多、高层房屋结构的分析和设计计算
多层及高层房屋结构组成

2.1 多、高层房屋结构的组成 2.2 多、高层房屋结构的分析和设计计算 2.3 楼盖的设计 2.4 柱、支撑及节点柱脚设计
2.1 多、高层房屋结构的组成
多层和高层房屋建筑之间并没有严格的界线。根据房 屋建筑的荷载特点及其力学行为,尤其是对地震荷载的反 应,大致可以12层(高度约40m)为界。
P344(多层412层 或高度不超过40m)
高层与多层钢结构房屋的区别在于:高层钢结构房屋的 水平荷载起主要作用,它引起的弯矩和侧移是与高度的二 次方和四次方成正比。
因此选择好的抗侧体系、平面和竖向布置规则的结构、 风荷载较小的建筑外形以及地震作用较小的结构体系很重 要。避免房屋的“先天”缺陷。
因此,高层钢结构房屋更重视概念设计。
(a)单向斜杆支撑、(b)十字交叉支撑、(c)人字支撑、(d) V形支撑、 (e) K形支撑。
偏心支撑
偏心支撑框架是在梁上设置一较薄弱部位,如图10.1.3中的 梁段l,称为消能梁段。
结构在弹性阶段有较好的刚度,在强震作用下,消能梁段 在支撑失稳之前进入了弹塑性阶段,具有很好的延性和耗能能 力。
rex 、rey ——分别为x和y方向的抗扭弹性半径; rex =(KT/Kx)1/2 , rey =(KT/Ky)1/2
KT= (Kx y2)+ (Ky x2) KT——所计算楼层的扭转刚度; Kx 、 Ky——分别为所计算楼层各抗侧力构件在x和y
方向的侧向刚度之和;
x,y——以刚心为原点的抗侧力构件坐标。 当任一层的偏心率>0.15时,称平面不规则结构,
筒体可用密柱深梁的钢结构形成, 也可采用钢筋混凝土筒体,不过常 以内筒出现。
《 高 层 民 用 建 筑 钢 结 构 技 术 规 程 》 ( JGJ99—98) 第 1.0.2条:根据地震设防烈度,对各类结构形式所适用 的高度作出了规定,如下表。
多高层房屋钢结构的节点连接设计

接节点设计,在整个设计工作中应将其视为一个非常
重要的组成部分。节点设计是否恰当,将直接影响到
结构承载力的可靠性和安全性。因此节点设计至关重
要,应予以足够的重视。但是,在多、高层房屋钢结
构中,连接节点很多 ( 如国家标准图 01SG5所1编9 制 的诸多节点也只是高层钢结构房屋中一般性的常用节
点 ),今天只能检其最主要的、如与梁柱刚性连接的
多高层房屋钢结构的节点连接 设计
多高层房屋钢结构的节点连接设计
主要内容
1 讲述多、高层房屋钢结构梁柱刚性连接节
点 设 计及 其 相关 的 国家 标 准图 01SG519
的构造详图(上午)。
2 介绍国家标准图03SG519-1与04SG519-2 节
点连接设计的技术条件、图集的内容及其
使用方法(下午)。
5/3/2021
多高层房屋钢结构的节点连接设计
13
1 第一种设计方法
(即按组合内力来设计的方法)
采用该法的理论根据是,认为在多遇地震作用下,
结构处于弹性阶段,连接设计只要根据组合内力,并
根据梁的应力强度比 R1(即梁的地震组合弯矩设计值
乘以梁的承载力抗震调整系数 0.75 后,在梁截面中产
生的弯曲应力与梁的钢材强度设计值之比)来进行设
比)只用到了 0.7S 5(0.9S)0.8 。3
5/3/2021
多高层房屋钢结构的节点连接设计
18
3)如果在梁端仍不采用加强的作法,而是在梁端采
用栓焊连接的另一种常规作法(即梁腹板与柱之间采
用只传递剪力的螺栓连接,梁翼缘与柱之间采用只传
递弯矩的全熔透坡口对接焊)由于焊缝的抗弯承载力
最多只能作到梁截面抗弯承载力设计值的 85% ,此 时就必须要改用一个能承受 900.8 0 510k6N m 0的 梁截面,但此时由于梁截面只需用 75k0N m的弯矩 值来设计,梁的承载力更加富裕而不能充分利用,其
《高层结构设计》 02高层建筑结构的荷载计算

高层建筑结构的荷载计算高层建筑结构的竖向荷载包括自重等恒载及使用荷载等活载,其计算方法与一般建筑结构类似,在此不再重复。
本章主要介绍在高层建筑结构设计中起主导作用的水平荷载—风荷载和地震荷载作用的计算方法。
第一节 风荷载空气流动形成的风遇到建筑物时,在建筑物表面产生的压力或吸力即建筑物的风荷载。
风荷载的大小主要和近地风的性质、风速、风向有关;和该建筑物所在地的地貌及周围环境有关;同时和建筑物本身的高度、形状以及表面状况有关。
垂直于建筑物表面上的风荷载标准值可按下式计算:0ωµµβωz s z k =式中:k ω为风荷载标准值(kN/m 2);z β为z 高度处的风振系数;s µ为风荷载体型系数;z µ为风压高度变化系数; 0ω为基本风压(kN/m 2)。
1. 基本风压0ω我国《建筑结构荷载规范》(GB50009-2001),《全国基本风压分布图》中给出的基本风压值0ω,是用各地区空旷地面上离地10m 高、重现期为30年的10min 平均最大风速0υ(m/s )计算得到的,基本风压值1600/200υω=(kN/m 2)。
荷载规范给出的0ω值适用于多层建筑;对于一般高层建筑和特别重要的或有特殊要求的高层建筑可按《全国基本风压分布图》中的数值分别乘以1.1和1.2采用。
2. 风压高度变化系数z µ表1 风压高度变化系数风速大小与高度有关,一般近地面处的风速较小,愈向上风速逐渐加大,但风速的变化与地貌及周围环境有关。
在近海海面、海岛、海岸、湖岸及沙漠地区,地面空旷,空气流动几乎无阻挡物(A 类粗糙度),风速随高度的增加最快;在中小城镇和大城市的郊区(B 类粗糙度),风速随高度的增加减慢;在有密集建筑物的大城市市区(C 类粗糙度),和有密集建筑群,且房屋较高的城市市区(D 类粗糙度),风的流动受到阻挡,风速减小,因此风速随高度增加更缓慢一些。
表1列出了各种情况下的风压高度变化系数。
第四章多高层钢结构

结构受力
1)内部设置剪力墙式的内筒,与钢框架竖向构件
主要承受竖向荷载;
2)外筒体采用密排框架柱和各层楼盖处的深梁刚
接,形成一个悬臂筒,以承受侧向荷载;
3)同时设置刚性楼面结构作为框筒的横隔。
剪力滞后(Shear Lag)
在框剪结构中,形成筒体的构面内存在的 剪切变形,即为剪力滞后。 为了避免严重的剪力滞后造成角柱的轴力 过大,通常可采取两个措施: 1)控制框筒平面的长宽比不宜过大 2)加大框筒梁和柱的线刚度之比
束筒结构
由各筒体之间共用筒壁的一束筒状结 构组成(减缓框筒结构的剪力滞后效应) 可将各筒体在不同的高度中止 可较灵活地组成平面形式 密柱深梁的钢结构筒体 筒体
钢筋混凝土筒体(常作为内筒出现)
钢结构和有混凝土剪力墙的 钢结构高层建筑的适用高度(m)
抗震设防烈度
结构种类
结构体系
非抗震设防 6, 7
内筒的边长不宜小于相应外框筒边长的1/3;
框筒柱距一般为1.5~3.0m,且不宜大于层高;
框筒的开洞面积不宜大于其总面积的50%;
内外筒之间的进深一般控制在10~16m之间; 内筒亦为框筒时,其柱距宜与外框筒柱距相同,且 在每层楼盖处都设置钢梁将相应内外柱相连接;
框筒结构布置时的注意事项(续)
低碳钢 低合金钢 低合金钢 低合金钢 低碳钢
SS50
SS55
284
401
490~608
≥540
19
17
2.0a
2.0a
低碳钢
低合金钢
构件截面 柱
焊接箱型截面 焊接H型截面 450
╳
450
厚度 42 — 19 宽度200 — 250
建筑结构 第五章 钢筋混凝土多层与高层结构

随着房屋楼层数、高度的增加和抗震设防要求的提高, 上述基于平面工作状态的框架、剪力墙所组成的高层建筑 结构体系便不能满足要求了,在这种情况下,应使剪力墙 构成空间薄壁筒体,成为竖向悬壁箱形粱,或使框架的柱 子密集排列,使梁的刚度加强成为框筒,以一个或多个简 体作为主要抵抗水平力的结构称为筒体结构。 筒体根据开孔的多少,筒体有空腹筒和实腹筒之分。 实腹筒一般由电梯井、楼梯间、管道井等形成,开孔少, 因其常位于房屋中部,故又称核心筒。 空腹筒又称框筒,由布置在房屋四周的密排立柱和截面、 高度很大的横梁组成。这些横梁称为窗裙梁,梁高一般为 0.6~1.22m。
沉降缝: 指同一建筑物高低相差悬殊,上部荷载分布不均匀,或建在不同地基土壤
上时,为避免不均匀沉降使墙体或其它结构部位开裂而设置的建筑构造缝。沉降缝把 建筑物划分成几个段落,自成系统,从基础、墙体、楼板到房顶各不连接。缝宽一般 为30~70毫米。将建筑物或构筑物从基础至顶部完全分隔成段的竖直缝。借以避免各 段不均匀下沉而产生裂缝。通常设置在建筑高低、荷载或地基承载力差别很大的各部 分之间,以及在新旧建筑的联接处。 沉降缝的设置,主要与基础受到的上部荷载及场地地质条件有关。当上部荷载差异较大, 则应设沉降缝;沉降缝可利用挑梁或搁置预制板、梁等方法做成。
由核心筒、框筒等基本单元组成的承重结构体系称为筒体体 系。根据房屋高度及其所受水平力的不同,筒体体系可以布置 成束筒结构和多重筒结构等形式。筒中筒结构通常用框筒作为 外筒,实腹筒作为内筒。
第二节 框架结构
(一)框架的类型
按施工方法的不同,框架结构可分为现浇框架、装配式框架 和现浇预制框架三种类型。 (1)全现浇整体式框架:全部构件都在现场工地现浇而成。 优点:结构整体性及抗震性能好,平面布置比较灵活,预埋件少, 节省钢材; 缺点:现场工作量大,模板消耗多,施工周期较长。北方冬季施工 困难。 适用范围:对功能复杂,使用要求高,抗震性能要求高的多、高层 框架。 (2)半现浇式框架:将房屋结构中的梁板柱部分现浇部分装配 而形成的结构形式:一种是梁柱现浇,板预制,另一种是柱现浇, 梁板预制。 优点:施工简单,整体性较全装配式好,又比全现浇式节约模板, 省去现场支模
建筑结构模块6多高层框架结构

根据外围结构构成的不同,筒体结构体系可以分 为由剪力墙构成的薄壁筒和由密排柱梁、裙梁组成的 框筒。
根据组成筒体结构体系的筒体个数及组合方式的
核心筒、筒中筒(二重筒)、多筒体、成束筒(组合 筒)和多重筒(群筒)等,如图6-7所示。
6.3 多高层框架结构的计算简图及荷载
纵向框架上的荷载往往各不相同,故常有中列柱 和边列柱的区别。中列柱纵向框架的计算单元宽度可 各取两侧跨距的一半,边列柱纵向框架的计算单元宽 度可取一侧跨距的一半。取出的平面框架所承受的竖 向荷载与楼盖结构的布置情况有关,当采用现浇楼盖 时,楼面分布荷载一般可按角平分线传至相应两侧的 梁上,对图6-8(c)所示的梯形竖向分布荷载往往可 简化成均匀竖向荷载,水平荷载则简化成节点集中力, 如图6-8(c)、(d)所示。
6.1 多高层建筑常用的结构体系
6.1 多高层建筑常用的结构体系
6.1.1 框架结构体系
1. 框架结构的概念
框架结构是由竖向构件柱子与 水平构件梁通过节点连接而成的, 一般由框架梁、柱与基础形成多个 平面框架作为主要的承重结构,各 平面框架再通过连系梁加以连接而 形成一个空间结构体系。框架结构 体系可同时抵抗竖向荷载和水平荷 载,如图6-1所示。
6.1 多高层建筑常用的结构体系
根据开孔的多少,筒体结构体系有实腹筒和空 腹筒之分,如图6-6所示。实腹筒一般由电梯井、 楼梯间、设备管道井的钢筋混凝土墙体组成。其开 孔少,常位于房屋中部,故又称为核心筒。空腹筒 由布置在房屋四周的密排立柱和高跨比很大的横梁 (又称为窗裙梁)组成,也称为框筒。
6.1 多高层建筑常用的结构体系
6.1 多高层建筑常用的结构体系
图6-3 承重框架的布置方案 (a)横向框架承重方案(b)纵向框架承重方案(c)纵、横向框架混合 承重方案(预制板)(d)纵、横向框架混合承重方案(现浇板)
高层建筑结构设计(共44张PPT)

• 高层建筑结构设计概述 • 高层建筑结构体系与选型 • 高层建筑结构荷载与效应 • 高层建筑结构分析与设计 • 高层建筑结构抗震设计 • 高层建筑结构抗风设计 • 高层建筑结构施工图绘制与审查
01
高层建筑结构设计概述
高层建筑定义与特点
高层建筑定义
一般指高度超过一定层数或高度 的建筑物,具体标准因国家和地 区而异。
。
可变荷载
包括楼面活荷载、屋面活荷载、雪 荷载、风荷载、吊车荷载等,是随 时间变化的荷载。
偶然荷载
包括地震作用、爆炸力、撞击力等 ,是偶然事件引起的荷载。
水平荷载与效应
风荷载
高层建筑受到的风荷载较大,需要考虑风压高度变化系数、风荷 载体型系数等。
地震作用
地震时地面运动对结构产生的水平惯性力,需要考虑地震烈度、 场地类别、结构自振周期等因素。
适用范围
剪力墙结构的房屋高度一 般不超过100m。
框架-剪力墙结构体系
优点
适用范围
框架结构布置灵活,可以获得较大的 空间;剪力墙结构抗侧力刚度大,整 体性好,两者结合可以取长补短。
框架-剪力墙结构的房屋高度一般不超 过150m。
缺点
框架和剪力墙的变形性能相差较大, 在地震作用下,两者的受力情况较难 协调。
通过改变结构刚度、阻尼、质量分布等方式,优化高层建筑结构的抗风
性能。
03
结构抗风设计流程
阐述高层建筑结构抗风设计的流程,包括初步设计、详细设计、施工图
设计等阶段。
风振舒适度控制标准与方法
风振舒适度评价标准
介绍国内外关于高层建筑风振舒适度的评价标准,如加速度限值、位移限值等。
风振舒适度控制方法
多层及高层房屋钢框架结构

4.3 柱和支撑的设计
4.3.1 框架柱设计概要
➢柱截面形式: 箱形、焊接工字形、H型钢、圆管等 ➢截面估计:按1.2N的轴心受压构件,34层作一次截面变
化,厚度不宜超过100mm ➢板件宽厚比,见下表 ➢长细比:多层(12层)框架柱在68度设防时不应大于120,
9度设防时不应大于100。高层(>12层)框架柱在设防烈度 为6,7以及8和9度时,分别为120,80以及60
bc1= bc2
组合梁混凝土翼板的有效宽度
(a) Afbcehcfcm (塑性中和轴在混凝土受压翼板内)
(b) Af>bcehcfcm (塑性中和轴在钢梁截面内) 正弯矩时组合梁横截面抗弯承载力计算图
2.负弯矩作用时
MMp+Asfsy(y3+/y4 /2)
As
组合梁塑性中和轴 钢梁塑性中和轴
y4 y3
多层(12 层)
高层(>12 层)
7度 8度 9度 6度 7度 8度 9度
13 11 9 9 8 8 7
33 30 27 25 23 23 21
31 28 25 23 21 21 19
42 40 40 38
➢ 截面形式:
1. 双轴对称截面 2. 单轴对称截面,采取防止绕对称轴屈曲的构造措施
➢ P-效应导致的附加效应:
多层(12层) 按压杆设计
150
按拉杆设计 200
120 120 150 150
高层(>12层)
120
90 60
➢ 板件宽厚比: 1. 6度抗震设防和非抗震设防:按《钢结构设计规范》(GB50017) 2. 抗震设防结构:
板件名称
翼缘外伸部分 工字形截面腹板
多层和高层框架结构

Mi'ki'kMig Mk' i
i
…3-10
主页 目录 上一章
式中,
M
' ki
弯矩
i
——汇交于节点i各杆的远端转角
之和,最初可假定为0。
帮助
混凝土结构设计
第3章
➢ 按下式计算每一杆端的最后弯矩值,即
M ikM iFk2M i'kM k ' i
…3-11
或
M ik M iF k M i'k (M i'k M k ')i …3-12
帮助
混凝土结构设计
第3章
以三层框架为例,用反弯点法计算水平荷载作
用下框架的内力。
顶层
主页
因此各柱的剪力为:
X 0 V31V32V33 F3
V31 D31Δ3 V32 D32Δ3 V33 D33Δ3
3
D3
1
F3 D32
D3
3
F3
3
D31
j1
V3 j
D3 j
3
F3
D3j
j1
…3-17 …3-18
特点
➢ 房屋横向刚度大,侧 移小;
➢ 横梁高度大,室内有 效净空小。
➢ 非抗震时使用
主页 目录 上一章
横向承重
帮助
混凝土结构设计
▪ 纵向布置
纵向承重
第3章
特点:
➢ 连系梁截面较小,框 架梁截面尺寸大,室 内有效净空高;
➢ 对纵向地基不均匀沉 降较有利;
➢ 房屋横向刚度小,侧 移大。
主页 目录 上一章
计算简图
第3章
l0
l0
1
2
多高层框架结构的计算简图及荷载

1.1 多高层框架结构的计算简图
进行框架结构计算时,为方便起见,常忽 略结构纵向和横向之间的空间联系,忽略各构 件的抗扭作用,将横向框架和纵向框架分别按 平面框架进行分析计算,如图6-8(a)、(b)所 示。通常,横向框架的间距、荷载都相同,因 此常取有代表性的一榀中间横向框架作为计算 单元。
多高层框架结构的计算简图及荷载
为了方便计算,可将沿建筑物高度分布作 用的风荷载简化为节点集中荷载,分别作用于 各层楼面和屋面处,并合并于迎风面一侧。对 某一楼面,取相邻上、下各半层高度范围内分 布荷载之和,并且该分布荷载按均布考虑。一 般风荷载要考虑左风和右风两种可能。
多高层框架结构的计算简图及荷载
(2)水平地震作用。地震作用是地震时 作用在建筑物上的惯性力,一般当抗震设防烈 度在6度以上时考虑。
地震时,房屋在地震波的作用下既上下颠 簸又左右摇晃,这时房屋既受到垂直方向的地 震作用,又受到水平方向的地震作用,分别称 为竖向地震作用和水平地震作用。
多高层框架结构的计算简图及荷载
在一般建筑物中,地震的竖向作用并不明显, 只有在抗震设防烈度为9度及9度以上的地震区,竖 向地震作用的影响才比较明显。因此,《建筑抗震 设计规范》(GB 50011—2010)规定,对于在抗 震设防烈度为8、9度时的大跨度和长悬臂结构及9 度时的高层建筑,应计算竖向地震作用,其余的建 筑物不需要考虑竖向地震作用的影响。
多高层框架结构的计算简图及荷载
1. 竖向荷载
竖向荷载包括结构构件和非结构构件的自重(恒荷 载)、楼面活荷载、屋面均布活荷载和雪荷载等。
(1)恒荷载。竖向荷载中的恒荷载按相应材料和构 件的自重,根据《建筑结构荷载规范》(GB 50009—201 2)的规定进行计算。
十一层住宅楼结构计算书(剪力墙结构)

1工程概况1.1设计资料1.1.1资料1)气象条件:基本风压0.55kN/m2, 基本雪压0.40kN/m2。
2)工程地质条件:根据对建筑基地的勘察结果,地质情况见表1。
表1-1建筑地层一览表(标准值)Figure 1-1 List of construction formation(standard value)序号岩土分类土层深度(M)厚度范围(M)地基承载力fk(kpa)桩端阻力qp(kpa)桩周摩擦力qs(kpa)1 粉质粘土0.5~1.5 1.0 180 7.32 中砂 1.5~3.3 1.8 220 15.23 砾砂 3.3~6.3 3.0 310 19.04 圆砾 6.3以下370 2100 22.5建筑地点冰冻深度:-1.2 M;建筑场地类别:Ⅱ类场地土;地震设防烈度:7度。
设计基本地震加速度:0.15m/s2;设计地震分组:第一组;特征周期:0.35s。
3)各种用房的活荷载标准值见现行《建筑结构荷载规范》。
1.1.2依据方针:适用、经济、美观;目的:满足不断发展的精神生活;原则:可持续发展,以人为本;统一体:社会效益、环境效益、经济效益。
1.2建筑平面设计1.2.1使用部分的设计1)使用要求:建筑面积:8154 m2。
使用功能:该建筑为某民用高层住宅楼,共11层,共两个单元,两个单元布置相同,每个单元一梯三户,为三室两厅、两室两厅和两室一厅,满足住房者的要求。
2)门窗在房间平面中的布置:规范规定:住宅中卧室、起居室的窗的窗地比1/8,所以设计中窗的尺寸完全可以满足采光通风要求。
窗采用平开窗和单框双玻推拉塑钢窗。
门窗的尺寸不一,详见建筑设计图纸中的标注。
所有住宅外门为乙级防火门、内门均为木门(其中楼梯间的门为双向开启木门),开启方向见建筑设计平面图纸。
房间平面设计中,门窗的大小与数量是否恰当,它们的位置和开启方式是否合理,对房间的平面使用效果也有很大影响。
同时门窗的形式和组合方式又和建筑立面设计的关系极为密切。
解析大底盘多塔楼的高层建筑结构设计

解析大底盘多塔楼的高层建筑结构设计摘要:在高层建筑施工过程中,建筑的结构设计对建筑的质量有着重要的影响,尤其是大底盘多塔连体复杂体型高层建筑,在结构设计的过程中涉及到地下室,基础及结构的相关设计,任何一个环节出现问题都会对质量造成一定的影响。
因此,在高层建筑设计的过程中,建筑的结构设计是十分重要的。
关键词:大底盘多塔楼;高层建筑;结构设计1.大底盘多塔楼高层建筑结构体系大底盘多塔楼高层建筑结构体系的主要特点是:在多栋独立的高层建筑底部有一个练成整体的大裙房,即形成了大底盘。
大底盘多塔楼高层建筑结构在大底盘上一层突然收进,属竖向不规则结构;大底盘上有两个或多个塔楼时,结构振型复杂,并会产生复杂的扭转振动,因此如果结构布置不当,竖向刚度突变,扭转振动反应及高振型影响将会加剧。
在实际工程的设计中,总的来说,大底盘多塔楼高层建筑结构的设计将分为如下两种结构类型进行分别设计:①大底盘结构顶层楼板可作为上部多塔楼的嵌固端。
通常带地下停车位的住宅小区基本属于该种类型。
②大底盘结构顶层楼板不能作为上部多塔楼的嵌固端。
该种结构形式通常出现在下部裙楼作为商场或服务用房、上部塔楼为办公或商住功能的综合性建筑。
在实际项目的工程设计中,有很多带地下车库的住宅或商业建筑在出了大底盘顶层以后上部开始设抗震缝,把结构分为多个塔楼来设计;而在地下室部分的塔楼范围内或附近则加大竖向构件的截面尺寸,加大抗侧刚度,保证大底盘顶层楼板可以成为上部塔楼的嵌固层。
但在一些特殊情况下,由于建筑立面或建筑功能的特殊要求,高层多塔楼结构在地面以上的裙房部分不允许设置抗震缝,即裙房部分仍为整体大底盘部分,裙房以上整个结构就根据功能要求分为多个塔楼,这样的结构体系裙房顶层的抗侧刚度一般不可能比相邻上部塔楼楼层抗侧刚度大很多,所以大底盘结构顶层楼板不能作为上部多塔楼结构的嵌固端,属于复杂高层建筑结构,设计中必须仔细分析。
2.大底盘多塔楼高层建筑结构设计方法分析2.1解决地基基础不均匀沉降问题对于大底盘多塔楼高层建筑来说,各塔楼由于层数较多、总高度较高,其传递至地基基础的荷载较大。
房屋安全鉴定中的结构计算与鉴定分析

房屋安全鉴定中的结构计算与鉴定分析2015.4.9一、结构(计算)是鉴定分析的基础结构分析(structural analysis) 是对指定结构在承受外部荷载及发生外部环境变化(如支座移动及温度、湿度变化)以及原结构计算模型、本构关系发生变化时所进行的计算分析与专业判断。
是基于力学基础(理论力学、材料力学、结构力学、流体力学、弹性力学等),运用专业分析软件或工具,对结构的强度、刚度、稳定、抗震进行计算、分析,以得出明确结论的过程。
结构分析对专业技能的要求很高,要求掌握工程结构分析、结构软件应用、计算机辅助设计等专业技能和综合分析能力,还要具备结构设计施工经验。
鉴定分析:从症状到原因,再到结论的技术论证、逻辑推理过程,是鉴定工作的核心内容,注重逻辑关系、因果关系,注重证据链的闭合,因此是鉴定报告是否科学、准确的关键和保证。
鉴定分析环节,主要基于现状,根据调查情况、受损情况、监测与检测情况,结合计算复核结果,综合分析损坏的原因和影响机理。
从现象到本质,对概念性分析、综合性判断等方面的能力要求高。
鉴定人:需要多问几个为什么?要能自圆其说!鉴定能力:即发现问题、分析问题、解决问题的能力在编写安全鉴定报告时:从查勘情况、检测数据、原因分析到鉴定结论及处理建议,要求证据链必须闭合、因果关系符合逻辑。
(之所以,是因为;因为这样,所以那样。
环环相扣、前后呼应)。
需要按照先构件,再子单元,最后鉴定单元的鉴定顺序,依次评级、层层评级,根据对结构承载能力、整体性以及侧向位移的分项评定结果,确定子单元的安全性等级。
计算参数及模型:材料强度、构件尺寸、连接方式、传力路径(或支撑方式),均按实际情况,所以检测量很大(尤其是没图纸或有图纸未按图施工的情况)我们通过结构计算分析,不仅验证原结构构件是否安全可靠,而且可以检查原设计、施工是否符合国家规范的规定。
对安全鉴定工作而言,结构计算分析(复核)是一项重要的技术工作。
所以,结构分析是鉴定分析、综合评判的基础和前提,计算错误或错误结果将导致鉴定结论不准确。
1.3 多、高层钢结构认识

2)加大框筒梁和柱的线刚度之比
(4)束筒结构
由各筒体之间共用筒壁的一束筒状结 构组成(减缓框筒结构的剪力滞后效应) 可将各筒体在不同的高度中止 可较灵活地组成平面形式 密柱深梁的钢结构筒体
永久荷载: 压型钢板、钢筋和混凝土的自重.
各层的刚度中心应接近在同一竖直线上;
要强调建筑开间、进深的尽量统一; 多高层房屋的横向刚度、风振加速度还和其高宽比有关, 其限值为: 设防烈度 最大高宽比 6, 7 6.5 8 6.0 9 5.5
竖向布置的不规则结构
楼层刚度小于其相邻上层刚度的70%,且连续三层总的 刚度降代超过50% 相邻楼层质量之比超过1.5 立面收进尺寸的比例为L1/L < 0.75 竖向抗侧力构件不连续
芝加哥家庭保险大厦
建于1884年,高10层, 42米,公认为世界第一幢摩 天建筑;1890年又加建2层, 增至55米。下面6层使用生 铁柱是熟铁梁框架,上面4 层是钢框架,墙仅承受自己 的重量。最后于1931年拆 毁。
2014.9
多、高层钢结构建筑的发展
最具代表性的高层钢结构
纽约帝国大厦 建于1931年,高102层, 381米,20世纪50年代安装 的天线使它的高度上升至 443.5米。根据估算,建造帝 国大厦的材料约有330000吨。 大厦总共拥有6500个窗户、 73部电梯,从底层步行至顶 层须经过1860级台阶。它的 总建筑面积为204385平方米。
防火性能差
多层钢结构住宅的开发和建造已得到重视。
天津丽苑钢结构住宅 天 津 丽 苑 钢 结 构 住 宅
青岛即墨钢结构住宅
3.1多层高层钢结构体系

一、框架结构
框架结构的主要优点:
平面布置较灵活 刚度分布均匀 延性较大 自振周期较长 对地震作用不敏感
一、框架结构
青岛某钢结构住宅
二、框-剪结构
框架结构上布置适当的剪力墙
设置剪力墙
二、框-剪结构
在侧向荷载的作用下, 纯框架结构的侧向位移: 剪切变形模式 抗剪结构的侧向位移: 弯曲变形模式
八、多层结构房屋
单纯采用框架结构或斜撑(或 剪力墙)体系;
剪力 可用于不超过40~60层的高层建筑
支撑沿房屋两个方向布置,狭长形截面的建筑也 可布置在短边;地震区,一般沿同一竖向柱距内 连续布置。
三、框-支结构
成都世纪新城超五星级酒店 框-支结构
三、框-支结构
钢支撑的布置,可分为中心支撑和偏心支撑两大 类。中心支撑是指支撑的两端都直接连接在梁柱 节点上,而偏心支撑是至少有一端偏离了梁柱节 点,直接连在梁上,连接点与柱之间的一段梁形 成耗能梁段。
二者组合(框剪结构): 显著减少了纯框架结构的侧向位移 ,具
有双重设防的优点。
二、框-剪结构
钢结构住宅示范工程 --武汉世纪家园
12
二、框剪结构
框剪结构的特点:
用于地震区时,具有双重设防的优点
剪力墙为抗侧力结构
可用于不超过40~60层的高层建筑
剪力墙按材料和结构形式分为: 钢筋混凝土剪力墙:需采取构造措施
22
四、框-筒结构
重要概念:剪力滞后(Shear Lag)
在框-筒结构中,形成筒体的构面内存在的剪切变 形,即为剪力滞后。
为了避免严重的剪力滞后造成角柱的轴力过大, 通常可采取两个措施: 1)控制框筒平面的长宽比不宜过大; 2)加大框筒梁和柱的线刚度之比 。
结构抗震第五章多层和高层钢筋混凝土结构房屋

破坏不易修复。
第五章 多层和高层钢筋混凝土房屋
柱底 与柱顶相似,由于箍筋较柱顶密,震害相对柱顶较轻
精选课件
2)短柱------剪切破坏 短柱: H/b<4的柱,H:柱高; b:柱截面高度
当框架房屋中有错层、夹层或有半高填充墙, 或不适当地设置某些拉梁时,容易形成短柱
精选课件
一、结构方案不当引起的震害
1、平面不对称、刚度不均匀产生的震害 建筑平面布置不规则----质量中心和刚度中心不 重合----扭转效应---破坏严重(尤其是角柱)
2、竖向刚度突变产生的震害 竖向的质量或刚度有突变------突变处应力集中, 形成薄弱层----较大的塑性变形---结构破坏、甚 至倒塌 在强烈地震作用下,结构的薄弱楼层率先屈服、
优点是整体性能好、侧向刚度大,无论是强度或变形 都易满足抗震设计的要求;
缺点是大面积墙体的使用限制了建筑物内部平面布置 的灵活性,另外,刚度大产精生选课的件 地震作用也大,因此在设
第五章 多层和高层钢筋混凝土房屋
计中如对配筋和构造处理不当,可能会在受力大的部位产 生严重破坏。
剪力墙结构适用于20~30层 (4)筒体结构或由四周封闭的剪力墙构成单筒式的 筒状结构,或以楼电梯为内筒,密排柱深梁框架为外框筒 组成筒中筒结构。这种结构的空间刚度大,抗侧和抗扭刚 度都很强,建筑布局亦灵活。常用于超高层公寓、办公楼 和商业大厦建筑等。 目前,我国在工业与民用建筑中,特别在地震区,大 量采用多层框架和框架——剪力墙体系。本章主要介绍钢 筋砼框架结构房屋的抗震设精计选课。件
填充墙破坏的主要原因是:墙体受剪承载力低,变形 能力小,墙体与框架缺乏有效的拉结,在往复变形时墙体 易发生剪切破坏和散落。
(完整)钢筋混凝土多层及高层框架结构

常用结构体系钢筋混凝土多层及高层房屋有框架结构、框架—剪力墙结构、剪力墙结构和筒体结构四种主要的结构体系。
1 、框架结构框架结构房屋(是由梁、柱组成的框架承重体系,内、外墙仅起围护和分隔的作用。
框架结构的优点是能够提供较大的室内空间,平面布置灵活,因而适用于各种多层工业厂房和仓库。
缺点:在水平荷载下表现出抗侧移刚度小,水平位移大。
因此,框架结构房屋一般不超过15层。
框架结构柱网示意图2 、剪力墙结构剪立墙结构示意图广州白云宾馆当房屋层数更多时,水平荷载的影响进一步加大,可采用剪力墙结构,此种结构的刚度较大,在水平荷载下侧移小,但平面布置不灵活,适用于15~35层的小开间的民用建筑高层房屋。
广州白云宾馆(33层、112M>采用的就是剪力墙结构。
3 、框架——剪力墙结构为了弥补框架结构随房屋层数增加,水平荷载迅速增大而抗侧移刚度不足的缺点,可在框架结构中增设钢筋混凝土剪力墙形成框架—剪力墙结构。
在框架—剪力墙结构房屋中,框架负担竖向荷载为主,而剪力墙将负担绝大部分水平荷载。
多用于16~25层的工业与民用建筑中(如办公楼、旅馆、公寓、住宅及工业厂房>。
4 、筒体结构简体结构是将剪力墙集中到房屋的内部和外围形成空间封闭筒体,使整个结构体系既具有极大的抗侧移刚度,又能因剪力墙的集中而获得较大的空间,使建筑平面获得良好的灵活性,因为抗侧移刚度较大,适用于更高的高层房屋(≥30层,≥100m>。
筒体结构有单筒体结构(包括框架核心筒和框架外框筒>、筒中筒结构和成束筒结构等三种形式(图7-2>。
图7-2筒体结构 (a>框架内筒结构;(b>筒中筒结构;?束筒结构框架结构1 、框架结构承重方案横向框架承重横向框架承重布置方案是板、连系梁沿房屋纵向布置,框架承重梁沿横向布置(图7-3>,有利于增加房屋横向刚度。
缺点是因为主梁截面尺寸较大,当房屋需要较大空间时,其净空较小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对质量及刚度沿高度分布比较均匀的结构,基本 自振周期可用下列公式近似计算:
Un——结构顶层假想侧移(m)。
多、高层房屋结构的分析和设计计 算
初步计算时,结构的基本自振周期按经验公式估算: n—建筑物层数(不包括地下部分及屋顶小塔楼) 。
Tg=0.4s (Ⅱ类场地,第二组)
T=1.5s(Tg∽5Tg)地震影响系数
T=4s(5Tg∽6s)地震影响系数 T=0~0.1s 地震影响系数 0.45 max∼2 max T=0.1s~Tg地震影响系数2 max
0.015 0.012
0.023∼0.05 0.05
0.027 0.021
0.036∼0.09 0.09
多、高层房屋结构的分析和设计计 算
(2)振型分解反应谱法
对不计扭转影响的结构,振型分解反应谱法可仅考虑 平移作用下的地震效应组合,并应符合下列规定: (a) j振型i层质点的水平地震作用标准值
多、高层房屋结构的分析和设计计 算
(b) 水平地震作用效应(弯矩、剪力、轴向力和变形) :
突出屋面的小塔楼,应按每层一个质点进行地震作用计 算和振型效应组合。
多、高层房屋结构的分析和设计计 算
多、高层房屋结构的分析和设计计 算
顶部突出物:底部剪力法计算顶部突出物的地震作用, 可按所在的高度作为一个质点,按其实际定量计算所得水平 地震作用放大3倍后,设计该突出部分的结构。
增大影响宜向下考虑1~2层,但不再往下传递。
多、高层房屋结构的分析和设计计 算
基本自振周期 T1:
(3)竖向地震作用
9度时的高层建筑,计算竖向地震作用时,可按下 列要求确定竖向地震作用标准值:
(a)总竖向地震作用标准值
多、高层房屋结构的分析和设计计 算
(b) 楼层i的竖向地震作用标准值
多、高层房屋结构的分析和设计计 算
当采用3个振型时,所得地震作用效应乘增大系数1.5; 当采用6个振型时,所得地震作用效应不再增大。
多、高层房屋结构的分析和设计计 算
多、高层房屋结构的分析和设计计 算
多、高层房屋结构的分析和设计计 算
多、高层房屋结构的分析和设计计 算
多、高层房屋结构的分析和设计计 算
多、高层房屋结构的分析和设计计 算
多、高层房屋结构的分析和设计计 算
多遇地震作用的抗震计算要求:
(a)通常应在结构的两个主轴方向分别计算水平地震作 用,各方向的水平地震作用应全部由该方向的抗侧力构件 承担;
(b)当有斜交抗侧力构件时,宜分别计算各抗侧力构件 方向的水平地震作用;
(c)质量和刚度明显不均匀、不对称的结构,应计算水 平地震作用的扭转影响;
多、高层房屋结构的分析和设计计 算
多、高层房屋结构的分析和设计计 算
总体:阻尼比的减少,地震影响系数提高. 多、高层房屋结构的分析和设计计 算
阻尼比 衰减指数r 直线下降斜率调整系数1 阻尼调整系数2
7度0.1g max
罕遇 0.05
≤12层 0.035
>12层 0.02
0.05
0.08
0.08
邻近有高层建筑互相干扰时,风荷载的影响不容忽 视的。邻近建筑的影响较复杂,试验资料也少。
一般无论邻近有无高层建筑,高度超过200m的建筑 物,风荷载应按风洞试验确定。
多、高层房屋结构的分析和设计计 算
3.地震荷载
国家标准《建筑抗震设防分类标准》(GB 50223), 根据建筑使用功能的重要性,分甲类、乙类、丙类和丁类 四个抗震设防类别。
2.2 多、高层房屋结构的分析和设计
p350~361、P427~439
一、荷载
1.竖向荷载 楼面、屋顶活荷载以及雪荷载的标准值,按现行国
家标准《建筑结构荷载规范》规定采用。 规范中未给出一般高层办公楼、旅馆、公寓中所需要
的酒吧间、屋顶花园等的最小屋顶活荷载标准值。 遇这种情况,应按实际情况采用,但不得小于表4-9
(d) 9度抗震设防的高层建筑钢结构,或者按8度和9 度抗震设防的大跨度和长悬臂构件,应计算竖向地震作用。
多、高层房屋结构的分析和设计计 算
设计反应谱 :
弹性反应谱理论是现阶段抗震设计的基本理论, 《建筑抗震设计规范》所采用的设计反应谱,是以水平 地震影响系数α曲线的形式表达的。
地震多影、高响层系房屋 数结曲构线的分析和设计计
算
地震反应谱
为便于求地震作用,将单自由度体系的地震最大绝 对加速度反应与其自振周期T的关系定义为地震加速度 反应谱,或简称为地震反应谱。
意义:可以理解为一个确定的地面运动,通过一组 阻尼比相同但自振周期各不相同的单自由度体系,所引 起的各体系最大加速度反应与相应体系自振周期间的关 系曲线。
影响因素:一个是体系的阻尼比,二是地震动。
甲类建筑:重大建筑工程和地震时可能发生严重次生 灾害的;
乙类建筑:地震时使用功能不能中断或需尽快恢复的; 丁类建筑:抗震属于次要性的; 丙类建筑:甲类、乙类和丁类建筑除外的一般建筑。
多、高层房屋结构的分析和设计计 算
抗震设计目标:小震不坏,中震可修,大震不倒。 两阶段的抗震设计:多遇地震作用及罕遇地震作用设计。 多遇地震相当于50年超越概率为63.2%的地震,罕遇地 震相当于50年超越概率为2%—3%的地震。
所列的数值。
多、高层房屋结构的分析和设计计 算
多层建筑应考虑活荷载的不利分布; 高层建筑活荷载值的比重不大,可不考虑活荷载的 不利分布。在计算构件效应时,楼面及屋面竖向荷载可 仅考虑各跨满载的情况。
多、高层房屋结构的分析和设计计 算
2 .风荷载
(GB50009—2001)规定,一般建筑结构风荷载的重 现期为50年,高层建筑的重现期可适当提高,重现期可 取100年,基本风压乘以系数1 .1。
0.03 0.024
0.036∼0.11 0.11
多、高层房屋结构的分析和设计计 算
多、高层房屋结构的分析和设计计 算
水平地震影响系数α的计算:
(4-38)
多、高层房屋结构的分析和设计计算
(4-39)
(4-40)
多、高层房屋结构的分析和设计计 算
(1) 底部剪力法
采用底部剪力法计算水平地震作用,各楼层可按一个自 由度计算。 按下式计算各楼层的等效地震作用: