复合材料树脂渗透成型工艺(详细)
复合材料成型工艺及应用
复合材料成型工艺及应用一、复合材料的概念复合材料是由两种或两种以上的材料组成,具有不同的物理和化学性质,经过一定的工艺方法制成一种新型材料。
常见的复合材料包括玻璃钢、碳纤维、芳纶纤维等。
二、复合材料成型工艺1.手工层叠法手工层叠法是最基本的复合材料成型方法,通常用于制作小批量产品。
该方法需要将预先剪裁好的纤维与树脂依次层叠,再通过压力和温度进行固化。
2.真空吸塑法真空吸塑法是将预先剪裁好的纤维与树脂放置在模具内,然后通过抽气将模具内外产生压差,使树脂浸润纤维,并在高温高压下进行固化。
3.自动化层叠法自动化层叠法是利用机器自动完成纤维和树脂的层叠,提高了生产效率和产品质量。
4.注塑成型法注塑成型法是将树脂加热至熔点后注入模具中,再通过高压将树脂注入纤维中,最后在高温下固化成型。
5.压缩成型法压缩成型法是将预先剪裁好的纤维和树脂放置在模具内,再通过压力将其压实,并在高温下进行固化。
三、复合材料的应用1.航空航天领域复合材料具有轻质、高强度、耐腐蚀等优点,在航空航天领域得到广泛应用。
如飞机机身、翼面等部件都采用了复合材料制造。
2.汽车工业汽车工业也是复合材料的重要应用领域。
复合材料可以减轻汽车自重,提高汽车性能和燃油经济性。
3.建筑领域建筑领域也开始采用复合材料作为建筑结构材料,如玻璃钢屋面、墙板等。
4.体育器材体育器材如高尔夫球棒、网球拍等也采用了碳纤维等复合材料制造,提高了器材的性能和使用寿命。
5.医疗领域复合材料在医疗领域也得到了广泛应用,如人工关节、牙科修复等。
四、复合材料的优缺点1.优点:(1)轻质高强:比同体积的钢材强度高5-10倍,比重只有铝的1/4。
(2)耐腐蚀:不易受化学物质侵蚀。
(3)设计灵活:可以根据需要设计成各种形状和尺寸。
2.缺点:(1)制造成本较高:制造过程需要较高的技术和设备投入。
(2)易受损伤:复合材料容易产生微裂纹,一旦受到外力撞击,就会导致破坏。
五、结语复合材料作为一种新型材料,在各个领域得到了广泛应用。
复合材料成型工艺
树脂基复合材料成型工艺介绍(1):模压成型工艺模压成型工艺是复合材料生产中最古老而又富有无限活力的一种成型方法。
它是将一定量的预混料或预浸料加入金属对模内,经加热、加压固化成型的方法。
模压成型工艺的主要优点:①生产效率高,便于实现专业化和自动化生产;②产品尺寸精度高,重复性好;③表面光洁,无需二次修饰;④能一次成型结构复杂的制品;⑤因为批量生产,价格相对低廉。
模压成型的不足之处在于模具制造复杂,投资较大,加上受压机限制,最适合于批量生产中小型复合材料制品。
随着金属加工技术、压机制造水平及合成树脂工艺性能的不断改进和发展,压机吨位和台面尺寸不断增大,模压料的成型温度和压力也相对降低,使得模压成型制品的尺寸逐步向大型化发展,目前已能生产大型汽车部件、浴盆、整体卫生间组件等。
模压成型工艺按增强材料物态和模压料品种可分为如下几种:①纤维料模压法是将经预混或预浸的纤维状模压料,投入到金属模具内,在一定的温度和压力下成型复合材料制品的方法。
该方法简便易行,用途广泛。
根据具体操作上的不同,有预混料模压和预浸料模压法。
②碎布料模压法将浸过树脂胶液的玻璃纤维布或其它织物,如麻布、有机纤维布、石棉布或棉布等的边角料切成碎块,然后在金属模具中加温加压成型复合材料制品。
③织物模压法将预先织成所需形状的两维或三维织物浸渍树脂胶液,然后放入金属模具中加热加压成型为复合材料制品。
④层压模压法将预浸过树脂胶液的玻璃纤维布或其它织物,裁剪成所需的形状,然后在金属模具中经加温或加压成型复合材料制品。
⑤缠绕模压法将预浸过树脂胶液的连续纤维或布(带),通过专用缠绕机提供一定的张力和温度,缠在芯模上,再放入模具中进行加温加压成型复合材料制品。
⑥片状塑料(SMC)模压法将SMC片材按制品尺寸、形状、厚度等要求裁剪下料,然后将多层片材叠合后放入金属模具中加热加压成型制品。
⑦预成型坯料模压法先将短切纤维制成品形状和尺寸相似的预成型坯料,将其放入金属模具中,然后向模具中注入配制好的粘结剂(树脂混合物),在一定的温度和压力下成型。
环氧树脂碳纤维复合材料的成型工艺与应用
碳纤维缠绕复合材料成型工艺
碳纤维缠绕复合材料的制备过程主要包括纤维铺放、树脂浸润和热处理等环 节。下面分别介绍这些步骤及其对材料性能的影响。
1、纤维铺放:此步骤是碳纤维缠绕复合材料制备的关键环节之一。纤维的 排列方向、密度和厚度等因素都会影响最终产品的性能。铺放过程中需采用专门 的设备和工艺,确保纤维分布的准确性和稳定性。
引言:碳纤维增强环氧树脂复合材料是一种具有优异性能的材料,因其具有 高强度、高韧性、耐腐蚀、轻质等优点而被广泛应用于航空、航天、汽车、体育 器材等领域。随着科技的发展,对于这种复合材料的研究和应用也越来越广泛。 液体成型是一种常见的复合材料制造工艺,具有成本低、效率高等优点,因此, 研究碳纤维增强环氧树脂复合材料的液体成型工艺及其性能具有重要意义。
在航天领域,碳纤维树脂基复合材料被广泛应用于火箭箭体、卫星平台等关 键部位。其轻质、高强度、耐腐蚀等优点使得它在航天领域具有广泛的应用前景。
在汽车领域,碳纤维树脂基复合材料被广泛应用于汽车车身、底盘等部位。 其高强度、耐腐蚀和轻质等优点可以提高汽车的性能和舒适性,同时也可以提高 汽车的安全性。
四、结论
环氧树脂碳纤维复合材料的成型工艺主要包括以下步骤: 1、纤维浸润:将碳纤维或其它纤维浸入环氧树脂中,使其充分浸润。
2、固化:在一定的温度和压力下,环氧树脂发生固化反应,形成固态复合 材料。
3、后处理:对固化后的复合材料进行切割、打磨、钻孔等后处理,以满足 不同应用场景的需求。
3、后处理:对固化后的复合材 料进行切割、打磨、钻孔等后处 理
三、碳纤维树脂基复合材料的应 用研究进展
碳纤维树脂基复合材料在航空、航天、汽车等领域得到了广泛应用。近年来, 随着技术的不断发展,其在这些领域的应用研究也取得了显著的进展。
复合材料成型工艺大全及说明
复合材料成型工艺大全及说明复合材料是由两种或更多种材料组合而成的材料,其具有优异的性能和特点,广泛应用于飞机、汽车、船舶、建筑等领域。
复合材料的成型工艺是制造复合材料制品的关键环节之一,不同的复合材料需要采用不同的成型工艺。
1.手工层压法:将预先切割好的复合材料层压,通过手工操作来制作各种复材制品。
这种方法比较简单,适用于小批量生产和复杂形状的制品,但效率相对较低。
2.沉积法:将复合材料纤维按一定角度布置在模具中,然后通过注塑或浸渍等方式将树脂混合物或熔融金属填充至模具中,经固化或冷却后取出制成复材制品。
这种方法适用于生产中等规模的制品,具有较高的生产效率。
3.拉毛法:将纤维与树脂分别放置在两个模具中,然后通过拉拔的方法,使纤维与树脂相结合,形成复材制品。
这种方法适用于制造纤维增强塑料制品。
4.自动层压法:将预先切割好的复合材料通过自动层压机进行层压,该机器根据预先设定的程序,自动完成复合材料的层压过程,提高了生产效率。
5.真空吸气层压法:将纤维和树脂依次放置在模具中,然后通过抽气装置产生真空环境,使纤维和树脂充分接触并固化,最终得到复材制品。
这种方法适用于制造大型复材制品,可以提高产品的质量和性能。
6.热压成型法:将预先切割好的纤维和树脂放置在模具中,然后通过加热和压力使树脂固化,最终形成复材制品。
这种方法适用于制造较薄的复材板材。
7.包覆成型法:将纤维和树脂分别涂抹在模具表面上,然后通过挤压或滚压的方法,使纤维和树脂充分接触,形成复材制品。
这种方法适用于制造大型、复杂形状的复材制品。
8.精密成型法:通过机械或人工辅助来对复合材料进行定位、定厚、定形,然后进行固化,最终得到产品。
这种方法适用于制造高精度和高质量的复材制品。
除了上述的成型工艺,还有一些特殊的成型工艺,如搅拌铸造法、注塑法、喷涂法、压铸法等,它们都具有各自的优点和适用范围,可以根据具体的需求选择合适的成型工艺。
随着科学技术的发展,复合材料的成型工艺也在不断创新和完善,以满足不同行业对复材制品的需求,同时也提高了复材制品的质量和性能。
复合材料的成型工艺
复合材料的成型工艺复合材料是指由两种或以上组分构成的材料,通过合理的配比和加工工艺,在性质上综合体现出超过单一组分材料的优良性能,具有较好的力学、物理、化学和生物性能等特点。
常见的复合材料有碳纤维复合材料、玻璃纤维复合材料、陶瓷基复合材料等。
手工层叠成型是最早应用的成型工艺之一,适用于一些特殊形状的复合材料构件的制作。
这种成型工艺的原理是将预浸料层叠在一起,然后经过压力和温度处理使其固化成形。
虽然这种成型工艺操作简单、成本较低,但其生产效率低,工艺控制和质量控制困难。
注塑是一种常用的复合材料成型工艺,广泛应用于汽车、航空航天、电子等领域。
其原理是将预制的纤维增强材料与树脂熔融混合,通过模具将混合物注入至需要的形状中,然后冷却固化。
挤出是一种制备复合材料的连续成型工艺,适用于纤维增强材料含量较高的构件的制备。
其原理是将纤维和树脂混合物挤出成型,通过模具成形后冷却固化。
这种成型工艺能够快速制备大批量的复合材料构件,成本相对较低。
压制是一种常见的复合材料成型工艺,适用于制备高精度、大尺寸的构件。
其原理是将预制的纤维增强材料与树脂层叠放置在模具中,在一定的温度和压力下进行压制成型,然后冷却固化。
压制工艺对模具的要求较高,但可以获得较高的成品质量。
浸渍是将纤维增强材料浸透在树脂中,然后通过挤压或真空吸取等方式使其充分饱和,然后进行固化成型的工艺。
这种成型工艺适用于复杂形状、大尺寸的构件制备,但对工艺环境要求较高。
自动层叠成型是一种用于制备大型、高强度和高精度的复合材料构件的成型工艺。
其原理是通过自动层叠机械将纤维增强材料与树脂按照设计要求进行层叠,并进行热压成型。
该工艺可以实现连续、高效的生产,但对设备的要求较高。
综上所述,复合材料的成型工艺多样,选择合适的成型工艺可以有效提高复合材料的成品率和质量。
不同的复合材料成型工艺在应用领域、成本、工艺控制等方面存在差异,需要根据具体需求进行选择。
树脂基复合材料成形工艺
二、液态法
• 井喷沉淀法(spray co-deposition) 井喷沉淀法( )
– 金属熔化 液态金属雾化 颗粒加入、混合 金属熔化→液态金属雾化 颗粒加入、混合→ 液态金属雾化→颗粒加入 沉积→凝固 沉积 凝固 – 工艺简单,生产率高;冷却速度快,复合材料 工艺简单,生产率高;冷却速度快, 晶粒细,组织均匀;增强颗粒分布均匀; 晶粒细,组织均匀;增强颗粒分布均匀;复合 材料气孔率大→ 挤压处理→ 致密材料。 材料气孔率大 挤压处理 致密材料。 – 适用面广,多种基体和增强颗粒,可生产空心 适用面广,多种基体和增强颗粒, 锻坯和挤压锭等。 管、板、锻坯和挤压锭等。 – 制造颗粒增强金属基复合材料。 制造颗粒增强金属基复合材料。
第九章
• 本章内容: 本章内容:
复合材料的成形工艺
– 金属基复合材料的成形工艺 – 树脂基复合材料的成形工艺 – 陶瓷基复合材料的成形工艺
• 本章重点: 本章重点:
– 树脂基复合材料成形工艺
§9-1 复合材料简介
一、复合材料基本概念
复合材料( ):由两种或两 复合材料(composite material):由两种或两 ): 种以上物理化学性质不同的物质, 种以上物理化学性质不同的物质,经人工合成的 一种多相固体材料。 一种多相固体材料。 优点: 优点: 充分发挥组成材料的性能;材料优化设计。 充分发挥组成材料的性能;材料优化设计。 结构复合材料: 结构复合材料:如玻璃钢 功能复合材料: 功能复合材料:如双金属片
• 组织致密,性能好;可直接制成复杂零件;工艺简单, 组织致密,性能好;可直接制成复杂零件;工艺简单, 易控制,生产率高;但设备复杂, 易控制,生产率高;但设备复杂,成本高 • 用于铝基、铜基复合材料板材、棒材、线材生产。 用于铝基、铜基复合材料板材、棒材、线材生产。
复合材料成型工艺及应用
复合材料成型工艺及应用引言复合材料是由两种或两种以上的材料组合而成的新材料,具有优异的性能和广泛的应用领域。
复合材料的成型工艺对于材料的性能和应用具有重要影响。
本文将深入探讨复合材料成型工艺及其应用。
成型工艺1. 碳纤维复合材料成型工艺碳纤维复合材料是一种常见的复合材料,其成型工艺有以下几个步骤:1.原材料准备–碳纤维布预浸树脂–模具2.布料叠层–将预浸树脂的碳纤维布按照设计要求叠加在一起3.真空吸气–将叠层的碳纤维布放置在真空袋内–利用真空泵抽取袋内空气,将袋与布料牢固贴合4.热固化–将真空吸气后的碳纤维布置于热压机中进行热固化–在一定的温度和压力下,树脂固化和纤维之间形成牢固的结合2. 玻璃纤维复合材料成型工艺玻璃纤维复合材料是另一种常用的复合材料,其成型工艺包括以下步骤:1.玻璃纤维制备–将原始玻璃熔融并通过喷丝机进行拉伸成细长纤维2.纤维增强–将玻璃纤维与树脂混合物浸渍,使纤维饱和3.成型–将纤维增强的玻璃纤维复合材料放置在模具中–利用压力或真空将复合材料与模具表面充分接触4.固化–在一定的温度和时间下,树脂固化并与玻璃纤维形成牢固结合应用领域复合材料因其独特的性能,广泛应用于以下领域:1. 航空航天业复合材料在航空航天业中具有重要地位。
其轻量化和高强度的特性,使其成为航空器结构中的关键材料。
例如,飞机机翼、机身和尾翼等部件都采用碳纤维复合材料制造,以提高飞行性能和燃油效率。
2. 汽车工业复合材料在汽车工业中的应用越来越广泛。
通过使用复合材料,汽车的整体重量可以降低,燃油效率可以提高。
此外,复合材料还能提供更好的碰撞安全性能和外观设计自由度。
3. 建筑业复合材料在建筑业中的应用也越来越受欢迎。
由于其轻质、高强度和耐腐蚀性能,复合材料可以用于建筑结构、墙体和屋顶等部件的制造。
同时,复合材料还能提供独特的外观效果,满足建筑设计的需求。
4. 化工工业复合材料在化工工业中的应用主要体现在储罐、管道和设备等方面。
史上最全树脂基复合材料成型工艺,详解
史上最全树脂基复合材料成型⼯艺,详解复合材料成型⼯艺是复合材料⼯业的发展基础和条件。
随着复合材料应⽤领域的拓宽,复合材料⼯业得到迅速发展,⼀些成型⼯艺⽇臻完善,新的成型⽅法不断涌现,⽬前聚合物基复合材料的成型⽅法已有20多种,并成功地⽤于⼯业⽣产,如:⼀、接触低压成型⼯艺接触低压成型⼯艺的特点是以⼿⼯铺放增强材料,浸清树脂,或⽤简单的⼯具辅助铺放增强材料和树脂。
接触低压成型⼯艺的另⼀特点,是成型过程中不需要施加成型压⼒(接触成型),或者只施加较低成型压⼒(接触成型后施加0.01~0.7MPa压⼒,最⼤压⼒不超过2.0MPa)。
接触低压成型⼯艺过程,是先将材料在阴模、阳模或对模上制成设计形状,再通过加热或常温固化,脱模后再经过辅助加⼯⽽获得制品。
属于这类成型⼯艺的有⼿糊成型、喷射成型、袋压成型、树脂传递模塑成型、热压罐成型和热膨胀模塑成型(低压成型)等。
其中前两种为接触成型。
接触低压成型⼯艺中,⼿糊成型⼯艺是聚合物基复合材料⽣产中最先发明的,适⽤范围最⼴,其它⽅法都是⼿糊成型⼯艺的发展和改进。
接触成型⼯艺的最⼤优点是设备简单,适应性⼴,投资少,见效快。
根据近年来的统计,接触低压成型⼯艺在世界各国复合材料⼯业⽣产中,仍占有很⼤⽐例,如美国占35%,西欧占25%,⽇本占42%,中国占75%。
这说明了接触低压成型⼯艺在复合材料⼯业⽣产中的重要性和不可替代性,它是⼀种永不衰落的⼯艺⽅法。
但其最⼤缺点是⽣产效率低、劳动强度⼤、产品重复性差等。
1、原材料接触低压成型的原材料有增强材料、树脂和辅助材料等。
(1)增强材料接触成型对增强材料的要求:①增强材料易于被树脂浸透;②有⾜够的形变性,能满⾜制品复杂形状的成型要求;③⽓泡容易扣除;④能够满⾜制品使⽤条件的物理和化学性能要求;⑤价格合理(尽可能便宜),来源丰富。
⽤于接触成型的增强材料有玻璃纤维及其织物,碳纤维及其织物,芳纶纤维及其织物等。
(2)基体材料接触低压成型⼯艺对基体材料的要求:①在⼿糊条件下易浸透纤维增强材料,易排除⽓泡,与纤维粘接⼒强;②在室温条件下能凝胶,固化,⽽且要求收缩⼩,挥发物少;③粘度适宜:⼀般为0.2~0.5Pa·s,不能产⽣流胶现象;④⽆毒或低毒;⑤价格合理,来源有保证。
复合材料成型工艺简介
注射成型工艺原理
注射成型是根据金属压铸原理发展起来的 一种成型方法。该方法是将颗粒状树脂、短纤维 送入注射腔内,加热熔化、混合均匀,并以一定 的挤出压力,注射到温度较低的密闭模具中,经 过冷却定型后,开模便得到复合材料制品。
注射成型工艺过程包括加料、熔化、混合、 注射、冷却硬化和脱模等步骤。
加工热固性树脂时,一般是将温度较低的树 脂体系(防止物料在进入模具之前发生固化)与短 纤维混合均匀后注射到模具,然后再加热模具使 其固化成型。
生产中采用的成型工艺
(1) 手糊成型
(2)注射成型
(3)真空袋压法成型
(4)挤出成型
(5)压力袋成型
(6)纤维缠绕成型
(7)树脂注射和树脂传递成型
(8)真空辅助脂注射成型
(9)连续板材成型 (10)拉挤成型 (11)离心浇铸成型 (12)层压或卷制成型 (13)夹层结构成型 (14)模压成型 (15)热塑性片状模塑料热冲压成型 (16)喷射成型
利用喷射法可以制作大蓬车车身、 船体、广告模型、舞台道具、贮藏箱、 建筑构件、机器外罩、容器、安全帽等。
5. 连续缠绕成型工艺
将浸过树脂胶液的连续纤维或布带,按照一 定规律缠绕到芯模上,然后固化脱模成为增强塑 料制品的工艺过程,称为缠绕工艺。
缠绕工艺流程图如下图所示:
胶液配制
纱团 集束 浸 胶
由于模压制品质量可靠,在兵器、飞机、导 弹、卫星上也都得到应用。
3. 层压成型工艺
层压成型工艺,是把一定层数的浸胶布(纸) 叠在一起,送入多层液压机,在一定的温度和压 力下压制成板材的工艺。
层压成型工艺属于干法压力成型范畴,是复 合材料的一种主要成型工艺。
层压成型工艺生产的制品包括各种 绝缘材料板、人造木板、塑料贴面板、 覆铜箔层压板等。
树脂基复合材料的5种成型工艺流程
树脂基复合材料的5种成型工艺流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、手工层叠成型工艺。
手工层叠成型是树脂基复合材料最基础的一种成型工艺。
复合流体成型工艺流程
复合流体成型工艺是复合材料制备过程中的重要环节,通常涉及以下几个主要步骤:1. 原料准备:包括选择合适的基体材料(如树脂、金属或陶瓷等)和增强材料(如碳纤维、玻璃纤维或其他颗粒、纤维等)。
这些原材料的选择取决于最终产品的使用要求和性能指标。
2. 混炼:将预处理后的基体材料与增强材料进行混合,以获得均匀的材料分散度和增强效果。
混炼可以采用熔融法、溶液法或固相法等多种方法,具体选择应根据材料特性和生产要求进行。
3. 预浸料制备:涉及到将增强材料(如碳纤维)与粘结剂(如树脂)混合,形成预浸料。
这通常包括碳纤维的表面处理和粘结剂的配方调制,以及将碳纤维浸渍到粘结剂中的过程。
4. 模具制作:根据产品的设计要求制作或选择适合的模具。
模具的设计和制造对最终产品的质量有着直接的影响。
5. 成型:将混炼好的材料进行成型,常用的成型方法包括注塑、挤出、压制等。
在成型过程中需要控制温度、压力和速度等参数,以确保产品的质量和性能。
6. 固化:对于树脂基复合材料,固化是一个重要步骤,它涉及通过加热或化学反应使树脂交联固化,从而获得所需的机械性能。
7. 后处理:包括切割、打磨、涂层等步骤,以满足产品的尺寸精度和表面质量要求。
8. 检测与质量控制:对成品进行必要的检测,确保其满足设计规范和使用要求。
9. 包装与出货:最后,合格的产品会被适当包装并送往客户或进入销售渠道。
需要注意的是,不同的复合材料和产品可能会采用不同的成型工艺和流程。
例如,碳陶复合材料的生产工艺流程可能包括热压烧结等特殊步骤,而复合集流体材料的制备可能还会涉及到磁控溅射/蒸镀、水电镀等工艺。
因此,具体的工艺流程可能会根据材料类型、产品要求和生产效率等因素有所不同。
复合材料stm成型工艺流程
复合材料stm成型工艺流程英文回答:Composite materials are widely used in various industries due to their high strength-to-weight ratio and excellent mechanical properties. The process of shaping composite materials using the resin transfer molding (RTM) technique involves several steps.First, a mold is prepared according to the desired shape of the final product. The mold is typically made of metal or composite materials and is carefully designed to ensure proper flow of the resin throughout the mold cavity.Next, the mold is prepared by applying a release agent to prevent the composite material from sticking to the mold surface. This is important to ensure easy removal of the finished product from the mold after the molding process.After the mold preparation, the composite material isprepared. This usually involves the impregnation of reinforcing fibers with a resin matrix. The fibers can be made of carbon, glass, or aramid, depending on the specific requirements of the application. The resin matrix can be epoxy, polyester, or other compatible materials.Once the composite material is ready, it is placed into the mold cavity. The mold is then closed and clamped to ensure a tight seal. The next step is the injection of the resin into the mold cavity. This can be done under pressure to ensure proper impregnation of the fibers and to minimize voids in the final product.After the resin injection, the mold is kept under pressure and at an elevated temperature to facilitate the curing of the resin. This is known as the curing or consolidation stage. The curing process can take several hours or even days, depending on the specific resin system used.Once the resin has cured, the mold is opened, and the finished product is removed. The excess flash or trim isthen removed, and any necessary finishing operations, such as sanding or painting, are carried out.In summary, the process of shaping composite materials using the RTM technique involves mold preparation, composite material preparation, resin injection, curing, and finishing operations. This process allows for the production of complex and high-performance composite parts.中文回答:复合材料由于其高强度与轻重量比以及优异的力学性能,在各个行业中得到广泛应用。
rtm工艺流程
rtm工艺流程RTM工艺流程RTM(Resin Transfer Molding)是一种常用的复合材料成型工艺,广泛应用于航空航天、汽车、船舶等领域。
本文将介绍RTM工艺的流程及其特点。
一、工艺流程概述RTM工艺是一种封闭模具内注塑的工艺,主要包括以下几个步骤:1. 模具准备:首先,根据产品的形状和尺寸要求,制作模具。
模具可以采用金属或复合材料制成,具有良好的密封性和耐高温性能。
2. 布料预处理:在RTM工艺中,通常使用预浸料(prepreg)作为增强材料。
预浸料是一种纤维增强树脂复合材料,需要在成型前进行预处理。
预处理包括解冻、切割和堆叠等步骤,以确保预浸料的性能和质量。
3. 模具封闭:将预处理好的布料堆叠在模具的一侧,然后将模具封闭。
模具的封闭可以采用机械夹紧或真空吸附等方式,以确保模具内的压力和温度稳定。
4. 树脂注入:在模具封闭后,通过注射设备将树脂注入模具内。
树脂可以是热固性树脂,如环氧树脂或聚酯树脂。
注入过程需要控制注射速度和压力,以确保树脂充分渗透纤维增强材料。
5. 固化成型:树脂注入后,需要进行固化过程。
固化可以通过热固化或光固化等方式进行。
固化时间和温度需要根据树脂的性质和产品要求进行控制。
6. 模具开启:在树脂固化后,打开模具,取出成型件。
成型件具有优良的力学性能和表面质量。
二、RTM工艺的特点RTM工艺相比其他成型工艺具有以下特点:1. 成型件质量高:由于RTM工艺采用封闭模具,可以有效控制树脂的渗透和固化过程,从而获得高质量的成型件。
2. 复杂形状成型:RTM工艺适用于复杂形状的产品制造,可以满足各种工程要求。
3. 纤维含量高:RTM工艺可以实现高纤维含量的复合材料制造,提高产品的强度和刚度。
4. 自动化程度高:RTM工艺可以实现自动化生产,提高生产效率和一致性。
5. 环保节能:RTM工艺中的树脂可以回收再利用,减少了废料的产生,符合环保要求。
总结:RTM工艺是一种先进的复合材料成型工艺,具有高质量、适用于复杂形状、高纤维含量、自动化程度高和环保节能等特点。
复合材料的成型工艺ppt课件
第二节 金属基复合材料(MMC)成形工艺
一、固态法
1.扩散黏结法(Diffusion Bonding) 如图9-2所示,扩散黏结是一种在较长时间、
较高温度和压力下,通过固态焊接工艺,使同类 或不同类金属在高温下互扩散而黏结在一起的工 艺方法。
2.形变法(Plastic Forming) 形变法就是利用金属具有塑性成型的工艺特点
2.复合材料的特点
(1)比强度和比刚度高 (2)抗疲劳性好 (3)高温性能好 (4)减振性能好 (5)断裂安全性高 (6)可设计性好
为 了 规 范 事 业单位 聘用关 系,建 立和完 善适应 社会主 义市场 经济体 制的事 业单位 工作人 员聘用 制度, 保障用 人单位 和职工 的合法 权益
第一节 复合材料简述
四 、 复 合 材 料 的 失 效 (Failure of Composite)
复合材料的失效一般是指其疲劳破坏过程。
1.制造加工损伤
此种损伤产生初始缺陷。,它包括:纤维铺设不 均,扭结、死扣等,树脂不均;纤维切断、错排; 固化不足;有孔隙、气泡;材质污染等。
2.使用引起的损伤
此种损伤导致缺陷发展。它包括:树脂裂纹或老 化;分层;纤维断裂;振动较大导致的纤维断裂; 温度变化较大;机加工产生内应力;碰撞等。
二、复合材料用原料
1.增强材料
(1)碳纤维(Carbon Fiber) (2)硼纤维(Boron Filament) (3)芳纶(Aramid Ring) (4)玻璃纤维(Glass Fiber) (5)碳化硅纤维(Silicon Carbide Fiber) (6)晶须(Whisker)
2.基体材料
3)基体能够很好地保护纤维表面,不产生表面 损伤、不产生裂纹。
树脂渗透工艺
复合材料的树脂渗透成型工艺树脂渗透工艺:随着行业发展对生产速度提出更高的需求,单依靠传统的手糊成型工艺已经难以满足日益增长的市场需求,因此,加工工艺的自动化是顺应这一潮流的必然趋势。
最常见的自动化成型工艺是树脂传递模塑工艺(-ResinTransferMolding),有时也被称为液体成型工艺(LiquidMolding)。
树脂传递模塑工艺是一种十分简单的成型工艺:其原理是首先在金属或复合材料制成的闭合模具中铺放干增强材料预成型体(preform),然后将树脂和催化剂按照一定比例计量并充分混合,再采用注射设备通过注射口(injectionports)利用压力注入到模具中,使树脂按照预先设计的路径浸润到增强材料上的过程。
树脂传递模塑工艺要求极低粘度的树脂,特别是当预成型体较厚时,较好的树脂的流动性能够确保更及时和更充分的浸润效果。
如有需要,模具和树脂可以进行加热,但是成型工艺的固化无需使用热压釜。
但是,一部分应用于高温的制品通常在脱模后还要进行后固化(postcure)。
大多数的应用程序都采用双组分环氧树脂配方(two-partepoxyformulation):双马来酰亚胺(Bismaleimideresin)和聚酰亚胺树脂(polyimideresin)。
组分的配方过程不会提前太早,通常在注射前进行。
轻型树脂传递模塑工艺(Light)是近年来发展较快的低成本成型工艺,是树脂传递模塑工的变体工艺。
轻型树脂传递模塑工艺不仅具备工艺的所有特点,还降低了成型工艺对一系列指标的要求,例如,注射压力,真空耦合(coupledwithvacuum),和模具的造价和刚性指标。
树脂传递模塑工艺具有许多显著的优点。
一般来说,在树脂传递模塑工艺过程中所使用的干预成型体和树脂材料的价格都比预浸料便宜,而且还可以在室温下存放。
利用这种工艺可以生产较厚的净成形零件,同时免去许多后续加工程序。
该工艺还能帮助生产尺寸精确,表面工艺精湛的复杂零件。
复合材料复合成型工艺研究及工艺参数优化
复合材料复合成型工艺研究及工艺参数优化复合材料是由多种不同材料组合而成的复合材料,具有轻质、高强度、高刚性、耐高温等优良性能,被广泛应用于航空、航天、汽车、建筑等工业领域。
复合材料的复合成型工艺研究及工艺参数优化,是提高复合材料制备质量和性能的重要环节。
一、复合材料的复合成型工艺研究复合材料的复合成型工艺研究主要包括预浸工艺、自动化布料、层压成型等方面。
1. 预浸工艺预浸工艺是将纤维材料浸渍于树脂固化剂中,形成浸渍纤维材料的过程。
预浸工艺要求纤维材料在浸渍过程中均匀分布树脂固化剂,并保持一定的固化时间。
通过优化预浸工艺的浸渍时间和浸渍厚度,可以提高复合材料的力学性能和热稳定性。
2. 自动化布料自动化布料是指利用机器人或自动化设备将纤维材料按照一定的规律布置在模具中的过程。
通过自动化布料,可以实现纤维材料的均匀布局,减少纤维材料间的空隙,并提高复合材料的强度和刚度。
自动化布料的关键是控制纤维材料的层压顺序和布料角度,通过优化布料工艺可以得到复合材料的最佳力学性能。
3. 层压成型层压成型是将浸渍纤维材料按照一定的层次和顺序排列,经过一定的压力和温度条件下进行加热固化的过程。
层压成型工艺的关键是控制加热温度和固化时间,以及模具的设计和压力的施加方式。
通过优化层压成型工艺,可以得到复合材料的理想结构和性能。
二、工艺参数的优化复合材料的工艺参数包括浸渍时间、浸渍厚度、布料顺序、布料角度、加热温度、固化时间等。
通过优化这些工艺参数,可以提高复合材料的力学性能和热稳定性。
1. 工艺参数优化的方法工艺参数的优化可以采用试验设计方法,通过设计并进行一系列试验,收集不同参数下的复合材料性能数据,利用统计分析方法寻找最佳的工艺参数组合。
常用的试验设计方法包括正交试验设计和响应面法等。
2. 工艺参数优化的影响因素工艺参数的优化受到多个影响因素的综合作用,主要包括纤维材料的性质、树脂固化剂的特性、模具的设计和加热设备的性能等。
浅析树脂基复合材料成型工艺
浅析树脂基复合材料成型工艺摘要:随着社会经济的发展,在工业领域中,复合材料也得到了广泛应用,无论是国家的科研技术,还是经济实力,都是衡量国家发展的标志。
先进复合材料不仅强度高,而且耐热性能和抗疲劳性能优良,在航空航天、交通运输、机械化工等领域得到广泛应用。
树脂基复合材料即以有机聚合物为基体的纤维增强材料,其纤维增强体通常选择玻璃纤维、碳纤维、玄武岩纤维等,现阶段在航空、汽车、海洋工业中得到较广泛的应用。
关键词:树脂基;复合材料;成型工艺复合材料是由有机高分子、无机非金属材料或金属等几类不同材料通过复合工艺组合而成的新型材料,至少包括两种以上的独立化学相,按性能要求人为设计和制造,它既能保留原组分材料的主要特色,又通过复合效应获得各单一组元所没有的综合优良性能,可以通过材料设计使各组分的性能相互补充,并彼此关联,从而获得新的优越性能,与一般材料的简单混合有本质区别。
按基体的性质,复合材料分为金属基复合材料、树脂基复合材料和陶瓷基复合材料。
因此复合材料在航天航空、交通运输和运动器材等多个领域广泛应用,复合材料制品种类繁多,复合材料工业得到迅速发镇,成型工艺和方法也不断完善。
一、复合材料树脂基现状树脂基纤维增强复合材料是根据树脂基化学特性,添加玻璃纤维、碳纤维等纤维增强相,经过一系列加工成形的一种现代工程材料,可分为热固性树脂基复合材料与热塑性树脂基复合材料。
复合材料阀门具有耐疲劳、成型密实、尺寸可控等优异的性能,可满足现代工业对阀门的各种要求,因此广泛应用于化工、航空、军工等行业。
热固性树脂基复合材料与热塑性树脂基复合材料相比,具有制品尺寸精准、强度高、机械性能强、工艺简单等优点,同时,热固性树脂基复合材料的材料成本更低。
热固性复合材料树脂基通常采用环氧、酚醛、不饱和聚酯等树脂。
1、不饱和聚酯树脂。
不饱和聚酯树脂 UPR通常由饱和二元酸与不饱多元醇,或不饱和二元酸与多元醇缩聚而成的具有酯键和不饱和双键的高分子聚合物。
树脂复合材料的生产工艺
树脂复合材料的生产工艺
树脂复合材料的生产工艺包括以下几个主要步骤:
1. 材料准备:包括树脂基体、增强材料和填充剂等的准备工作。
树脂基体可以选择热固性树脂(如环氧树脂、聚酯树脂等)或热塑性树脂(如聚丙烯、尼龙等),增强材料可以是玻璃纤维、碳纤维、芳纶纤维等,填充剂可以是硅酸盐、碳酸钙等。
2. 制备增强材料:将增强材料根据设计要求进行切割、针织、编织等处理,得到所需形状和尺寸的增强材料。
3. 预处理增强材料:一般通过浸渍、涂布等方式将树脂基体浸渍到增强材料中,使其充分渗透,并去除气泡和水分。
4. 成型:根据产品要求和制造方法的不同,采用压塑、挤出、注塑、层叠等技术进行成型。
其中的成型工艺可以分为手工成型和自动化成型两种。
5. 固化:对于热固性树脂基体,需要进行固化工艺,即通过热压、自然固化、紫外光固化等方式使树脂基体达到硬化或交联的状态。
而热塑性树脂基体则不需要固化工艺。
6. 后处理:包括修剪、修磨、打磨、清洗等工序,使最终产品达到设计要求的
外观和尺寸精度。
以上是树脂复合材料的一般生产工艺,具体工艺会根据产品类型、要求和生产线设备的不同而有所差异。
热塑性复合材料成型工艺
热塑性复合材料成型工艺热塑性复合材料是以玻璃纤维、碳纤维、芳纶纤维等增强各种热塑性树脂的总称,国外称FRTP(Fiber Rinforced Thermo Plastics)。
由于热塑性树脂和增强材料种类不同,其生产工艺和制成的复合材料性能差别很大。
从生产工艺角度分析,塑性复合材料分为短纤维增强复合材料和连续纤维增强复合材料两大类:(1)短纤维增强复合材料①注射成型工艺;②挤出成型工艺;③离心成型工艺。
(2)连续纤维增强及长纤维增强复合材料①预浸料模压成型;②片状模塑料冲压成型;③片状模塑料真空成型;④预浸纱缠绕成型;⑤拉挤成型。
热塑性复合材料的特殊性能如下:(1)密度小、强度高热塑性复合材料的密度为1.1~1.6g/cm3,仅为钢材的1/5~1/7,比热固性玻璃钢轻1/3~1/4。
它能够以较小的单位质量获得更高的机械强度。
一般来讲,不论是通用塑料还是工程塑料,用玻璃纤维增强后,都会获得较高的增强效果,提高强度应用档次。
(2)性能可设计性的自由度大热塑性复合材料的物理性能、化学性能、力学性能,都是通过合理选择原材料种类、配比、加工方法、纤维含量和铺层方式进行设计。
由于热塑性复合材料的基体材料种类比热固性复合材料多很多,因此,其选材设计的自由度也就大得多。
(3)热性能一般塑料的使用温度为50~100℃,用玻璃纤维增强后,可提高到100℃以上。
尼龙6的热变形温度为65℃,用30%玻纤增强后,热形温度可提高到190℃。
聚醚醚酮树脂的耐热性达220℃,用30%玻纤增强后,使用温度可提高到310℃,这样高的耐热性,热固性复合材料是达不到的。
热塑性复合材料的线膨胀系数比未增强的塑料低1/4~1/2,能够降低制品成型过程中的收缩率,提高制品尺寸精度。
其导热系数为0.3~0.36W(㎡·K),与热固性复合材料相似。
(4)耐化学腐蚀性复合材料的耐化学腐蚀性,主要由基体材料的性能决定,热塑性树脂的种类很多,每种树脂都有自己的防腐特点,因此,可以根据复合材料的使用环境和介质条件,对基体树脂进行优选,一般都能满足使用要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合材料树脂渗透成型工艺
随着行业发展对生产速度提出更高的需求,单依靠传统的手糊成型工艺已经难以满足日益增长的市场需求,因此,加工工艺的自动化是顺应这一潮流的必然趋势。
最常见的自动化成型工艺是树脂传递模塑工艺(-ResinTransferMolding),有时也被称为液体成型工艺(LiquidMolding)。
树脂传递模塑工艺是一种十分简单的成型工艺:其原理是首先在金属或复合材料制成的闭合模具中铺放干增强材料预成型体(preform),然后将树脂和催化剂按照一定比例计量并充分混合,再采用注射设备通过注射口(injectionports)利用压力注入到模具中,使树脂按照预先设计的路径浸润到增强材料上的过程。
树脂传递模塑工艺要求极低粘度的树脂,特别是当预成型体较厚时,较好的树脂的流动性能够确保更及时和更充分的浸润效果。
如有需要,模具和树脂可以进行加热,但是成型工艺的固化无需使用热压釜。
但是,一部分应用于高温的制品通常在脱模后还要进行后固化(postcure)。
大多数的应用程序都采用双组分环氧树脂配方(two-partepoxyformulation):双马来酰亚胺(Bismaleimideresin)和聚酰亚胺树脂(polyimideresin)。
组分的配方过程不会提前太早,通常在注射前进行。
轻型树脂传递模塑工艺(Light)是近年来发展较快的低成本成型工艺,是树脂传递模塑工的变体工艺。
轻型树脂传递模塑工艺不仅
具备工艺的所有特点,还降低了成型工艺对一系列指标的要求,例如,注射压力,真空耦合(coupledwithvacuum),和模具的造价和刚性指标。
树脂传递模塑工艺具有许多显著的优点。
一般来说,在树脂传递模塑工艺过程中所使用的干预成型体和树脂材料的价格都比预浸料便宜,而且还可以在室温下存放。
利用这种工艺可以生产较厚的净成形零件,同时免去许多后续加工程序。
该工艺还能帮助生产尺寸精确,表面工艺精湛的复杂零件。
树脂传递模塑工艺还有一个特点是,能够允许闭模前在预成型体中放入芯模填充材料,避免预成型体在合模过程中被挤压。
芯模在整个预成型体中所占的比重较低,大约在0-2%之间。
简而言之,树脂传递模塑工艺可以作为一种高效可重复的自动化制造工艺大幅降低加工成型时间,将传统手糊成型的几天时间缩短为几小时,甚至几分钟。
不同于树脂传递模塑工艺(预先将树脂和催化剂混合注入模具的顺序,反应注射成型工艺(RIM)的原理是将快速固化树脂和催化剂分别注入模具中。
混合和化学反应过程都在模具中进行,而非在混合头(dispensinghead)中。
许多汽车制造商利用结构反应注射成型工艺(structuralRIM-SRIM)和快速预成型方法相结合的制备方式来制造汽车结构件,生产的产品不需要再进行表面优质感处理(ClassAfinish)。
可编程机器人已发展成为一种常见的喷射手段,它可以将短切玻璃纤维和粘接剂的混合物喷到真空预成型体模具上。
机器人喷射的最大特点是可控制纤维的方向。
另外,还有一个与之相关
的技术干纤维铺设(dryfiberplacement)技术,结合了编织预成型体和树脂传递模塑工艺。
该技术制备的产品的纤维含量高达百分之六十八,由于全程采取自动化控制工艺,确保低气泡含量和稳定的复制成形效果,所制备的产品无需进行修剪。
真空辅助树脂传递模塑成型工艺(V ARTM)是近年来发展速度最快的新成型技术。
真空辅助树脂传递模塑成型工艺和标准树脂传递模塑成型工艺的主要区别是,V ARTM是一种利用真空吸注树脂进入模具的方法,而RTM是利用压力将混合体泵入模具的方式。
真空辅助树脂传递模塑成型工艺(不需要高温或高压。
出于这个原因,V ARTM 工艺不仅可以采用成本较低的工具,还能够一次性生产复杂的大型零部件。
在V ARTM成型工艺过程中,纤维增强材料被放置在一个单面的模具中,上面覆盖着一层坚硬或有弹性的真空密封膜。
通常树脂是通过设计好的注射口利用真空吸注原理进入模具,然后按照预先设定的路径有计划的渗透到增强材料上,大大简化了纤维的浸润处理(wetout)。
利用该工艺制备的产品的纤维含量高达百分之七十。
目前该技术主要应用于海洋,地面交通和基础设施等领域。
树脂膜渗透(RFI)工艺是一种混合成型工艺,是将干预成型体放置在模具中,覆盖着下面的一层高粘度(高分子量)树脂薄膜层,或者当铺层较厚时,预成型体与树脂呈交错夹层,再通过加热模具和抽真空使模内的高分子量树脂融化,均匀而充分的浸润预成型体的过程。
该成型工艺的一大特点是树脂渗透的流程短,而且树脂分布均匀,
并且可以采用高分子量的树脂。