动量守恒定律单元测试题(2)

动量守恒定律单元测试题(2)
动量守恒定律单元测试题(2)

动量守恒定律单元测试题(2)

一、动量守恒定律 选择题

1.如图所示,离地H 高处有一个质量为m 、带电量为q +的物体处于电场强度随时间变化规律为0E E kt =-(0E 、k 均为大于零的常数,电场方向以水平向左为正)的电场中,物体与竖直绝缘墙壁间的动摩擦因数为μ,已知0qE mg μ<.t=0时,物体从墙上由静止释放,若物体所受的最大静摩擦力等于滑动摩擦力,当物体下滑4

H

后脱离墙面,此时速度大小为

2

gH

,物体最终落在地面上.则下列关于物体的运动说法正确的是

A .当物体沿墙壁下滑时,物体先加速运动再做匀速直线运动

B .摩擦力对物体产生的冲量大小为202E q

k

μ

C .摩擦力所做的功1

8

W mgH =

D .物体与墙壁脱离的时刻为gH

t =

2.如图甲所示,质量M =2kg 的木板静止于光滑水平面上,质量m =1kg 的物块(可视为质点)以水平初速度v 0从左端冲上木板,物块与木板的v -t 图象如图乙所示,重力加速度大小为10m/s 2,下列说法正确的是( )

A .物块与木板相对静止时的速率为1m/s

B .物块与木板间的动摩擦因数为0.3

C .木板的长度至少为2m

D .从物块冲上木板到两者相对静止的过程中,系统产生的热量为3J

3.如图所示,质量为m 的小球从距离地面高度为H 的A 点由静止释放,落到地面上后又陷入泥潭中,由于受到阻力作用,到达距地面深度为h 的B 点时速度减为零不计空气阻

力,重力加速度为g。则关于小球下落过程中,说法正确的是

A.整个下落过程中,小球的机械能减少了mgH

B.整个下落过程中,小球克服阻力做的功为mg(H+h)

C.在陷入泥潭过程中,小球所受阻力的冲量大于m

D.在陷入泥潭过程中,小球动量的改变量的大小等于m

4.如图所示,光滑绝缘的水平面上M、N两点有完全相同的金属球A和B,带有不等量的

同种电荷.现使A、B以大小相等的初动量相向运动,不计一切能量损失,碰后返回M、N 两点,则

A.碰撞发生在M、N中点之外

B.两球同时返回M、N两点

C.两球回到原位置时动能比原来大些

D.两球回到原位置时动能不变

5.质量为m的箱子静止在光滑水平面上,箱子内侧的两壁间距为l,另一质量也为m且可视为质点的物体从箱子中央以v0=2gl的速度开始运动(g为当地重力加速度),如图

所示。已知物体与箱壁共发生5次完全弹性碰撞。则物体与箱底的动摩擦因数μ的取值范围是()

A.12

47

μ

<

21

94

μ

<<

C.

22

119

μ

<

22

1311

μ

<<

6.质量分别为3m和m的两个物体,用一根细绳相连,中间夹着一根被压缩的轻弹簧,在光滑的水平面上以速度v0匀速运动.某时刻剪断细绳,质量为m的物体离开弹簧时速度

变为v= 2v 0,如图所示.则在这一过程中弹簧做的功和两物体之间转移的动能分别是

A .2

083

mv 2023

mv B .2

0mv 2032

mv C .

2012mv 2032mv D .

2023mv 2

056

mv 7.如图所示,将质量为

M 1、半径为R 且内壁光滑的半圆槽置于光滑水平面上,左侧靠墙角,右侧靠一质量为M 2的物块.今让一质量为m 的小球自左侧槽口A 的正上方h 高处从静止开始落下,与圆弧槽相切自A 点进入槽内,则以下结论中正确的是

A .小球在槽内运动的全过程中,小球、半圆槽组成的系统机械能守恒

B .小球在槽内运动的全过程中,小球、半圆槽和物块组成的系统水平动量守恒

C .若小球能从C 点离开半圆槽,则其一定会做竖直上抛运动

D .若小球刚好到达C 点,则12

m

h R M M =

+

8.如图所示,两个小球A 、B 在光滑水平地面上相向运动,它们的质量分别为

m A =4kg ,m B =2kg ,速度分别是v A =3m/s (设为正方向),v B =-3m/s .则它们发生正碰后,速度的可能值分别为( )

A .v A ′=1 m/s ,v

B ′=1 m/s B .v A ′=4 m/s ,v B ′=-5 m/s

C .v A ′=2 m/s ,v B ′=-1 m/s

D .v A ′=-1 m/s ,v B ′=-5 m/s

9.如图所示,用长为L 的细线悬挂一质量为M 的小木块,木块处于静止状态.一质量为m 、速度为v 0的子弹自左向右水平射穿木块后,速度变为v .已知重力加速度为g ,则

A .子弹刚穿出木块时,木块的速度为

0()

m v v M

- B .子弹穿过木块的过程中,子弹与木块组成的系统机械能守恒 C .子弹穿过木块的过程中,子弹与木块组成的系统动量守恒

D .木块上升的最大高度为22

02mv mv Mg

-

10.如图所示,质量为M 的木板静止在光滑水平面上,木板左端固定一轻质挡板,一根轻弹簧左端固定在挡板上,质量为m 的小物块从木板最右端以速度v 0滑上木板,压缩弹簧,然后被弹回,运动到木板最右端时与木板相对静止。已知物块与木板之间的动摩擦因数为

μ,整个过程中弹簧的形变均在弹性限度内,则( )

A .木板先加速再减速,最终做匀速运动

B .整个过程中弹簧弹性势能的最大值为2

4()

Mmv M m +

C .整个过程中木板和弹簧对物块的冲量大小为

Mmv M m

+ D .弹簧压缩到最短时,物块到木板最右端的距离为2

02()Mv M m g

μ+

11.2019年1月3号“嫦娥4号”探测器实现人类首次月球背面着陆,并开展巡视探测。因月球没有大气,无法通过降落伞减速着陆,必须通过引擎喷射来实现减速。如图所示为“嫦娥4号”探测器降落月球表面过程的简化模型。质量m 的探测器沿半径为r 的圆轨道I 绕月运动。为使探测器安全着陆,首先在P 点沿轨道切线方向向前以速度u 喷射质量为△m 的物体,从而使探测器由P 点沿椭圆轨道II 转至Q 点(椭圆轨道与月球在Q 点相切)时恰好到达月球表面附近,再次向前喷射减速着陆。已知月球质量为M 、半径为R 。万有引力常量为G 。则下列说法正确的是( )

A .探测器喷射物体前在圆周轨道I 上运行时的周期为3

2r GM

B .在P 点探测器喷射物体后速度大小变为

()m m u m

-?

C .减速降落过程,从P 点沿轨道II ()

3

2

R r GM

π

+

D .月球表面重力加速度的大小为

2

GM

R 12.如图所示,在粗糙水平面上,用水平轻绳相连的两个相同的物体A 、B 质量均为m ,在水平恒力F 作用下以速度v 做匀速运动.在t =0时轻绳断开,A 在F 作用下继续前进,则下列说法正确的是( )

A .t =0至t =mv

F

时间内,A 、B 的总动量守恒 B .t =2mv F 至t =3mv

F 时间内,A 、B 的总动量守恒 C .t =2mv

F

时,A 的动量为2mv D .t =

4mv

F

时,A 的动量为4mv 13.如图甲所示,一轻弹簧的两端与质量分别为m 1和m 2的两物块A ,B 相连接,静止在光滑水平地面上,现使A 瞬时获得水平向右的速度3m/s ,从此刻开始计时,两物块的速度随时间变化的规律如图乙所示,下列说法正确的是( )

A .物块A 在t 1和t 3两个时刻的加速度大小相等

B .从开始计时到t 4这段时间内,物块A ,B 在t 2时刻相距最远

C .t 1到t 3这段时间内弹簧长度一直在增大

D .12:1:2m m

14.如图所示,一质量为m 0=0.05 kg 的子弹以水平初速度v 0=200 m/s 打中一放在水平地面上A 点的质量为m =0.95 kg 的物块,并留在物块内(时间极短,可忽略),随后物块从A 点沿AB 方向运动,与距离A 点L =5 m 的B 处的墙壁碰撞前瞬间的速度为v 1=8 m/s,碰后以v 2=6 m/s 的速度反向运动直至静止,测得物块与墙碰撞的时间为t =0.05 s,g 取10 m/s 2,则

A .物块从A 点开始沿水平面运动的初速度v =10 m/s

B .物块与水平地面间的动摩擦因数μ=0.36

C .物块与墙碰撞时受到的平均作用力大小F =266 N

D .物块在反向运动过程中产生的摩擦热Q =18 J

15.如图所示,质量为M 的长木板A 静止在光滑的水平面上,有一质量为m 的小滑块B 以初速度v 0从左侧滑上木板,且恰能滑离木板,滑块与木板间动摩擦因数为μ.下列说法中正确的是

A .若只增大v 0,则滑块滑离木板过程中系统产生的热量增加

B .若只增大M ,则滑块滑离木板过程中木板所受到的冲量减少

C .若只减小m ,则滑块滑离木板时木板获得的速度减少

D .若只减小μ,则滑块滑离木板过程中滑块对地的位移减小

16.一个物体以某一初速度从粗糙斜面的底部沿斜面向上滑,物体滑到最高点后又返回到斜面底部,则下述说法中正确的是()

A .上滑过程中重力的冲量小于下滑过程中重力的冲量

B .上滑过程中摩擦力的冲量与下滑过程中摩擦力的冲量大小相等

C .上滑过程中合力的冲量大于下滑过程中合力的冲量

D .上滑与下滑的过程中合外力冲量的方向相同

17.如图所示,在倾角30θ=?的光滑绝缘斜面上存在一有界匀强磁场,磁感应强度B =1T ,磁场方向垂直斜面向上,磁场上下边界均与斜面底边平行,磁场边界间距为L =0.5m 。斜面上有一边长也为L 的正方形金属线框abcd ,其质量为m =0.1kg ,电阻为

0.5R =Ω。第一次让线框cd 边与磁场上边界重合,无初速释放后,ab 边刚进入磁场时,

线框以速率v 1作匀速运动。第二次把线框从cd 边离磁场上边界距离为d 处释放,cd 边刚进磁场时,线框以速率v 2作匀速运动。两种情形下,线框进入磁场过程中通过线框的电量分别为q 1、q 2,线框通过磁场的时间分别t 1、t 2,线框通过磁场过程中产生的焦耳热分别为Q 1、Q 2.已知重力加速度g=10m/s 2,则:( )

A .121v v ==m/s ,0.05d =m

B .120.5q q ==

C ,0.1d =m C .12:9:10Q Q =

D .12:6:5t t =

18.如图所示,ab 、cd 是竖直平面内两根固定的光滑细杆,ab >cd 。ab 、cd 的端点都在同一圆周上,b 点为圆周的最低点,c 点为圆周的最高点,若每根杆上都套着一个相同的小滑环(图中未画出),将甲、乙两滑环分别从a 、c 处同时由静止释放,则( )

A .两滑环同时到达滑杆底端

B .两滑环的动量变化大小相同

C .重力对甲滑环的冲量较大

D .弹力对甲滑环的冲量较小 19.带有

1

4

光滑圆弧轨道、质量为M 的小车静止置于光滑水平面上,如图所示,一质量为m 的小球以速度0v 水平冲上小车,到达某一高度后,小球又返回车的左端,则( )

A .小球一定向左做平抛运动

B .小球可能做自由落体运动

C .若m M =,则此过程小球对小车做的功为

201

2

Mv D .若m M <,则小球在弧形槽上升的最大高度将大于2

04v g

20.如图所示,左图为大型游乐设施跳楼机,右图为其结构简图.跳楼机由静止从a 自由下落到b ,再从b 开始以恒力制动竖直下落到c 停下.已知跳楼机和游客的总质量为m ,ab 高度差为2h ,bc 高度差为h ,重力加速度为g .则

A .从a 到b 与从b 到c 的运动时间之比为2:1

B .从a 到b ,跳楼机座椅对游客的作用力与游客的重力大小相等

C .从a 到b ,跳楼机和游客总重力的冲量大小为m gh

D .从b 到c ,跳楼机受到制动力的大小等于2mg

二、动量守恒定律 解答题

21.如图所示,足够长的传送带与水平面间的夹角为θ。两个大小不计的物块A B 、质量分

别为1m m =和25m m =,A B 、与传送带间的动摩擦因数分别为13

tan 5

μθ=

和2tan μθ=。已知物块A 与B 碰撞时间极短且无能量损失,最大静摩擦力与滑动摩擦力相等。

(1)若传送带不动,将物块B 无初速度地放置于传送带上的某点,在该点右上方传送带上的另一处无初速度地释放物块A ,它们第一次碰撞前瞬间A 的速度大小为0v ,求A 与

B 第一次碰撞后瞬间的速度11A B v v 、;

(2)若传送带保持速度0v 顺时针运转,如同第(1)问一样无初速度地释放B 和A ,它们第一次碰撞前瞬间A 的速度大小也为0v ,求它们第二次碰撞前瞬间A 的速度2A v ; (3)在第(2)问所述情境中,求第一次碰撞后到第三次碰撞前传送带对物块A 做的功。

22.如图所示,在竖直平面内倾角37θ?=的粗糙斜面AB 、粗糙水平地面BC 、光滑半圆轨道CD 平滑对接,CD 为半圆轨道的竖直直径。BC 长为l ,斜面最高点A 与地面高度差

1.5h l =,轨道CD 的半径4

R l

=

。质量为m 的小滑块P 从A 点静止释放,P 与AB 、BC 轨道间的滑动摩擦因数为1

8

μ=

。在C 点静止放置一个质量也为m 的小球Q ,P 如果能与Q 发生碰撞,二者没有机械能损失。已知重力加速度为g ,sin370.6?=。求 (1)通过计算判断,滑块P 能否与小球Q 发生碰撞;

(2)如果P 能够与Q 碰撞,求碰后Q 运动到D 点时对轨道的压力大小;

(3)如果小球Q 的质量变为km (k 为正数),小球Q 通过D 点后能够落在斜面AB 上,求k 值范围?

23.一质量为2m 的物体P 静止于光滑水平地面上,其截面如图所示.图中ab 为粗糙的水平面,长度为L ;bc 为一光滑斜面,斜面和水平面通过与ab 和bc 均相切的长度可忽略的光滑圆弧连接.现有一质量为m 的木块以大小为v 0的水平初速度从a 点向左运动,在斜面上上升的最大高度为h ,返回后在到达a 点前与物体P 相对静止.重力加速度为g .求

(1)木块在最高点时的速度; (2)木块在ab 段受到的摩擦力f ; (3)木块最后距a 点的距离s

24.如图所示,电阻不计的光滑金属导轨由弯轨AB ,FG 和直窄轨BC ,GH 以及直宽轨DE 、IJ 组合而成,AB 、FG 段均为竖直的

1

4

圆弧,半径相等,分别在B ,G 两点与窄轨BC 、GH 相切,窄轨和宽轨均处于同一水平面内,BC 、GH 等长且与DE ,IJ 均相互平行,CD ,HI 等长,共线,且均与BC 垂直。窄轨和宽轨之间均有竖直向上的磁感强度为B 的匀强磁场,窄轨间距为

2

L

,宽轨间距为L 。由同种材料制成的相同金属直棒a ,b 始终与导轨垂直且接触良好,两棒的长度均为L ,质量均为m ,电阻均为R 。初始时b 棒静止于导轨BC 段某位置,a 棒由距水平面高h 处自由释放。已知b 棒刚到达C 位置时的速度为a 棒刚到达B 位置时的

1

5

,重力加速度为g ,求:

(1)a 棒刚进入水平轨道时,b 棒加速度a b 的大小; (2)b 棒在BC 段运动过程中,a 棒产生的焦耳热Q a ;

(3)若a 棒到达宽轨前已做匀速运动,其速度为a 棒刚到达B 位置时的1

2

,则b 棒从刚滑上宽轨到第一次达到匀速的过程中产生的焦耳热Q b 。

25.如图所示,一根劲度系数为k 的轻质弹簧竖直放置,上下两端各固定质量均为M 的物体A 和B (均视为质点),物体B 置于水平地面上,整个装置处于静止状态,一个质量

11

2

m M

的小球P 从物体A 正上方距其高度h 处由静止自由下落,与物体A 发生碰撞(碰撞时间极短),碰后A 和P 粘在一起共同运动,不计空气阻力,重力加速度为g .

(1)求碰撞后瞬间P 与A 的共同速度大小;

(2)当地面对物体B 的弹力恰好为零时,求P 和A 的共同速度大小. (3)若换成另一个质量21

4

m M =

的小球Q 从物体A 正上方某一高度由静止自由下落,与物体A 发生弹性碰撞(碰撞时间极短),碰撞后物体A 达到最高点时,地面对物块B 的弹力恰好为零.求Q 开始下落时距离A 的高度.(上述过程中Q 与A 只碰撞一次) 26.如图,水平光滑轨道AB 与半径为R 的竖直光滑半圆形轨道BC 相切于B 点.质量为2m 和m 的a 、b 两个小滑块(可视为质点)原来静止于水平轨道上,其中小滑块a 与一轻弹簧相连.某一瞬间给小滑块a 一冲量使其获得初速度向右冲向小滑块b ,与b 碰撞后弹簧不与b 相粘连,且小滑块b 在到达B 点之前已经和弹簧分离,不计一切摩擦,小滑块b 离开C 点后落地点距离B 点的距离为2R ,重力加速度为g ,求:

(1)小滑块b 与弹簧分离时的速度大小B v ;

(2)上述过程中a 和b 在碰撞过程中弹簧获得的最大弹性势能pmax E ;

(3)若刚开始给小滑块a 的冲量为3I m gR =b 滑块离开圆轨道的位置和圆心的连线与水平方向的夹角θ.(求出θ角的任意三角函数值即可).

【参考答案】***试卷处理标记,请不要删除

一、动量守恒定律 选择题 1.B 解析:BC 【解析】 【详解】

竖直方向上,由牛顿第二定律有:mg-μqE=ma ,随着电场强度E 的减小,加速度a 逐渐增大,做变加速运动,当E=0时,加速度增大到重力加速度g ,此后物块脱离墙面,故A 错误.当物体与墙面脱离时电场强度为零,所以E=E 0-kt=0,解得时间t=

E k

;因摩擦力f=μqE=μqE 0-μqkt ,则摩擦力的冲量:2

0001

22f E qE I qE k k

μμ=??=

,选项B 正确;物体从开始运动到脱

离墙面电场力一直不做功,由动能定理得,2

142f H mg W m -=??

,物体克服摩擦力所做的功W f =1

8

mgH .故C 正确.物体沿墙面下滑过程是加速度增加的加速运动,平均速

度0

2v v v +<

,则物体沿墙面运动的时间22

H x t v =>=,故D 错误.故选BC

【点睛】

本题关键能运用牛顿第二定律,正确分析物体的受力情况和运动情况,结合动量定理求解

摩擦力的冲量,结合动能定理求解摩擦力做功.

2.A

解析:AD 【解析】 【详解】

A .由图示图线可知,物块的初速度为:v 0=3m/s ,物块与木板组成的系统动量守恒,由动量守恒定律得:

mv 0=(M +m )v

解得:v =1m/s ,即两者相对静止时的速度为1m/s ,故A 正确;

B .由图示图线可知,物块的加速度大小为:a =2m/s 2,由牛顿第二定律得:a =μg ,代入数据解得:μ=0.2,故B 错误; CD .对系统,由能量守恒定律得:

22011

()22

mv M m v Q =++ 其中:Q =μmgs ,代入数据解得:

Q =3J ,s =1.5m ,

木板长度至少为:

L =s =1.5m ,

故C 错误,D 正确。

3.B

解析:BCD 【解析】 【详解】

A.小球在整个过程中,动能变化量为零,重力势能减小mg (H +h ),则小球的机械能减小了mg (H +h );故A 错误.

B.对全过程运用动能定理得,mg (H +h )-W f =0,则小球克服阻力做功W f =mg (H +h );故B 正确.

C.落到地面的速度,对进入泥潭的过程取向下为正方向,运用动量定理得,I G -I f =0-mv ,知阻力的冲量大小

,则小球所受阻力的冲量大于m

;故C

正确.

D.落到地面的速度,对进入泥潭后的速度为0,所以小球动量的改变量大小等于m

;故D 正确.

4.B

解析:BC 【解析】

由于两球在任何时刻所受的电场力相等,则加速度相等,速度大小相等,可知碰撞发生在中点,且同时返回M 、N 点,A 错误B 正确;两球碰撞后,电量重新分布,两球在同样的

位置间的作用力由122q q F k r

=变为

2

122

(

)

2q q F k r +=,故根据12122q q q q +>12122q q q q +≥用力比之前增大,可知整个过程中电场力做正功,知返回到出发点的速度比较之前大,则两球回到原位置时动量比原来大些,C 正确D 错误.

5.C

解析:C 【解析】 【分析】 【详解】

小物块与箱子组成的系统动量守恒,以向右为正方向,由动量守恒定律得

02mv mv =共

解得

012

v v =

共 对小物块和箱子组成的系统,由能量守恒定律得

()02212

1 2m m Q v m v =++共 解得

2

014

m g v Q m l =

= 由题意可知,小物块与箱子发生5次碰撞,则物体相对于木箱运动的总路程

max 112s l =

,min 92

s l = 小物块受到摩擦力为

f m

g μ=

对系统,利用产热等于摩擦力乘以相对路程,得

Q fs mgs μ==

max 29μ=

,min 211

μ= 即

22

119

μ<<,故C 正确,ABD 错误。 故选C 。

6.D

解析:D 【解析】 【分析】

细线断裂过程,系统的合外力为零,总动量守恒,根据动量守恒定律就可以求出物体m 离开弹簧时物体3m 的速度,根据动能定理分别求出弹簧对两个物体做的功,两者之和即可得到弹簧在这个过程中做的总功. 【详解】

设3m 的物体离开弹簧时的速度为υ',根据动量守恒定律,则有:

00(3)?23m m v m v mv +=+'

解得:02

3

v v '=

根据动能定理,弹簧对两个物体做的功分别为:

2221000113(2)222

W m v mv mv =

-= 22

2200012153()32326

W m v mv mv =?-?=-

所以弹簧做的总功:W=W 1+W 2=2

023

mv m 的物体动能的增量为:

222000113(2)222

m v mv mv -= 此过程中弹簧的弹性势能的减小量为弹簧弹力做的功即为2

023

mv 由机械能守恒可知,所以两物体之间转移的动能为:222

000325236

mv mv mv -=. 故应选D . 【点睛】

本题是系统动量守恒和机械能守恒的类型,对于弹簧的弹力是变力,应运用动能定理求解做功.

7.D

解析:D 【解析】 【详解】

AB .小球从AB 的过程中,半圆槽对球的支持力沿半径方向指向圆心,而小球对半圆槽的压力方向相反指向左下方,因为有竖直墙挡住,所以半圆槽不会向左运动,可见,该过程中,小球与半圆槽在水平方向受到外力作用,动量并不守恒,而由小球、半圆槽 和物块组成的系统动量也不守恒,但对系统的机械能守恒;从B→C 的过程中,小球对半圆槽的压力方向向右下方,所以半圆槽要向右推动物块一起运动,因而小球参与了两个运动:一个是沿半圆槽的圆周运动,另一个是与半圆槽一起向右运动,小球所受支持力方向与速度方向并不垂直,此过程中,因为有物块挡住,小球与半圆槽在水平方向动量并不守恒,在小球运动的全过程,水平方向 动量也不守恒,由于半圆槽要对滑块做功,则对小球、半圆槽组成的系统机械能不守恒,选项AB 错误;

C .当小球运动到C 点时,它的两个分运动的合速度方向并不是竖直向上,所以此后小球做斜上抛运动,即选项C 错误;

D .小球到达B 点时的速度

0v =

从B 到C 的过程中,对小球、半圆槽 和物块组成的系统水平方向动量守恒:

012()mv m M M v =++

由能量关系可知:

2121

()2

mgh m M M v =++

联立解得:

12

m

h R M M =

+

选项D 正确.

8.A

解析:A 【解析】 【分析】 【详解】

碰前系统总动量为34326/kg m s ?-?=?,碰前总动能为2

211

4323272

2

J ??+

??=; 若1m /s 1m /A B v v s ''=

,=,则系统动量守恒,动能3J ,碰撞后A 球速度不大于B 球的速度,符合,故A 可能;

若4m /s /s A B v v ''=,=-5m ,则系统动量守恒,动能大于碰撞前,不符合题意,故B 不

可能;

若2m /s 1m /s A B v v ''=,=-

,则系统动量守恒,但不符合碰撞后A 球速度不大于B 球的速度,故C 不可能;

若1m /s 5m /s A B v v ''=-

,=-,则系统动量不守恒,D 不可能. 9.A

解析:AC 【解析】

子弹穿过木块的过程中,系统动量守恒,但机械能不守恒,有部分机械能转化为系统内能,故B 错误C 正确;根据动量守恒,0mv mv Mv =+',解得0mv mv

v M

'-=

,所以A 正确.子弹穿出以后,对木块应用动能定理有2

12

Mv Mgh '=得202()2mv mv h gM -=

,所以D 错误.故选择AC.

【点睛】根据动量守恒求子弹穿出以后木块的速度,根据动能定理或者机械能守恒求木块上升的最大高度.

10.A

解析:AB 【解析】 【分析】 【详解】

A .物块接触弹簧之前,物块减速运动,木板加速运动;当弹簧被压缩到最短时,摩擦力反向,直到弹簧再次恢复原长,物块继续减速,木板继续加速;当物块与弹簧分离后,物块水平方向只受向左的摩擦力,所以物块加速,木板减速;最终,当物块滑到木板最右端时,物块与木板共速,一起向左匀速运动。所以木板先加速再减速,最终做匀速运动,所以A 正确;

B .当弹簧被压缩到最短时,弹簧的弹性势能最大,此时物块与木板第一次共速,将物块,弹簧和木板看做系统,由动量守恒定律可得

0()mv m M v =+

mv v m M

=

+ 从开始运动到弹簧被压缩到最短,由能量守恒可得

22p 0f 11

()22E mv m M v W =

-+- 从开始运动到物块到达木板最右端,由能量守恒可得

22f 011

2()22

W mv m M v =

-+

2

0f 4()

mMv W m M =+

则最大的弹性势能为

2

p 4()

E Mmv M m +=

所以B 正确;

C .根据动量定理,整个过程中物块所受合力的冲量大小为

0Mmv I mv mv M m

=-=-

+ 所以

Mmv M m

+是合力的冲量大小,不是木板和弹簧对物块的冲量大小,所以C 错误; D .由题意可知,物块与木板之间的摩擦力为

f F m

g μ=

又系统克服摩擦力做功为

f f W F x =相对

20f

f =4()Mv W x F M m g

μ=+相对

即弹簧压缩到最短时,物块到木板最右端的距离为2

04()Mv M m g

μ+,所以D 错误。

故选AB 。

11.A

解析:AD 【解析】 【分析】 【详解】

A .探测器绕月球做匀速圆周运动,万有引力提供向心力

2

22()Mm G

m r r T

π= 解得探测器喷射物体前在圆周轨道I 上运行时的周期

2T = 故A 正确;

B .在P 点探测器喷射物体的过程中,设喷射前的速度为v ,根据动量守恒可知

mv =△mu +(m -△m )v '

解得喷射后探测器的速度

(')mv mu m m u

v m m m

--=

≠-

故B 错误;

C .探测器在轨道II 上做椭圆运动,半长轴

2

r R

a +=

根据开普勒第三定律可知

33

2

2

II I a r T T = 解得

32()22II r R T r

+=?减速降落过程,从P 点沿轨道II 运行到月球表面所经历的时间为

32(122)II r R t T r ?+== 故C 错误;

D .假设在月球表面的放置一个质量为m 的物体,则它受到的重力和万有引力相等

2GMm

mg R =

解得月球表面重力加速度的大小

2

GM

g R =

故D 正确。 故选AD 。

12.A

解析:AC 【解析】 【详解】

设A 、B 受到的滑动摩擦力都为f ,断开前两物体做匀速直线运动,根据平衡条件得:F=2f ,设B 经过时间t 速度为零,对B 由动量定理得:0ft mv -=-,解得:2mv

t F

=

;由此可知,在剪断细线前,两木块在水平地面上向右做匀速直线运动,以AB 为系统,绳子的属于系统的内力,系统所受合力为零;在剪断细线后,在B 停止运动以前,两物体受到的摩擦力不变,两木块组成的系统的合力仍为零,则系统的总动量守恒,故在0t =至

2mv t F =

的时间内A 、B 的总动量守恒,故A 正确;在2mv

t F

=后,B 停止运动,A 做匀加速直线运动,故两木块组成的系统的合力不为零,故A 、B 的总动量不守恒,故B 错误;

当2mv t F =

时,对A 由动量定理得:A Ft ft P mv -=-,代入2,2F mv

f t F

==,解得2A P mv =,故C 正确;当4mv

t F

=

时,对A 由动量定理得:A

Ft ft P mv '-=-,代入4,2F mv

f t F =

=,解得:3A

P mv '=,故D 错误;故选C. 【点睛】 动量守恒定律适用的条件:系统的合外力为零.或者某个方向上的合外力为零,则那个方向上动量守恒.两木块原来做匀速直线运动,合力为零,某时刻剪断细线,在A 停止运动以前,系统的合力仍为零,系统动量守恒;在B 静止后,系统合力不为零,A 和B 组成的系统动量不守恒.

13.A

解析:ACD 【解析】 【分析】 【详解】

A .根据图像的对称性可知,在t 1和t 3两个时刻,图像的斜率大小相等,因此物块A 在t 1和t 3两个时刻的加速度大小相等,A 正确;

BC .结合图象可知,开始时m 1逐渐减速,m 2逐渐加速,弹簧被压缩,t 1时刻二者速度相等,弹簧压缩量最大,弹性势能最大,系统动能最小;然后弹簧逐渐恢复原长,m 2依然加速,m 1先减速为零,然后反向加速,t 2时刻,弹簧恢复原长状态,由于此时两物块速度相反,因此弹簧的长度将逐渐增大,两木块均减速,当t 3时刻,两木块速度相等,弹簧最长,弹簧弹性势能最大,系统动能最小,B 错误,C 正确;

D .两物块和弹簧组成的系统动量守恒,选择从开始到t 1时刻列方程可知

11122()m v m m v =+

将v 1=3m/s ,v 2=1m/s 代入得

m 1:m 2=1:2

D 正确。 故选ACD 。

14.A

解析:ABD 【解析】 【分析】 【详解】

A 项:子弹打中物块的过程,由于内力远远大于外力,根据动量守恒定律有:

000()m v m m v =+

解得:v=10m/s ,故A 正确;

B 项:物体从A 点运动到B 点的过程,根据动能定理有:

2200101()(1

22

)()m gL m m m m v m v μ-+=+-+

解得:0.36μ=

故B 正确;

C 项:物块与强碰撞过程中,以向右为正方向,由动量定理有:

0201()()m v F m m v t m -=-+-+

解得:280F N = 故C 错误;

D 项:物块在反向运动过程中,根据动量守恒定律可知,动能全部转化因摩擦而产生的热量,即

201

()182

Q m m v J =

+= 故D 正确.

15.B

解析:BCD 【解析】 【分析】 【详解】

A .滑块滑离木板过程中系统产生的热量等于滑动摩擦力与相对位移的乘积

=Q fL mgL μ=相相

因为相对位移没变,所以产生热量不变,故A 错误;

B .由极限法,当M 很大时,长木板运动的位移x M 会很小,滑块的位移等于x M +L 很小,对滑块根据动能定理:

()22101122

M mg x L mv mv μ-+=

- 可知滑块滑离木板时的速度v 1很大,把长木板和小滑块看成一个系统,满足动量守恒

01mv mv Mv =+'

可知长木板的动量变化比较小,所以若只增大M ,则滑块滑离木板过程中木板所受到的冲量减少,故B 正确;

C .采用极限法:当m 很小时,摩擦力也很小,m 的动量变化很小,把长木板和小滑块看成一个系统,满足动量守恒,那么长木板的动量变化也很小,故C 正确;

D .当μ很小时,摩擦力也很小,长木板运动的位移x M 会很小,滑块的位移等于x M +L 也会很小,故D 正确. 故选BCD .

16.A

解析:ACD 【解析】 【详解】

上滑过程加速度:a 上=g (sinθ+μcosθ),下滑过程加速度:a 下=g (sinθ-μcosθ),则a 上>a

,上滑过程为匀减速直线运动,末速度为零,其逆过程为初速度为零的匀加速直线运动,

下滑过程为初速度为零的匀加速直线运动,上滑与下滑过程的位移x 大小相等,由x=

12

at 2

,a 上>a 下,可知:t 上<t 下;重力的冲量:I G =mgt ,由于t 上<t 下,则上滑过程重力的冲量小于下滑过程中重力的冲量,故A 正确;摩擦力的冲量:I f =ft=μmgtcosθ,由于t 上<t 下,则上滑过程摩擦力的冲量小于下滑过程中摩擦力的冲量,故B 错误;上滑过程为匀减速直线运动,末速度为零,其逆过程为初速度为零的匀加速直线运动,下滑过程为初速度为零的匀加速直线运动,上滑与下滑过程的位移x 大小相等,由v 2=2ax ,a 上>a 下,可知:v 上>v 下,由动量定理得:I 合=mv-0=mv ,可知:I 合上>I 合下,故C 正确;上滑和下滑过程中,合外力均沿斜面向下,则上滑与下滑的过程中合外力冲量的方向均沿斜面向下,选项D 正确;故选ACD. 【点睛】

本题考查了比较各力的冲量大小,本题的解题关键是分析受力和两个运动过程中的时间关系,由牛顿第二定律和运动学公式、冲量的意义、动量定理即可正确解题.

17.B

解析:BCD 【解析】 【分析】 【详解】

A .匀速运动时,对线框进行受力分析可知

22sin B L v

mg R

θ= 可得

121m/s v v ==

根据机械能守恒

221sin 2

mgd mv θ=

可得

0.1m d =

A 错误;

B .进入磁场过程中

2

BL E t t

?Φ==

?? E

I R

=

q I t =??①

由三式联立得

高中物理动量守恒定律试题类型及其解题技巧

高中物理动量守恒定律试题类型及其解题技巧 一、高考物理精讲专题动量守恒定律 1.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求: (1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能; (3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =01 4 P E mgx =0(2043)v gx =+【解析】 试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°= 1 2 mv 12 解得:103v gx = 又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…② 联立①②得:21011 322 v v gx == (2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P + 1 2 ?2mv 22=0+2mg?x 0sin30° 解得:E P =2mg?x 0sin 30°? 1 2?2mv 22=mgx 0?34 mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,

最新物理动量守恒定律练习题20篇

最新物理动量守恒定律练习题20篇 一、高考物理精讲专题动量守恒定律 1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求: (1)A球与B球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B球的最小速度. 【答案】(1);(2);(3)零. 【解析】 试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有: 碰后A、B的共同速度 损失的机械能 (2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大 根据动量守恒定律有: 三者共同速度 最大弹性势能 (3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速. 弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有: 根据机械能守恒定律: 此时A、B的速度,C的速度

可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的 ,故B 的最小速度为零 . 考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞. 【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答 2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求: (1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ; (2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1; (3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值. 【答案】(1)2 4.610N F N -=? (2)1 1.25B T = (3)127s 360 t π = ,001290143ββ==和 【解析】 【详解】 解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v

动量守恒定律中的典型模型

动量守恒定律中的典型模型 1、子弹打木块模型包括木块在长木板上滑动的模型,其实是一类题型,解决方法基本相同。一般要用到动量守恒、动量定理、动能定理及动力学等规律,综合性强、能力要求高,是高中物理中常见的题型之一,也是高考中经常出现的题型。 例1:质量为2m、长为L的木块置于光滑的水平面上,质量为m的子弹以初速度V0水平向右射穿木块后,速度为V0/2。设木块对子弹的阻力F恒定。求: (1)子弹穿过木块的过程中木块的位移 (2)若木块固定在传送带上,使木块随传送带始终以恒定速度u

3、弹簧木块模型 例5、质量为m 的物块甲以3m/s 的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m 的物体乙以4m/s 的速度与甲相向运动,如图所示。则( ) A .甲、乙两物块在弹簧压缩过程中,由于弹力作用,动量 不守恒 B .当两物块相距最近时,甲物块的速率为零 C .当甲物块的速率为1m/s 时,乙物块的速率可能为2m/s ,也可能为0 D .甲物块的速率可能达到5m/s 例6、如图所示,光滑的水平面上有m A =2kg ,m B = m C =1kg 的三个物体,用轻弹簧将A 与B 连接.在A 、C 两边用力使三个物体靠近,A 、B 间的弹簧被压缩,此过程外力做功72 J ,然后从静止开始释放,求: (1)当物体B 与C 分离时,B 对C 做的功有多少? (2)当弹簧再次恢复到原长时,A 、B 的速度各是多大? 例7、如图所示,光滑水平地面上静止放置两由弹簧相连木块A 和B,一质量为m 子弹,以速度v 0,水平击中木块A,并留在其中,A 的质量为3m,B 的质量为4m. (1)求弹簧第一次最短时的弹性势能 (2)何时B 的速度最大,最大速度是多少? 4、碰撞、爆炸、反冲 Ⅰ、碰撞分类(两物体相互作用,且均设系统合外力为零) (1)按碰撞前后系统的动能损失分类,碰撞可分为弹性碰撞、非弹性碰撞和完全非弹性碰撞. (2)弹性碰撞前后系统动能相等.其基本方程为① m 1v 1+m 2v 2=m 1 v 1'+m 2 v 2' ② 222211222211'2 1'212121v m v m v m v m +=+ . (3)A 、B 两物体发生弹性碰撞,设碰前A 初速度为v 0,B 静止,则基本方程为 ① m A v 0=m A v A +m B v B ,② 2 220212121B B A A A v m v m v m += 可解出碰后速度0v m m m m v B A B A A +-= ,

动量守恒定律典型例题解析

动量守恒定律·典型例题解析 【例1】 如图52-1所示,在光滑的水平面上,质量为m 1的小球以速度v 1追逐质量为m 2,速度为v 2的小球,追及并发生相碰后速度分别为v 1′和v 2′,将两个小球作为系统,试根据牛顿运动定律推导出动量守恒定律. 解析:在两球相互作用过程中,根据牛顿第二定律,对小球1有:F ==,对有′==.由牛顿第三定律得=m a m m F m a m F 1112222????v t v t 12 -F ′,所以F ·Δt =-F ′·Δt ,m 1Δv 1=-m 2Δv 2,即m 1( v 1′-v 1)=-m 2(v 2′-v 2),整理后得:m 1v 1+m 2v 2=m 1v 1′+ m 2v 2′,这表明以两小球为系统,系统所受的合外力为零时,系统的总动量守恒. 点拨:动量守恒定律和牛顿运动定律是一致的,当系统内受力情况不明,或相互作用力为变力时,用牛顿运动定律求解很繁杂,而动量定理只管发生相互作用前、后的状态,不必过问相互作用的细节,因而避免了直接运用牛顿运动定律解题的困难,使问题简化. 【例2】 把一支枪水平地固定在光滑水平面上的小车上,当枪发射出一颗子弹时,下列说法正确的是 [ ] A .枪和子弹组成的系统动量守恒 B .枪和车组成的系统动量守恒 C .子弹、枪、小车这三者组成的系统动量守恒 D .子弹的动量变化与枪和车的动量变化相同 解析:正确答案为C 点拨:在发射子弹时,子弹与枪之间,枪与车之间都存在相互作用力,所以将枪和子弹作为系统,或枪和车作为系统,系统所受的合外力均不为零,系统的动量不守恒,当将三者作为系统时,系统所受的合外力为零,系统的动量守恒,这时子弹的动量变化与枪和车的动量变化大小相等,方向相反.可见,系统的动量是否守恒,与系统的选取直接相关. 【例3】 如图52-2所示,设车厢的长度为l ,质量为M ,静止于光滑的水平面上,车厢内有一质量为m 的物体以初速度v 0向右运动,与车厢壁来

四动量守恒定律练习题及答案

四 动量守恒定律 姓名 一、选择题(每小题中至少有一个选项是正确的) 1.在下列几种现象中,动量守恒的有( ) A .原来静止在光滑水平面上的车,从水平方向跳上一个人,人车为一系统 B .运动员将铅球从肩窝开始加速推出,以运动员和球为一系统 C .从高空自由落下的重物落在静止于地面上的车厢中,以重物和车厢为一系统 D .光滑水平面上放一斜面,斜面光滑,一个物体沿斜面滑下,以重物和斜面为一系统 2.两物体组成的系统总动量守恒,这个系统中( ) A .一个物体增加的速度等于另一个物体减少的速度 B .一物体受的冲量与另一物体所受冲量相同 C .两个物体的动量变化总是大小相等,方向相反 D .系统总动量的变化为零 3.砂子总质量为M 的小车,在光滑水平地面上匀速运动,速度为v 0,在行驶途中有质量为m 的砂子从车上漏掉,砂子漏掉后小车的速度应为 ( ) A .v 0 B .m M Mv -0 A .m M mv -0 A .M v m M 0)(- 、B 两个相互作用的物体,在相互作用的过程中合外力为0,则下述说法中正确的是( ) A .A 的动量变大, B 的动量一定变大 B .A 的动量变大,B 的动量一定变小 C .A 与B 的动量变化相等 D .A 与B 受到的冲量大小相等 5.把一支枪水平固定在小车上,小车放在光滑的水平地面上,枪发射子弹时,关于枪、子弹、车的下列说法正确的有( ) A. 枪和子弹组成的系统动量守恒 B.枪和车组成的系统动量守恒 C .枪、弹、车组成的系统动量守恒 D .若忽略不计弹和枪筒之间的摩擦,枪、车组成的系统动量守恒 6.两球相向运动,发生正碰,碰撞后两球均静止,于是可以判定,在碰撞以前( ) A .两球的质量相等 B .两球的速度大小相同 C .两球的动量大小相等 D .以上都不能断定 7.一只小船静止在水面上,一个人从小船的一端走到另一端,不计水的阻力,以下说法正确的是( ) A .人在小船上行走,人对船的冲量比船对人的冲量小,所以 人向前运动得快,小船后退得慢 B .人在小船上行走时,人的质量比船的质量小,它们受到的 冲量大小是一样的,所以人向前运动得快,船后退得慢 C .当人停止走动时,因为小船惯性大,所以小船要继续后退 D .当人停止走动时,因为总动量守恒,所以小船也停止后退 8.如图所示,在光滑水平面上有一静止的小车,用线系一小球, 将球拉开后放开,球放开时小车保持静止状态,当小球落下以后 与固定在小车上的油泥沾在一起,则从此以后,关于小车的运动状态是 ( ) A .静止不动 B .向右运动 C .向左运动 D .无法判断 *9.木块a 和b 用一根轻弹簧连接起来,放在光滑水平面上,a 紧靠在墙壁上,在b 上施加向左的水平力使弹簧压缩,如图所示,当撤去外力后,下列说法中正确的是( ) A .a 尚未离开墙壁前,a 和b 系统的动量守恒 B .a 尚未离开墙壁前,a 与b 系统的动量不守恒 C .a 离开墙后,a 、b 系统动量守恒 D .a 离开墙后,a 、b 系统动量不守恒 *10.向空中发射一物体.不计空气阻力,当物体的速度恰好沿水平方向 时,物体炸裂为a,b 两块.若质量较大的a 块的速度方向仍沿原来的方向则 ( ) A .b 的速度方向一定与原速度方向相反 B .从炸裂到落地这段时间里,a 飞行的水平距离一定比b 的大

动量守恒定律分类练习教师版含答案

《动量守恒定律》分类练习 一、守恒条件 1、如图所示,在光滑的水平面上有两辆小车,中间夹一根压缩了的轻质弹簧,两手分别按住小车使它们静止,对两车及弹簧组成的系统,下列说法中不正确的是 ( ) A. 只要两手同时放开后,系统的总动量始终为零 B. 先放开左手,后放开右手,动量不守恒 C. 先放开左手,后放开右手,总动量向右 D. 无论怎样放开两手,系统的总动能一定不为零 2、M 置于光滑平面上,上表面粗糙且足够长,木块m 以初速度v 滑上车表面,则:( ) A .m 的最终速度为mv /(M+m) B .因车表面粗糙,故系统动量不守恒 C .车面越粗糙,小车M 获得动量越大 D . m 速度最小时,M 速度最大 二、简单碰撞判断 3、甲、乙两节车厢在光滑水平轨道上相向运动,通过碰撞而挂接,挂接前甲车向东运动,乙车向西运动,挂接后一起向西运动,由此可以肯定 ( ) A .乙车质量比甲车大 B .乙车初速度比甲车大 C .乙车初动量比甲车大 D .乙车初动能比甲车大 4、质量为M 的小车在水平地面上以速度v0匀速向右运动。当车中的砂子从底部的漏斗中不断流下时,车子速度将( ) A .减小 B .不变 C .增大 D .无法确定 5、质量为M 的玩具车拉着质量为m 的小拖车在水平地面上以速度v 匀速前进。某一时刻 拉拖车的线突然断了,而玩具车的牵引力不变,那么在小拖车的速度减为零时,玩具车的速度为(设玩具车和拖车与地面间的动摩擦因数相同) ( ) A .mV /M B .(M+m)V /M C .MV /(M+m) D .0 6、如图所示,放在光滑水平桌面上的A 、B 木块中部夹一被压缩的弹簧,当弹簧被放开时,它们各安闲桌面上滑行一段距离后,飞离桌面落在地上。A 的落地点与桌边水平距离0.5m ,B 的落地点距离桌边1m ,那么( ) A .A 、 B 离开弹簧时的速度比为1∶2 B .A 、B 质量比为2∶1 C .未离开弹簧时,A 、B 所受冲量比为1∶2 D .未离开弹簧时,A 、B 加速度之比1∶2

高中物理动量守恒定律练习题及答案及解析

高中物理动量守恒定律练习题及答案及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求: (1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能; (3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =01 4 P E mgx =0(2043)v gx =+【解析】 试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°= 1 2 mv 12 解得:103v gx = 又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…② 联立①②得:21011 322 v v gx == (2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P + 1 2 ?2mv 22=0+2mg?x 0sin30° 解得:E P =2mg?x 0sin30°? 1 2?2mv 22=mgx 0?34 mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,

动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型) 例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为 4kg,地面光滑,则车后来的速度为多少? 例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少? 例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地 点的距离。(g取10m/s2) 例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。设 小车足够长,求: (1)木块和小车相对静止时小车的速度。 (2)从木块滑上小车到它们处于相对静止所经历的时间。 (3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。 例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞? 答案:1.

h b 分析:以物体和车做为研究对象,受力情况如图所示。 在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。因此地面给车的支持力远大于车与重物的重力之和。 系统所受合外力不为零,系统总动量不守恒。但在水平方向系统不受外力作用,所以系统水平方向动量守恒。以车的运动方向为正方向,由动量守恒定律可得: 车 重物初:v 0=5m/s 0末:v v ?Mv 0=(M+m)v ?s m v m N M v /454 14 0=?+=+= 即为所求。 2、分析:以滑块和小车为研究对象,系统所受合外力为零,系统总动量守恒。 以滑块的运动方向为正方向,由动量守恒定律可得 滑块 小车初:v 0=4m/s 0末:v v ?mv 0=(M+m)v ?s m v m M M v /143 11 0=?+=+= 再以滑块为研究对象,其受力情况如图所示,由动量定理可得 ΣF=-ft=mv-mv 0 ?s g v v t 5.110 2.0) 41(0=?--=-=μf=μmg 即为所求。 3、分析:手榴弹在高空飞行炸裂成两块,以其为研究对象,系统合外力不为零,总动量不守恒。但手榴弹在爆炸时对两小块的作用力远大于自身的重力,且水平方向不受外力,系统水平方向动量守恒,以初速度方向为正。 由已知条件:m 1:m 2=3:2 m 1 m 2 初:v 0=10m/s v 0=10m/s

《动量守恒定律》单元测试题含答案(4)

《动量守恒定律》单元测试题含答案(4) 一、动量守恒定律 选择题 1.两滑块a 、b 沿水平面上同一条直线运动,并发生碰撞,碰撞后两者粘在一起运动.两者的位置x 随时间t 变化的图象如图所示.若a 滑块的质量a m 2kg =,以下判断正确的是 ( ) A .a 、b 碰撞前的总动量为3 kg m /s ? B .碰撞时a 对b 所施冲量为4 N s ? C .碰撞前后a 的动量变化为4 kg m /s ? D .碰撞中a 、b 两滑块组成的系统损失的动能为20 J 2.如图所示,固定的光滑金属水平导轨间距为L ,导轨电阻不计,左端接有阻值为R 的电阻,导轨处在磁感应强度大小为B 、方向竖直向下的匀强磁场中.质量为m 、电阻不计的导体棒ab ,在垂直导体棒的水平恒力F 作用下,由静止开始运动,经过时间t ,导体棒ab 刚好匀速运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触.在这个过程中,下列说法正确的是 A .导体棒ab 刚好匀速运动时的速度22 FR v B L = B .通过电阻的电荷量2Ft q BL = C .导体棒的位移222 44 FtRB L mFR x B L -= D .电阻放出的焦耳热22222 44 232tRF B L mF R Q B L -= 3.将质量为m 0的木块固定在光滑水平面上,一颗质量为m 的子弹以速度v 0沿水平方向射入木块,子弹射穿木块时的速度为 3 v .现将同样的木块放在光滑的水平桌面上,相同的子弹仍以速度v 0沿水平方向射入木块,设子弹在木块中所受阻力不变,则以下说法正确的是()

A.若m0=3m,则能够射穿木块 B.若m0=3m,子弹不能射穿木块,将留在木块中,一起以共同的速度做匀速运动 C.若m0=3m,子弹刚好能射穿木块,此时子弹相对于木块的速度为零 D.若子弹以3v0速度射向木块,并从木块中穿出,木块获得的速度为v1;若子弹以4v0速度射向木块,木块获得的速度为v2;则必有v1<v2 4.在光滑水平面上,有两个小球A、B沿同一直线同向运动(B在前),已知碰前两球的动量分别为pA=10 kg·m/s、pB=13 kg·m/s,碰后它们动量的变化分别为ΔpA、ΔpB.下列数值可能正确的是( ) A.ΔpA=-3 kg·m/s、ΔpB=3 kg·m/s B.ΔpA=3 kg·m/s、ΔpB=-3 kg·m/s C.ΔpA=-20 kg·m/s、ΔpB=20 kg·m/s D.ΔpA=20kg·m/s、ΔpB=-20 kg·m/s 5.如图所示,左图为大型游乐设施跳楼机,右图为其结构简图.跳楼机由静止从a自由下落到b,再从b开始以恒力制动竖直下落到c停下.已知跳楼机和游客的总质量为m,ab 高度差为2h,bc高度差为h,重力加速度为g.则 A.从a到b与从b到c的运动时间之比为2:1 B.从a到b,跳楼机座椅对游客的作用力与游客的重力大小相等 C.从a到b,跳楼机和游客总重力的冲量大小为m gh D.从b到c,跳楼机受到制动力的大小等于2mg 6.如图所示,小车质量为M,小车顶端为半径为R的四分之一光滑圆弧,质量为m的小球从圆弧顶端由静止释放,对此运动过程的分析,下列说法中正确的是(g为当地重力加速度)() A.若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为mg B.若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为3 2 mg

高中物理动量守恒定律练习题

一、系统、内力和外力┄┄┄┄┄┄┄┄① 1.系统:相互作用的两个(或多个)物体组成的一个整体。 2.内力:系统内部物体间的相互作用力。 3.外力:系统以外的物体对系统内部的物体的作用力。 [说明] 1.系统是由相互作用、相互关联的多个物体组成的整体。 2.组成系统的各物体之间的力是内力,将系统看作一个整体,系统之外的物体对这个整体的作用力是外力。 ①[填一填]如图,公路上有三辆车发生了追尾事故,如果把前面两辆车看作一个系统,则前面两辆车之间的撞击力是________,最后一辆车对前面两辆车的撞击力是________(均填“内力”或“外力”)。 答案:内力外力 二、动量守恒定律┄┄┄┄┄┄┄┄② 1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。 2.表达式:对两个物体组成的系统,常写成: p1+p2=或m1v1+m2v2=。 3.适用条件:系统不受外力或者所受外力的矢量和为0。 4.动量守恒定律的普适性 动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域。 [注意] 1.系统动量是否守恒要看研究的系统是否受外力的作用。

2.动量守恒是系统内各物体动量的矢量和保持不变,而不是系统内各物体的动量不变。 ②[判一判] 1.一个系统初、末状态动量大小相等,即动量守恒(×) 2.两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒(√) 3.系统动量守恒也就是系统的动量变化量为零(√) 1.对动量守恒定律条件的理解 (1)系统不受外力作用,这是一种理想化的情形,如宇宙中两星球的碰撞,微观粒子间的碰撞都可视为这种情形。 (2)系统受外力作用,但所受合外力为零。像光滑水平面上两物体的碰撞就是这种情形。 (3)系统受外力作用,但当系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒。例如,抛出去的手榴弹在空中爆炸的瞬间,弹片所受火药爆炸时的内力远大于其重力,重力可以忽略不计,系统的动量近似守恒。 (4)系统受外力作用,所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。 2.关于内力和外力的两点提醒 (1)系统内物体间的相互作用力称为内力,内力会改变系统内单个物体的动量,但不会改变系统的总动量。 (2)系统的动量是否守恒,与系统的选取有关。分析问题时,要注意分清研究的系统,系统的内力和外力,这是正确判断系统动量是否守恒的关键。 [典型例题] 例 1.[多选]如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是() A.两手同时放开后,系统总动量始终为零

动量守恒定律测试题及解析

动量守恒定律测试题及解析 1.(2019·北京海淀一模)如图所示,站在车上的人,用锤子连续敲打小车。 初始时,人、车、锤子都静止。假设水平地面光滑,关于这一物理过程,下列 说法正确的是( ) A .连续敲打可使小车持续向右运动 B .人、车和锤子组成的系统机械能守恒 C .当锤子速度方向竖直向下时,人和车水平方向的总动量为零 D .人、车和锤子组成的系统动量守恒 解析:选C 人、车和锤子整体看做一个处在光滑水平地面上的系统,水平方向上所受合外力为零,故水平方向上动量守恒,总动量始终为零,当锤子有相对地面向左的速度时,车有向右的速度,当锤子有相对地面向右的速度时,车有向左的速度,故车做往复运动,故A 错误;锤子击打小车时,发生的不是完全弹性碰撞,系统机械能有损耗,故B 错误;锤子的速度竖直向下时,没有水平方向速度,因为水平方向总动量恒为零,故人和车水平方向的总动量也为零,故C 正确;人、车和锤子在水平方向上动量守恒,因为锤子会有竖直方向的加速度,故锤子竖直方向上合外力不为零,竖直方向上动量不守恒,系统总动量不守恒,故D 错误。 2.质量为1 kg 的物体从距地面5 m 高处自由下落,落在正以5 m /s 的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4 kg ,地面光滑,则车后来的速度为(g =10 m/s 2)( ) A .4 m /s B .5 m/s C .6 m /s D .7 m/s 解析:选A 物体和车作用过程中,两者组成的系统水平方向不受外力,水平方向系统的动量守恒。已知两者作用前,车在水平方向的速度v 0=5 m/s ,物体在水平方向的速度v =0;设当物体与小车相对静止后,小车的速度为v ′,取原来小车速度方向为正方向,则根据水平方向系统的动量守恒得:m v +M v 0=(M +m )v ′,解得:v ′=m v +M v 0M +m =4×51+4 m /s =4 m/s ,故选项A 正确,B 、C 、D 错误。 3.[多选](2020·泸州第一次诊断)在2019年世界斯诺克国际锦标赛中,中国选手丁俊晖把质量为m 的白球以5v 的速度推出,与正前方另一静止的相同质量的黄球发生对心正碰,碰撞后黄球的速度为3v ,运动方向与白球碰前的运动方向相同。若不计球与桌面间的摩擦,则( ) A .碰后瞬间白球的速度为2v B .两球之间的碰撞属于弹性碰撞 C .白球对黄球的冲量大小为3m v D .两球碰撞过程中系统能量不守恒 解析:选AC 由动量守恒定律可知,相同质量的白球与黄球发生对心正碰,碰后瞬间白球的速度为 2v ,故A 正确。碰前的动能为12m (5v )2=252m v 2,碰后的动能为12m (3v )2+12m (2v )2=132 m v 2,两球之间的碰撞不属于弹性碰撞,故B 错误。由动量定理,白球对黄球的冲量I 大小就等于黄球动量的变化Δp ,Δp =

动量守恒题型分类总结

动量守恒定律 第一部分: 一、动量守恒条件类题目 动量守恒条件:1、系统不受外力或所受外力的合力为零 2、某个方向合外力为零,这个方向动量守恒 3爆炸、碰撞、反冲,力远大于外力或者相互作用时间极短,动量守恒 1、关于动量守恒的条件,其中错误的是() A.系统所受外力为零则动量守恒 B.采用直角坐标系,若某轴方向上系统不受外力,则该方向分动量守恒 C.当系统所受外力远小于力时系统动量可视为守恒-- D.当系统所受外力作用时间很短时可认为系统动量守恒 2、A、B两个小车,中间夹着一个被压缩的弹簧,用两手分别拿着两个小车放在光滑水平面上,然后由静止开始松手,则( ) A.若两手同时放开,A、B两车的总动量守恒 B.若先放开A车,稍后再放开B车,两车的总动量指向B车的运动方向 C.若先放开A车,稍后再放开B车,两车的总动量指向A车一边 D.无论同时放开两车,还是先后放开两车,两手都放开后两车的总动量都守恒 3、斜面体的质量为M,斜面的倾角为α,放在光滑的水平面上处于静止。一个小物块质量为m,沿斜面方向以速度v冲上斜面体,若斜面足够长,物体与斜面的动摩擦因数为μ,μ>tgα,则小物块冲上斜面的过程中( ) A.斜面体与物块的总动量守恒B.斜面体与物块的水平方向总动量守恒 C.斜面体与物块的最终速度为mv/(M+m) D.斜面体与物块的最终速度小于mv/(M+m) 4.(04理综21)如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为m B=2m A,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则() A.左方是A球,碰撞后A、B两球速度大小之比为2∶5 B.左方是A球,碰撞后A、B两球速度大小之比为1∶10 C.右方是A球,碰撞后A、B两球速度大小之比为2∶5 D.右方是A球,碰撞后A、B两球速度大小之比为1∶10 二、给出碰前的动量,判断碰后的可能情况 解题原则:1、碰前后动量守恒,即碰后大小方向与碰前相同 2、一般只能碰一次 3、碰撞动能不增加原理

动量守恒定律测试题(1)

动量守恒定律测试题(1) 一、动量守恒定律选择题 1.如图所示,一轻杆两端分别固定a、b 两个半径相等的光滑金属球,a球质量大于b球质量.整个装置放在光滑的水平面上,将此装置从图示位置由静止释放,则() A.在b球落地前瞬间,a球的速度方向向右 B.在b球落地前瞬间,a球的速度方向向左 C.在b球落地前的整个过程中,轻杆对b球的冲量为零 D.在b球落地前的整个过程中,轻杆对b球做的功为零 2.如图所示,弹簧的一端固定在竖直墙壁上,质量为m的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m的小球从槽高h处开始下滑,则 A.在小球从圆弧槽上下滑过程中,小球和槽组成的系统水平方向的动量始终守恒 B.在小球从圆弧槽上下滑运动过程中小球的机械能守恒 C.在小球压缩弹簧的过程中小球与弹簧组成的系统机械能守恒 D.小球离开弹簧后能追上圆弧槽 3.如图甲所示,一轻弹簧的两端与质量分别为99m、200m的两物块A、B相连接,并静止在光滑的水平面上,一颗质量为m的子弹C以速度v0射入物块A并留在A中,以此刻为计时起点,两物块A(含子弹C)、B的速度随时间变化的规律如图乙所示,从图象信息可得() A.子弹C射入物块A的速度v0为600m/s B.在t1、t3时刻,弹簧具有的弹性势能相同,且弹簧处于压缩状态 C.当物块A(含子弹C)的速度为零时,物块B的速度为3m/s D.在t2时刻弹簧处于自然长度 4.如图所示,固定的光滑金属水平导轨间距为L,导轨电阻不计,左端接有阻值为R的电

阻,导轨处在磁感应强度大小为B 、方向竖直向下的匀强磁场中.质量为m 、电阻不计的导体棒ab ,在垂直导体棒的水平恒力F 作用下,由静止开始运动,经过时间t ,导体棒ab 刚好匀速运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触.在这个过程中,下列说法正确的是 A .导体棒ab 刚好匀速运动时的速度22 FR v B L = B .通过电阻的电荷量2Ft q BL = C .导体棒的位移222 44 FtRB L mFR x B L -= D .电阻放出的焦耳热22222 44 232tRF B L mF R Q B L -= 5.如图,质量分别为m A 、m B 的两个小球A 、B 静止在地面上方,B 球距地面的高度h =0.8m ,A 球在B 球的正上方. 先将B 球释放,经过一段时间后再将A 球释放. 当A 球下落t =0.3s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零.已知m B =3m A ,重力加速度大小为g =10 m/s 2,忽略空气阻力及碰撞中的动能损失.下列说法正确的是( ) A . B 球第一次到达地面时的速度为4m/s B .A 、B 球在B 球向上运动的过程中发生碰撞 C .B 球与A 球碰撞后的速度为1m/s D .P 点距离地面的高度0.75m 6.如图所示,左图为大型游乐设施跳楼机,右图为其结构简图.跳楼机由静止从a 自由下落到b ,再从b 开始以恒力制动竖直下落到c 停下.已知跳楼机和游客的总质量为m ,ab 高度差为2h ,bc 高度差为h ,重力加速度为g .则

动量守恒定律测试题含复习资料

1 / 9 第16章 《动量守恒定律》测试题 一、单选题(每小题只有一个正确答案) 1.质量为m ,速度为v 的棒球,与棒相互作用后以被原速率弹回,则小球动量的变化量为(取作用前的速度方向为正方向)( ) A .0 B .-2mv C .2mv D .mv 2.相向运动的A 、B 两辆小车相撞后,一同沿A 原来的方向前进,则碰撞前的瞬间( ) A .A 车的动量一定大于 B 车的速度 B .A 车的速度一定大于B 车的动量 C .A 车的质量一定大于B 车的质量 D .A 车的动能一定大于B 车的动能 3.将质量为m 的铅球以大小为v 0、仰角为θ的初速度抛入一个装着沙子的总质量为m '的静止小车中,如图所示,小车与地面间的摩擦力不计,则最后铅球与小车的共同速度等于( ) A .0cos mv m m θ+' B .0sin mv m m θ+' C .0mv m m +' D .0tan mv m m θ+' 4.物体在恒定合力F 作用下做直线运动,在1t ?内速度由0增大到1E ,在2t ?内速度由v 增大到2v.设2E 在1t ?内做功是1W ,冲量是1I ;在2t ?内做功是2W ,冲量是2I ,那么( ) A .1212I I W W <=, B .1212I I W W <<, C .1212,I I W W == D .1212I I W W =<, 5.沿光滑水平面在同一条直线上运动的两物体A 、B 碰撞后以共同的速度运动,该过程的位移—时间图象如图所示。则下列判断错误的是( ) A .碰撞前后A 的运动方向相反 B .A 、B 的质量之比为1:2 C .碰撞过程中A 的动能变大,B 的动能减小 D .碰前B 的动量较大 6.如图所示,质量M=3kg 的滑块套在水平固定着的轨道上并可在轨道上无摩擦滑动。

高中物理动量守恒定律试题类型及其解题技巧及解析

高中物理动量守恒定律试题类型及其解题技巧及解析 一、高考物理精讲专题动量守恒定律 1.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】0 2Mv m nv = 【解析】 试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mv v v M =- 车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mv v v M =-? 同理,车上的人第n 次将小球抛出后,有02n mv v v n M =-? 由题意v n =0, 得:0 2Mv m nv = 考点:动量守恒定律 2.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5m ,物块A 以v 0=6m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨道上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1kg(重力加速度g 取10m/s 2;A 、B 视为质点,碰撞时间极短). (1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值;

高考物理动量守恒定律试题经典

高考物理动量守恒定律试题经典 一、动量守恒定律 选择题 1.如图所示,一个质量为M 的木箱静止在光滑水平面上,木箱内粗糙的底板上放着一个质量为m =2M 的小物块.现使木箱瞬间获得一个水平向左、大小为v 0的初速度,下列说法正确的是 A .最终小物块和木箱都将静止 B .最终小物块和木箱组成的系统损失机械能为20 3 Mv C .木箱速度水平向左、大小为0 2v 时,小物块的速度大小为04 v D .木箱速度水平向右、大小为 03v . 时,小物块的速度大小为023 v 2.如图所示,小车的上面是由中间凸起的两个对称曲面组成,整个小车的质量为m ,原来静止在光滑的水平面上。今有一个可以看做质点的小球质量也为m ,以水平速度v 从左端滑上小车,恰好到达小车的最高点后,又从另一个曲面滑下。关于这个过程,下列说法正确的是( ) A .小球滑离小车时,小车又回到了原来的位置 B .小球滑到小车最高点时,小球和小车的动量不相等 C .小球和小车相互作用的过程中,小车和小球系统动量始终守恒 D .车上曲面的竖直高度若高于2 4v g ,则小球一定从小车左端滑下 3.如图所示为水平放置的固定光滑平行直轨道,窄轨间距为L ,宽轨间距为2L 。轨道处于竖直向下的磁感应强度为B 的匀强磁场中,质量分别为m 、2m 的金属棒a 、b 垂直于导轨静止放置,其电阻分别为R 、2R ,现给a 棒一向右的初速度v 0,经t 时间后两棒达到匀速运动两棒运动过程中始终相互平行且与导轨良好接触,不计导轨电阻,b 棒一直在宽轨上运动。下列说法正确的是( )

A .a 棒开始运动时的加速度大小为220 3B L v Rm B .b 棒匀速运动的速度大小为 3 v C .整个过程中通过b 棒的电荷量为 23mv BL D .整个过程中b 棒产生的热量为20 3 mv 4.如图所示,弹簧的一端固定在竖直墙壁上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始下滑,则 A .在小球从圆弧槽上下滑过程中,小球和槽组成的系统水平方向的动量始终守恒 B .在小球从圆弧槽上下滑运动过程中小球的机械能守恒 C .在小球压缩弹簧的过程中小球与弹簧组成的系统机械能守恒 D .小球离开弹簧后能追上圆弧槽 5.如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 紧靠竖直墙.用水平力向左推B 将弹簧压缩,推到一定位置静止时推力大小为F 0,弹簧的弹性势能为E .在此位置突然撤去推力,下列说法中正确的是( ) A .在A 离开竖直墙前,A 、 B 与弹簧组成的系统机械能守恒,之后不守恒 B .在A 离开竖直墙前,A 、B 系统动量不守恒,之后守恒 C .在A 离开竖直墙后,A 、B 速度相等时的速度是223E m D .在A 离开竖直墙后,弹簧的弹性势能最大值为 3 E 6.如图所示,物体A 、B 的质量均为m =0.1kg ,B 静置于劲度系数k =100N/m 竖直轻弹簧的上端且B 不与弹簧连接,A 从距B 正上方h =0.2m 处自由下落,A 与B 相碰并粘在一起.弹簧始终在弹性限度内,g =10m/s 2.下列说法正确的是 A .A B 组成的系统机械能守恒

动量守恒定律 练习题及答案

动量守恒定律 一、单选题(每题3分,共36分) 1.下列关于物体的动量和动能的说法,正确的是 ( ) A .物体的动量发生变化,其动能一定发生变化 B .物体的动能发生变化,其动量一定发生变化 C .若两个物体的动量相同,它们的动能也一定相同 D .两物体中动能大的物体,其动量也一定大 2.为了模拟宇宙大爆炸初期的情境,科学家们使用两个带正电的重离子被加速后,沿同一条直线相向运动而发生猛烈碰撞.若要使碰撞前重离子的动能经碰撞后尽可能多地转化为其他形式的能,应该设法使这两个重离子在碰撞前的瞬间具有 ( ) A .相同的速度 B .相同大小的动量 C .相同的动能 D .相同的质量 3.质量为M 的小车在光滑水平面上以速度v 向东行驶,一个质量为m 的小球从距地面H 高处自由落下,正好落入车中,此后小车的速度将 ( ) A .增大 B .减小 C .不变 D .先减小后增大 4.甲、乙两物体质量相同,以相同的初速度在粗糙的水平面上滑行,甲物体比乙物体先停下来,下面说法正确的是 ( ) A .滑行过程中,甲物体所受冲量大 B .滑行过程中,乙物体所受冲量大 C .滑行过程中,甲、乙两物体所受的冲量相同 D .无法比较 5.A 、B 两刚性球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是5kg·m /s ,B 球的动量是7kg·m /s ,当A 球追上B 球时发生碰撞,则碰撞后A 、B 两球的动量的可能值是 ( ) A .-4kg·m/s 、14kg·m/s B .3kg·m/s 、9kg·m/s C .-5kg·m/s 、17kg·m/s D .6kg·m /s 、6kg·m/s 6.质量为m 的钢球自高处落下,以速率1v 碰地,竖直向上弹回,碰撞时间极短,离地的速率为2v .在碰撞过程中, 地面对钢球冲量的方向和大小为 ( ) A .向下,12()m v v - B .向下,12()m v v + C .向上,12()m v v - D .向上,12()m v v + 7.质量为m 的α粒子,其速度为0v ,与质量为3m 的静止碳核碰撞后沿着原来的路径被弹回,其速度为0/2v ,而碳 核获得的速度为 ( ) A .06v B .20v C .02v D .03 v 8.在光滑水平面上,动能为0E ,动量大小为0P 的小钢球1与静止的小钢球2发生碰撞,碰撞前后球1的运动方向 相反,将碰撞后球1的动能和动量的大小分别记作1E 、1P ,球2的动能和动量的大小分别记为2E 、2P ,则必有 ( ) ①1E <0E ②1P <0P ③2E >0E ④2P >0P A .①② B.①③④ C.①②④ D.②③ 9.质量为1.0kg 的小球从高20 m 处自由下落到软垫上,反弹后上升的最大高度为5.O m .小球与软垫接触的时间是1.0s ,在接触的时间内小球受到的合力的冲量大小为(空气阻力不计,g 取10m/s 2) ( ) A .10N·s B .20N·s C .30N·s D .40N·s 10.质量为2kg 的物体,速度由4m /s 变成 -6m/s ,则在此过程中,它所受到的合外力冲量是 ( ) A .-20N·s B.20N·s C .-4N·s D .-12N·s 11.竖直向上抛出一个物体.若不计阻力,取竖直向上为正,则该物体动量随时间变化的图线是 ( ) 12.一颗水平飞行的子弹射入一个原来悬挂在天花板下静止的沙袋并留在其中和沙袋一起上摆.关于子弹和沙袋组成的系统,下列说法中正确的是 ( ) A .子弹射入沙袋过程中系统动量和机械能都守恒 B .子弹射入沙袋过程中系统动量和机械能都不守恒 C .共同上摆阶段系统动量守恒,机械能不守恒 D .共同上摆阶段系统动量不守恒,机械能守恒 二、多选题(每题4分,共16分) 13.下列情况下系统动量守恒的是 ( )A .两球在光滑的水平面上相互碰撞 B .飞行的手榴弹在空中爆炸 C .大炮发射炮弹时,炮身和炮弹组成的系统 D .用肩部紧紧抵住步枪枪托射击,枪身和子弹组成的系统 14.两物体相互作用前后的总动量不变,则两物体组成的系统一定 ( ) A .不受外力作用 B .不受外力或所受合外力为零 C .每个物体动量改变量的值相同 D .每个物体动量改变量的值不同

相关文档
最新文档