信号的波形及数学描述2.奇异信号的定义四、内容及步骤几种常见信号的图形描述参考程序如下:clear, %清屏t0=0;tf=5;dt=0.005;t1=1.5;t=[t0:dt:tf]; %定义信号时间范围t=[t0:dt:tf]; st=length(t);n1=floor((t1-t0)/dt);%确定信号出现时刻x1=zeros(1,st); %定义信号x1并作出信号波形x1(n1)=1/dt;subplot(2,2,1),stairs(t,x1)axis([0,5,0,2/dt])x2=[zeros(1,n1-100),ones(1,st-n1+100)]; %定义信号x2并作出波形图subplot(2,2,3),stairs(t,x2)axis([0,5,0,1.1])t2=[-5:0.005:5]; %确定信号x3及x4及它们对应的时间范围x3=pi*sinc(t2);x4=exp(-t2);subplot(2,2,2),plot(t2,x3) %作图subplot(2,2,4),plot(t2,x4)1.输入以上程序,观察信号输出波形,写出各信号的表达式1.读懂程序,改变程序中信号的时间参数,观察信号波形的变化2.自己定义几种常见信号,编写程序,画出信号波形五、仪器设备计算机一台Matlab软件一套六、报告要求记录各输出波形,并说明所使用主要函数的功能及调用格式实验二信号的分解及合成一、实验目的1.学习利用Matlab工程软件实现信号的分解及合成2.通过仿真实验对信号的分解及合成有进一步的认识3.观察信号分解过程中的吉布斯现象二、原理说明连续时间周期信号当满足狄里赫利条件时,可以分解为正弦信号叠加的形式,即它是由不同的频率分量所合成;不同分量在原信号中所占比重不同,这也就是周期信号频谱的概念。

北京理工大学信号与系统实验报告6离散时间系统的z域分析

北京理工大学信号与系统实验报告6离散时间系统的z域分析

北京理工大学信号与系统实验报告6-离散时间系统的z域分析————————————————————————————————作者:————————————————————————————————日期:实验6 离散时间系统的z 域分析(综合型实验)一、 实验目的1) 掌握z 变换及其反变换的定义,并掌握MAT LAB实现方法。

2) 学习和掌握离散时间系统系统函数的定义及z 域分析方法。

3) 掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。

二、 实验原理与方法 1. z 变换序列(n)x 的z 变换定义为(z)(n)znn X x +∞-=-∞=∑ (1)Z 反变换定义为11(n)(z)z 2n rx X dz jπ-=⎰(2)MA TLA B中可采用符号数学工具箱z trans 函数和iz trans 函数计算z 变换和z 反变换: Z=ztran s(F)求符号表达式F的z 变换。

F=iztra ns(Z)求符号表达式Z 的z 反变换 2. 离散时间系统的系统函数离散时间系统的系统函数H(z)定义为单位抽样响应h(n)的z 变换(z)(n)znn H h +∞-=-∞=∑ (3)此外连续时间系统的系统函数还可由系统输入与输出信号z 变换之比得到(z)(z)/X(z)H Y = (4)由(4)式描述的离散时间系统的系统时间函数可以表示为101101...(z)...MM NN b b z b z H a a z a z----+++=+++ (5) 3. 离散时间系统的零极点分析MATLAB 中可采用roots 来求系统函数分子多项式和分母多项式的根,从而得到系统的零极点。

此外还可采用MATL AB 中zpl ane 函数来求解和绘制离散系统的零极点分布图,zp lane 函数的调用格式为:zplane(b,a) b、a 为系统函数分子分母多项式的系数向量(行向量) zplane (z,p) z 、p为零极点序列(列向量) 系统函数是描述系统的重要物理量,研究系统函数的零极点分布不仅可以了解系统单位抽样响应的变化,还可以了解系统频率特性响应以及判断系统的稳定性; 系统函数的极点位置决定了系统的单位抽样响应的波形,系统函数零点位置只影响冲激响应的幅度和相位,不影响波形。

信号与系统实验报告

信号与系统实验报告

实验三常见信号的MATLAB 表示及运算一、实验目的1.熟悉常见信号的意义、特性及波形2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法二、实验原理根据MATLAB 的数值计算功能和符号运算功能,在MATLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法;在采用适当的MATLAB 语句表示出信号后,就可以利用MATLAB 中的绘图命令绘制出直观的信号波形了;1.连续时间信号从严格意义上讲,MATLAB 并不能处理连续信号;在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号;在MATLAB 中连续信号可用向量或符号运算功能来表示; ⑴ 向量表示法对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t =的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔;向量f 为连续信号()f t 在向量t 所定义的时间点上的样值; ⑵ 符号运算表示法如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍的符号函数专用绘图命令ezplot 等函数来绘出信号的波形; ⑶ 常见信号的MATLAB 表示 单位阶跃信号单位阶跃信号的定义为:10()0t u t t >⎧=⎨<⎩方法一: 调用Heavisidet 函数首先定义函数Heavisidet 的m 函数文件,该文件名应与函数名同名即;%定义函数文件,函数名为Heaviside,输入变量为x,输出变量为y function y= Heavisidety=t>0; %定义函数体,即函数所执行指令%此处定义t>0时y=1,t<=0时y=0,注意与实际的阶跃信号定义的区别;方法二:数值计算法在MATLAB 中,有一个专门用于表示单位阶跃信号的函数,即stepfun 函数,它是用数值计算法表示的单位阶跃函数()u t ;其调用格式为:stepfunt,t0其中,t 是以向量形式表示的变量,t0表示信号发生突变的时刻,在t0以前,函数值小于零,t0以后函数值大于零;有趣的是它同时还可以表示单位阶跃序列()u k ,这只要将自变量以及取样间隔设定为整数即可; 符号函数符号函数的定义为:10sgn()1t t t >⎧=⎨-<⎩在MATLAB 中有专门用于表示符号函数的函数sign ,由于单位阶跃信号 t 和符号函数两者之间存在以下关系:1122()sgn()t t ε=+,因此,利用这个函数就可以很容易地生成单位阶跃信号;2.离散时间信号离散时间信号又叫离散时间序列,一般用()f k 表示,其中变量k 为整数,代表离散的采样时间点采样次数;在MATLAB 中,离散信号的表示方法与连续信号不同,它无法用符号运算法来表示,而只能采用数值计算法表示,由于MATLAB 中元素的个数是有限的,因此,MATLAB 无法表示无限序列;另外,在绘制离散信号时必须使用专门绘制离散数据的命令,即stem 函数,而不能用plot 函数; 单位序列()k δ单位序列()k δ的定义为10()0k k k δ=⎧=⎨≠⎩单位阶跃序列()u k单位阶跃序列()u k 的定义为10()0k u k k ≥⎧=⎨<⎩3.卷积积分两个信号的卷积定义为:MATLAB 中是利用conv 函数来实现卷积的;功能:实现两个函数1()f t 和2()f t 的卷积;格式:g=convf1,f2说明:f1=f 1t,f2=f 2t 表示两个函数,g=gt 表示两个函数的卷积结果;三、实验内容1.分别用MATLAB 的向量表示法和符号运算功能,表示并绘出下列连续时间信号的波形: ⑴ 2()(2)()tf t e u t -=- ⑵[]()cos()()(4)2tf t u t u t π=--1 t=-1::10;t1=-1::; t2=0::10;f1=zeros1,lengtht1,ones1,lengtht2;f=2-exp-2t.f1; plott,faxis-1,10,0, syms t;f=sym'2-exp-2theavisidet'; ezplotf,-1,10;2t=-2::8;f=0.t<0+cospit/2.t>0&t<4+0.t>4; plott,f syms t;f=sym'cospit/2heavisidet-heavisidet-4 '; ezplotf,-2,8;2.分别用MATLAB 表示并绘出下列离散时间信号的波形: ⑵ []()()(8)f t k u k u k =-- ⑶()sin()()4k f k u k π= 2 t=0:8; t1=-10:15;f=zeros1,10,t,zeros1,7; stemt1,faxis-10,15,0,10; 3 t=0:50; t1=-10:50;f=zeros1,10,sintpi/4; stemt1,faxis-10,50,-2,23.已知两信号1()(1)()f t u t u t =+-,2()()(1)f t u t u t =--,求卷积积分12()()()g t f t f t =*,并与例题比较;t1=-1::0; t2=0::1; t3=-1::1;f1=onessizet1; f2=onessizet2; g=convf1,f2;subplot3,1,1,plott1,f1; subplot3,1,2,plott2,f2; subplot3,1,3,plott3,g;与例题相比较,gt 的定义域不同,最大值对应的横坐标也不同;4.已知{}{}12()1,1,1,2,()1,2,3,4,5f k f k ==,求两序列的卷积和 ;N=4; M=5; L=N+M-1; f1=1,1,1,2;f2=1,2,3,4,5; g=convf1,f2; kf1=0:N-1; kf2=0:M-1; kg=0:L-1;subplot1,3,1,stemkf1,f1,'k';xlabel'k'; ylabel'f1k';grid onsubplot1,3,2,stemkf2,f2,'k';xlabel'k'; ylabel'f2k';grid onsubplot1,3,3;stemkg,g,'k';xlabel'k'; ylabel'gk';grid on 实验心得:第一次接触Mutlab 这个绘图软件,觉得挺新奇的,同时 ,由于之前不太学信号与系统遇到一些不懂的问题,结合这些图对信号与系统有更好的了解;实验四 连续时间信号的频域分析一、实验目的1.熟悉傅里叶变换的性质 2.熟悉常见信号的傅里叶变换3.了解傅里叶变换的MATLAB 实现方法二、实验原理从已知信号()f t 求出相应的频谱函数()F j ω的数学表示为:()F j ω()j t f t e dt ω∞--∞=⎰傅里叶反变换的定义为:1()()2j t f t F j e d ωωωπ∞-∞=⎰在MATLAB 中实现傅里叶变换的方法有两种,一种是利用MATLAB 中的Symbolic Math Toolbox 提供的专用函数直接求解函数的傅里叶变换和傅里叶反变换,另一种是傅里叶变换的数值计算实现法;1.直接调用专用函数法①在MATLAB 中实现傅里叶变换的函数为:F=fourier f 对ft 进行傅里叶变换,其结果为Fw F =fourierf,v 对ft 进行傅里叶变换,其结果为Fv F=fourier f,u,v 对fu 进行傅里叶变换,其结果为Fv ②傅里叶反变换f=ifourier F 对Fw 进行傅里叶反变换,其结果为fx f=ifourierF,U 对Fw 进行傅里叶反变换,其结果为fu f=ifourier F,v,u 对Fv 进行傅里叶反变换,其结果为fu 注意:1在调用函数fourier 及ifourier 之前,要用syms 命令对所有需要用到的变量如t,u,v,w 等进行说明,即要将这些变量说明成符号变量;对fourier 中的f 及ifourier 中的F 也要用符号定义符sym 将其说明为符号表达式;2采用fourier 及fourier 得到的返回函数,仍然为符号表达式;在对其作图时要用ezplot 函数,而不能用plot 函数;3fourier 及fourier 函数的应用有很多局限性,如果在返回函数中含有δω等函数,则ezplot 函数也无法作出图来;另外,在用fourier 函数对某些信号进行变换时,其返回函数如果包含一些不能直接表达的式子,则此时当然也就无法作图了;这是fourier 函数的一个局限;另一个局限是在很多场合,尽管原时间信号ft 是连续的,但却不能表示成符号表达式,此时只能应用下面介绍的数值计算法来进行傅氏变换了,当然,大多数情况下,用数值计算法所求的频谱函数只是一种近似值;2、傅里叶变换的数值计算实现法严格说来,如果不使用symbolic 工具箱,是不能分析连续时间信号的;采用数值计算方法实现连续时间信号的傅里叶变换,实质上只是借助于MATLAB 的强大数值计算功能,特别是其强大的矩阵运算能力而进行的一种近似计算;傅里叶变换的数值计算实现法的原理如下: 对于连续时间信号ft,其傅里叶变换为:其中τ为取样间隔,如果ft 是时限信号,或者当|t|大于某个给定值时,ft 的值已经衰减得很厉害,可以近似地看成是时限信号,则上式中的n 取值就是有限的,假定为N,有: 若对频率变量ω进行取样,得: 通常取:02k k k MM ωπωτ==,其中0ω是要取的频率范围,或信号的频带宽度;采用MATLAB 实现上式时,其要点是要生成ft 的N 个样本值()f n τ的向量,以及向量k j n eωτ-,两向量的内积即两矩阵的乘积,结果即完成上式的傅里叶变换的数值计算;注意:时间取样间隔τ的确定,其依据是τ必须小于奈奎斯特Nyquist 取样间隔;如果ft 不是严格的带限信号,则可以根据实际计算的精度要求来确定一个适当的频率0ω为信号的带宽;三、 实验内容1.编程实现求下列信号的幅度频谱1 求出1()(21)(21)f t u t u t =+--的频谱函数F 1jω,请将它与上面门宽为2的门函数()(1)(1)f t u t u t =+--的频谱进行比较,观察两者的特点,说明两者的关系;2 三角脉冲21||||1()0||1t t f t t -≤⎧=⎨>⎩3 单边指数信号3()()tf t e t ε-=4 高斯信号23()t f t e -=1 syms t w Gt=sym'Heaviside2t+1-Heaviside2t-1'; Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; FFP=absFFw; ezplotFFP,-10pi 10pi;grid; axis-10pi 10pi 0与()(1)(1)f t u t u t =+--的频谱比较,1()(21)(21)f t u t u t =+--的频谱函数F 1jω最大值是其的1/2; 2syms t w;Gt=sym'1+tHeavisidet+1-Heavisidet+1-tHeavisidet-Heavisidet-1'; Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; FFP=absFFw; ezplotFFP,-10pi 10pi;grid; axis-10pi 10pi 0 3syms t w Gt=sym'exp-tHeavisidet';Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; FFP=absFFw; ezplotFFP,-10pi 10pi;grid; axis-10pi 10pi -1 2 4syms t w Gt=sym'exp-t^2';Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; ezplotFFw,-30 30;grid; axis-30 30 -1 22.利用ifourier 函数求下列频谱函数的傅氏反变换122()16F j j ωωω=-+ 222()58()()65j j F j j j ωωωωω+-=++1syms t w Fw=sym'-i2w/16+w^2'; ft=ifourierFw,w,t; ft运行结果: ft =-exp4theaviside-t+exp-4theavisidet 2syms t wFw=sym'iw^2+5iw-8/iw^2+6iw+5'; ft=ifourierFw,w,t; ft运行结果: ft =diract+-3exp-t+2exp-5theavisidet实验心得matlab 不但具有数值计算能力,还能建模仿真,能帮助我们理解不同时间信号的频域分析;实验五 连续时间系统的频域分析一、实验目的1. 学习由系统函数确定系统频率特性的方法;2. 学习和掌握连续时间系统的频率特性及其幅度特性、相位特性的物理意义;3.通过本实验了解低通、高通、带通、全通滤波器的性能及特点;二、实验原理及方法频域分析法与时域分析法的不同之处主要在于信号分解的单元函数不同;在频域分析法中,信号分解成一系列不同幅度、不同频率的等幅正弦函数,通过求取对每一单元激励产生的响应,并将响应叠加,再转换到时域以得到系统的总响应;所以说,频域分析法是一种变域分析法;它把时域中求解响应的问题通过 Fourier 级数或 Fourier 变换转换成频域中的问题;在频域中求解后再转换回时域从而得到最终结果;在实际应用中,多使用另一种变域分析法:复频域分析法,即 Laplace 变换分析法;所谓频率特性,也称频率响应特性,是指系统在正弦信号激励下稳态响应随频率变化的情况,包括幅度随频率的响应和相位随频率的响应两个方面;利用系统函数也可以确定系统频率特性,公式如下:幅度响应用()ωj H 表示,相位响应用)(ωϕH 表示;本实验所研究的系统函数Hs 是有理函数形式,也就是说,分子、分母分别是m 、n 阶多项式; 要计算频率特性,可以写出为了计算出()ωj H 、)(ωϕH 的值,可以利用复数三角形式的一个重要特性: 而⎥⎦⎤⎢⎣⎡+=2sin 2cosππωωj j ,则()⎥⎦⎤⎢⎣⎡+=2sin 2cos ππωωn j n j n n利用这些公式可以化简高次幂,因此分子和分母的复数多项式就可以转化为分别对实部与虚部的实数运算,算出分子、分母的实部、虚部值后,最后就可以计算出幅度()ωj H 、相位)(ωϕH 的值了;三、实验内容a)sm m ms H )(1)(2-+=,m 取值区间 0,1,绘制一组曲线 m=,,,,; b) 绘制下列系统的幅频响应对数曲线和相频响应曲线,分析其频率特性; a %figurealpha=,,,,;colorn='r' 'g' 'b' 'y' 'k'; % r g b y m c k 红,绿,蓝,黄,品红,青,黑 for n=1:5b=0 alphan; % 分子系数向量a=alphan-alphan^2 1; % 分母系数向量 printsysb,a,'s' Hz,w=freqsb,a; w=w./pi; magh=absHz;zerosIndx=findmagh==0; maghzerosIndx=1; magh=20log10magh; maghzerosIndx=-inf; angh=angleHz;angh=unwrapangh180/pi; subplot1,2,1plotw,magh,colornn;hold onsubplot1,2,2plotw,angh,colornn;hold onendsubplot1,2,1hold offxlabel'特征角频率\times\pi rad/sample' title'幅频特性曲线 |Hw| dB';subplot1,2,2hold offxlabel'特征角频率 \times\pi rad/sample' title'相频特性曲线 \thetaw degrees';b1 %b=1,0; % 分子系数向量a=1,1; % 分母系数向量printsysb,a,'s'Hz,w=freqsb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';2 %b=0,1,0; % 分子系数向量a=1,3,2; % 分母系数向量printsysb,a,'s'Hz,w=freqsb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';3 %b=1,-1; % 分子系数向量a=1,1; % 分母系数向量printsysb,a,'s'Hz,w=freqsb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';实验心得:虽然之前用公式转换到频域上分析,但是有时会觉得挺抽象的,不太好理解;根据这些图像结合起来更进一步对信号的了解;同时,这个在编程序时,虽然遇到一些问题,但是总算解决了;实验六离散时间系统的Z域分析一、 实验目的1. 学习和掌握离散系统的频率特性及其幅度特性、相位特性的物理意义;2. 深入理解离散系统频率特性和对称性和周期性;3. 认识离散系统频率特性与系统参数之间的系统4.通过阅读、修改并调试本实验所给源程序,加强计算机编程能力; 二、 实验原理及方法对于离散时间系统,系统单位冲激响应序列)(n h 的 Fourier 变换)(ωj e H 完全反映了系统自身的频率特性,称)(ωj eH 为离散系统的频率特性,可由系统函数)(z H 求出,关系式如下:ωωj j e z z H e H ==)()( 6 – 1由于ωj e是频率的周期函数,所以系统的频率特性也是频率的周期函数,且周期为π2,因此研究系统频率特性只要在πωπ≤≤-范围内就可以了;∑∑∑∞-∞=∞-∞=∞-∞=--==n n n j j n n h j n n h en h e H )sin()()cos()()()(ωωωω6 – 2容易证明,其实部是ω的偶函数,虚部是ω的奇函数,其模ωj e H (的ω的偶函数,相位[])(arg ωj e H 是ω的奇函数;因此研究系统幅度特性)(ωj e H 、相位特性[])(arg ωj e H ,只要在πω≤≤0范围内讨论即可;综上所述,系统频率特性)(ωj eH 具有周期性和对称性,深入理解这一点是十分重要的;当离散系统的系统结构一定,它的频率特性)(ωj e H 将随参数选择的不同而不同,这表明了系统结构、参数、特性三者之间的关系,即同一结构,参数不同其特性也不同; 例如,下图所示离散系统,其数学模型由线性常系数差分方程描述:)()1()(n x n ay n y +-=系统函数:a z az z z H >-=,)(系统函数频率特性:ωωωωωsin )cos 1(1)(ja a a e e e H j j j +-=-=幅频特性:ωωcos 211)(2a a eH j -+=相频特性:[]ωωωcos 1sin arctan)(arg a a eH j --= 容易分析出,当10<<a 时系统呈低通特性,当01<<-a 时系统呈高通特性;当0=a 时系统呈全通特性;同时说明,在系统结构如图所示一定时,其频率特性随参数a 的变化而变化;三、 实验内容a 2281.011)(----=z z z H ;b 1.04.06.01.03.03.01.0)(2323+++-+-=z z z z z z z Hc 2181.011)(--+-=zz z H a %b=1,0,-1; % 分子系数向量a=1,0,; % 分母系数向量printsysb,a,'z'Hz,w=freqzb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';带通b %b=,,,; % 分子系数向量a=1,,,; % 分母系数向量printsysb,a,'z'Hz,w=freqzb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';高通c %b=1,-1,0; % 分子系数向量a=1,0,; % 分母系数向量printsysb,a,'z'Hz,w=freqzb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';带通实验心得:本来理论知识不是很强的,虽然已经编出程序得到相关图形,但是不会辨别相关通带,这让我深刻地反省;。

信号与系统的实验报告

信号与系统的实验报告

信号与系统的实验报告信号与系统的实验报告引言:信号与系统是电子工程、通信工程等领域中的重要基础学科,它研究的是信号的传输、处理和变换过程,以及系统对信号的响应和特性。

在本次实验中,我们将通过实际操作和数据分析,深入了解信号与系统的相关概念和实际应用。

实验一:信号的采集与重构在这个实验中,我们使用了示波器和函数发生器来采集和重构信号。

首先,我们通过函数发生器产生了一个正弦信号,并将其连接到示波器上进行观测。

通过调整函数发生器的频率和幅度,我们可以观察到信号的不同特性,比如频率、振幅和相位等。

然后,我们将示波器上的信号通过数据采集卡进行采集,并使用计算机软件对采集到的数据进行处理和重构。

通过对比原始信号和重构信号,我们可以验证信号的采集和重构过程是否准确。

实验二:信号的时域分析在这个实验中,我们使用了示波器和频谱分析仪来对信号进行时域分析。

首先,我们通过函数发生器产生了一个方波信号,并将其连接到示波器上进行观测。

通过调整函数发生器的频率和占空比,我们可以观察到方波信号的周期和占空比等特性。

然后,我们使用频谱分析仪对方波信号进行频谱分析,得到信号的频谱图。

通过分析频谱图,我们可以了解信号的频率成分和能量分布情况,进而对信号的特性进行深入研究。

实验三:系统的时域响应在这个实验中,我们使用了函数发生器、示波器和滤波器来研究系统的时域响应。

首先,我们通过函数发生器产生了一个正弦信号,并将其连接到滤波器上进行输入。

然后,我们通过示波器观测滤波器的输出信号,并记录下其时域波形。

通过改变滤波器的参数,比如截止频率和增益等,我们可以观察到系统对信号的响应和滤波效果。

通过对比输入信号和输出信号的波形,我们可以分析系统的时域特性和频率响应。

实验四:系统的频域响应在这个实验中,我们使用了函数发生器、示波器和频谱分析仪来研究系统的频域响应。

首先,我们通过函数发生器产生了一个正弦信号,并将其连接到系统中进行输入。

然后,我们通过示波器观测系统的输出信号,并记录下其时域波形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(1):
ft=sym('3*exp(-5*t)*heaviside(t)'); %单位阶跃函数heaviside ezplot(ft)
fw=simplify(fourier(ft)) %符号数学的简化函数
subplot(211)
ezplot(abs(fw))
grid on
title('幅度谱')
phase=atan(imag(fw)/real(fw)); %phase 相位
subplot(212)
ezplot(phase)
title('相位谱')
grid on
fw =
3/(5+i*w)
1.(2):
ft=sym('(sin*2*pi*(t-1))*heaviside(t)');
ezplot(ft)
fw=simplify(fourier(ft))
subplot(211)
ezplot(abs(fw))
grid on
title('幅度谱')
phase=atan(imag(fw)/real(fw));
subplot(212)
ezplot(phase)
title('相位谱')
grid on
fw =
2*sin*pi*(-1+i*w+i*pi*dirac(1,w)*w^2-pi*dirac(w)*w^2)/w^2
1.(3):
ft=sym('(sin*2*pi*(t-1))/t*heaviside(t)');
ezplot(ft)
fw=simplify(fourier(ft))
subplot(211)
ezplot(abs(fw))
grid on
title('幅度谱')
phase=atan(imag(fw)/real(fw));
subplot(212)
ezplot(phase)
title('相位谱')
grid on
fw =
sin*(2*i*w*pi^2*heaviside(w)-i*w*pi^2-w*Inf-2*i*pi+2*pi^2*dirac(w)*w)/w
1.(4):
f=sym('heaviside(t+1)-heaviside(t-4)') %f(t)
f =
heaviside(t+1)-heaviside(t-4)
ezplot(f,[-10,10])
grid on
fw=simplify(fourier(f))
fw =
-i*(-exp(-4*i*w)+exp(i*w))/w
ezplot(abs(fw))
grid on
2.(1)
>> syms t
>> fw=('2/(1+i*w)');
>> ft=ifourier(fw,t)
ft =
2*exp(-t)*heaviside(t)
>> ezplot(ft)
2.(2)
syms t %syms函数用于创建符号对象>> fw=sym('(2+(3/1+i*w))*exp(-3*t)');
>> ft=ifourier(fw,t)
ft =
2*dirac(t)+3*ifourier(exp(-3*t),t,t)+ifourier(exp(-3*t),t,t)*iw ezplot(ft)
2.(3)
>> syms t
fw=('(1/(4+i*w))*exp(-2*i*w)');
ft=ifourier(fw,t)
ft =
exp(-4*t+8)*heaviside(t-2)
>> ezplot(ft)
2.(4)
syms t
>> fw=('1/(6+i*w)+2/(3+2*i*w)');
>> ft=ifourier(fw,t)
ft =
heaviside(t)*(exp(-3/2*t)+exp(-6*t))
>> ezplot(ft)
3.
f=sym('2*exp(-3*t)');
>> subplot(4,2,1)
>> ezplot(f,[-5,5])
>> grid on
>> fw=simplify(fourier(f));
subplot(4,2,2);
subplot(abs(fw))
>> f1=sym('2*exp(-6*t)');
>> subplot(4,2,3);
>> ezplot(f1,[-1,5])
>> grid on
>> fw=simplify(fourier(f1));
subplot(4,2,4);
ezplot(abs(fw),[-5,5])
f2=sym('(2*exp(-3*t))-3');
subplot(4,2,5);
ezplot(f2,[-2,2])
grid on
fw=simplify(fourier(f2));
subplot(4,2,6);
ezplot(abs(fw),[-5,5])
f3=sym(t*('2*exp(-6*t))');
subplot(4,2,7);
ezplot(f3,[-2,2])
grid on
fw=simplify(fourier(f3));
subplot(4,2,8);
ezplot(abs(fw),[-5,5])
(syms的功能和sym函数相同,但syms可以同时创建多个符号对象,因此在创建多个符号变量时语法上要比使用sym简单)
4.。

相关文档
最新文档