动态可变分区存储管理模拟系统解析
3用C语言模拟实现可变式分区存储管理
3用C语言模拟实现可变式分区存储管理可变式分区存储管理是一种动态分配内存空间的方式,它能够根据进程的内存需求来动态地分配和回收内存空间,提高内存的利用率。
在C语言中,我们可以使用指针和数据结构来模拟实现可变式分区存储管理。
1.使用结构体来表示内存块首先,我们可以定义一个结构体来表示每个内存块的属性,包括起始地址、大小、以及是否被占用等信息。
```cstruct Blockint start_address;int size;int is_allocated; // 0代表未分配,1代表已分配};```2.初始化内存空间接下来,我们可以定义一个数组来表示整个内存空间,该数组的每个元素都是一个 Block 结构体,表示一个内存块。
在程序开始时,我们可以初始化一个 Block 数组,表示整个内存空间的初始状态。
```c#define TOTAL_SIZE 1024 // 内存总大小struct Block memory[TOTAL_SIZE];void init_memormemory[0].start_address = 0;memory[0].size = TOTAL_SIZE;memory[0].is_allocated = 0;```3.分配内存空间当进程需要分配内存空间时,可变式分区存储管理会选择一个合适的内存块来分配给该进程。
我们可以定义一个函数来实现分配内存的过程。
```cint allocate_memory(int size)int i;for (i = 0; i < TOTAL_SIZE; i++)if (!memory[i].is_allocated && memory[i].size >= size)//找到未分配且大小足够的内存块memory[i].is_allocated = 1;memory[i].size -= size;return memory[i].start_address;}}//没有找到合适的内存块return -1;```4.回收内存空间当进程释放已分配的内存空间时,我们需要回收这部分内存,使其变为未分配状态。
动态分区分配方式的模拟
动态分区分配方式的模拟动态分区分配方式是计算机中内存管理的一种重要方式。
在动态分区分配方式中,内存空间被分割为多个不同大小的分区,每个分区可以被进程占用。
当一个进程需要内存时,系统会为其分配一个适当大小的分区,进程结束后,该分区将会被释放出来供其他进程使用。
为了更好地理解动态分区分配方式的原理和实际运作,可以通过模拟的方法来观察和分析。
下面是一个简单的动态分区分配方式的模拟过程:假设我们有一块容量为6400KB的内存,要模拟分配4个进程的情况。
这4个进程的内存需求分别是1000KB,2000KB,500KB和300KB。
首先,我们可以将内存划分为几个分区,每个分区的大小根据需要进行调整。
可以设置整块内存为一块分区(大小为6400KB),或者划分成多个较小的分区。
由于这里有4个进程需要分配内存,我们可以为它们设置4个分区,分别为P1,P2,P3和P41.初始状态:内存:[6400KB](未分配)进程:P1,P2,P3,P4(空)2.分配P1:内存:[1000KB](P1)、[5400KB](未分配)进程:P1,P2,P3,P4P1占用了1000KB的内存,剩余空间为5400KB。
3.分配P2:内存:[1000KB](P1)、[2000KB](P2)、[3400KB](未分配)进程:P1,P2,P3,P4P2占用了2000KB的内存,剩余空间为3400KB。
4.分配P3:内存:[1000KB](P1)、[2000KB](P2)、[500KB](P3)、[2900KB](未分配)进程:P1,P2,P3,P4P3占用了500KB的内存,剩余空间为2900KB。
5.分配P4:内存:[1000KB](P1)、[2000KB](P2)、[500KB](P3)、[300KB](P4)、[2600KB](未分配)进程:P1,P2,P3,P4P4占用了300KB的内存,剩余空间为2600KB。
在模拟的过程中,我们可以看到进程在内存中的分配情况和未分配内存的变化。
动态分区存储管理方式的主存分配回收总结
动态分区存储管理方式的主存分配回收总结动态分区存储管理是一种常见的主存分配回收技术,它通过动态创建并分配大小不等的存储块来管理主存空间,以满足不同进程的需求。
这种管理方式在操作系统中起着至关重要的作用,因此本文将对动态分区存储管理的主存分配回收进行总结,从原理、特点、优缺点及其在实际应用中的情况进行阐述。
一、原理动态分区存储管理是基于分区的主存管理机制,它将主存空间划分为多个不等大小的分区,每个分区可以被分配给一个进程使用。
当系统收到一个新进程的请求时,它会根据需要的主存大小为进程分配一个合适大小的分区。
当进程执行完毕,系统会回收该进程所占用的分区,使得该空间可以再次被分配给其他进程使用。
在动态分区存储管理中,主要有两种分配方式:首次适应算法和最佳适应算法。
首次适应算法是从第一个满足大小要求的分区开始进行分配;而最佳适应算法是从所有满足大小要求的分区中选择最小的分区进行分配。
这两种分配方式都有自己的优点和局限性,但它们都是基于动态分区存储管理的基本原理。
二、特点1.灵活性动态分区存储管理可以根据进程的需求动态地分配和回收主存空间,提高了主存的利用率和效率。
进程可以根据需要申请和释放主存空间,而无需预先分配固定大小的空间。
2.节省空间动态分区存储管理可以尽可能地利用主存中的碎片空间,减少了外部碎片的浪费。
这种管理方式能够充分利用主存空间,提高了主存的利用率。
3.多样性动态分区存储管理可以适应不同大小的进程需求,能够根据进程的大小灵活地进行分区分配,满足了不同进程的需求。
三、优缺点1.优点(1)提高了主存的利用率和效率。
(2)灵活地分配和回收主存空间,满足不同进程的需求。
(3)节省了主存空间,减少了碎片的浪费。
2.缺点(1)会产生外部碎片,影响了分区空间的利用率。
(2)分配和回收过程中可能产生较大的开销,影响了系统的性能。
四、在实际应用中的情况动态分区存储管理在操作系统中得到了广泛的应用,特别是在多道程序设计和实时系统中。
操作系统实验一可变分区存储管理(含代码)
(三)程序代码
#include<malloc.h>
#include<stdio.h>
#include<string.h>
#define new(type) (type *)malloc(sizeof(type))
typedef struct _map
{
unsigned int size;
}
}
else
{
if(addr+size==nextMap->address) //第三种情况
{
nextMap->address-=size;
nextMap->size+=size;
}
else //第四种情况
{
newMap=new(map);
newMap->address=addr;
newMap->size=size;
if(nextMap==m->head)
break;
}
prevMap=nextMap->prev;
if(nextMap!=m->head && prevMap->address+prevMap->size==addr) //第一种情况
{
prevMap->size+=size;
if(addr+size==nextMap->address) //第二种情况
prevMap->next=newMap;
newMap->prev=prevMap;
newMap->next=nextMap;
实验三 动态分区存储管理
实验三存储管理动态分区存储管理
实验目的
•熟悉并掌握动态分区分配的各种算法。
•熟悉并掌握动态分区中分区回收的各种情
况,并能够实现分区合并。
实验内容及要求
•用高级语言模拟实现动态分区存储管理,要求:
–分区分配算法至少实现首次适应算法、最佳适应算法和最坏适应算法中的至少一种。
熟悉并掌握各种算法的空闲区组织方式。
–分区的初始化——可以由用户输入初始分区的大小。
(初始化后只有一个空闲分区,起始地址为0,大小是用户输入的大小)–分区的动态分配过程:由用户输入作业号和作业的大小,实现分区过程。
–分区的回收:用户输入作业号,实现分区回收,同时,分区的合并要体现出来。
(注意:不存在的作业号要给出错误提示!)–分区的显示:任何时刻,可以查看当前内存的情况(起始地址是什么,大小多大的分区时空闲的,或者占用的,能够显示出来)
实验报告要求
•实验报告应包含但不限于以下内容:–设计图(结构图/流程图)和源代码;
–使用的编程语言和系统环境;
–结果截图;
–对结果截图的解释性说明。
注意事项
•三个动态分区分配算法可以使用一套程序,差别只在空闲分区链(表)的排序策略。
•至少完成一个分配算法。
•需完成回收算法。
动态分区算法实验报告
动态分区算法实验报告动态分区算法实验报告一、引言计算机操作系统是现代计算机系统中的核心组成部分,它负责管理计算机硬件资源,并提供各种服务。
内存管理是操作系统的重要功能之一,它负责管理计算机的内存资源,为进程提供运行环境。
在内存管理中,动态分区算法是一种常用的内存分配策略。
本实验旨在通过实践,深入了解动态分区算法的原理和实现。
二、实验目的1. 了解动态分区算法的基本原理和实现方式;2. 掌握动态分区算法的实验环境搭建和使用方法;3. 分析动态分区算法的优缺点,并比较不同算法的性能差异。
三、实验环境本实验使用C语言编程实现,实验环境如下:1. 操作系统:Windows 10;2. 开发工具:Visual Studio 2019;3. 编程语言:C语言。
四、实验过程1. 实验准备在开始实验之前,我们首先需要了解动态分区算法的基本原理。
动态分区算法根据进程的内存需求,将内存划分为若干个不同大小的分区,并按照进程的请求进行分配和释放。
常用的动态分区算法有首次适应算法、最佳适应算法和最坏适应算法等。
2. 实验设计本实验选择实现首次适应算法,并设计以下几个函数:- 初始化内存空间:初始化一块指定大小的内存空间,将其划分为一个个的分区,并设置分区的状态;- 分配内存:根据进程的内存需求,在内存空间中找到合适的分区进行分配,并更新分区的状态;- 释放内存:将已分配的内存空间进行释放,并更新分区的状态;- 显示内存状态:打印当前内存空间的分区状态。
3. 实验实现根据上述设计,我们使用C语言实现了动态分区算法的相关函数。
通过调用这些函数,我们可以模拟动态分区算法的运行过程,并观察分区的分配和释放情况。
4. 实验结果经过实验,我们得到了以下结果:- 动态分区算法可以有效地管理内存资源,根据进程的需求进行灵活的内存分配;- 首次适应算法在内存分配效率和速度方面表现良好,但可能会导致内存碎片的产生;- 释放内存时,及时合并相邻的空闲分区可以减少内存碎片的数量。
动态分区管理方式及动态分区算法
动态分区管理方式及动态分区算法一、动态分区概述在操作系统中,内存管理是一个非常重要的部分。
在实际的应用中,程序的内存需求是会发生变化的,因此需要一种灵活的内存管理方式来满足不同程序的内存需求。
动态分区管理方式应运而生,它可以根据程序的需求,灵活地分配和回收内存空间,是一种高效的内存管理方式。
二、动态分区管理方式动态分区管理方式是指将内存划分为多个大小不等的分区,每个分区都可以被分配给进程使用,当进程终止时,分区将被回收。
动态分区管理方式通常通过动态分区算法来实现,下面将介绍几种常见的动态分区算法。
三、首次适应算法首次适应算法是最简单和最直观的动态分区分配算法。
它的基本思想是在空闲分区链表中按照位置区域顺序查找第一个能够满足进程大小需求的空闲分区,并将其分配给进程。
首次适应算法的优点是实现简单,分区利用率较高,但缺点是会产生大量的不连续碎片。
四、最佳适应算法最佳适应算法是在空闲分区链表中查找满足进程大小需求的最小空闲分区,并将其分配给进程。
最佳适应算法的优点是可以减少外部碎片,缺点是查找适合的空闲分区会花费较长的时间。
五、最坏适应算法最坏适应算法是在空闲分区链表中查找满足进程大小需求的最大空闲分区,并将其分配给进程。
最坏适应算法的优点是能够产生较小的碎片,但缺点是会导致剩余分区较多,影响分区利用率。
六、动态分区管理方式的优缺点动态分区管理方式相比于静态分区管理方式有很多优点,比如可以灵活地满足不同程序的内存需求,可以动态地合并和分割分区,提高了内存的利用率等。
但是动态分区管理方式也有一些缺点,比如会产生碎片,分配和回收内存的开销较大等。
七、结语动态分区管理方式及其算法在实际应用中有着广泛的应用,通过合理选择动态分区算法,可以提高内存的利用率,改善系统性能。
也需要注意动态分区管理方式可能产生的碎片问题,可以通过内存紧缩等手段来解决。
希望本文对读者有所帮助。
动态分区管理方式及动态分区算法八、碎片问题与解决方法在动态分区管理方式中,经常会出现碎片问题,包括内部碎片和外部碎片。
实验五动态分区分配算法的模拟
实验五动态分区分配算法的模拟为了更好地理解动态分区分配算法的工作原理,我们可以进行一次模拟实验。
在实验中,我们将模拟一个内存分区,并使用动态分区分配算法来管理这些分区。
首先,让我们定义一个内存大小为1000字节的分区。
我们假设这个内存中包含几个已分配的分区和几个空闲的分区。
我们使用首次适应算法来进行分区的首次适应分配。
首先,我们将整个内存空间标记为空闲状态,并创建一个初始的空闲链表。
我们假设初始时只有一个空闲分区,大小为1000字节,起始地址为0。
现在,假设有一个进程请求分配一个250字节大小的内存空间。
我们首先检查空闲链表,找到一个大小大于等于250字节的空闲分区。
在这种情况下,我们发现第一个空闲分区的大小是1000字节,所以我们将它拆分成250字节的已分配分区和750字节的空闲分区。
我们在已分配分区上标记一个进程编号,并将空闲分区加入空闲链表。
接下来,假设我们的进程需要申请500字节的内存空间。
在这种情况下,我们需要查找一个大小大于等于500字节的空闲分区。
我们发现第一个可用的空闲分区大小是750字节,我们将它拆分为已分配的500字节和剩余的250字节的空闲分区。
然后,我们假设有进程释放了先前分配的250字节的内存空间。
当一个进程释放分配的内存空间时,我们需要合并相邻的空闲分区。
在这种情况下,释放的分区位于地址0,大小为250字节,并且其下一个分区是地址500,大小为500字节的空闲分区。
因此,我们将这两个分区合并为一个大小为750字节的空闲分区。
接下来,我们假设另一个进程将请求600字节的内存空间。
根据首次适应算法,我们将在第一个满足条件的空闲分区进行分配。
在这种情况下,我们将分配200字节的空闲分区和分配400字节的空闲分区拆分为600字节的已分配分区和空闲分区。
最后,假设一个进程请求200字节的内存空间。
根据首次适应算法,我们在第一个满足条件的空闲分区进行分配。
在这种情况下,我们将250字节的空闲分区拆分为200字节的已分配分区和50字节的空闲分区。
实验五 动态分区分配算法的模拟
实验五动态分区分配算法的模拟一、实验目的1、加深操作系统内存管理过程的理解2、掌握内存分配算法的基本应用二、实验任务请同学们用C/C++实现一个完整的(可变)动态分区管理器,包括分配,回收,分区碎片整理等。
希望同学们实现如下功能:n 初始化功能:内存状态设置为初始状态。
n 分配功能:要求至少使用两种算法,用户可以选择使用。
n 回收功能:n 空闲块的合并:即紧凑功能,用以消除碎片。
当做碎片整理时,需要跟踪分配的空间,修改其引用以保证引用的正确性。
n 显示当前内存的使用状态,可以使用表格或图形。
三、实验指导1.基本思想动态分区是指系统不预先划分固定分区,而是在装入程序的时候划分内存区域,使得为程序分配的分区大小恰好等于该程序的需求量,且分区的个数是动态的。
显然动态分区有较大的灵活性,较之固定分区能获得好的内存利用率。
2.数据结构动态分区管理可以用两种数据结构实现,一种是已分配区表和空闲区表,也就是用预先定义好的系统空间来存放空间分配信息。
另一种也是最常用的就是空闲链表,由于对分区的操作是动态的,所以很难估计数据结构所占用的空间,而且空闲区表会占用宝贵的系统空间,所以提出了空闲链表的概念。
其特点是用于管理分区的信息动态生成并和该分区在物理地址上相邻。
这样由于可以简单用两个空闲块之间的距离定位已分配空间,不仅节约了系统空间,而且不必维持已分配空间的信息。
本实验是要做一个模拟程序,来模拟动态分区算法的分配和回收过程,并不是真正的去分配和回收内存。
基本的模拟方法有两种:1、先从内存中申请一块存储区,对这块存储区进行模拟的分配和回收活动。
2、不申请存储区,自己定义一块虚拟的存储区,对这块存储区进行模拟的分配和回收活动,分配和回收仅仅是对数据结构的修改而已。
程序代码:#include<iostream>using namespace std;int FreePartition[100];//空闲分区块数组int FirstPartition[100];//首次适应算法数组int CycleFirstPartition[100];//循环首次适应算法数组int BestPartition[100];//最佳适应算法数组int WorstPartition[100];//最坏适应算法数组int ProcessNeed[100];//每个作业的大小int PartitionNum,ProcessNum;//分区块数,作业数//首次适应算法void First(){int i,j;char str;for(i=0;i<PartitionNum;i++){FirstPartition[i]=FreePartition[i];}for(i=0;i<ProcessNum;i++)//找出第一块满足作业的分区for(j=0;j<PartitionNum;j++){if(ProcessNeed[i]>FirstPartition[j])continue;else{FirstPartition[j]-=ProcessNeed[i];//找到后把分区大小减去作业的大小 ? ? ? ? ? ? ?str='A'+i;cout<<"作业"<<str<<"在第"<<j+1<<"块分区中"<<endl;break;}}cout<<endl;cout<<"分配之后剩余情况:"<<endl;?for(i=0;i<PartitionNum;i++)cout<<FirstPartition[i]<<" ";cout<<endl<<endl;}//循环首次适应算法void CycleFirst(){int i,j=1;char str;for(i=0;i<PartitionNum;i++){CycleFirstPartition[i]=FreePartition[i];}for(i=0;i<ProcessNum;i++)//for(j=0;j<PartitionNum;j++){j=j-1;while(j<PartitionNum)if(ProcessNeed[i]>CycleFirstPartition[j])//continue;j++;else{CycleFirstPartition[j]-=ProcessNeed[i];str='A'+i;cout<<"作业"<<str<<"在第"<<j+1<<"块分区中"<<endl; break;}//j++;//cout<<j<<" ";if(j==PartitionNum && i!=ProcessNum){i=-1;}}}cout<<endl;cout<<"分配之后剩余情况:"<<endl;for(i=0;i<PartitionNum;i++)cout<<CycleFirstPartition[i]<<" ";cout<<endl<<endl;}//最佳适应算法void Best(){int i,j,k;char str;?for(i=0;i<PartitionNum;i++){BestPartition[i]=FreePartition[i];}for(i=0;i<ProcessNum;i++){k=0;for(j=0;j<PartitionNum;j++){//cout<<BestPartition[j]<<" ? "<<ProcessNeed[i]<<endl; if(BestPartition[j]>=ProcessNeed[i]){break;}}for(int n=0;n<PartitionNum;n++){if(BestPartition[n]<BestPartition[k] && BestPartition[n]>=ProcessNeed[i])//找最佳的 k=n;}BestPartition[k]-=ProcessNeed[i];str='A'+i;cout<<"作业"<<str<<"在第"<<j+1<<"块分区中"<<endl;}cout<<endl;cout<<"分配之后剩余情况:"<<endl;for(i=0;i<PartitionNum;i++)cout<<BestPartition[i]<<" ";cout<<endl<<endl;}//最坏适应算法void Worst(){int i,j,k;char str;for(i=0;i<PartitionNum;i++){WorstPartition[i]=FreePartition[i];}for(i=0;i<ProcessNum;i++){k=0;for(j=0;j<PartitionNum;j++){if(WorstPartition[j]>WorstPartition[k])//找到最大的分区k=j;}WorstPartition[k]-=ProcessNeed[i];str='A'+i;cout<<"作业"<<str<<"在第"<<j+1<<"块分区中"<<endl;}cout<<endl;cout<<"分配之后剩余情况:"<<endl;for(i=0;i<PartitionNum;i++)cout<<WorstPartition[i]<<" ";cout<<endl<<endl;}void main(){int i;cout<<"输入分区块数:"<<endl;cin>>PartitionNum;cout<<"输入每个分区的大小:"<<endl;for(i=0;i<PartitionNum;i++)cin>>FreePartition[i];cout<<"输入作业数:"<<endl;cin>>ProcessNum;cout<<"输入每个作业的大小:"<<endl;for(i=0;i<ProcessNum;i++)cin>>ProcessNeed[i];cout<<"------------首次适应算法-----------------"<<endl; First();cout<<"------------循环首次适应算法-------------"<<endl; ?CycleFirst();cout<<"------------最佳适应算法-----------------"<<endl; Best();cout<<"------------最坏适应算法-----------------"<<endl; Worst();}。
可变分区存储管理实验报告
实验三可变分区存储管理
一、实验目的
通过编写可变分区存储模拟系统,掌握可变分区存储管理的基本原理,分区的分配与回收过程。
二、实验内容与步骤
1.打开程序,所得程序界面窗口如图3-1:
图3-1
2.首先选择算法:是否使用搬家算法,可以通过界面上的按钮或算法菜单栏进行
选择;如果不先选择算法,其他功能将被隐藏;注意:在程序执行过程中,不可以重新选择算法。
3.进行初始化:设置内存大小,可以选择默认值400KB;确定内存大小前,其他
操作将被屏蔽。
4.初始化内存大小以后,就可以进行添加进程操作。
5.添加一个进程后,撤消进程功能被激活,可以撤消一个选定的进程或所有的进
程(图3-2)
图3-2
6.查询功能:可以通过按钮或菜单栏显示内存状态图形、空闲区图表,还可以在内存状态条里闪烁显示某一在空闲区图表选中的空闲区。
7.内存不足但经过搬家算法可以分配内存空间给进程,将有如下(图3-3)提示:
图3-3
8.内存空间不足也有相应提示。
9.重置或退出。
三、实验结果
第一至四组数据测试采用搬家算法,第二至八组数据测试不采用搬家算法。
第一组测试数据:(测试内存错误输入) 选择搬家算法,内存大小:0KB/-50KB/空
第二组测试数据:(测试内存空间不够)选择搬家算法,内存大小:400KB
第三组测试数据:(测试是否采用最佳适应法)选择搬家算法,内存大小:200KB 第四组数据:(测试搬家算法)选择搬家算法,内存大小:400KB
第五组数据至第八组数据:不采用搬家算法,内存大小:分别与第一至第四组数据相同,操作过程:分别与第一至第四组数据相同。
全国自考操作系统(存储管理)模拟试卷1(题后含答案及解析)
全国自考操作系统(存储管理)模拟试卷1(题后含答案及解析) 题型有:1. 单项选择题 3. 填空题 4. 简答题 6. 判断题单项选择题1.根据作业在本次分配到的内存起始地址将目标代码装到指定内存地址中,并修改所有有关地址部分的值的方法称为_______方式。
A.固定定位B.静态重定位C.动态重定位D.单一连续重定位正确答案:B 涉及知识点:存储管理2.静态地址重定位的对象是_______。
A.源程序B.编译程序C.目标程序D.执行程序正确答案:C 涉及知识点:存储管理3.使用_______,目标程序可以不经过任何改动而装入主存直接执行。
A.静态重定位B.动态重定位C.编译或汇编D.连接程序正确答案:B 涉及知识点:存储管理4.在可变式分区存储管理中,当释放和回收一个空闲区时,造成空闲表项区数减1的情况是_______。
A.无上邻空闲区,也无下邻空闲区B.有上邻空闲区,但无下邻空闲区C.无上邻空闲区,但有下邻空闲区D.有上邻空闲区,也有下邻空闲区正确答案:D解析:在有上邻空闲区也有下邻空闲区的情况下,释放区和上、下邻空闲区合并成一块空闲区,故原先记录上、下邻空闲区的两个表项就只需要合并为一个表项记录新的大空闲区。
知识模块:存储管理5.在下列存储管理算法中,内存的分配和释放平均时间之和为最大的是_______。
A.首次适应法B.循环首次适应法C.最佳适应法D.最差适应法正确答案:C解析:最佳适应算法的分配算法的速度比首次适应法、循环首次适应法和最差适应算法差得多,如用链表实现,释放算法要在链表中找上、下邻空闲区,修改过或新加入的空闲区还要有序地插入到链表中。
知识模块:存储管理6.早期采用交换技术的目的是_______。
A.能运行更多的程序B.能运行更大的程序C.实现分时系统D.实现虚拟存储技术正确答案:A 涉及知识点:存储管理7.虚拟存储器技术的目的是_______。
A.实现存储保护B.实现程序浮动C.可运行更大更多的程序D.扩充主存容量正确答案:C 涉及知识点:存储管理8.在以下存储管理方案中,不适用于多道程序设计系统的是_______。
可变分区存储管理的内存分配算法模拟实现----最佳适应算法 -回复
可变分区存储管理的内存分配算法模拟实现----最佳适应算法-回复可变分区存储管理是一种内存管理技术,其通过将内存分割成不同大小的区域来存储进程。
每个进程被分配到与其大小最匹配的区域中。
内存分配算法的选择影响了系统的性能和资源利用率。
本文将介绍最佳适应算法,并模拟实现该算法。
一、什么是最佳适应算法?最佳适应算法是一种可变分区存储管理中的内存分配策略。
它的基本思想是在每次内存分配时选择最合适的空闲区域。
具体来说,它从可用的空闲区域中选择大小与需要分配给进程的内存最接近的区域。
二、算法实现思路最佳适应算法实现的关键是如何快速找到最合适的空闲区域。
下面给出一个模拟实现的思路:1. 初始化内存分区列表,首先将整个内存定义为一个大的空闲区域。
2. 当一个进程请求分配内存时,从列表中找到与所需内存最接近的空闲区域。
3. 将该空闲区域分割成两部分,一部分分配给进程,并将该部分标记为已分配,另一部分留作新的空闲区域。
4. 更新内存分区列表。
5. 当一个进程释放内存时,将其所占用的内存区域标记为空闲,然后尝试合并相邻的空闲区域。
三、算法模拟实现下面是一个简单的Python代码实现最佳适应算法:pythonclass MemoryPartition:def __init__(self, start_addr, end_addr, is_allocated=False): self.start_addr = start_addrself.end_addr = end_addrself.is_allocated = is_allocatedclass MemoryManager:def __init__(self, total_memory):self.total_memory = total_memoryself.partition_list = [MemoryPartition(0, total_memory)]def allocate_memory(self, process_size):best_fit_partition = Nonesmallest_size = float('inf')# 找到最佳适应的空闲区域for partition in self.partition_list:if not partition.is_allocated and partition.end_addr - partition.start_addr >= process_size:if partition.end_addr - partition.start_addr < smallest_size:best_fit_partition = partitionsmallest_size = partition.end_addr - partition.start_addrif best_fit_partition:# 将空闲区域分割,并标记为已分配new_partition =MemoryPartition(best_fit_partition.start_addr,best_fit_partition.start_addr + process_size, True)best_fit_partition.start_addr += process_sizeself.partition_list.append(new_partition)return new_partition.start_addr,new_partition.end_addrelse:return -1, -1def deallocate_memory(self, start_addr, end_addr):for partition in self.partition_list:if partition.start_addr == end_addr and not partition.is_allocated:# 标记空闲区域partition.is_allocated = False# 尝试合并相邻空闲区域for next_partition in self.partition_list:if not next_partition.is_allocated andnext_partition.start_addr == end_addr:end_addr = next_partition.end_addrself.partition_list.remove(next_partition)breakelse:breakdef print_partitions(self):for partition in self.partition_list:if partition.is_allocated:print(f"Allocated Partition: {partition.start_addr} - {partition.end_addr}")else:print(f"Free Partition: {partition.start_addr} - {partition.end_addr}")# 测试最佳适应算法if __name__ == "__main__":mm = MemoryManager(1024)start, end = mm.allocate_memory(256)print(f"Allocated memory: {start} - {end}")mm.print_partitions()mm.deallocate_memory(start, end)print("Memory deallocated:")mm.print_partitions()以上代码实现了一个简单的内存管理器类`MemoryManager`,它具有`allocate_memory`和`deallocate_memory`等方法。
可变分区存储管理的内存分配算法模拟实现----最佳适应算法 -回复
可变分区存储管理的内存分配算法模拟实现----最佳适应算法-回复可变分区存储管理是一种常用的内存分配算法,用于管理计算机系统中的内存空间。
其中,最佳适应算法是其中一种经典的实现方式。
本文将围绕最佳适应算法展开,详细介绍其原理、实现方法以及优缺点。
首先,我们需要明确什么是可变分区存储管理。
在计算机系统中,内存是被划分为多个可用的分区,每个分区有不同的大小。
当一个程序需要内存时,系统会选择一个适合该程序大小的分区进行分配。
使用可变分区存储管理算法,系统可以灵活地分配和回收内存,并提高内存的利用率。
最佳适应算法是可变分区存储管理中的一种常用算法。
其核心思想是始终选择最小但足够容纳所需内存的分区进行分配。
这样可以最大程度地减少内存碎片的产生,提高系统内存利用率。
下面我们将一步一步来模拟实现最佳适应算法。
首先,我们需要创建一个数据结构来表示内存分区。
我们可以使用一个链表来存储每个分区的信息,每个节点包含分区的起始地址、结束地址和大小。
初始时,整个内存空间被视为一个大的可用分区。
接下来,当一个程序需要内存时,我们需要遍历整个分区链表,找到一个大小不小于所需内存的最小分区。
我们可以使用一个变量来记录当前找到的最小分区的大小,以及一个指针来指向该分区节点。
在遍历过程中,如果找到一个分区的大小恰好等于所需内存,那么直接分配给程序,并将该节点从链表中删除即可。
如果找到的分区的大小大于所需内存,我们需要进行分割操作。
即将该分区分成两个部分,一个部分分配给程序,另一个部分保留未分配状态,并将其添加到链表中。
同时,我们需要更新原有分区节点的起始地址和大小。
最后,当一个程序终止并释放内存时,我们需要将该内存块归还给系统,并进行合并操作。
即将释放的内存块与相邻的空闲内存块进行合并,以减少内存碎片。
通过以上步骤,我们可以实现最佳适应算法来管理内存分配。
但是,最佳适应算法也有其优缺点。
首先,最佳适应算法相对于其他算法来说,可以更好地减少内存碎片的产生。
可变分区存储管理+实验报告+程序+设计思路和感悟
实验题目:可变分区存储管理一、实验目的可变分区存储管理方式是操作系统中存储管理的重要方式,其主要思想是用户作业进行连续存储,每次按照用户的请求,如果内存中有能满足用户作业大小的空闲区,就采用不同的算法分配给用户,否则,不分配,可变分区容易产生外零头。
分区分配算法包括最佳适应算法、最坏适应算法、首次适应算法等。
通过本实验可加深学生对存储器管理方式的把握以及分配算法的理解,并提高程序设计的能力。
二、实验环境个人PC机WindowsXP操作系统I5-2400CPU 3.10Ghz 2GB内存C-Free C语言程序设计软件三、实验的重点和难点可变分区的的收回四、实验内容利用C语言或C++语言或Java语言实现可变分区存储管理,具体要求如下:1. 以一个一维数组模拟内存,数组类型为整型,共计1000个元素;2. 用一个单链表表示可变分区空闲表,链表每个结点表示一个空闲区,每个结点信息包括起始地址、大小。
3. 分区分配算法采用最佳适应算法、首次适应算法,并将算法用函数实现。
4. 自己假设几个作业,包括作业的名称、大小,进入系统的顺序。
5. 初始内存中没有任何作业,随着用户输入的每一个作业的到来,动态为其分配内存。
6. 使用的算法用户要能够随时更换。
五、实验结果或实验代码(1) 可变式分区管理是指在处理作业过程中建立分区,使分区大小正好适合作业的需要,并且分区个数可以调整。
当要装入一个作业时,根据作业需要的内存量,查看是否有足够的空闲空间,若有,则按需求量分割一部分给作业;若没有,则作业等待。
随着作业的装入、完成,内存空间被分割成许多大大小小的分区。
有的分区被作业占用,有的分区空闲。
例如,某时刻内存空间占用情况如图1所示。
为了说明那些分区是空闲的,可以用来装入新作业,必须要有一张空闲区说明表,如表1所示。
表1 空闲区说明表图1 内存空间占用情况62241其中,起始地址指出个空闲区的内存起始地址,长度指出空闲区的大小。
动态分区原理
动态分区原理动态分区是一种在计算机内存管理中使用的技术。
在操作系统运行时,动态分区将系统的内存划分为多个不同大小的区域,可以实现内存的动态管理,使计算机系统可以更加灵活、高效地使用内存资源。
动态分区原理非常简单。
在计算机系统启动时,内存空间会被划分为一个默认的系统区域,这个区域是系统的内核区域。
在这个区域之外,系统会留出一片内存空间,例如32位系统中通常为4GB,以供用户进程使用,这个区域称为用户区域。
当一个进程发起内存请求时,系统会在用户区域中寻找足够大的空闲区域来满足进程的需要。
如果没有足够大的空闲区域,则系统会将用户区域的内存空间逐个分配,以满足进程的请求。
这个过程中,系统会将内存分成大小不同的分区,每个分区有一个头部信息描述这个分区的大小、是否被占用等信息。
当一个进程不再需要某个分区的内存时,系统会将这个分区标记为空闲,以供其他进程使用。
如果某个分区的内存被占用了很长时间但一直没有被释放,那么系统可能需要进行碎片整理,这个过程可以将内存中的零散空间组合成更大的空间块,以便系统更好地满足进程的请求。
动态分区的主要优点在于可以动态管理内存资源,使内存资源的使用更加高效。
此外,动态分区还可以通过碎片整理等技术,优化内存的使用情况,并防止程序片段的内存泄漏问题。
然而,动态分区也有一些缺点。
首先,动态分区在实现上比较复杂,需要较多的内部数据结构支持。
此外,由于分配分区的算法可能不同,不同的系统或者算法可能会造成内存碎片,从而使内存资源的使用效率降低。
总之,动态分区是一种非常常见的内存管理方法,它可以使计算机系统更加高效地利用内存资源。
在实践中,系统设计者需要根据不同场景选择不同的算法,以确保系统的性能和稳定性。
动态分区分配方式的模拟实验原理说明
动态分区分配方式的模拟实验原理说明一、引言动态分区分配方式是计算机内存管理中一种常见的分配方式,它将内存按需划分为多个独立的区域,用于分配进程所需的内存空间。
本文将详细探讨动态分区分配方式的原理及其在模拟实验中的应用。
二、动态分区分配方式的原理动态分区分配方式基于内存动态分配,将可用内存划分为多个不连续的分区,每个分区可用于存放一个进程或程序。
此分配方式具有灵活性,能够更好地满足不同程序对内存空间的需求。
2.1 空闲内存分区列表在动态分区分配方式中,操作系统维护一个空闲内存分区列表,记录可供分配的内存空间情况。
列表中的每个分区都有其起始地址和长度。
2.2 分区分配算法动态分区分配方式有多种分区分配算法可供选择,主要包括首次适应算法、最佳适应算法和最差适应算法。
•首次适应算法:从空闲分区列表中找到第一个满足分配要求的分区进行分配。
•最佳适应算法:从空闲分区列表中找到最小的满足分配要求的分区进行分配。
•最差适应算法:从空闲分区列表中找到最大的满足分配要求的分区进行分配。
2.3 分区回收算法当进程结束或释放内存时,操作系统需要将其占用的内存空间回收,归还给空闲内存区。
分区回收算法的目标是尽可能地合并相邻的空闲区域,以最大程度地提供可用内存。
三、动态分区分配方式的模拟实验为了更好地理解和研究动态分区分配方式,可以进行一系列模拟实验。
下面将介绍动态分区分配方式的模拟实验原理及步骤。
3.1 实验原理动态分区分配方式的模拟实验基于以下原理: - 创建一个内存模拟环境,模拟操作系统管理的内存空间。
- 设计一系列测试用例,模拟进程的创建、分配和回收过程。
- 根据所选的分区分配算法和分区回收算法,计算分区分配和回收的效果。
- 比较不同算法在性能方面的差异,并分析其优缺点。
3.2 实验步骤动态分区分配方式的模拟实验包括以下步骤: 1. 初始化内存模拟环境,创建一个空闲分区列表。
2. 设计多个测试用例,包括不同大小和数量的进程。
存储管理动态分区分配算法的模拟
存储管理动态分区分配算法的模拟一(题目: 存储管理--- 动态分区分配算法的模拟二(任务: 设计主界面以灵活选择某算法,且以下算法都要实现:首次适应算法、循环首次适应算法、最佳适应算法;。
三(思想: 对任务进行构思和设想。
(1) 首次适应算法:FF算法要求空闲分区链以地址递增的次序链接。
在分配内存时,从链首开始顺巡查找,直到找到一个大小能够满足要求的空闲分区为止; 然后再按照作业的大小,从该分区中划出一块内存空间分配给请求者,余下的空闲区间仍留在空闲链中。
若从链首直至链尾都不能找到一个能满足要求的分区,则此次内存分配失败,返回。
该算法倾向于优先利用内存中低址部分的空闲分区,从而保留了高址部分的大空闲区。
这给为以后到达的大作业分配大的内存空间创造了条件。
(2) 循环首次适应算法该算法是由首次适应算法演变而成的。
在为进程分配内存空间时,不再是每次都从链首开始查找,而是从上次找到的空闲分区的下一个空闲分区开始查找,直至找到一个能满足要求的空闲分区,从中划出一块的请求大小相等的内存空间分配给作业。
为实现该算法,应设置一起始查找指针,用于指示下一次起始查询的空闲分区,并采用循环查找方式,即如果最后一个( 链尾)空闲分区的大小仍不能满足要求,则返回到第一个空闲分区,比较大小是否满足,找到后,应调整起始查询指针。
(3) 最佳适应算法是将最小的空闲分区分配给作业,避免"大材小用"。
为了加速寻找,该算法要求将所有的空闲分区按照某容量以从小到大的顺序形成一空闲分区链。
这样,第一次找到的能满足要求的空闲区,必然是最佳的。
(4) 内存回收:将释放作业所在内存块的状态改为空闲状态,删除其作业名,设置为空。
并判断该空闲块是否与其他空闲块相连,若释放的内存空间与空闲块相连时,则合并为同一个空闲块,同时修改分区大小及起始地址。
四(目的: 在构思中提出要达到的目的。
(1) 按照首次适应算法对内存进行分配,得到(2) 按照循环首次适应算法对内存(3) 按照最佳适应算法对内存进行分配(4) 在作业完成时,释放作业所在内存块,使其能够再次被利用五(方案: 对构思的细化,提出粗略的方案。
操作系统实验报告可变分区存储管理方式的内存分配回收
操作系统实验报告可变分区存储管理方式的内存分配回收可变分区存储管理方式是一种常见的内存分配和回收策略,通过将内存分成若干大小不等的分区,分配给不同大小的进程使用。
本文将对可变分区存储管理方式的内存分配和回收进行详细介绍。
首先,可变分区存储管理方式需要对内存进行划分,将内存分成若干个大小不等的分区。
这些分区可以是固定大小的,也可以是可变大小的。
当进程申请内存时,系统会根据申请内存的大小来选择一个合适大小的分区进行分配。
分配时分为两种情况:首次适应和最佳适应。
首次适应算法是指从内存的起始位置开始遍历分区,找到第一个能满足进程要求的分区进行分配。
这种算法的优点是找到满足条件的分区速度较快,缺点是容易造成较大的内存碎片。
最佳适应算法是指通过遍历整个内存,找到一个大小最接近进程要求的分区进行分配。
这种算法的优点是能够减小内存碎片的产生,但是分配速度较慢。
当进程结束时,需要回收其占用的内存。
对于可变分区存储管理方式,在回收内存时出现了两种情况:内部碎片和外部碎片。
内部碎片是指分配给进程的分区中,有一部分空闲内存无法被其他进程利用。
这是因为当一些进程需要分配内存时,分配的大小可能大于其实际需要的大小,导致分区中留下了空余空间。
解决内部碎片的方法是动态地调整分区的大小,使其能够更好地适应进程的大小需求。
外部碎片是指存储空闲的分区之间的一些不可利用的内存。
当进程需要分配内存时,可能没有一个分区能满足其大小需求,导致无法分配内存。
解决外部碎片的方法是内存紧缩和分区合并。
内存紧缩是指将内存中的进程向一端移动,使剩余的空闲内存空间连在一起。
这样可以使得所有的空闲内存空间都可以被利用,减少外部碎片的产生。
分区合并是指将不连续的空闲分区进行合并,形成更大的连续空闲分区。
这样可以提供给大型进程使用,减少外部碎片的产生。
综上所述,可变分区存储管理方式的内存分配和回收是一个动态的过程,需要根据进程的需求进行灵活地管理。
它可以通过首次适应或最佳适应算法选择合适的分区进行内存分配,通过动态调整分区大小解决内部碎片问题,并通过内存紧缩和分区合并减少外部碎片的产生。
动态分区式存储管理
可变分区存储管理设计思路:整体思路:可变分区管理方式将内存除操作系统占用区域外的空间看做一个大的空闲区。
当作业要求装入内存时,根据作业需要内存空间的大小查询内存中的各个空闲区,当从内存空间中找到一个大于或等于该作业大小的内存空闲区时,选择其中一个空闲区,按作业需求量划出一个分区装人该作业,作业执行完后,其所占的内存分区被收回,成为一个空闲区。
如果该空闲区的相邻分区也是空闲区,则需要将相邻空闲区合并成一个空闲区。
设计所才用的算法:采用最优适应算法,每次为作业分配内存时,总是把既能满足要求、又是最小的空闲分区分配给作业。
但最优适应算法容易出现找到的一个分区可能只比作业所需求的长度略大一点的情行,这时,空闲区分割后剩下的空闲区就很小以致很难再使用,降低了内存的使用率。
为解决此问题,设定一个限值minsize,如果空闲区的大小减去作业需求长度得到的值小于等于minsize,不再将空闲区分成己分分区和空闲区两部分,而是将整个空闲区都分配给作业。
内存分配与回收所使用的结构体:为便于对内存的分配和回收,建立两张表记录内存的使用情况。
一张为记录作业占用分区的“内存分配表”,内容包括分区起始地址、长度、作业名/标志(为0时作为标志位表示空栏目);一张为记录空闲区的“空闲分区表”,内容包括分区起始地址、长度、标志(0表空栏目,1表未分配)。
两张表都采用顺序表形式。
关于分配留下的内存小碎片问题:当要装入一个作业时,从“空闲分区表”中查找标志为“1”(未分配)且满足作业所需内存大小的最小空闲区,若空闲区的大小与作业所需大小的差值小于或等于minsize,把该分区全部分配给作业,并把该空闲区的标志改为“0”(空栏目)。
同时,在已分配区表中找到一个标志为“0”的栏目登记新装人作业所占用分区的起始地址,长度和作业名。
若空闲区的大小与作业所需大小的差值大于minsize。
则把空闲区分成两部分,一部分用来装入作业,另外一部分仍为空闲区。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青岛农业大学理学与信息科学学院操作系统课程设计报告设计题目仿真实现动态可变分区存储管理模拟系统—最佳适应算法和最先适应算法学生专业班级计算机科学与技术2011级03班学生姓名(学号)张明珠(H20110684 )设计小组其他同学姓名(学号)刘玉婷(H20110661)宋璇(H20110162)指导教师牟春莲完成时间 2014. 06.15 实习(设计)地点信息楼2182014年6月16日一、课程设计目的操作系统的理论知识只有通过操作系统的实际操作和编程才能真正地理解和掌握,没有实践操作系统的操作和编程,学习操作系统就是纸上谈兵。
操作系统课程设计是在学习完《操作系统》课程后进行的一次全面、综合实习,是计算机科学与技术专业的重要实践性教学环节。
通过课程设计,达到如下目的:1、巩固和加深对操作系统原理的理解,提高综合运用本课程所学知识的能力。
2、培养学生选用参考书,查阅手册及文献资料的能力;培养独立思考、深入研究、分析问题、解决问题的能力。
3、通过实际操作系统的分析设计、编程调试,掌握系统软件的分析方法和工程设计方法。
4、能够按要求编写课程设计报告书,能正确阐述设计过程和实验结果、正确绘制系统和程序框图。
5、通过课程设计,培养学生严谨的科学态度、严肃认真的工作作风和团队协作精神。
二、设计任务题目描述:仿真实现动态可变分区存储管理模拟系统。
内存调度策略可采用最先适应算法、最佳适应法等,并对各种算法进行性能比较。
为了实现分区分配,系统中必须配置相应的数据结构,用来描述空闲区和已分配区的情况,为分配提供依据。
常用的数据结构有两种形式:空闲分区表和空闲分区链。
为把一个新作业装入内存,须按照一定的算法,从空闲分区表或空闲分区链中选出一个分区分配给该作业.设计要求:1.采用指定算法模拟动态分区管理方式的主存分配。
能够处理以下的情形:⑴随机出现的进程i申请jKB内存,程序能判断是否能分配,如果能分配,要求输出分配的首地址Faddress,并要求输出内存使用情况和空闲情况。
内存情况输出的格式为:Faddress该分区的首地址;Eaddress该分区的尾地址Len 分区长度;Process 如果使用,使用的进程号,否则为0。
⑵主存分配函数实现寻找空闲区、空闲区表的修改、已分配区表的修改功能。
成员分工:张明珠申请内存、查看进程之间的前后的区域状态、释放进程刘玉婷最先适应算法、将其释放的内存插入空闲块中、初始化宋璇最佳适应算法、将新项插入已分配表中、退出张明珠宋璇刘玉婷整个界面的优化、界面设计、总体思路三、分析与设计1.设计思路存储器是计算机的重要组成部分,存储空间是操作系统管理的宝贵资源,虽然其容量在不断扩大,但仍然远远不能满足软件发展的需要。
对存储资源进行有效的管理,不仅关系到存储器的利用率,而且还对操作系统的性能和效率有很大的影响。
操作系统的存储管理的基本功能有:存储分配、地址转换和存储保护、存储共享、存储扩充。
存储分配指为选中的多道运行的作业分配主存空间;地址转换是把逻辑地址空间中的用户程序通过静态重定位或动态重定位转换和映射到分给的物理地址空间中,以便用户程序的执行;存储保护指各道程序只能访问自己的存储区域,而不能互相干扰,以免其他程序受到有意或无意的破坏;存储共享指主存中的某些程序和数据可供不同用户进程共享。
最简单的单道系统中,一旦一个程序能装入主存,它将一直运行直到结束。
如果程序长度超出了主存的实际容量,可以通过覆盖和交换的技术获得解决。
更多的操作系统支持多个用户进程在主存同时执行,能满足多道程序设计需要的最简单的存储管理技术是分区方式,有分固定分区和可变分区。
可变分区的分配(如图(1)所示)算法包括:最先适应、下次适应、最佳适应、最坏适应和快速适应等分配算法。
图(1)动态内存分配采用分区方式管理存储器,每道程序总是要求占用主存的一个或几个连续的存储区域,主存中会产生许多碎片。
因此,有时为了接纳一个新的作业而往往要移动已在主存的信息,这不仅不方便,而且开销不小。
现代计算机都有某种虚存硬设备支持,简单也是常用的虚存是请求分页式虚存管理,于是允许把一个进程的页面存放到若干不相邻的主存页框中。
从搜索速度上看,最先适应算法具有最佳性能。
从回收过程来看,最先适应法也是最佳的。
最先适应算法要求可用表或自由链接按起始地址递增的次序排列。
该算法的最大特点是一旦找到大于或等于所要求内存的长度的分区,则搜索结束。
其优点:(1)、在释放内存分区时,如果有相邻的空白区就进行合并,使其成为一个较大的空白区;(2)、本算法的实质是尽可能的利用存储器的低地址部分,在高地址部分则保留较多的或较大的空白区,以后如果需要较大的空白区,就容易能够满足。
最佳适应算法:从全部空闲区中找出能满足作业要求的、且大小最小的空闲分区,这种方法能使碎片尽量小。
为适应此算法,空闲分区表(空闲区链)中的空闲分区要按从小到大进行排序,自表头开始查找到第一个满足要求的自由分区分配。
该算法保留大的空闲区,但造成许多小的空闲区。
最佳适应算法将可利用空间表中一个大小不小于“请求”且最接近“请求”的空闲块的一部分分配给用户。
分配与回收都需要对可利用空间表从头至尾查询一遍。
为了避免每次分配都要查询整个链表,通常要求节点从大到小排序,由此只需找到第一个足够大的空闲块即可予以分配。
但回收时,必须把回收的空闲块放置在符合大小顺序关系的链表位置。
在分配时容易产生太小而无法利用的内存碎片,同时这种做法也保留了那些很大的内存块以备响应将来发生的内存量较大的用户“请求”,从而使整个链表逐渐趋向于节点大小差别甚远的状态。
这种分配算法适合请求分配内存大小范围较广的系统,此算法比较费时间。
在进行内存分配时,从空闲分区表(或空闲分区链)首开始顺序查找,直到找到第一个能满足其大小要求的空闲分区为止。
如果该空闲分区大于作业的大小,则从该分区中划出一块内存空间分配给请求者,将剩余空闲区仍然留在空闲分区表(或空闲分区链)中。
最佳适应算法的特点:按最佳适应算法为作业分配内存,就能把既满足作业要求又与作业大小最接近的空闲分区分配给作业。
保留了大的空闲区,但分割后的剩余空闲区很小。
本课程设计就是分析动态分区法,与固定分区法相比,动态分区法在作业执行前并不建立分区,分区的建立是在作业的处理过程中进行的。
且其大小可随作业或进程对内存的要求而改变分区的建立是在作业的处理过程中进行的。
且其大小可随作业或进程对内存的要求而改变。
这就改变了固定分区法中那种即使是小作业也要占据大分区的浪费现象,从而提高了内存的利用率。
2.概要设计动态分区分配是根据进程的实际需要,动态地为之分配内存空间。
在实现可变分区分配时,将涉及到分区分配中所用的数据结构、分区分配算法和分区的分配和回收操作这样三个问题。
为了实现分区分配,系统中必须配置相应的数据结构,用来描述空闲区和已分配区的情况,为分配提供依据。
常用的数据结构有两种形式:空闲分区表和空闲分区链。
为把一个新作业装入内存,须按照一定的算法,从空闲分区表或空闲分区链中选出一个分区分配给该作业。
目前常用的分配算法有:首次适应算法、循环首次适应算法、最佳适应算法、最坏适应算法和快速适应算法。
在动态分区存储管理方式中,主要操作是分配内存和回收.系统模块划分:图(3)主流程图各程序模块的调用层次:数据结构结构体定义进程struct area {int start;int end;int len;int sign;struct area * next;};5个数据成员,分别为:start(分区的首地址)、end、(分区尾地址)len(分区的长度)、sign(标志进程状态)、next(指针用来指向下一个进程)。
内存分配图(5)内存分配图最先适应算法流程如下图所示请求SIZE大小的分区:最佳适应算法流程如下图所示:图(7)最佳适应算法流程图四、系统实施在模拟过程中,没有充分理解操作系统教程上关于动态分区法、最先适应法、最优适应法的概念,造成了对设计的目的设计不清楚,不能很好地表达出此设计的功能寻找空白区方法的不同:分区分配是对可用表(或自由链)数据结构进行操作,空闲区表可以按空闲区大小的升序(降序)和空闲区首址升序(降序)两种方法进行组织。
才开始并没有理解这两种分配方式对这最佳适应算法和最先适应算法的影响,导致混淆,出现了错误。
对题目理解有误,对模块之间的关系设计不是很清晰。
图(8)初始化图图(9) 申请内存图图(10)查看已分配区图图(11)查看空闲区图图(12)释放内存图图(13)查看内存状态图最佳算法和最先算法的比较:图(13)两算法的对比图五、程序清单#include<iostream>using namespace std;#include<fstream>struct area {int start; 定义分区的首地址int end; 定义分区的尾地址int len; 定义分区的长度int sign;定义分区的进程号struct area * next;定义进程的指针};struct area*freehead=NULL;声明freehead 是型结构指针。
初始freehead指针为空。
struct area*usedhead=NULL;声明usedhead 是型结构指针。
初始usedhead指针为空。
void create();创建内存区void print(area*);void ask(area*);void ask1(area*);void correct(area*,int);area * delempty();初始化void inserused(area *,int ,int );void inserfree(area * );void setfree();void listID();//最先适应法void listlen();/最优适应法void swap(area *,area *);//初始化area * delempty(){area * p1=freehead;把空闲区首地址赋值给p1if(p1->len==0){if(p1->next==NULL)return NULL;else {p1=p1->next;指向下一个地址}}}//最优适应法void listlen(){int n=0; 初始为零area *p9=freehead->next,*p0=freehead,*p11,*p12,*p13;while(p0!=NULL){不为空p0=p0->next;指向下一个地址n++;n加一}p0=freehead;把空闲区赋值给p0if (n==1)return;elsewhile(p9!=NULL) {p12=p0; 把p0空闲区给p12p13=p9;把p9空闲区给p13p0=p0->next; p0指向下一个地址p9=p9->next;while(p13!=NULL)//把空闲区按从小到大的顺序排列{if((p12->len)>(p13->len)){如果p12长度>p13长度p11=new area;//把p13给p11p11->end=p13->end;p11->len=p13->len;p11->sign=p13->sign;p11->start=p13->start;p11->next=NULL;swap(p13,p12);交换两个P13,P12swap(p12,p11);交换两个P12,P11}p13=p13->next;}}}void swap(area *p13,area *p14){p13->len=p14->len;p13->sign=p14->sign;p13->end=p14->end;p13->start=p14->start;}//最先适应法void listID(){int n=0;area *p9=freehead->next,*p0=freehead,*p11,*p12,*p13;while(p0!=NULL){p0=p0->next;n++;}p0=freehead;if (n==1)return;elsewhile(p9!=NULL) {p12=p0;p13=p9;p0=p0->next;p9=p9->next;while(p13!=NULL)//把地址按递增顺序排列{if((p12->start)>(p13->start)){p11=new area;p11->end=p13->end;p11->len=p13->len;p11->sign=p13->sign;p11->start=p13->start;p11->next=NULL;swap(p13,p12);swap(p12,p11);}p13=p13->next;}}}void inserfree(area * p3){查看进程之间的前后的区域状态int flag=0;area *pf=freehead,*pe=freehead,*pe1;while(pf!=NULL){if(pf->end!=p3->start)//判断是否有前继空闲块pf=pf->next;else break;}if(pf!=NULL){flag=5;}//flag=5 有前置空闲块else flag=1;//没有置1while(pe!=NULL)//判断是否有后继空闲块{if(pe->start!=p3->end){pe1=pe;pe=pe->next;}else break;}if(pe!=NULL) {if(flag==5)flag=6;else flag=4;}//有前置且有后置FLAG=6,只有后置=4 else{if(flag==1)flag=2;}//前后都没有置2switch(flag){case 5:pf->end=pf->end+p3->len;前置空闲块pf->len=pf->len+p3->len;break;case 4:pe->start=pe->start-p3->len;只有后置pe->len=pe->len+p3->len;break;case 2: area* p8;p8=new area;p8->start=p3->start;p8->len=p3->len;p8->sign=0;p8->end=p3->end;p8->next=freehead;freehead=p8;break;case 6:pf->end=pe->end;有前置与后置pf->len=pf->len+pe->len+p3->len;if(pe->next==NULL){pe1->next=NULL;delete pe;}else {if(pe==freehead){freehead=pe->next;delete pe;}else {pe1->next=pe->next;delete pe;}}break;default :break;}}void setfree(){ 释放进程int chose;cout<<"选择一个要释放的任务:";cin>>chose;area*p7=usedhead,*p2;while( p7!=NULL) { //寻找有无此进程if( p7->sign!=chose ){p2=p7;p7=p7->next;}else break;}if(p7==NULL){cout<<"没有此进程,释放内存失败,返回修改!"<<endl;return;}inserfree(p7);//将其释放的内存插入空闲块中if(p7==usedhead &&p7->next==NULL)usedhead=NULL;else{if(p7->next==NULL){p2->next=NULL;delete p7;}//将次进程从已分配表中删除else {if(p7==usedhead){usedhead=p7->next;delete p7;}else {p2->next=p7->next;delete p7;}}}cout<<"成功释放所选任务的内存!当前内存状况为:"<<endl;print(freehead);print(usedhead);cout<<endl;}void inserused(area *p3,int num,int need){//将新项插入已分配表中area*p5;if(usedhead==NULL){p5=new area;p5->start=p3->start;p5->len=need;p5->sign=num;p5->end=p3->start+need;p5->next=NULL;usedhead=p5; }else{p5=new area;p5->start=p3->start;p5->len=need;p5->sign=num;p5->end=p3->start+need;p5->next=usedhead;usedhead=p5;}}void correct(area*p3,int need1){修改列表p3->len=p3->len-need1;p3->start=p3->start+need1;}void create(){ 创建地址长度area* p1;p1=new area;p1->start=0;p1->end=999;p1->len=999;p1->sign=0;p1->next=NULL;freehead= p1;}void ask1(area*freehead){//读文件初始化,只用一次int num,need;area*p3=freehead;ifstream infile("123.TXT");while(infile>>num){infile>>need;if(p3->len<need){cout<<"内存不足,分配失败!"<<endl;return;}elseinserused(p3,num,need);correct(p3,need);}}void ask(area*freehead){申请内存int num,need;area*p3=freehead,*p31=freehead;cout<<"input num and need! "<<endl;cin>>num;cin>>need;while( p3!=NULL){if(p3->len<need){p31=p3;p3=p3->next;}else break;}if(p3==NULL){cout<<"内存不足,分配失败!"<<endl;return;}inserused(p3,num,need);correct(p3,need);freehead=delempty();cout<<"成功分配申请,当前内存状况为:"<<endl;print(freehead);print(usedhead);cout<<endl;}void print(area*pp){显示页面area*p;p=pp;cout<<"────────────────────────────\n";if(p==NULL){cout<<"empty list!"<<endl;cout<<"────────────────────────────\n";return;}elsedo{cout<<"start:"<<p->start<<" end:"<<p->end<<" len:"<<p->len<<" sign:"<<p->sign<<endl;p=p->next;}while(p!=NULL);cout<<"────────────────────────────\n";}int main(){ int yourchose,flag1=0,flag2=0;int what;cout<<">>>>现在初始化内存>>>>>>>\n";cout<<"请选择:1.手动初始化 2.读取文件初始化:";cin>>flag2;create();if(flag2==2)ask1(freehead);cout<<"内存初始状态为:\n";print(freehead);print(usedhead);cout<<endl;cout<<"-------------菜单选项------------------\n";cout<<"1.申请内存 2.释放作业的内存\n";cout<<"3.查看空闲块链 4.查看已分配块链\n";cout<<"5.查看内存状态0.退出\n";cout<<"---------------------------------------"<<endl;;while(flag1==0){ cout<<"-----请选择操作---- :";cin>>yourchose;switch(yourchose){ case 1: cout<<"选择哪种方式?1.最先适应2.最优适应: ";cin>>what;if(what==1)listID();else listlen();ask(freehead);break;case 2:setfree();.释放作业的内存break;case 3:print(freehead);查看空闲块链break;case 4:print(usedhead);查看已分配块链\break;case 5: print(freehead);查看内存状态print(usedhead);break;case 0:flag1=1;退出break;default: break;}}return 0;}六、总结与体会在一开始老师布置这次的实验题目时,自己根本不知道要干什么,因为在上课时对动态分区分配这节内容不是太了解,所以在上机时不知道如何下手,后来,将本章内容反复的看了几遍之后,终于有了自己的思路。