红外测温仪技术方案设计

合集下载

红外测温技术设计方案

红外测温技术设计方案

红外测温技术设计方案第一章绪论1.1 课题研究的目的和意义随着科技的快速发展和医疗技术的需要,测温技术也在不断地提高和改进。

众所周知,体温是一个重要的人体生理参数,不仅是人体生命活动的基本特征,而且也是观测人体机能是否正常运行的重要指标之一。

如果能及时知道一个人的体温,也许就能知道这个人的生理参数是否正常运行。

所以,体温计无论是日常生活还是临床医疗,都是必不可少的测量器具。

传统的体温计主要是水银式体温计,通过储存在水银球内的水银受热膨胀,然后读取刻度值来判断温度的高低。

但是这种温度计测量时间长、准确度低,在遇热或者放置不当时,容易破裂使水银泄露,造成人体接触中毒、污染环境。

面对这种传统体温计的不利因素,不仅给人们传达错误的信息,而且还有害健康。

因此,需要研究出一种新型的测温技术,改变传统体温计的测温方法,不仅能够方便、快捷、准确的测出人体的温度,而且对人体和环境没有伤害。

利用高科技和不懈的努力,人们终于研究设计出一种新型的测温仪——红外线测温仪。

这种新型的测温仪是利用人体发出特定波段的红外线来测量人体的温度,采用高精度的红外温度传感器,能够快速准确的测出人体的平均温度,从而解决了传统体温计的弊端,使测温技术更高效、更快捷。

红外测温技术不仅可以对个人实现快速、准确的测温,而且可以在大规模的检疫站,大流量的人群实现快速测量。

不仅节省了时间,也给人们带来了方便。

现在,红外测温仪已经被广泛的应用于各个领域,也发挥着越来越大的作用。

1.2 红外测温技术的发展概况红外线的最早研究是在1800年开始的,首先是英国物理学家F·W·赫胥尔从热的角度来研究各种色光时,发现了红外线。

自从赫胥尔发现红外线至今,红外线技术的发展历经了近两个世纪,从那时起,红外辐射和红外元件、部件的科学研究逐步发展,但发展比较缓慢,直到1940年前后才真正出现现代的红外技术。

当时,德国研制出硫化铅和几种红外透射材料,利用这些元、部件制成一些军用红外系统,例如高射炮用导航仪、海岸用船舶侦察仪、船舶探测和跟踪系统、机载轰炸机探测仪和火控系统等等。

基于红外线测温技术的体温检测方案的设计与实现

基于红外线测温技术的体温检测方案的设计与实现

基于红外线测温技术的体温检测方案的设计与实现体温检测是当前疫情防控的一项重要措施,基于红外线测温技术的体温检测方案具有快速、非接触、准确等优势,能够提高体温检测的效率和安全性。

本文将探讨基于红外线测温技术的体温检测方案的设计与实现。

一、设计方案1.硬件选型:选用高精度的红外传感器和温度计,确保测温准确度。

同时,考虑到使用场景的特殊性,需要选择适合的封装形式和材质,保证设备的耐用性和易读性。

2.测温算法:研究并选择合适的测温算法,包括红外温度补偿、热辐射差异补偿、环境噪声过滤等,以提高准确性和稳定性。

可以结合机器学习算法对测温数据进行分析和优化,进一步提升测温的精度。

3.设备布置:根据使用场景的需求,设计合理的设备布置方案。

考虑到人员流动性,建议在通道入口或出口处设置检测设备,以便对人群进行高效的体温检测。

4.用户交互界面:设计友好的用户交互界面,包括显示屏幕和报警装置。

通过可视化的界面,显示测温结果,并设置合理的警戒温度范围。

当检测到异常体温时,及时发出声音或光提示,以便进行进一步的筛查和处理。

5.数据存储与传输:考虑到数据的隐私性和保密性,设计合理的数据存储和传输方案。

可选择本地存储或云端存储方式,同时,确保数据的安全性,加密传输,防止数据泄露和篡改。

二、实现过程1.采购设备:根据设计方案,选购所需的红外传感器、温度计、显示屏幕和报警装置等硬件设备。

确保设备的质量和稳定性,以提高测温的准确性和可靠性。

2.软件开发:根据测温算法的选择,进行相应的软件开发和编码工作。

通过编程语言,实现测温数据的采集、处理和分析,以及交互界面的设计和开发。

3.设备组装:将所采购的硬件设备按照设计方案进行组装。

确保设备的外观整洁、结构稳固,并测试设备的正常工作状态。

4.设备调试:对已组装的设备进行调试工作,包括传感器的校准、温度计的测试、测温算法的验证等。

确保设备的准确性和稳定性,提高测温的精度。

5.设备安装:根据设备布置方案,将已调试的设备安装到指定的位置。

红外测温仪设计方案

红外测温仪设计方案

红外测温仪设计方案红外测温仪已被证实是检测和诊断电子设备故障的工具。

可节省大量开支,用红外测温仪,你可连续诊断电子连接问题和通过查找在DC电池上的输出滤波器连接处的热点,以检测不间断电源(UPS)的功能状态,你可检验电池组件和功率配电盘接线端子,开关齿轮或保险丝连接,防止能源消耗;由于松的连接器和组合会产生热,红外测温仪有助于识别回路中断器的绝缘故障。

或监视电子压缩机;日常扫描变压器的热点可探测开裂的绕组和接线端子。

目录1.红外测温仪的原理构造2.红外测温仪的分类3.红外测温仪的技术参数1.红外测温仪的原理构造红外测温仪是把从被测物接收的红外线,由透镜经过滤波器聚焦在检波器上,检波器通过被测物辐射密度的积分,产生一个与温度成比例的电流或电压信号,在此后相连接的电器部件中,把此温度信号线性化,发射率区域的修正,及转换成一个标准的输出信号。

原理上有便携式测温仪和固定式测温仪两种,因此,在选择合适的红外测温仪用于不同的测量点时,以下的特征将是主要的:1、瞄准器瞄准器有此作用,测温仪所指的测量块或测量点可以看见,大面积的被测物可以经常不要瞄准器。

在小的被测物和较远的测量距离时,瞄准器以透光镜形式带有仪表板刻度或激光指向点是值得推荐的。

2、透镜透镜确定测温仪的被测点,对大面积的物体来说,一般带有固定焦距的测温仪足够可以。

但在测量距离远离聚焦点时,测量点边缘的图像将不清楚。

为此,采用变焦镜更好,在所给予的变焦范围内,测温仪可调整测量距离,新的测温仪带有变焦的可替换镜头,近透镜和远透镜可不需校准复检进行更换。

2.红外测温仪的分类红外线测温仪三大分类:(1)人用红外线测温仪:额温型红外线体温计(以下简称额温计)是一种利用红外接收原理测量人体的测温计。

使用时,只须方便的将探测窗口对准额头位置,就能快速、准确的测得人体温度。

(2)工业红外测温仪:工业红外测温仪测量物体的表面温度,其光传感器辐射、反射并传输能量,然后能量由探头进行收集、聚焦,再由其它的电路将信息转化为读书显示在机上,本机配备的激光灯更能对准被测物及提高测量精度。

基于红外线测温技术的体温监测方案设计与实施

基于红外线测温技术的体温监测方案设计与实施

基于红外线测温技术的体温监测方案设计与实施体温监测是当前公共卫生领域中至关重要的一环,而基于红外线测温技术的体温监测方案则成为了一种被广泛应用的方法。

本文将会针对基于红外线测温技术的体温监测方案进行设计与实施,并提供一些实用建议和注意事项。

1. 方案设计1.1 选择合适的红外线测温设备在选择红外线测温设备时,应考虑以下几个因素:- 准确性:确保设备具备高准确性的测量功能,能够精确测量人体温度。

- 快速性:设备应具备较短的测量时间,以方便大规模测温。

- 距离要求:根据使用场景的不同,选择测温距离适当的设备,以确保安全和准确性。

1.2 制定体温监测流程制定体温监测流程是确保整个体温监测方案顺利进行的关键步骤。

以下是一个典型的体温监测流程示例:- 确保所有参与体温监测的人员都处于适当的测量距离范围内。

- 操作人员准备好红外线测温设备,并确保设备正常工作。

- 操作人员将红外线测温设备对准被测者的额头,并触发测量。

- 设备显示体温结果,并存储数据(如需要)。

- 清洁设备,以备下次使用。

2. 实施方案2.1 提供良好的测温环境为确保测温结果的准确性,需要提供一个稳定的测温环境。

以下是几个关键因素:- 温度稳定:确保测温环境的温度相对稳定,避免温度波动对测量结果的影响。

- 光线控制:创造一个较为暗淡的环境,以减少外界光线对测温结果的干扰。

- 距离合适:对于不同设备,需要了解其适宜的测温距离,确保测量的准确性和安全性。

2.2 基于红外线测温技术的体温监测操作培训确保操作人员对红外线测温设备的正确操作非常重要。

应进行相关操作培训,培养操作人员的操作技能和观察判断能力,包括以下内容:- 设备操作:向操作人员介绍设备的使用方法、开机和关机步骤以及测温时应注意的事项。

- 数据记录:指导操作人员记录测温结果,并妥善保存和管理这些数据。

- 设备维护:培训操作人员定期检查和清洁设备,确保设备长期稳定运行。

2.3 数据分析和管理体温监测方案的设计不仅仅是测量体温,还需要对测得的数据进行分析和管理,以便更好地掌握整体情况。

基于红外线测温技术的医疗体温检测方案设计与改进

基于红外线测温技术的医疗体温检测方案设计与改进

基于红外线测温技术的医疗体温检测方案设计与改进随着新冠病毒的全球爆发,人们对于体温检测的重视程度大大增加。

红外线测温技术作为一种非接触式的测温方法,广泛应用于医疗机构、公共场所和交通工具等需要进行体温检测的场景。

本文将介绍基于红外线测温技术的医疗体温检测方案的设计及其改进措施。

1. 设计方案基于红外线测温技术的医疗体温检测方案主要包括硬件设备和软件系统两个部分。

硬件设备:1.1 红外线测温仪:选择高精度、高稳定性的红外线测温仪,确保温度测量的准确性和可靠性。

同时,应具备快速测温的能力,以提高体温检测的效率。

1.2 显示屏:将测温结果实时显示在屏幕上,方便用户读取数据。

1.3 报警装置:采用声音或光线等方式,当测温结果超过设定的阈值时,及时发出警报,提醒相关人员进行进一步的检测和处理。

软件系统:1.4 数据记录与分析:通过软件系统将测温数据进行记录和分析,以便后期对异常体温进行追踪和分析。

同时,可以提供数据导出功能,方便医疗机构的数据分析和报告生成。

1.5 阈值设定:设置测温结果正常范围的阈值,当测温结果超过设定范围时,自动触发警报装置,通过提醒相关人员进行确认和处理。

1.6 安全保障措施:加密存储测温数据、限制非授权人员进行操作、保护用户隐私等。

2. 改进措施为了进一步提升基于红外线测温技术的医疗体温检测方案的准确性和实用性,可以采取以下改进措施:2.1 引入机器学习算法通过机器学习算法对大量的体温测量数据进行训练,建立起更准确的体温测量模型。

这样可以提高体温检测的准确性,同时减少误报率和漏报率,增强方案的可靠性。

2.2 多点测温方式传统的红外线测温仪通常采用单点测温方式,容易受到温度环境差异的影响,从而造成测温结果的偏差。

改进方案可以采用多点测温方式,通过多个测温点的平均值来得出更准确的体温测量结果。

2.3 自动化与智能化在方案设计中,可以引入自动化和智能化的技术,实现测温结果的自动记录、分析和报警。

PCBA方案——额温枪(红外线测温仪)方案开发

PCBA方案——额温枪(红外线测温仪)方案开发

PCBA方案一一额温枪(红外线测温仪)方案开发额温枪(红外线测温仪)针对量测人体额温基准设计,使用非常简单、方便。

1秒可准确测温,无镭射点,免除对眼睛之潜在伤害,不需接触人体皮肤,避免交叉感染,一键测温,排查流感。

适合家庭用户、宾馆、图书馆、大型企事业单位,也可以用于医院、学校、海关、机场等综合性场所,还可以提供给医务人员在诊所使用。

一、额温枪用途(1)人体体温测量:准确的测量人体体温,替代传统的水银体温计。

准备想要孩子的女性可以随时利用红外线测温仪(额温枪)来监测基础体温,记录排卵期的体温,并选择合适的时机受孕,还能测温判断怀孕等等。

当然,还有最重要的,随时观察自己体温是否存在异常,避免感染流感,防范猪流感等。

(2)皮肤温度测量:测量人体的皮肤的表面温度,比如可用于断肢再植入手术时需要测量皮肤的表面温度。

(3)物体温度测量:测量物体的表面温度,比如可用于茶杯外表的温度的测量。

(4)液体温度测量:测量液体的温度,如婴儿洗澡水的温度,宝宝洗澡的时候测一下水温,不再担心凉了或者烫着;还可以测量牛奶瓶的水温,方便冲调Baby的奶粉。

(5)可以测量室温。

二、额温枪工作原理任何物体在高于绝对零度(-273°C)以上时都会向外发出红外线,额温枪通过传感器接收红外线,得出感应温度数据。

额温枪的原理就是将热释电传感器输出的电压信号准确转换成温度值显示出来,其中的关键器件就是热释电传感器,也被成为人体红外传感器。

虽然测量原理不算复杂,但成品额温枪依然有五大技术难点。

(1)传感器输出信号幅度小,实测电压低至2PV。

(2)传感器输出信号幅度会受到环境温度的影响,需要做环境温度补偿。

(3)传统额温枪方案不对外开放,有相关经验的工程师少。

(4)做好额温枪需要电子、光学、热学的综合知识。

(5)设计和生产需要精密的实验测试环境(恒温环境)和仪器设备(恒温槽)。

红外测温原理物体处于绝对零度以上时,因为其内部带电粒子的运动,以不同波长的电磁波形式,向外辐射能量,波长涉及紫外、可见、红外光区,但主要处于0∙76~3um的近红外、3~6μm中红外、6-15μm 远红外区。

红外测温方案

红外测温方案

红外测温方案摘要:红外测温技术是一种无接触、非接触的测温方法,通过测量目标物体的红外辐射能量,可以准确、快速地获取目标物体的温度信息。

本文将介绍红外测温的原理、应用场景以及常见的红外测温方案。

引言:在工业生产、医疗保健、安防等领域,准确测量目标物体的温度是非常重要的。

传统的接触式温度测量方法存在着接触不便、测量不准确、易受干扰等问题。

而红外测温技术的出现,有效地解决了这些问题,成为了温度测量领域的一项重要技术。

一、红外测温的原理红外测温的原理基于物体辐射能量与其温度之间的关系。

根据斯蒂法-玻尔兹曼定律,物体的辐射能量与其温度的四次方成正比。

因此,通过测量物体的红外辐射能量,可以推算出其温度值。

红外测温仪器主要由红外传感器、辐射率校正器、信号处理器等组成。

二、红外测温的应用场景红外测温技术在多个领域有着广泛的应用。

1. 工业生产领域在工业生产过程中,温度的控制对于产品质量和生产效率至关重要。

红外测温技术可以用于监测和控制各种设备的温度,例如锅炉、热交换器、熔炉等。

通过及时掌握设备的温度信息,可以预防设备故障和生产事故的发生,确保生产的顺利进行。

2. 医疗保健领域红外测温技术在医疗保健领域有着重要的应用。

例如,在体温测量中,传统的接触式温度计需要与人体直接接触,不仅不够方便,还可能交叉感染。

而使用红外测温仪,只需对准人体额头进行测量,即可获取准确的体温数值,非常适合用于公共场所的体温筛查。

3. 安防领域红外测温技术在安防领域也有着重要的应用。

例如,使用红外测温技术可以对人流密集的场所进行快速测温,及时发现患者,控制疫情传播。

此外,红外测温技术还可以用于火灾、燃气泄漏等安全监测,及时发现和处理潜在危险。

三、常见的红外测温方案目前市场上存在多种红外测温方案,下面介绍几种常见的方案。

1. 手持式红外测温仪手持式红外测温仪是最常见的红外测温设备之一。

它小巧便携,操作简单,适用于不同的场景。

用户只需将测温仪对准目标物体,按下测量键,即可在显示屏上看到目标物体的温度数值。

红外测温仪方案

红外测温仪方案

红外测温仪方案随着科技的不断进步,红外测温技术在各个领域得到了广泛应用。

红外测温仪作为一种非接触式测温工具,具有精准、高效、安全、便捷等特点,被广泛应用于医疗、工业、能源、环保等领域。

本文将介绍红外测温仪的基本原理、应用领域以及一种简单实用的红外测温仪方案。

一、红外测温仪的基本原理红外测温仪利用物体辐射能量与温度之间的关系来测量物体的温度。

其基本原理是根据物体表面的热辐射能量进行测量,通过红外光学系统对目标进行感知,接收被感知物体辐射出的红外能量,经过相应的计算和转换,输出目标物体的表面温度数据。

红外测温仪的核心部件是红外探测器和光学系统。

红外探测器负责接收红外辐射能量,并将其转化为电信号输出。

光学系统则用于对目标进行聚焦和收集红外辐射能量,以提高测温的准确度和稳定性。

二、红外测温仪的应用领域1. 医疗领域红外测温技术在医疗领域中发挥着重要的作用。

红外测温仪可以快速、准确地测量人体体温,无需接触,避免交叉感染的风险,对于防控传染病、发现患者体温异常具有重要意义。

特别是在公共场所、医院、机场等人员密集的地方,红外测温仪成为一种必不可少的工具。

2. 工业领域在工业领域,红外测温仪被广泛应用于设备状况监测、能源消耗控制等方面。

通过测量设备表面的温度,可以及时判断设备是否运行正常,预测设备的故障,并采取相应的维修和保养措施,以提高设备的可靠性和安全性。

红外测温仪还可以用于监测高温工作环境,确保工人的安全。

3. 建筑领域在建筑领域,红外测温仪可以用于检测建筑物表面的温度分布,发现建筑物中存在的隐蔽热桥或热漏点,从而提出相应的节能建议。

通过红外测温仪的应用,可以提高建筑物的能源利用效率,降低能源消耗,减少温室气体排放。

三、一种简单实用的为了方便用户在日常生活和工作中使用红外测温仪,一种简单实用的红外测温仪方案被提出。

该方案主要包括以下几个部分。

1. 硬件设备该方案采用小型便携式红外测温仪作为测温设备。

该测温仪具有小巧轻便的外观设计,适合携带,方便用户在不同场景中使用。

基于红外线测温技术的精确温度监控方案设计与实现

基于红外线测温技术的精确温度监控方案设计与实现

基于红外线测温技术的精确温度监控方案设计与实现一、引言温度监控在许多领域拥有广泛的应用,尤其是在工业、医疗、农业等领域,准确的温度监测可以帮助提高生产效率、保障产品质量、确保设备安全性等。

本文将介绍一种基于红外线测温技术的精确温度监控方案设计与实现。

二、方案设计1. 硬件设计基于红外线测温技术的温度监控方案主要包括红外线测温仪、温度传感器、数据采集模块、控制模块和显示模块等组成。

红外线测温仪是关键的硬件设备,通过接收被测物体发出的红外线辐射,并将其转化为温度值。

在选择红外线测温仪时,应考虑测温范围、测温精度、响应时间等指标。

温度传感器用于辅助确保测温的准确性,可以通过与红外线测温仪的数据进行对比校准,提高测温的精度。

数据采集模块负责从红外线测温仪和温度传感器中采集温度数据,并将其传输给控制模块进行处理。

控制模块是核心的处理单元,根据红外线测温仪和温度传感器的数据进行算法处理,判断温度是否超过设定的阈值,并进行相应的预警或控制操作。

显示模块用于将温度监测结果实时显示给用户,可以采用液晶显示屏、LED指示灯等形式。

2. 软件设计软件设计主要包括数据采集与处理、温度算法优化和实时监控显示等功能。

数据采集与处理部分负责将来自红外线测温仪和温度传感器的数据进行采集,并进行数据校准和滤波处理,以提高温度测量的准确性。

同时,还可以进行数据存储,以备后续分析和查询。

温度算法优化部分通过对红外线测温仪和温度传感器的数据进行优化处理,提高温度测量的精度。

可以使用统计学算法、滤波算法等来消除测量误差,并提供更准确的温度监测结果。

实时监控显示部分将处理后的温度数据实时显示给用户,可以通过图表、曲线等形式展示,方便用户进行实时监控和分析。

三、实施方案1. 硬件实施根据设计方案,选购适合的红外线测温仪、温度传感器、数据采集模块、控制模块和显示模块,并进行组装和连接。

2. 软件实施根据软件设计方案,编写相应的程序代码,包括数据采集与处理、温度算法优化和实时监控显示等功能。

基于红外线测温技术的医疗体温监测方案设计

基于红外线测温技术的医疗体温监测方案设计

基于红外线测温技术的医疗体温监测方案设计随着新冠肺炎疫情的爆发,对体温监测的需求变得更加重要。

传统的体温监测方法主要包括接触式测温和非接触式测温。

然而,接触式测温需要物理接触,容易传播病毒,而非接触式测温又可能存在测量误差。

基于红外线测温技术的医疗体温监测方案设计将是一个更好的选择。

红外线测温技术是一种常见的非接触式体温测量方式,它利用物体发射的红外辐射能量来测量其表面温度。

将这项技术应用于医疗体温监测领域,可以有效地减少人与人之间的接触,降低传染风险。

基于红外线测温技术的医疗体温监测方案设计需要考虑以下几个方面:1. 测温设备选择:选择一款适用于医疗体温监测的红外测温仪器。

这款仪器应具有高精度、高稳定性和高防护性能。

同时,仪器应易于操作,操作人员无需接受过多专业培训。

2. 测温点选择:确定测温点的位置。

一般情况下,额头是最常用的测温点,因为额头表面大部分是平坦的皮肤,容易测量。

此外,考虑到不同人群可能存在个体差异,可以酌情选择其他位置进行测温,如太阳穴、耳朵等。

3. 测温距离和角度:确定红外测温仪与测温点的距离和角度。

不同仪器可能有不同的要求,但通常建议保持仪器与测温点之间的距离在5-10厘米。

同时,确保仪器与测温点处于垂直角度,以尽量减少测温误差。

4. 测温环境:确保测温环境的稳定性和准确性。

避免测温时有强烈的光线干扰或温度干扰。

同时,应确保测温环境的清洁和卫生,避免环境因素对测温结果产生干扰。

5. 数据记录与信息管理:设计一个系统用于记录和管理测温数据。

这样可以使医护人员随时了解患者的体温变化情况,并及时采取相应的措施。

此外,数据的准确性和保密性也是需要考虑的因素。

6. 面部识别和体温对比:结合红外线测温技术与面部识别技术,可以实现对人脸的自动识别与体温测量。

这样可以提高体温测量的效率和准确性,缩短排队等待时间,并减少操作人员的工作量。

总结而言,基于红外线测温技术的医疗体温监测方案设计可以有效地提高体温检测的效率和准确性,同时减少人与人之间的接触,降低传染风险。

红外线测温技术方案 (3)

红外线测温技术方案 (3)

红外线测温技术方案概述红外线测温技术是一种非接触式的温度测量方法,它通过测量物体发出的红外辐射来获取物体表面的温度。

红外线测温技术广泛应用于工业、医疗、安防等领域,具有高精度、快速响应、无损检测等特点。

本文将介绍红外线测温技术的原理、应用领域以及一些常见的红外线测温设备。

原理红外线测温技术基于物体发出的红外辐射与其表面温度之间的关系。

物体在不同温度下会发出不同强度和频率的红外辐射,红外线测温设备通过检测和测量这些红外辐射来计算物体的表面温度。

红外线测温设备通常包含一个红外传感器,它可以感知红外辐射并将其转化为电信号。

设备还包括一个数字处理器,用于处理传感器输出的电信号并计算物体的表面温度。

通过合理的校准和对环境因素的补偿,红外线测温设备可以实现高精度和稳定的温度测量。

应用领域工业红外线测温技术在工业领域有着广泛的应用。

例如,在钢铁、铸造和焊接等行业中,红外线测温设备可以用于测量高温熔融金属的温度,以确保生产过程的稳定性和质量。

此外,红外线测温技术还可以用于检测电子元器件、电气设备和机械设备的温度。

通过对设备表面的温度进行实时监测,可以及时发现异常情况并采取相应的措施,避免设备故障和生产事故的发生。

医疗红外线测温技术在医疗领域被广泛应用于体温测量。

与传统的接触式体温计相比,红外线测温设备无需与人体接触,可以快速、准确地测量体温,避免了交叉感染的风险。

此外,在医疗器械的消毒过程中,红外线测温技术也可以用来监测消毒设备的温度,确保消毒效果符合要求。

安防红外线测温技术在安防领域可以用于监控和控制系统。

例如,在火灾预警系统中,红外线测温设备可以通过监测建筑物表面的温度来判断是否有火源,并及时触发报警。

另外,红外线测温技术还可以用于安全监控系统中的人体检测。

通过测量人体表面的温度,可以判断是否存在异常情况,如火警、恶意进入等,并采取相应的措施保护人员的安全。

常见设备红外线测温枪红外线测温枪是一种便携式红外线测温设备,由红外传感器和数字显示器组成。

红外电子体温计设计方案

红外电子体温计设计方案

红外电子体温计设计方案1.1、红外测温技术简介红外测温原理:一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。

物体的红外辐射能量的大小及其按波长的分布——与它的表面温度有着十分密切的关系。

因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。

在2003年全国防“非典”斗争中,我国对红外技术应用于非接触式测温进行了深入研究,在短时间内开发成功了“非接触式红外测温仪”,打开了国内“非接触式测温”新篇章。

在国外,非接触式红外测温仪已经非常先进了,自1999年就有许多国家致力于这方面的开发研究,到现在为止很多国家的铲平已经达到国际先进水平,并已广泛应用于各个领域。

比如:美国早在2001年就颁布了有关红外测温仪的计量标准,美国雷泰公司生产的ST系列红外测温仪已达到世界领先水平。

由于红外测温仪测量温度范围宽,除了用于人体温度检测外,还可用于电器的红外测温、供暖的红外测温、运输/汽车维修时的红外测温等各个领域。

因此,它具有广泛的开发前景!目前国内开发的红外体温计主要有华中科技大学研制的“慧眼:HW一05”人体温度红外热图像仪.其分辨率高达0.06℃;中科院上海物理研究所研制的红外测温仪和兰州大学合华技术应用开发中心开发的LHW—I型红外线测温仪。

国外产品有德国博郎集团开发的只需1秒即可测出体温的红外体温计;日本欧姆龙研制的几款非接触式红外体温计和BJ40型非接触式医用红外线体温计(精度为±O.2℃),其主要器件是红外温度传感器。

1.2、单片机简介单片微型计算机简称单片机,是典型的嵌入式微控制器(Microcontroller Unit),常用英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。

单片机由芯片内仅有CPU的专用处理器发展而来。

最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。

红外测温系统实施方案

红外测温系统实施方案

红外测温系统实施方案一、引言。

随着科技的不断发展,红外测温技术在各行各业得到了广泛应用。

特别是在当前的疫情防控工作中,红外测温系统成为了必备的设备之一。

本文将就红外测温系统的实施方案进行详细介绍,以期为相关单位提供参考。

二、系统组成。

红外测温系统主要由红外测温仪、显示屏、数据处理系统和报警系统组成。

红外测温仪是核心部件,通过红外线测温原理,能够快速、准确地测量人体体温。

显示屏用于实时显示测温数据,数据处理系统用于存储和分析测温数据,报警系统则能够及时发出警报,对异常体温进行预警。

三、系统布局。

在实施红外测温系统时,需要合理布局各个组成部分。

首先,红外测温仪应设置在人员进出口处,以确保所有人员都能够接受测温。

其次,显示屏应设置在显眼的位置,方便人员查看自己的体温数据。

数据处理系统和报警系统则可以设置在后台管理区域,以便管理人员对数据进行监控和分析。

四、操作流程。

红外测温系统的操作流程应该清晰明了,以便人员能够迅速熟悉并掌握。

一般来说,人员在进入测温区域时,应主动配合工作人员进行体温测量。

测温仪实时采集体温数据,并在显示屏上显示出来。

数据处理系统会对测温数据进行存储和分析,一旦发现异常体温,报警系统将立即发出警报,提醒工作人员进行进一步处理。

五、系统维护。

红外测温系统的稳定运行离不开定期的维护和保养。

在日常使用中,需要定期对红外测温仪进行校准,确保测温精度;显示屏和数据处理系统也需要定期清理和维护,以防止因灰尘堆积而影响使用效果。

此外,报警系统也需要进行定期的功能测试,确保在发现异常体温时能够及时报警。

六、总结。

红外测温系统作为当前疫情防控工作中的重要设备,其实施方案的合理性和完善性对于工作效果至关重要。

通过对系统组成、布局、操作流程和维护等方面的详细介绍,相信相关单位能够更好地实施红外测温系统,为疫情防控工作提供有力支持。

希望本文能够对大家有所帮助,谢谢阅读。

单片机方案红外额温枪测温仪解决方案(一)2024

单片机方案红外额温枪测温仪解决方案(一)2024

单片机方案红外额温枪测温仪解决方案(一)引言概述:本文描述了一种基于单片机方案的红外额温枪测温仪解决方案,该方案利用红外技术和单片机控制实现对人体温度的非接触式测量。

通过该方案,可以快速准确地测量出人体的体温,并实现温度数据的显示和存储。

本文将从硬件设计、软件设计、测温算法、数据处理和系统性能等五个大点来详细阐述该解决方案的设计和实现。

正文:1. 硬件设计1.1 红外传感器选型与接口设计1.2 单片机选型与主控设计1.3 温度测量电路设计1.4 显示模块设计1.5 供电电路设计2. 软件设计2.1 单片机编程环境搭建2.2 红外传感器数据采集程序设计2.3 温度测量算法实现2.4 数据显示程序设计2.5 数据存储与传输程序设计3. 温度测量算法3.1 红外辐射测量原理分析3.2 红外温度测量算法选择3.3 温度补偿算法设计3.4 校准方案设计3.5 系统精度及可靠性分析4. 数据处理4.1 数据存储与管理4.2 数据分析与统计4.3 数据可视化展示4.4 温度异常报警机制4.5 多功能操作与用户界面设计5. 系统性能5.1 测温仪准确度和稳定性测试5.2 响应速度与重复性测试5.3 温度范围和环境适应性测试5.4 电源管理及续航时间测试5.5 用户使用体验评估总结:本文详细介绍了一种基于单片机方案的红外额温枪测温仪解决方案的设计和实现。

通过该方案,可以实现对人体的非接触式温度测量,并提供快速准确的温度数据。

硬件设计、软件设计、测温算法、数据处理和系统性能的详细阐述,可以为读者了解该解决方案的设计思路和实施步骤提供参考。

该测温仪具有高度可靠性和准确性,并具备较好的用户体验,可广泛应用于公共场所、医疗机构等领域。

基于红外线测温技术的无接触体温检测方案设计与优化

基于红外线测温技术的无接触体温检测方案设计与优化

基于红外线测温技术的无接触体温检测方案设计与优化随着全球疫情的不断蔓延,体温检测变得尤为重要。

从传统的接触式体温计发展到现在的无接触体温检测技术,红外线测温技术成为了最常用的无接触式体温检测方案。

本文将围绕基于红外线测温技术的无接触体温检测方案进行设计与优化。

一、方案设计1. 仪器选型在设计无接触体温检测方案时,首先需要选用合适的红外线测温仪器。

理想的仪器应具备以下特点:高精度、快速测量、稳定性好、操作简单、价格合理。

应根据实际使用环境和需求选择合适的仪器。

2. 测量距离与视场大小在选择仪器时,要考虑测量距离和视场大小的适宜范围。

较远的测量距离能确保安全性,较大的视场大小则能提高工作效率。

根据具体使用场景,权衡这两个因素的关系,选择适合的参数。

3. 测温环境控制在使用无接触体温检测技术进行测温时,要确保测温环境的稳定性和一致性。

避免在强光、强风、高温或低温等干扰因素下进行测量,以确保测温的准确性和可靠性。

二、方案优化1. 测温距离的调整根据实际情况对测温距离进行优化调整,以获得更准确的测温结果。

一般来说,距离测温距离较近可以提高测温精度,但可能会受到测量视场范围的限制。

因此,在确定测温距离时,需要综合考虑测温精度和视场大小的平衡。

2. 测温算法的优化针对不同的测温对象和环境条件,可以采用不同的温度校正算法进行优化,以提高测温精度。

例如,对于有较大温度梯度的物体,可以采用多点测温算法,并结合热成像技术进行校正,以获得更准确的测温结果。

3. 温度补偿由于红外线测温技术对环境温度的敏感性,需要进行温度补偿来提高测温精度。

可以通过引入环境温度传感器,结合测温仪器自身的温度补偿功能,来校正测温结果。

4. 数据分析与处理无接触体温检测方案通过红外线测温仪器获取温度数据,为了更好地分析和处理这些数据,可以利用计算机视觉技术、机器学习算法等进行数据分析和处理,以提高体温检测的准确度和效率。

5. 用户体验优化针对不同人群和使用场景,考虑用户的使用习惯和需求,对体温检测方案进行用户体验的优化。

红外线测温技术方案

红外线测温技术方案

红外线测温技术方案
红外线测温技术是一种非接触式测温技术,通过测量物体发出的红
外辐射能量,来推断物体的表面温度。

根据不同应用需求和环境条件,可以使用以下方案来实现红外线测温技术:
1. 红外线测温传感器:选择适合的红外测温传感器模块,如
MLX90614等,它具有高精度、快速响应、低功耗等特点。

2. 光学透镜设计:使用适当的光学透镜来聚焦红外辐射能量,提高
测量精度和灵敏度。

可以根据需要选择焦距和材料。

3. 光学滤波器:根据目标物体的波长特性,选择适当的光学滤波器,以过滤掉其他频段的辐射信号,并提高测量的准确性。

4. 热辐射补偿:考虑环境温度和其他物体的热辐射干扰,需要对测
量结果进行热辐射补偿,以减小误差。

5. 数据处理和显示:通过微处理器或者单片机来读取红外测温传感
器的数据,并进行合适的算法处理,得到目标物体的表面温度。


以采用LCD显示屏或者其他方式将测温结果实时显示出来。

6. 温度校准:为了确保测量结果的准确性,需要定期进行温度校准。

可以使用标准温度源对测温设备进行校准。

需要注意的是,红外线测温技术在实际应用中可能受到环境温度、
湿度、朝向、目标物体表面反射率等因素的影响,需要合理设计和
校准,以保证测温结果的准确性和稳定性。

基于红外线测温技术的精准温度检测方案设计

基于红外线测温技术的精准温度检测方案设计

基于红外线测温技术的精准温度检测方案设计精准温度检测方案设计基于红外线测温技术摘要:本文将基于红外线测温技术的精准温度检测方案的设计进行探讨。

首先,介绍了红外线测温技术的原理和应用领域。

然后,分析了目前存在的问题和挑战。

接着,提出了一种基于红外线测温技术的精准温度检测方案设计,并对其进行了详细的描述。

最后,对该方案的可行性和实用性进行了评估和讨论。

1. 引言随着科技的不断发展,温度检测在众多领域的应用越来越广泛。

传统的接触式温度检测方式存在许多局限性,例如需要直接接触被测物体、无法实时检测等。

而红外线测温技术具有非接触、高精度、快速、实时等特点,因而在工业生产、医疗健康、安防监控等领域得到广泛应用。

2. 红外线测温技术的原理和应用领域红外线测温技术是利用物体辐射红外线能量与其表面温度之间的关系进行温度测量的方法。

它基于物体的辐射能量,通过红外线传感器将该能量转化成电信号,最终计算出物体表面的温度。

红外线测温技术广泛应用于以下领域:2.1 工业生产:在工业过程中,红外线测温技术可用于快速、精确地监测生产设备的温度,从而实现设备的安全运行,提高生产效率。

2.2 医疗健康:红外线测温技术在医疗设备、体温测量设备等方面得到广泛应用。

例如,红外线耳温枪可以快速、准确地测量患者的体温。

2.3 安防监控:红外线测温技术在安防监控领域也有重要的应用。

例如,可以通过红外线测温技术检测人体体温异常,实现对潜在危险的识别和预警。

3. 存在的问题和挑战尽管红外线测温技术有很多优势,但仍然存在一些问题和挑战需要解决。

3.1 精度问题:不同的红外线测温设备具有不同的精度,而在一些特殊场景下,需要更高的测温精度。

3.2 复杂环境干扰:红外线测温技术容易受到环境的干扰,例如背景辐射、气流等因素都会影响测温的准确性。

3.3 瞬态测温问题:某些情况下,需要对物体温度的瞬态变化进行快速、准确的测量,而现有的红外线测温设备难以满足要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外测温仪




北京市科海龙华工业自动化仪器有限公司
2018年01月19日
一.概述
1、设备名称和型号:
1)设备名称:红外测温仪
2)设备型号:WFD-600-GZ
2、测温仪表简介:
WFD-600-GZ系列红外测温仪是一种智能化、高精度、非接触式数字显示测温仪表,具有测温速度快、使用寿命长等优点。

它利用被测物体的红外辐射能量精确测量物体的温度,测量距离与被测目标的大小成正比。

仪表显示读数直观,可配置各种接口、性能稳定、操作简单,安装与调整方便。

WFD-600-GZ型红外测温仪,是可根据用户需要定做不同温度段的测温仪,测温仪具有较高的灵敏度,测斑适中。

同时根据现场需求,设备配有冷却装置,能够快捷、安全、稳定的测量被测物温度。

二.技术指标
1、供电电压:交流220V供电,50Hz,20W或24V/DC
2、测温范围:900~2000℃
3、输出信号:4-20mA和RS485标准信号
4、测量精度:±1%满量程
5、重复精度:±0.2%满量程
6、响应时间:<1秒(根据现场条件可调整)
7、距离系数:L/D=100
8、显示方式:4位LED发光数码管显示平均值、峰值、实时值(选其中一
种)
9、温度分辨率:1℃
10、工作波长:0.7~1.1μm或1.1~1.7µm
11、辐射系数:0.1~1.0连续可调
12、气源压力:0.2~0.6MPa
13、气源流量:4~6m³/h
14、使用环境:见表一
15、重
三.技术特点
1、具有光学瞄准系统,采用固定焦距加分划板瞄准,可以方便找到被测目
标确保测量位置准确。

2、红外测温仪探头自身耐环境温度达90℃,这就大大延长了使用寿命。

3、显示方式具有实时值、平均值、峰值和自动环境温度补偿。

4、电路采用8位单片机作中央处理器并采用CMOS电路,使整机工作电流
小,工作稳定可靠。

5、输出接口:4-20mA(对应范围可设定)连接到PLC或RS485信号连接大
屏幕显示器。

6、红外测温系统结构简单,由红外探头、信号处理器、信号电缆组成。

7、设计成分体结构,避开高温区,维修调试方便。

8、测温探头带有气源冷却装置,减少物镜灰尘,保证测量精度。

9、红外测温探头工作在短波段,对窗口污染有较好的适应性,窗口透过率
降低36%,测温示值仅降低4%。

四.系统结构与安装
红外测温系统由红外测温探头、信号处理器、大屏幕显示器以及连接电缆组成。

1、红外测温探头外形结构见图一。

测温探头内具有光学瞄准系统,通过物镜,在目镜上可以很容易对准被测目标,测量时必须保证目标在分划板上的像比圆圈大,即保证被测目标充满视场。

图一红外测温探头外形结构
2、信号处理器外形见图二
图二信号处理器外形尺寸图
3、大屏幕显示器外形见图三
图三大屏幕显示器外形尺寸图
大屏幕显示器型号:KZ-308P31P。

系统安装接线简图见图四。

探测器下部有安装支架,可以调节高低、方位角和俯仰角,非常容易寻找被测目标,当找到被测目标后有紧固螺栓给予固定,底盘上有四个固定孔,将探测器牢固地固定在支架、支板上。

信号处理器安装在测温探头附近,通过专用电缆与测温探头连接。

图四红外测温系统安装简图五.设备供货清单
六.资料提供
所有文件图纸资料最终均应采用中文,并提供电子文档。

提供文件图纸资料的数量:
图纸类:纸质2份,电子文档2份;
文字资料:纸质2份,电子文档2份;
电子文档中的资料与纸质图纸资料一同提供且一一对应。

七.供货时间
交货时间:自合同生效后,按期交货。

八.技术服务
1、技术服务
1)买方负责现场安装布线和提供电源220V/AC 。

2)供货方免费派人到现场指导安装和调试,保证测温仪能正常运行,并
对所提供设备的各项功能指标负责。

3)在安装调试过程中,如发现有质量问题,供货方应及时派技术人员解
决,并提供备品、备件,做好技术服务工作。

4)买方负责现场施工,供货方负责现场指导安装,直至买方确认设备运
行正常,并培训买方相关技术人员。

2、技术培训
供货方免费提供技术培训,以便买方相关技术人员掌握设备的组装、安装、维修、运行维护的技能。

具体事宜双方协商确定。

九.质量保证及售后服务
1、供货方应对其供货范围的所有设备的质量负责,设备质保期为一年(设备正式投入运行后质保期开始),在质保期内损坏的零部件,供货方负责免费修理与更换。

一年后只收成本费。

2、质量保证期内合同产品出现质量问题,供货方应及时派遣技术人员给予无偿服务。

对属于产品质量问题和并非人为因素损坏的设备立即更换。

3、设备到货后,买方提前3天通知供货方,供货方按买方指定时间内到设备安装现场共同进行开箱验收,若在规定时间内供货方未能到达现场,买方在开箱验收中发现的问题,供货方应无条件地认可并及时给予处理,所发生的相关费用由供货方承担。

4、设备出现故障时,由买方电话或电传告知供货方,供货方在接到通知后2小时内回复,48小时内到达现场处理问题。

5、按合同要求周期供货。

6、买方负责现场安装布线,并在安装过程中配合供货方,测温仪输出信
号由买方负责传到计算机。

十一.红外测温仪主要用户
首钢迁钢公司上海宝山钢铁公司鞍山钢铁公司
抚顺钢铁公司太原钢铁公司三明钢铁公司
杭州钢铁公司承德钢铁公司石家庄钢铁公司
济南钢铁公司广州钢铁公司马鞍山钢铁公司
合肥钢铁公司武汉钢铁公司攀枝花钢铁公司
贵州钢铁公司安阳钢铁公司六盘水钢铁公司
湘潭钢铁公司酒泉钢铁公司包头钢铁公司
北京市科海龙华工业自动化仪器有限公司
2018年01月。

相关文档
最新文档