七年级下册数学知识点归纳
七年级数学下册知识总结
【导语】学习效率的⾼低,是⼀个学⽣综合学习能⼒的体现。
在学⽣时代,学习效率的⾼低主要对学习成绩产⽣影响。
当⼀个⼈进⼊社会之后,还要在⼯作中不断学习新的知识和技能,这时候,⼀个⼈学习效率的⾼低则会影响他(或她)的⼯作成绩,继⽽影响他的事业和前途。
可见,在中学阶段就养成好的学习习惯,拥有较⾼的学习效率,对⼈⼀⽣的发展都⼤有益处。
下⾯是为您整理的《七年级数学下册知识总结》,仅供⼤家参考。
【篇⼀】七年级数学下册知识总结 1、整式的乘除的公式运⽤(六条)及逆运⽤(数的计算)。
(1)an·am(2)(am)n=(3)(ab)n=4)am÷an(5)a0(a≠0)(6)a-p== 2、单项式与单项式、多项式相乘的法则。
3、整式的乘法公式(两条)。
平⽅差公式:(a+b)(a-b)= 完全平⽅公式:(a+b)2(a-b)2 常⽤公式:(x+m)(x+n)= 4、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。
5、互为余⾓和互为补⾓和 6、两直线平⾏的条件:(⾓的关系线的平⾏) ①相等,两直线平⾏; ②相等,两直线平⾏; ③互补,两直线平⾏. 7、平⾏线的性质:两直线平⾏。
(线的平⾏ 8、能判别变量中的⾃变量和因变量,会列列关系式(因变量=⾃变量与常量的关系) 9、变量中的图象法,注意:(1)横、纵坐标的对象。
(2)起点、终点不同表⽰什么意义(3)图象交点表⽰什么意义(4)会求平均值。
10、三⾓形 (1)三边关系:⾓的关系) (2)内⾓关系: (3)三⾓形的三条重要线段: (4)三⾓形全等的判别⽅法:(注意:公共边、边的公共部分对顶⾓、公共⾓、⾓的公共部分) (5)全等三⾓形的性质: (6)等腰三⾓形:(a)知边求边、周长⽅法(b)知⾓求⾓⽅法(c)三线合⼀: (7)等边三⾓形: 11、会判轴对称图形,会根据画对称图形,(或在⽅格中画) 12、常见的轴对称图形有: 13、(1)等腰三⾓形:对称轴,性质 (2)线段:对称轴,性质 (3)⾓:对称轴,性质 14、尺规作图:(1)作⼀线段等已知线段(2)作⾓已知⾓(3)作线段垂直平分线 (4)作⾓的平分线(5)作三⾓形 15、事件的分类:,会求各种事件的概率 (1)摸球:P(摸某种球)= (2)摸牌:P(摸某种牌)= (3)转盘:P(指向某个区域)= (4)抛骰⼦:P(抛出某个点数)= (5)⽅格(⾯积):P(停留某个区域)= 16、必然事件不可能事件,不确定事件 17、⽅法归纳:(1)求边相等可以利⽤ (2)求⾓相等可以利⽤。
七年级下册数学第七章知识点归纳
(华师版)七年级下册数学第七章知识点归纳第七章二元一次方程组一、基本概念(一)二元一次方程组的有关概念1.二元一次方程的定义:都含有1个未知数,并且含有未知数的项的次数都是1,像这样的整式方程,叫做二元一次方程。
一般形式为:ax+by=c(a、b、c 为常数,且a、b 均不为0)结合一元一次方程,二元一次方程对“元”和“次”作进一步的理解;“元”与“未知数”相通,几个元是指几个未知数,“次”指未知数的最高次数。
例如:方程7y-3x=4、-3a+3=4-7b、2m+3n=0、1-s+t=2s 等都是二元一次方程。
而6x 2=-2y-6、4x+8y=-6z、m2=n 等都不是二元一次方程。
2.二元一次方程组的定义:把两个二元一次方程合在一起,就组成了一个二元一次方程组。
例如:⎩⎨⎧-=+=-8532y x y x 、⎩⎨⎧=--=+12337b a b a 、⎩⎨⎧=-=+12n m n m 、⎩⎨⎧-=+=-1132t s t s 等都是二元一次方程组。
而⎩⎨⎧-=+=-8532z x y x 、⎩⎨⎧=--=+12337a a a a 、⎪⎩⎪⎨⎧=-=+121n m n m 等都不是二元一次方程组。
注意:(1)只要两个方程一共含有两个未知数,也是二元一次方程组。
如:⎩⎨⎧-==852y x 、⎩⎨⎧-==112t s 也是二元一次方程组。
3.二元一次方程和二元一次方程组的解(1)二元一次方程的解:能够使二元一次方程的左右两边都相等的两个未知数的值,叫做二元一次方程的解。
(2)二元一次方程组的解:使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。
(即是两个方程的公共解)注意:写二元一次方程或二元一次方程组的解时要用“联立”符号“⎩⎨⎧”把方程中两个未知数的值连接起来写。
二元方程解的写法的标准形式是:⎩⎨⎧==b y a x ,(其中a、b 为常数)(二)二元一次方程组的解法1.解二元一次方程组的基本思想:“消元”,化二元一次方程组为一元一次方程来解。
七年级数学下册知识点归纳
七年级数学下册知识点归纳一、图形的认识1. 点、线、面的定义和特征2. 线段、直线、射线的区别和特征3. 角的定义和特征4. 图形的种类和特点:三角形、四边形、多边形等5. 同种图形的分类和比较二、平面图形的性质研究1. 三角形的内角和外角关系2. 三角形的分类及其性质3. 三角形内切圆和外接圆的应用4. 平行四边形的性质及其判定5. 长方形、正方形、菱形和矩形的性质及其判定三、图形的相似与全等1. 图形相似的概念和判定条件2. 相似三角形的性质及其判定3. 图形全等的概念和应用4. 证明图形全等的方法和步骤四、直角三角形的研究1. 直角三角形的定义和性质2. 勾股定理的应用3. 余弦定理和正弦定理的应用五、多边形的面积和周长1. 一般多边形的周长计算2. 三角形的面积计算和性质3. 四边形的面积计算和性质4. 多边形的面积计算和性质六、圆的研究1. 圆的定义和性质2. 圆的元素:圆心、半径、直径、弧长等的概念和关系3. 圆内角和弧度的关系及其应用4. 弧长、扇形面积和圆的面积计算七、线性方程的解法1. 一元一次方程的解方法2. 解一元一次方程的应用3. 解一元一次方程组的方法和步骤4. 一次函数及其应用八、比例与相似1. 比和比例的概念及其应用2. 相似三角形的比例关系3. 解直角三角形的比例问题4. 解平行四边形的比例问题九、数据的收集和处理1. 数据收集的方法和意义2. 数据的整理和描述3. 数据图形的绘制和解读4. 统计与概率的基本知识十、考试技巧与思维方法1. 解题方法和思维技巧的培养2. 数学解题策略与问题解决能力的提升3. 拓展数学的应用能力和创新思维。
人教版七年级数学下册知识点总结归纳
人教版七年级数学下册各单元知识点汇总第五章相交线与平行线5.1 相交线邻补角、对顶角对顶角相等直线a与直线b互相垂直,记作a b。
垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
在同一平面内,过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
垂线段最短。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
同位角、内错角、同旁内角5.2 平行线及其判定5.2.1 平行线在同一平面内,当直线a与直线b不相交时,我们就说直线a与直线b互相平行,记作//a b. 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
即如果b a,c a,那么b c.5.2.2 平行线的判定判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
同位角相等,两直线平行。
判定方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
内错角相等,两直线平行。
判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
同旁内角互补,两直线平行。
5.3 平行线的性质5.3.1 平行线的性质性质1 两条平行线被第三条直线所截,同位角相等。
两直线平行,同位角相等。
性质2 两条平行线被第三条直线所截,内错角相等。
两直线平行,内错角相等。
性质3 两条平行线被第三条直线所截,同旁内角互补。
两直线平行,同旁内角互补。
5.3.2 命题、定理、证明判断一件事情的语句,叫做命题命题由题设和结论两部分组成。
题设是已知事项,结论是由已知事项推出的事项。
数学中的命题通常可以写成“如果……那么……”的形式,这时“如果”后的部分是题设,“那么”后接的部分是结论。
如果题设成立,那么结论一定成立,这样的命题叫做真命题。
题设成立时,不能保证结论一定成立,这样的命题中做假命题。
人教版七年级数学下册各章节知识点归纳
人教版七年级数学下册各章节知识点归纳第一章:直线与角1. 定义平行线和垂直线的概念,了解直线的性质。
2. 知道角的概念和角的分类,包括锐角、直角、钝角和平角。
3. 掌握角的度量单位:度和弧度。
4. 学习如何用直尺和量角器画角。
第二章:平行线与平面1. 学习如何用直尺和圆规做等分线段、垂线、平行线、垂直平分线和角的平分线。
2. 理解平行线与转角的关系,学会证明平行线与转角的基本性质。
3. 掌握平面的概念,理解平面的性质和表示方法。
4. 学习如何判断平面与平面的位置关系,包括平行、垂直和交叉。
第三章:三角形1. 知道三角形的定义和分类,包括等边三角形、等腰三角形、直角三角形和普通三角形。
2. 掌握三角形内角的和定理和外角的性质。
3. 学习三角形的判定方法,包括SSS、SAS、ASA和AAS。
4. 理解三角形中的全等概念,学会判断和证明两个三角形是否全等。
第四章:四边形1. 知道四边形的定义和分类,包括矩形、正方形、菱形、平行四边形和梯形。
2. 掌握矩形、正方形和菱形的性质,包括边长、对角线、内角和面积的计算方法。
3. 学习平行四边形的性质,包括对角线的关系、内角和、面积和周长的计算方法。
4. 理解梯形的定义和性质,学会计算梯形的面积和周长。
第五章:图形的变化1. 了解图形中的平移、旋转、翻折和对称等基本变化。
2. 学习如何用折纸法进行图形变化。
3. 理解相似图形的概念和性质,学会判断和证明两个图形是否相似。
4. 掌握相似图形的计算方法,包括比例尺和相似比的计算。
第六章:数的运算1. 复习整数的概念和运算法则,包括加法、减法、乘法和除法。
2. 学习分数的概念和运算规则,包括分数的四则运算和混合运算。
3. 掌握百分数的概念和表示方法,包括百分数与分数的转换。
4. 学习用图形表示分数和百分数的大小关系,包括数轴和百分数相应的阶梯图。
第七章:方程与不等式1. 知道方程和不等式的定义和表示方法。
2. 学习一元一次方程和一元一次不等式的解法,包括等式和不等式的性质及运算规则。
七年级下学期数学知识点归纳大全
七年级下学期数学知识点归纳大全一、整数及其运算1. 整数概念2. 自然数、零、负整数的概念3. 整数的比较及判断4. 整数的加减法、乘法、除法及其性质5. 整数的混合运算二、分数及其运算1. 分数的概念及其表示方法2. 分数的转化(真分数、假分数、带分数)3. 分数的约分和通分4. 分数的加减法及其性质5. 分数的乘法、除法及其性质6. 分数的混合运算三、小数及其运算1. 小数的概念及其表示方法2. 小数与分数的转化3. 小数的大小比较及判断4. 小数的加减法及其性质5. 小数的乘法、除法及其性质6. 小数的混合运算四、代数式及其展开1. 代数式的概念及其基本形式2. 同类项与异类项3. 代数式的加减法4. 乘法公式及其应用5. 因式分解6. 展开式及其应用五、方程及其解法1. 方程的概念及其解法2. 一元一次方程的解法3. 含有分数、小数的一元一次方程的解法4. 一元一次方程的应用5. 一元二次方程的解法及应用六、图形及其性质1. 线段、角度、平行线的概念及应用2. 三角形、四边形、平行四边形的概念及性质3. 正方形、长方形、三角形、梯形的周长和面积的计算4. 圆及其相关概念5. 圆的面积及弧长的计算七、统计及概率1. 统计调查及其应用2. 图表的制作和应用3. 平均数、中位数、众数及其计算4. 独立事件及其概率计算5. 互不独立事件及其概率计算八、函数及其应用1. 函数的概念及表示方法2. 函数的图象3. 一次函数和二次函数的图象及其性质4. 函数在实际问题中的应用综上所述,以上就是七年级下学期数学知识点的归纳大全,希望同学们能够认真学习掌握,提高自己的数学水平。
七年级数学下册全部知识点归纳(含概念公式实用)
第一章:整式的运算单项式式多项式同底数幂的乘法 幂的乘方 积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式 一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中全部字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包含它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1〞。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包含项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不肯定是单项式。
4、整式不肯定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后精确合并同类项。
3、几个整式相加减的一般步骤:〔1〕列出代数式:用括号把每个整式括起来,再用加减号连接。
〔2〕按去括号法则去括号。
〔3〕合并同类项。
4、代数式求值的一般步骤:〔1〕代数式化简。
〔2〕代入计算〔3〕对于某些特别的代数式,可采纳“整体代入〞进行计算。
初一下数学知识点
初一下学期的数学知识点主要包括以下几个方面:
1. 有理数:有理数是可以表示为两个整数的比的数,包括整数和分数。
学生需要掌握有理数的四则运算,包括加法、减法、乘法和除法。
2. 整式的加减:整式是由常数、变量、加、减、乘等运算符号组成的代数式。
学生需要学会整式的合并同类项和去括号等基本运算。
3. 一元一次方程:一元一次方程是只含有一个未知数,且未知数的次数为1的方程。
学生需要掌握一元一次方程的解法,包括移项、合并同类项、系数化为1等步骤。
4. 图形初步认识:学生需要初步认识线段、角、相交线、平行线等基本图形,了解它们的基本性质和判定方法。
5. 数据的收集与整理:学生需要学会如何收集、整理和描述数据,包括数据的分类、频数、频率、直方图等基本概念和方法。
以上是初一下学期数学的主要知识点,通过学习这些知识点,学生可以打下坚实的数学基础,为后续的数学学习做好准备。
七年级下册数学知识点归纳
一、整式的加减1. 同底数幂的乘法:底数不变,指数相加。
2. 同底数幂的除法:底数不变,指数相减。
3. 幂的乘方:底数不变,指数相乘。
4. 积的乘方:等于各因式分别乘方后的积。
5. 单项式与单项式的和:系数相加,字母部分不变。
6. 单项式与单项式的差:系数相减,字母部分不变。
7. 单项式与单项式的积:系数相乘,字母部分合并。
8. 单项式与多项式的积:用单项式去乘多项式的每一项,再把所得的积相加。
9. 多项式与多项式的和:同类项的系数相加,字母部分不变。
10. 多项式与多项式的差:同类项的系数相减,字母部分不变。
11. 多项式与多项式的积:用一个多项式去乘另一个多项式的每一项,再把所得的积相加。
二、方程与不等式1. 一元一次方程:含有一个未知数,且未知数的最高次数为1的方程。
2. 一元一次不等式:含有一个未知数,且未知数的最高次数为1的不等式。
3. 一元一次方程的解法:移项、合并同类项、化系数为1。
4. 一元一次不等式的解法:移项、合并同类项、化系数为1。
5. 二元一次方程组:含有两个未知数,且未知数的最高次数为1的方程组。
6. 二元一次不等式组:含有两个未知数,且未知数的最高次数为1的不等式组。
7. 二元一次方程组的解法:消元法、代入法。
8. 二元一次不等式组的解法:消元法、代入法。
9. 分式方程:含有分母的方程。
10. 分式方程的解法:去分母、化系数为1、检验。
11. 分式不等式:含有分母的不等式。
12. 分式不等式的解法:去分母、化系数为1、检验。
三、几何图形1. 点、线、面的概念。
2. 直线的性质:无端点、无限延伸、不可度量长度。
3. 射线的性质:有一个端点、无限延伸、不可度量长度。
4. 线段的性质:有两个端点、有限长度、可度量长度。
5. 角的概念:两条射线从同一点出发所形成的图形。
6. 角的分类:锐角、直角、钝角、平角、周角。
7. 角的性质:度数大小关系、补角和余角、角的和差。
8. 三角形的概念:由三条边和三个内角组成的封闭图形。
人教版七年级下册数学知识点总结归纳
人教版七年级下册数学知识点总结归纳七年级下册数学知识点1概率1.一般地,在大量重复试验中,如果事件A发生的频率n/m会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。
2.随机事件:在一定的条件下可能发生也可能不发生的事件,叫做随机事件。
3.互斥事件:不可能同时发生的两个事件叫做互斥事件。
4.对立事件:即必有一个发生的互斥事件叫做对立事件。
5.必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。
6.不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件。
2相交线与平行线1.相交线在同一平面内,两条直线的位置关系有相交和平行两种。
如果两条直线只有一个公共点时,称这两条直线相交。
2.垂线当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。
3.同位角两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角。
4.内错角两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角。
5.同旁内角两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角。
6.平行线几何中,在同一平面内,永不相交(也永不重合)的两条直线叫做平行线。
平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
7.平移平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
3平面直角坐标系1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。
七年级下册数学知识点总结
七年级下册数学知识点总结七年级下册的数学知识点分为多个模块,包括有分式与小数、比例与相似、平面几何、数据的收集、整式的加减乘除等,下面将对这些知识点进行详细的总结。
一、分式与小数1.1 分数的概念与用法分数由分子和分母组成,表示分子除以分母的值。
在进行分数的乘、除、加、减等运算时,将分数化为相同分母的通分数后再进行运算。
小数是数的一种表现形式,也可表示分数,比如$0.5$ 表示 $\frac{1}{2}$。
1.2 分数的混合运算混合运算指的是含有加减乘除多个运算符的运算。
在进行分数的混合运算时,先进行括号内的运算,再进行乘除法运算,最后进行加减法运算。
1.3 分数的约分和通分分数的约分是指将分数的分子和分母同时除以一个相同的数,使得分子和分母互质,达到简化分数的目的。
通分是指将不同分母的两个或多个分数化为相同分母的分数,便于进行加减法运算。
1.4 小数的四则运算小数的四则运算和整数的四则运算类似,同样包括加、减、乘、除运算。
在进行小数的除法运算时,可以将被除数和除数乘以同一个倍数,使得除数化为整数,然后再进行运算。
二、比例与相似2.1 比例的概念和性质比例是指两个数的比相等的关系,通常用 $a:b$ 表示,其中$a$ 和 $b$ 都是有理数。
比例的性质包括反比例、比例的倒数、交叉乘积相等等。
2.2 相似的概念和判定相似是指两个形状相似的图形,它们的对应角度相等,对应边成比例,对应点的距离也成比例。
当两个图形相似时,它们的面积之比等于它们对应边的平方之比。
2.3 相似三角形的应用相似三角形广泛应用于衡量远离物体的高度、河流的宽度等问题。
通过计算物体到地面的距离和观察点到物体的角度,可以通过相似三角形计算出物体的高度。
三、平面几何3.1 角的概念和分类角是指由两条射线或线段以一个公共的端点所组成的图形,在平面几何中应用广泛。
根据角的大小和形状,可以将角分为钝角、直角、锐角等多种类别。
3.2 直线和平面的性质直线和平面是平面几何中最基本的图形,它们有许多独特的性质。
七年级数学下《立方根》知识点总结归纳
七年级数学下《立方根》知识点总结归纳
一、基础概念
1.立方根的定义:如果一个数的立方等于a,那么这个数被称为a的立方根。
记作:
3a。
2.立方根的性质:
•任何非零实数的立方根只有一个,但0的立方根是0。
•正数的立方根是正的,负数的立方根是负的。
1.求立方根的方法:使用直接开立方的公式或计算器进行求解。
二、运算规则
1.乘法性质:3a×3b=3a×b(当a≥0,b≥0)。
2.开方与乘除法的关系:3ba=3b3a(当a≥0,b>0)。
三、与平方根的区别与联系
1.区别:平方根涉及平方,而立方根涉及立方。
例如,(−3)2=9但−33=−27。
2.联系:对于非负实数,其平方根和立方根表示的都是正数。
例如,38=2,因为
23=8。
四、实际应用与解题技巧
1.实际应用:计算物体的体积或容积时需要用到立方根。
例如,求一个长方体或
正方体的体积。
2.解题技巧:
•对于较大的数或复杂的数字,可以使用计算器辅助求解。
•对于负数的立方根,要明确其值是负的。
例如,3−8=−2。
•注意与平方根的区别与联系,避免混淆。
五、易错点与注意事项
1.易错点:容易将平方根与立方根混淆,如误认为39=3(实际上是39≈
2.08)。
2.注意事项:
•在求立方根时,要注意被开方数是非负数。
•对于复杂的数字或问题,建议使用计算器辅助求解。
•多做习题,巩固对立方根的理解和应用。
人教版七年级下数学知识点归纳总结(全)-七下数学学习总结(最新最全)
第五章相交线与平行线平面内,点与直线之间的位置关系分为两种:①点在线上②点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种:①相交②平行一、相交线1、两条直线相交,有且只有一个交点。
(反之,若两条直线只有一个交点,则这两条直线相交。
)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。
邻补角互补。
要注意区分互为邻补角与互为补角的异同。
对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。
对顶角相等。
注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。
反过来亦成立。
②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。
例如:判断对错:因为∠ABC +∠DBC = 180°,所以∠DBC是邻补角。
()相等的两个角互为对顶角。
()2、垂直是两直线相交的特殊情况。
注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。
垂足:两条互相垂直的直线的交点叫垂足。
垂直时,一定要用直角符号表示出来。
过一点有且只有一条直线与已知直线垂直。
(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。
垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。
垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。
垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。
(或说直角三角形中,斜边大于直角边。
)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。
注:距离指的是垂线段的长度,而不是这条垂线段的本身。
所以,如果在判断时,若没有“长度”两字,则是错误的。
4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。
注意:要熟练地认识并找出这三种角:①根据三种角的概念来区分②借助模型来区分,即:同位角——F型,内错角——Z型,同旁内角——U型。
人教版七年级下册数学知识点汇总
一、相交线与平行线1. 相交线•邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
邻补角互补。
•对顶角:一个角的两边分别是另一个角的两边的反向延长线,像这样的两个角互为对顶角。
对顶角相等。
•垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
垂线的性质包括:过一点有且只有一条直线与已知直线垂直;连接直线外一点与直线上各点的所有线段中,垂线段最短。
2. 平行线•定义:在同一平面内,永不相交的两条直线叫做平行线。
•平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论是,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
•平行线的性质:o两直线平行,同位角相等。
o两直线平行,内错角相等。
o两直线平行,同旁内角互补。
•平行线的判定:o同位角相等,两直线平行。
o内错角相等,两直线平行。
o同旁内角互补,两直线平行。
3. 平移•定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。
平移不改变物体的形状和大小。
•对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
连接各组对应点的线段平行且相等。
二、平面直角坐标系•有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。
•平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
•坐标:对于平面内任一点P,过P分别向x轴、y轴作垂线,垂足分别在x 轴、y轴上,对应的数a、b分别叫点P的横坐标和纵坐标。
三、三角形•三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
•高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
•中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
(完整版)人教版七年级下册数学知识点总结大全
(完整版)人教版七年级下册数学知识点总结大全直角三角形- 定义:有一个角为直角(90度)的三角形。
- 勾股定理:直角三角形斜边的平方等于两腿的平方和。
- 特殊直角三角形:45-45-90度三角形和30-60-90度三角形。
圆- 定义:平面上到一个固定点的距离等于定长的点的集合。
- 元素:圆心、半径、直径、弦、弧、扇形、切线等。
- 四大关系:- 半径和弦垂直- 弦长的一半与半径的乘积等于斜边的一半与半径的乘积- 外接角等于弧对应的圆心角- 弧度与角度之间的换算关系比例与相似- 定义:表示两个或多个有对应关系的数之间的比值关系。
- 比例定理:若a/b = c/d,则a、b、c、d成比例。
- 三线一比例:三角形内部的三条连线和三角形外部的三条平行线与三角形的腰成比例。
- 相似三角形:对应角相等,对应边成比例的三角形。
科学计数法- 定义:一种简便表示极大或极小数的方法。
- 标准形式:数字部分在1到9之间,指数为整数。
- 运算法则:运算时先计算系数的乘除,再计算指数的加减。
二次根式- 定义:含有根号并且被根号包围的代数式。
- 平方根:一个数的平方等于该数。
- 二次根式的运算:相加减后化简、乘除法则。
分式- 定义:由整数与整数或整数代数式的比例组成的式子。
- 分式的性质:分母不能等于0,分子分母互质,分子分母都是整数等。
- 分式的运算:加减乘除、化简、倒数。
线性方程- 定义:等式中含有未知数的方程。
- 解方程:找到使等式成立的未知数的值。
- 一次方程:未知数的次数为1。
- 解一元一次方程:转化为等价方程,通过逆向运算得到未知数的值。
平行线与直线的交角- 定义:两条平行线与直线的交角为对应角或同位角。
- 绳分线定理:直线与两平行线相交时,对应角相等,内错角之和等于180度。
随机事件与概率- 定义:随机试验的可能结果称为随机事件。
- 基本事件与必然事件:基本事件是随机试验的单个结果,必然事件是一定发生的事件。
- 概率的计算:概率等于有利事件数除以可能事件总数。
七年级数学下册知识点归纳大全,寒假提前学!
七年级数学下册知识点归纳⼤全,寒假提前学!今天,王⽼师给⼤家总结了七年级数学下册知识点归纳⼤全,寒假预习必备!⼀、相交线两条直线相交,形成4个⾓。
1、两条直线相交所成的四个⾓中,相邻的两个⾓叫做邻补⾓,特点是两个⾓共⽤⼀条边,另⼀条边互为反向延长线,性质是邻补⾓互补;相对的两个⾓叫做对顶⾓,特点是它们的两条边互为反向延长线。
性质是对顶⾓相等。
①邻补⾓:两个⾓有⼀条公共边,它们的另⼀条边互为反向延长线。
具有这种关系的两个⾓,互为邻补⾓。
如:∠1、∠2。
②对顶⾓:两个⾓有⼀个公共顶点,并且⼀个⾓的两条边,分别是另⼀个⾓的两条边的反向延长线,具有这种关系的两个⾓,互为对顶⾓。
如:∠1、∠3。
③对顶⾓相等。
⼆、垂线1.垂直:如果两条直线相交成直⾓,那么这两条直线互相垂直。
2.垂线:垂直是相交的⼀种特殊情形,两条直线垂直,其中⼀条直线叫做另⼀条直线的垂线。
3.垂⾜:两条垂线的交点叫垂⾜。
4.垂线特点:过⼀点有且只有⼀条直线与已知直线垂直。
5.点到直线的距离:直线外⼀点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外⼀点与直线上各点的所有线段中,垂线段最短。
三、同位⾓、内错⾓、同旁内⾓两条直线被第三条直线所截形成8个⾓。
1.同位⾓:(在两条直线的同⼀旁,第三条直线的同⼀侧)在两条直线的上⽅,⼜在直线EF的同侧,具有这种位置关系的两个⾓叫同位⾓。
如:∠1和∠5。
2.内错⾓:(在两条直线内部,位于第三条直线两侧)在两条直线之间,⼜在直线EF的两侧,具有这种位置关系的两个⾓叫内错⾓。
如:∠3和∠5。
3.同旁内⾓:(在两条直线内部,位于第三条直线同侧)在两条直线之间,⼜在直线EF的同侧,具有这种位置关系的两个⾓叫同旁内⾓。
如:∠3和∠6。
四、平⾏线及其判定平⾏线1.平⾏:两条直线不相交。
互相平⾏的两条直线,互为平⾏线。
a∥b(在同⼀平⾯内,不相交的两条直线叫做平⾏线。
)2.平⾏公理:经过直线外⼀点,有且只有⼀条直线与这条直线平⾏。
七年级数学下册知识点
七年级数学下册知识点一、数的基本概念1、定义整数:整数是阿拉伯数字0,1,2,3,4,5,6,7,8,9组成的数字,如123、-10、0。
2、正数和负数:正数是由阿拉伯数字0-9组成的数字,其值是大于(或等于)0的数,如5、27、128等;负数是由带有“-”符号的正数组成,其值是小于0的数,如:-13、-20、-101等。
3、有理数:有理数是分数、小数及其整数倍构成的数。
所有正数和负数都是有理数,小数也是有理数。
二、算术运算1、加法运算:给出一组数,用“+”号连接,将数从左往右从低位数到高位数依次相加,将他们的和称为加法运算,如365+54=419。
2、减法运算:给出一组数,用“-”号连接,将被减数从左右从低位数到高位数依次减去减数,所得的差称为减法运算,如675-255=420。
3、乘法运算:给出一组数,用“乘号”“×”连接,将两个乘数的各个位的数相乘,加起来的积称为乘法运算,如765×43=32995。
4、除法运算:给出一组数,用“除号”“÷”连接,将被除数依次除以除数,所得的结果称为除法运算,如945÷5=189。
三、因式分解1、定义:因式分解是将一个多项式拆分为一系列单项式的乘积,每一系列单项式称为一个因子,例如:3x2+9x -4=(3x+4)×(x-1)。
2、目的:通过因式分解,可以将一个复杂的表达式简化,使其表达的更加清晰明了,也可以使算式更容易求解。
3、步骤:(1)列出多项式并将因式分子写成原因式。
(2)左右分别拆分因式成为两个不包括系数,最高次幂小于等于一的多项式;(3)将拆出来的因式乘起来,检验积与原式是否相等。
四、分式1、定义:分式是无限小数与一个正整数(或零)的比值标准表示法,由一个带有分子(分母为1的无限小数)和分母构成,如5/4表示5与4的比率,是一个分数。
2、形式:分式的形式可以是真分式、假分式、互分式以及真分数,当分子和分母皆为整数时为真分数。
七年级数学下册全部知识点归纳
3、尺规作图中直尺的功能是:
(1)在两点间连接一条线段;
(2)将线段向两方延长。
4、尺规作图中圆规的功能是:
(1)以任意一点为圆心,任意长为半径作一个圆;
(2)以任意一点为圆心,任意长为半径画一段弧;
5、熟练掌握以下作图语言:
(1)作射线××;
2、余角、补角只有数量上的关系,与其位置无关。
3、同位角、内错角、同旁内角只有位置上的关系,与其数量无关。
4、对顶角既有数量关系,又有位置关系。
五、平行线的判定方法
1、同位角相等,两直线平行。
2、内错角相等,两直线平行。
3、同旁内角互补,两直线平行。
4、在同一平面内,如果两条直线都平行于第三条直线,那么这两条直线平行。
(2)在射线上截取××=××;
(3)在射线××上依次截取××=××=××;
(4)以点×为圆心,××为半径画弧,交××于点×;
(5)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点×;
(6)过点×和点×画直线××(或画射线××);
(7)在∠×××的外部(或内部)画∠×××=∠×××;
6、在作较复杂图形时,涉及基本作图的地方,不必重复作图的详细过程,只用一句话概括叙述就可以了。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
七、积的乘方
人教版七年级数学下册知识点大全
人教版七年级数学下册知识点大全第五章相交线与平行线5.1.1相交线1、如果两条直线只有一个公共点,就说这两条直线相交,该公共点叫做两直线的交点。
2、如果两个角有一个公共边,并且它们的另一边互为反向延长线,那么这两个角互为邻补角。
性质:邻补角互补。
(两条直线相交有4对邻补角。
)3、如果两个角的顶点相同,并且两边互为反向延长线,那么这两个角互为对顶角。
性质:对顶角相等。
(两条直线相交,有2对对顶角。
)5.1.2垂线4、当两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。
其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
5、由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段。
(要找垂线段,先把点来看。
过点画垂线,点足垂线段。
)6、垂线段是垂线上的一部分,它是线段,一端是一个点,另一端是垂足。
7、垂线画法:①放:放直尺,直尺的一边要与已知直线重合;②靠:靠三角板,把三角板的一直角边靠在直尺上;③移:移动三角板到已知点;④画线:沿着三角板的另一直角边画出垂线.8、垂线性质1:过一点有且只有一条直线与已知直线垂直。
9、过一点画已知线段(或射线)的垂线,就是画这条线段(或射线)所在直线的垂线.10、连接直线外一点与直线上各点的所有线段中,垂线段最短。
(垂线段最短.)11、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
5.1.3同位角、同旁内角、内错角12、同位角:如果两个角都在被截的两条直线的同方向,并且都在截线的同侧,即它们的位置相同,这样的一对角叫做同位角。
形如字母“F”。
13、内错角:如果两个角分别在被截的两条直线之间(内),并且分别在截线的两侧(错),这样的一对角叫做内错角。
形如字母“Z”。
14、同旁内角:如果两个角都在被截直线之间(内),并且都在截线的同侧(同旁),这样的一对角叫做同旁内角。
形如字母“U”。
5.2.1平行线15、在同一平面内,不相交的两条直线叫做平行线,记作:a∥b。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册数学知识点归纳第五章相交线与平行线一、相交线两条直线相交,形成4个角。
1. 邻补角:两个角有一条公共边, 它们的另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
2.对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。
3.对顶角相等。
二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中, 垂线段最短。
三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。
1.同位角:在两条直线的上方,又在直线EF 的同侧,具有这种位置关系的两个角叫同位角。
2.内错角:在在两条直线之间,又在直线EF 的两侧,具有这种位置关系的两个角叫内错角。
3.同旁内角:在在两条直线之间,又在直线EF 的同侧,具有这种位置关系的两个角叫同旁内角。
四、平行线(一) 平行线1. 平行:两条直线不相交。
互相平行的两条直线,互为平行线。
a ∥ b (在同一平面内,不相交的两条直线叫做平行线。
)2. 平行公理:经过直线外一点, 有且只有一条直线与这条直线平行。
3. 平行公理推论:①平行于同一直线的两条直线互相平行。
②在同一平面内,垂直于同一直线的两条直线互相平行。
(二) 平行线的判定:1. 同位角相等,两直线平行。
2. 内错角相等,两直线平行。
3. 同旁内角互补,两直线平行。
(三) 平行线的性质1. 两条平行线被第三条直线所截,同位角相等。
2. 两条平行线被第三条直线所截,内错角相等。
3. 两条平行线被第三条直线所截,同旁内角互补。
4. 两条平行线被第三条直线所截,外错角相等。
以上性质可简单说成:1. 两条直线平行,同位角相等。
2. 两条直线平行,内错角相等。
3. 两条直线平行,同旁内角互补。
(四) 命题、定理1.命题的概念:判断一件事情的语句,叫做命题。
2. 命题的组成:每个命题都是题设、结论两部分组成。
题设是已知事项;结论是由已知事项推出的事项。
命题常写成“如果……,那么……”的形式。
具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。
3.真命题:正确的命题,题设是成立,结论一定成立。
4.假命题:错误的命题,题设是成立,不能保证结论一定成立。
5. 定理; 经过推理证实得到的真命题。
(定理可以做为继续推理的依据)(五) 平移1. 平移:平移是指在平面内, 将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移变换(简称平移) ,平移不改变物体的形状和大小。
2. 平移的性质①把一个图形整体沿某一直线方向移动, 会得到一个新的图形, 新图形与原图形的形状和大小完全相同。
②新图形中的每一点, 都是由原图形中的某一点移动后得到的, 这两个点是对应点。
连接各组对应点的线段平行且相等。
第六章实数一、算术平方根1.算术平方根:如果一个正数x 的平方等于a ,即x 2=a,那么这个正数x 叫做 a 的算术平方根,记作√ a 。
0的算术平方根为0; 2.平方根:如果一个数x 的平方等于 a ,即x 2=a,那么数x 就叫做a 的平方根(或二次方根) 。
3.开平方:求一个数a 的平方根的运算(与平方互为逆运算)4. 平方根性质:正数有2个平方根(一正一负) , 它们是互为相反数; 负数没有平方根。
二、立方根1.立方根:如果一个数x 的立方等于a ,即x 3=a,那么数x 就叫做a 的立方根(或三次方根) 。
2.开立方:求一个数a 的立方根的运算(与立方互为逆运算) 。
3.立方根性质:正数的立方根是正数;负数的立方根是负数。
0的立方根是0;三、实数1.无理数:无限不循环小数。
如:π、√ 2、√ 32. 实数:有理数和无理数统称实数。
实数都可以用数轴上的点表示。
第七章平面直角坐标系一、平面直角坐标系(一) 有序数对1.有序数对用两个数来表示一个确定个位置,其中两个数各自表示不同的意义, 我们把这种有顺序的两个数组成的数对, 叫做有序数对, 记作(a,b ) 2. 坐标:数轴(或平面) 上的点可以用一个数(或数对) 来表示, 这个数(或数对) 叫做这个点的坐标。
(二) 平面直角坐标系1.平面直角坐标系:在平面内画两条互相垂直,并且有公共原点的数轴。
这样我们就说在平面上建立了平面直角坐标系, 简称直角坐标系。
2. X 轴:水平的数轴叫X 轴或横轴。
向右方向为正方向。
3. Y 轴:竖直的数轴叫Y 轴或纵轴。
向上方向为正方向。
4.原点:两个数轴的交点叫做平面直角坐标系的原点。
5. 在平面直角坐标系中对称点的特点:①关于x 成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。
②关于y 成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。
③关于原点成中心对称的点的坐标, 横坐标与横坐标互为相反数, 纵坐标与纵坐标互为相反数。
(三) 象限1.象限:X 轴和Y 轴把坐标平面分成四个部分,也叫四个象限。
右上面的叫做第一象限, 其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。
象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。
一般,在x 轴和y 轴取相同的单位长度。
2.象限的特点:①特殊位置的点的坐标的特点:(1) .x 轴上的点的纵坐标为零; y 轴上的点的横坐标为零。
(2) . 第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
(3) . 在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
②点到轴及原点的距离:点到x 轴的距离为|y|;点到y 轴的距离为|x|;点到原点的距离为x 的平方加y 的平方再开根号;③各象限内和坐标轴上的点和坐标的规律:第一象限:(+, +)第二象限:(-, +)第三象限:(-, -)第四象限:(+, -) 。
x 轴正方向:(+, 0)x 轴负方向:(-, 0)y 轴正方向:(0, +)y 轴负方向:(0, -) 。
坐标原点:(0, 0)x 轴上的点纵坐标为0,y 轴横坐标为0。
二、坐标方法的简单应用(一) 用坐标表示地理位置的过程:1.建立坐标系,选择一个合适的参照点为原点,确定X 轴和Y 轴的正方向。
2.根据具体问题确定适当的比例尺,在坐标轴上标出单位长度。
3.在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
(二) 用坐标表示平移在平面直角坐标系内, 如果把一个图形各个点的横坐标都加(或减去) 一个正数 a ,相应的新图形就把原图形向右(左) 平移a 个单位长度; 如果把它各个点的纵坐标都加(或减去) 一个正数a ,相应的新图形就把原图形向上(下) 平移a 个单位长度。
第八章二元一次方程组8.1 二元一次方程组1. 二元一次方程:含有两个未知数的方程并且所含未知项的最高次数是1,这样的整式方程叫做二元一次方程。
2.方程组:有几个方程组成的一组方程叫做方程组。
如果方程组中含有两个未知数, 且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。
3.二元一次方程组的解:二元一次方程的两个方程的公共解叫二元一次方程组的解8.2 消元二元一次方程组有两种解法:一种是代入消元法, 一种是加减消元法 . 1.代入消元法:把二元一次方程中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
2.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或向减,就能消去这个未知数,得到一个一元一次方程。
第九章不等式与不等式组9.1 不等式一、不等式及其解集1.不等式:用不等号(包括:>、<、≠ ) 表示大小关系的式子。
2.不等式的解:使不等式成立的未知数的值,叫不等式的解。
3.不等式的解集:使不等式成立的未知数的取值范围,叫不等式的解的集合,简称解集。
不等式的基本性质:性质1:如果a>b,b>c,那么a>c(不等式的传递性).性质2:不等式的两边同加(减) 同一个数(或式子) ,不等号的方向不变。
如果a>b,那么a+c>b+c(不等式的可加性).性质3: 不等式的两边同乘(除以) 同一个正数,不等号的方向不变。
不等式的两边同乘(除以) 同一个负数,不等号的方向改变。
如果a>b,c>0,那么ac>bc;如果a>b,c<0,ac<bc.(不等式的乘法法则) 性质4:如果a>b,c>d,那么a+c>b+d. (不等式的加法法则)性质5:如果a>b>0,c>d>0,那么ac>bd. (可乘性)性质6:如果a>b>0,n∈N,n>1,那么 a n >bn , 且 . 当0<n<1时也成立 . (乘方法则)9.2 实际问题与一元一次不等式解一元一次不等式的一般方法:①若两个未知数的解集在数轴上表示同向左, 就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”②若两个未知数的解集在数轴上表示同向右, 就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”③若两个未知数的解集在数轴上相交, 就取它们之间的值为不等式组的解集。
若x 表示不等式的解集,此时一般表示为 a <x <b ,或 a ≤ x ≤ b 。
此乃“相交取中④若两个未知数的解集在数轴上向背, 那么不等式组的解集就是空集, 不等式组无解。
此乃“向背取空”9.3 一元一次不等式组1. 不等式组:几个含有相同未知数的不等式合起来, 叫做不等式组。
2.不等式组的解:几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集。
解不等式组就是求它的解集。
3.解不等式组:先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式的解集。