TCPIP参考模型之物理层
TCPIP五层模型
![TCPIP五层模型](https://img.taocdn.com/s3/m/b8a201e0f61fb7360b4c657f.png)
(1)OSI七层模型OSI中的层功能 TCP/IP协议族应用层文件传输,电子邮件,文件服务,虚拟终端 TFTP,HTTP,SNMP,FTP,SMTP,DNS,Telnet 表示层数据格式化,代码转换,数据加密没有协议会话层解除或建立与别的接点的联系没有协议传输层提供端对端的接口 TCP,UDP网络层为数据包选择路由 IP,ICMP,RIP,OSPF,BGP,IGMP数据链路层传输有地址的帧以及错误检测功能 SLIP,CSLIP,PPP,ARP,RARP,MTU物理层以二进制数据形式在物理媒体上传输数据 ISO2110,IEEE802,IEEE802.2(2)TCP/IP五层模型的协议应用层传输层网络层数据链路层物理层物理层:中继器、集线器、还有我们通常说的双绞线也工作在物理层数据链路层:网桥(现已很少使用)、以太网交换机(二层交换机)、网卡(其实网卡是一半工作在物理层、一半工作在数据链路层)网络层:路由器、三层交换机传输层:四层交换机、也有工作在四层的路由器二、TCP/UDP协议TCP (Transmission Control Protocol)和UDP(User Datagram Protocol)协议属于传输层协议。
其中TCP提供IP环境下的数据可靠传输,它提供的服务包括数据流传送、可靠性、有效流控、全双工操作和多路复用。
通过面向连接、端到端和可靠的数据包发送。
通俗说,它是事先为所发送的数据开辟出连接好的通道,然后再进行数据发送;而UDP则不为IP提供可靠性、流控或差错恢复功能。
一般来说,TCP对应的是可靠性要求高的应用,而UDP对应的则是可靠性要求低、传输经济的应用。
TCP支持的应用协议主要有:Telnet、FTP、SMTP等;UDP支持的应用层协议主要有:NFS(网络文件系统)、SNMP(简单网络管理协议)、DNS(主域名称系统)、TFTP(通用文件传输协议)等.TCP/IP协议与低层的数据链路层和物理层无关,这也是TCP/IP的重要特点三、OSI的基本概念OSI是Open System Interconnect的缩写,意为开放式系统互联。
TCPIP模型及OSI七层参考模型各层的功能和主要协议
![TCPIP模型及OSI七层参考模型各层的功能和主要协议](https://img.taocdn.com/s3/m/7d6012c003d276a20029bd64783e0912a2167cc5.png)
TCPIP模型及OSI七层参考模型各层的功能和主要协议TCP/IP模型和OSI七层参考模型是两种不同的网络协议体系架构,用于描述和管理计算机网络中传输数据的过程。
虽然它们是两个独立的模型,但是它们之间存在着很多相似之处。
下面详细介绍TCP/IP模型和OSI七层参考模型各层的功能和主要协议。
一、TCP/IP模型TCP/IP模型是互联网常用的网络协议体系架构,由四个层次构成,即网络接口层、网际层、传输层和应用层。
1.网络接口层:网络接口层是通过物理连接和电流,将数据变成二进制电信号以便于在网络中传输。
它负责将数据包转换成比特流传输,是数据在局域网中的传输介质,主要包含物理层和数据链路层。
物理层:负责物理传输介质的传输细节,如光纤、电缆等。
数据链路层:负责数据在物理网络中的传输,通过帧传输保证数据的准确性,如以太网、WiFi等。
主要协议:Ethernet、PPP、ARP等。
2.网际层:网际层是在网络中定位和标识主机的过程,它负责通过IP地址将数据传输到目标主机。
网际层是TCP/IP模型中最重要的层,提供传送和路由数据包的功能。
主要协议:IP、ICMP、ARP、RARP等。
3.传输层:传输层主要是为应用层提供可靠的数据传输,负责数据的分段、传输和排序,确保数据的有序、可靠和无差错。
主要协议:TCP、UDP。
4.应用层:应用层是TCP/IP模型最上层的层次,主要是用户和网络应用之间的接口层。
应用层的协议提供了网络应用之间的通信。
主要协议:HTTP、FTP、SMTP、DNS等。
二、OSI七层参考模型OSI(Open System Interconnection)七层参考模型是国际标准化组织(ISO)提出的通信协议模型,它将数据传输过程分成了七个不同层次,分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
1.物理层:物理层是物理媒介上数据的传输和传输的电流、光信号转换的功能部分,负责传输原始的比特流。
osi和tcpip层次模型的区别
![osi和tcpip层次模型的区别](https://img.taocdn.com/s3/m/c6bd08c1e43a580216fc700abb68a98271feacb0.png)
osi和tcpip层次模型的区别OSI和TCP/IP层次模型的区别在计算机网络中,层次模型是一种组织和管理计算机网络功能的方法。
OSI(开放式系统互联)和TCP/IP(传输控制协议/因特网互联协议)是两种不同的层次模型,它们都为网络通信提供了标准化的框架。
然而,它们在结构和功能上存在一些区别。
一、OSI层次模型OSI层次模型是由国际标准化组织提出的,它将网络通信划分为七个不同的层次,每个层次负责一种特定的功能。
以下是每个层次的简要介绍:1. 物理层(Physical Layer):负责传输原始的比特流,例如通过光缆或电缆发送数字信号。
2. 数据链路层(Data Link Layer):负责在直接相连的设备之间传输数据帧,并检测和纠正传输中的错误。
3. 网络层(Network Layer):负责在多个网络之间进行数据包的路由和转发,以实现数据的传递。
4. 传输层(Transport Layer):负责确保端到端的可靠传输,提供数据的分段和重组等功能。
5. 会话层(Session Layer):负责建立、管理和终止网络会话,以便在通信设备之间进行通信。
6. 表示层(Presentation Layer):负责将数据进行编码和解码,以便不同设备之间可以正确地解释和处理数据。
7. 应用层(Application Layer):负责提供特定应用程序(如电子邮件、文件传输)所需的服务和协议。
二、TCP/IP层次模型TCP/IP层次模型是因特网的基本通信协议,它将网络通信划分为四个层次,每个层次有不同的功能。
以下是每个层次的简要介绍:1. 网络接口层(Network Interface Layer):与OSI的物理层和数据链路层相对应,负责提供网络接口以进行数据传输。
2. 网络层(Internet Layer):与OSI的网络层相对应,负责在不同网络之间进行数据包的路由和转发。
3. 传输层(Transport Layer):与OSI的传输层相对应,提供可靠的端到端数据传输,并为应用层提供端口和流控制等功能。
OSI模型与TCPIP协议的关系
![OSI模型与TCPIP协议的关系](https://img.taocdn.com/s3/m/2dc0769132d4b14e852458fb770bf78a65293add.png)
OSI模型与TCPIP协议的关系OSI模型与TCP/IP协议的关系在计算机网络领域中,为了实现不同设备之间的通信和数据传输,出现了OSI模型(Open Systems Interconnection Model)和TCP/IP协议(Transmission Control Protocol/Internet Protocol)。
OSI模型是一种理论框架,用于描述和规范计算机网络中各个层次的功能和交互关系,而TCP/IP协议则是一种实际应用在网络中的协议集合,它实现了OSI模型中的相关功能。
OSI模型总共分为七个层次,每个层次负责不同的功能。
而TCP/IP协议则是根据OSI模型进行了简化和整合,将其分为四个层次。
下面将逐层介绍OSI模型和TCP/IP协议的关系。
第一层:物理层(Physical Layer)物理层是OSI模型和TCP/IP协议中的第一层。
它定义了硬件设备之间数据传输的物理特性和参数。
OSI模型中的物理层负责电压、电流、物理接口等底层细节,而TCP/IP协议中的物理层则更加关注网络传输媒介,如以太网、无线等。
第二层:数据链路层(Data Link Layer)数据链路层是OSI模型和TCP/IP协议中的第二层。
它负责将物理层所传输的数据包进行分割和组装,并进行差错检测和纠正。
OSI模型中的数据链路层主要包括了逻辑链路控制(LLC)和媒体访问控制(MAC)两个子层,而TCP/IP协议中的数据链路层则更加关注网络节点之间的直接通信,如以太网、无线等。
第三层:网络层(Network Layer)网络层是OSI模型和TCP/IP协议中的第三层。
它负责为数据包选择合适的路径和转发决策,以实现不同网络之间的数据传输。
OSI模型中的网络层包括了路由(Routing)和网络互联(Network Interconnection)等功能,而TCP/IP协议中的网络层则主要使用IP协议来实现数据的寻址和路由。
TCPIP四层模型和OSI七层模型功能及不同点
![TCPIP四层模型和OSI七层模型功能及不同点](https://img.taocdn.com/s3/m/3904c03dbb4cf7ec4bfed034.png)
试述TCP/IP四层模型和OSI七层模型中每一层所完成的功能,以及这两个模型的不同点。
(一)OSI七层模型O S I模型将网络结构划分为七层:即物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
每一层均有自己的一套功能集,并与紧邻的上层和下层交互作用。
,在顶端与底端之间的每一层均能确保数据以一种可读、无错、排序正确的格式被发送.物理层是O S I模型的最低层或第一层,该层包括物理连网媒介,如电缆连线连接器。
物理层的协议产生并检测电压以便发送和接收携带数据的信号。
尽管物理层不提供纠错服务,但它能够设定数据传输速率并监测数据出错率。
网络物理问题,如电线断开,将影响物理层。
数据链路层是O S I模型的第二层,它控制网络层与物理层之间的通信。
它的主要功能是将从网络层接收到的数据分割成特定的可被物理层传输的帧.帧是用来移动数据的结构包,它不仅包括原始(未加工)数据,或称“有效荷载”,还包括发送方和接收方的网络地址以及纠错和控制信息。
其中的地址确定了帧将发送到何处,而纠错和控制信息则确保帧无差错到达.网络层,即O S I模型的第三层,其主要功能是将网络地址翻译成对应的物理地址,并决定如何将数据从发送方路由到接收方。
例如,一个计算机有一个网络地址1 0 。
3 4 . 9 9 。
1 2(若它使用的是T C P / I P协议)和一个物理地址0 0 6 0 9 7 3 E 9 7 F 3.传输层主要负责确保数据可靠、顺序、无错地从A点到传输到B点(A、B点可能在也可能不在相同的网络段上)。
因为如果没有传输层,数据将不能被接受方验证或解释,所以,传输层常被认为是O S I模型中最重要的一层。
会话层负责在网络中的两节点之间建立和维持通信。
术语“会话”指在两个实体之间建立数据交换的连接;常用于表示终端与主机之间的通信。
会话层的功能包括:建立通信链接,保持会话过程通信链接的畅通,同步两个节点之间的对话,决定通信是否被中断以及通信中断时决定从何处重新发送.表示层如同应用程序和网络之间的翻译官,在表示层,数据将按照网络能理解的方案进行格式化;这种格式化也因所使用网络的类型不同而不同。
TCPIP各层主要功能
![TCPIP各层主要功能](https://img.taocdn.com/s3/m/c5baef270a4c2e3f5727a5e9856a561252d321e7.png)
TCPIP各层主要功能
第⼀层:⽹路接⼝层(物理层和链路层)
提供TCP/IP协议的数据结构和实际物理硬件之间的接⼝。
物理层的任务就是为它的上⼀层提供⼀个物理连接,
以及它们的机械、电⽓、功能和过程特性。
链路层的主要功能是如何在不可靠的物理线路上进⾏数据的可靠传递。
第⼆层:⽹路层
对应于OSI七层参考模型的⽹络层。
本层包含IP协议、RIP协议(Routing Information Protocol,路由信息协议),负责
数据的包装、寻址和路由。
⽹路层负责在原机器和⽬标机器之间建⽴它们所使⽤的路由。
这⼀层本⾝没有任何错误检测和修
正机制,因此,⽹路层必须依赖端到端之间的可靠传输服务。
第三层:传输层
对应于OSI七层参考模型的传输层。
它提供两种端到端的通信服务。
其中TCP协议(Transmission Control Protocol)提供
可靠的数据流运输服务。
UDP协议(Use Datagram Protocol)提供不可靠的⽤户数据报服务。
第四层:应⽤层
对应于OSI七层参考模型的应⽤层和表达层。
因特⽹的应⽤协议包括Finger、Whois、FTP(⽂件传输协议)、Gopher、
HTTp(超⽂本传输协议)、Telnet(远程终端协议)、SMTP(简短邮件传送协议)、IRC(因特⽹中继会话)、NNTP(⽹路新闻传输协议)等。
TCPIP模型及OSI七层参考模型各层的功能和主要协议
![TCPIP模型及OSI七层参考模型各层的功能和主要协议](https://img.taocdn.com/s3/m/973552014531b90d6c85ec3a87c24028915f8511.png)
TCPIP模型及OSI七层参考模型各层的功能和主要协议注:⽹络体系结构是分层的体系结构,学术派标准OSI参考模型有七层,⽽⼯业标准TCP/IP模型有四层。
后者成为了事实上的标准,在介绍时通常分为5层来叙述但应注意TCP/IP模型实际上只有四层。
1、TCP/IP模型(1)物理层物理层规定:为传输数据所需要的物理链路创建、维持、拆除,⽽提供具有机械的,电⼦的,功能的和规范的特性,确保原始的数据可在各种物理媒体上传输,为设备之间的数据通信提供传输媒体及互连设备,为数据传输提供可靠的环境。
(2)数据链路层主要提供链路控制(同步,异步,⼆进制,HDLC),差错控制(重发机制),流量控制(窗⼝机制)1) MAC:媒体接⼊控制,主要功能是调度,把逻辑信道映射到传输信道,负责根据逻辑信道的瞬时源速率为各个传输信道选择适当的传输格式。
MAC层主要有3类逻辑实体,第⼀类是MAC-b,负责处理⼴播信道数据;第⼆类是MAC-c,负责处理公共信道数据;第三类是MAC-d,负责处理专⽤信道数据。
2)RLC:⽆线链路控制,不仅能载控制⾯的数据,⽽且也承载⽤户⾯的数据。
RLC⼦层有三种⼯作模式,分别是透明模式、⾮确认模式和确认模式,针对不同的业务采⽤不同的模式。
3)BMC:⼴播/组播控制,负责控制多播/组播业务。
4)PDCP:分组数据汇聚协议,负责对IP包的报头进⾏压缩和解压缩,以提⾼空中接⼝⽆线资源的利⽤率。
(3)⽹络层提供阻塞控制,路由选择(静态路由,动态路由)等1)IP:IP协议提供不可靠、⽆连接的传送服务。
IP协议的主要功能有:⽆连接数据报传输、数据报路由选择和差错控制。
IP地址是重要概念2)ARP:地址解析协议。
基本功能就是通过⽬标设备的IP地址,查询⽬标设备的MAC地址,以保证通信的顺利进⾏。
以太⽹中的数据帧从⼀个主机到达⽹内的另⼀台主机是根据48位的以太⽹地址(硬件地址)来确定接⼝的,⽽不是根据32位的IP地址。
OSI与TCPIP参考模型和各层协议介绍
![OSI与TCPIP参考模型和各层协议介绍](https://img.taocdn.com/s3/m/51171dbdf121dd36a32d8233.png)
OSI与TCPIP参考模型和各层协议介绍OSI是Open System Interconnect的缩写,意为开放式系统互联。
国际标准组织(国际标准化组织)制定了OSI模型。
这个模型把网络通信的工作分为7层,分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
OSI模型的设计目的是成为一个所有销售商都能实现的开放网路模型,来克服使用众多私有网络模型所带来的困难和低效性。
TCP/IP(Transmission Control Protocol/Internet Protocol)的简写,中文译名为传输控制协议/因特网互联协议,又叫网络通讯协议,这个协议是Internet最基本的协议、Internet 国际互联网络的基础,简单地说,就是由网络层的IP协议和传输层的TCP协议组成的。
TCP/IP 定义了电子设备(比如计算机)如何连入因特网,以及数据如何在它们之间传输的标准。
TCP/IP是一个四层的分层体系结构。
高层为传输控制协议,它负责聚集信息或把文件拆分成更小的包。
低层是网际协议,它处理每个包的地址部分,使这些包正确的到达目的地。
TCP/IP各层对应的协议TCP/IP的层对应的TCP/IP协议应用在各层的硬件设备应用层(Application):应用程序网关(application gateway)Telnet: 远程登录(在应用层连接两部分应用程序)FTP(File Transfer Protocol):文件传输协议HTTP(Hyper Text Transfer Protocol):超文本传输协议SMTP(Simple Mail Transter Protocol):简单邮件传输协议POP3(Post Office Ptotocol):邮局协议SNMP(Simple Network Mangement Protocol):简单网络管理协议DNS(Domain Name System):域名系统传输层(Transport):传输网关(transport gateway)TCP(Transmission Control Potocol):传输控制协议(在传输层连接两个网络)UDP(User Data Potocol):用户数据协议网络层(Internet):多协议路由器(multiprotocol router)IP(Internet Protocol):网络协议(在异构网络间转发分组)ARP(Address Resolution Protocol):地址解析协议RARP(Reverse Address Resolution Protocol) :逆地址解析协议ICMP(Internet Control Message Protocol):因特网控制消息协议IGMP(Internet Group Manage Protocol):因特网组管理协议BOOTP (Bootstrap):可选安全启动协议数据链路层(Data Link):网桥(bridge)交换机(switcher)HDLC(High Data Link Control):高级数据链路控制(在LAN之间存储-转发数据链路针)SLIP(Serial Line IP):串行线路IPPPP(Point-to-Point Protocol):点到点协议802.2等物理层(Physical):中继器(repeater)集线器(hub)无(放大或再生弱的信号,在两个电缆段之间复制每一个比特)应用层包括所有和应用程序协同工作,利用基础网络交换应用程序专用的数据的协议。
TCPIP协议:OSI七层模型、TCPIP四层模型的对比
![TCPIP协议:OSI七层模型、TCPIP四层模型的对比](https://img.taocdn.com/s3/m/1484edcba48da0116c175f0e7cd184254b351bed.png)
TCPIP协议:OSI七层模型、TCPIP四层模型的对⽐1. OSI七层和TCP/IP四层的关系1.1 OSI引⼊了服务、接⼝、协议、分层的概念,TCP/IP借鉴了OSI的这些概念建⽴TCP/IP模型。
1.2 OSI先有模型,后有协议,先有标准,后进⾏实践;⽽TCP/IP则相反,先有协议和应⽤再提出了模型,且是参照的OSI模型。
1.3 OSI是⼀种理论下的模型,⽽TCP/IP已被⼴泛使⽤,成为⽹络互联事实上的标准。
TCP:transmission control protocol 传输控制协议UDP:user data protocol ⽤户数据报协议OSI七层⽹络模型TCP/IP四层概念模型对应⽹络协议应⽤层(Application)应⽤层HTTP、TFTP, FTP, NFS, WAIS、SMTP表⽰层(Presentation)Telnet, Rlogin, SNMP, Gopher会话层(Session)SMTP, DNS传输层(Transport)传输层TCP, UDP⽹络层(Network)⽹络层IP, ICMP, ARP, RARP, AKP, UUCP数据链路层(Data Link)数据链路层FDDI, Ethernet, Arpanet, PDN, SLIP, PPP物理层(Physical)IEEE 802.1A, IEEE 802.2到IEEE 802.11具体如下图所⽰。
2. OSI七层协议模型2.1 七层结构记忆⽅法:应、表、会、传、⽹、数、物2.2 应⽤层协议需要掌握的是:HTTP(Hyper text transfer protocol)、FTP(file transfer protocol)、SMTP(simple mail transfer rotocol)、POP3(post office protocol 3)、IMAP4(Internet mail access protocol)2.3 OSI参考模型中的数据传输过程如上图所⽰,在OSI参考模型中,当⼀台主机需要传送⽤户的数据(DATA)时,经历的过程如下:(1)(DATA)数据⾸先通过应⽤层的接⼝进⼊应⽤层。
OSI模型与TCPIP模型的区别与联系是什么
![OSI模型与TCPIP模型的区别与联系是什么](https://img.taocdn.com/s3/m/5949c9af4bfe04a1b0717fd5360cba1aa8118c18.png)
OSI模型与TCPIP模型的区别与联系是什么在计算机网络领域,OSI模型和TCP/IP模型是两个常用的参考模型,用于描述和理解网络协议的层次结构和功能。
本文将详细介绍OSI模型和TCP/IP模型的区别与联系。
一、OSI模型1. 物理层(Physical Layer):负责传输比特流,通过物理媒介传输数据。
2. 数据链路层(Data Link Layer):将比特流分组为数据帧,提供可靠的点对点传输。
3. 网络层(Network Layer):将数据帧封装为数据包,进行路由选择和转发。
4. 传输层(Transport Layer):提供端到端的可靠数据传输,进行数据分段和流量控制。
5. 会话层(Session Layer):建立、管理和终止会话(进程之间的通信)。
6. 表示层(Presentation Layer):处理数据格式、加密和压缩等操作,提供数据的表示和转换。
7. 应用层(Application Layer):为用户提供网络服务接口,例如HTTP、SMTP等应用协议。
二、TCP/IP模型1. 网络接口层(Network Interface Layer):负责提供数据链路层的接口,处理物理层的数据传输。
2. 网际层(Internet Layer):负责IP地址分配、路由选择以及分片和重组等功能。
3. 传输层(Transport Layer):提供端到端的可靠数据传输,例如TCP和UDP协议。
4. 应用层(Application Layer):为用户提供网络服务接口,包括HTTP、FTP、DNS等。
三、区别与联系1. 结构差异:a. OSI模型共有7层,而TCP/IP模型共有4层。
b. OSI模型将传输层以下的层次分为三个部分(网络层-数据链路层-物理层),而TCP/IP模型将网络接口层和物理层整合到一起。
2. 设计差异:a. OSI模型是一种理论模型,提供了简洁的层次结构,但实际应用较少。
tcpip5层协议模型
![tcpip5层协议模型](https://img.taocdn.com/s3/m/4c957625c4da50e2524de518964bcf84b9d52daf.png)
TCP/IP五层协议模型一、介绍在计算机网络中,TCP/IP五层协议模型是一种常用的网络通信协议体系结构。
它将网络通信过程划分为五个层次,每个层次负责不同的功能和任务。
本文将详细介绍TCP/IP五层协议模型的每个层次及其功能。
二、物理层物理层是TCP/IP五层协议模型的最底层,它负责将比特流转换为电信号,并通过物理媒介进行传输。
物理层的主要功能包括:1.传输介质:物理层定义了网络通信所使用的传输介质,例如电缆、光纤等。
2.电压和时序规范:物理层规定了电信号的电压和时序规范,以确保数据的可靠传输。
3.编码和解码:物理层负责将比特流转换为电信号,并将接收到的电信号转换为比特流。
三、数据链路层数据链路层位于物理层之上,它负责将数据分割成帧,并通过物理网络进行传输。
数据链路层的主要功能包括:1.帧封装:数据链路层将网络层传递的数据封装成帧,添加控制信息和校验码。
2.帧同步:数据链路层通过帧同步来确保发送和接收端的时钟同步。
3.差错检测:数据链路层使用差错检测技术,例如循环冗余检测(CRC),来检测帧中的错误。
4.流量控制:数据链路层通过流量控制机制来控制发送端的数据发送速率,以避免接收端无法处理过多的数据。
四、网络层网络层位于数据链路层之上,它负责将数据从源主机传输到目标主机。
网络层的主要功能包括:1.IP地址分配:网络层通过IP地址来唯一标识网络中的每个主机和路由器。
2.路由选择:网络层根据路由选择算法选择数据的传输路径,以确保数据能够从源主机到达目标主机。
3.分段和重组:网络层负责将数据进行分段,并在目标主机上将分段的数据进行重组。
4.差错检测和纠正:网络层使用差错检测和纠正技术,例如IP首部的校验和,来检测和纠正数据包中的错误。
五、传输层传输层位于网络层之上,它负责在源主机和目标主机之间建立可靠的通信连接。
传输层的主要功能包括:1.端口管理:传输层使用端口号来标识不同的应用程序,以实现多个应用程序的并发通信。
TCPIP四层
![TCPIP四层](https://img.taocdn.com/s3/m/0f01c362a58da0116c1749e3.png)
TCP/IP四层结构从协议分层模型方面来讲,TCP/IP由四个层次组成:网络接口层、网络层、传输层、应用层。
TCP/IP协议并不完全符合OSI的七层参考模型。
传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。
该模型的目的是使各种硬件在相同的层次上相互通信。
这7层是:物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
而TCP/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。
网络接口层物理层是定义物理介质的各种特性:1、机械特性。
2、电子特性。
3、功能特性。
4、规程特性。
数据链路层是负责接收IP数据报并通过网络发送之,或者从网络上接收物理帧,抽出IP 数据报,交给IP层。
常见的接口层协议有:Ethernet 802.3、Token Ring 802.5、X.25、Frame relay、HDLC、PPP ATM 等。
网络层负责相邻计算机之间的通信。
其功能包括三方面:一、处理来自传输层的分组发送请求,收到请求后,将分组装入IP数据报,填充报头,选择去往信宿机的路径,然后将数据报发往适当的网络接口。
二、处理输入数据报:首先检查其合法性,然后进行寻径--假如该数据报已到达信宿机,则去掉报头,将剩下部分交给适当的传输协议;假如该数据报尚未到达信宿,则转发该数据报。
三、处理路径、流控、拥塞等问题。
网络层包括:IP(Internet Protocol)协议、ICMP(Internet Control Message Protocol) 控制报文协议、ARP(Address Resolution Protocol)地址转换协议、RARP(Reverse ARP)反向地址转换协议。
IP是网络层的核心,通过路由选择将下一跳IP封装后交给接口层。
IP 数据报是无连接服务。
ICMP是网络层的补充,可以回送报文。
用来检测网络是否通畅。
试说明TCPIP参考模型的层次
![试说明TCPIP参考模型的层次](https://img.taocdn.com/s3/m/c198a848e518964bcf847c85.png)
一:试说明TCP/IP参考模型的层次TCP/IP参考模型为五个层次,五个层次分别是:应用层(第五层)传输层(第四层)互联网层(第三层)网络接口层(第二层)物理层(第一层)物理层:对应于网络的基本硬件,这也是Internet物理构成,即我们可以看得见的硬设备,如PC机、互连网服务器、网络设备等,必须对这些硬设备的电气特性作一个规范,使这些设备都能够互相连接并兼容使用。
网络接口层:它定义了将资料组成正确帧的规程和在网络中传输帧的规程,帧是指一串资料,它是资料在网络中传输的单位。
互联网层:本层定义了互联网中传输的“信息包”格式,以及从一个用户通过一个或多个路由器到最终目标的"信息包"转发机制。
传输层:为两个用户进程之间建立、管理和拆除可靠而又有效的端到端连接。
应用层:它定义了应用程序使用互联网的规程。
二:2.比较TCP/IP参考模型与OSI参考模型两种模型的比较:1、分层模型存在差别。
TCP/IP模型没有会话层和表示层,并且数据链路层和物理层合而为一。
造成这样的区别的原因在于:前者是以:“通信协议的必要功能是什么”这个问题为中心,再进行模型化;而后者是以:“为了将协议实际安装到计算机中如何进行编程最好”这个问题为中心,再进行模型化的。
所以,TCP/IP的实用性强。
2、OSI模型有3个主要明确概念:服务、接口、协议。
而TCP/IP参考模型最初没有明确区分这三者。
这是OSI模型最大的贡献。
3、TCP/IP模型一开就考虑通用连接(Universal Interconnection),而OSI模型考虑的是由国家运行并使用OSI协议的连接。
4、通信方式上面,在网络层OSI模型支持无连接和面向连接的方式,而TCP/IP 模型只支持无连接通信模式;在传输层OSI模式仅有面向有连接的通信,而TCP/IP模型支持两种通信方式,给用户选择机会。
这种选择对简单的请求-应答协议是非常重要的。
两种模型的命运:技术上的缺陷是致命的。
TCPIP参考模型各层主要功能
![TCPIP参考模型各层主要功能](https://img.taocdn.com/s3/m/ca0acbffafaad1f34693daef5ef7ba0d4a736dbb.png)
TCPIP参考模型各层主要功能
1.主机-⽹络层
对应于OSI的物理层和数据链路层,但是TCP/IP实际上并未真正提供这⼀层的实现,也没有提供协议。
他只是要求第三⽅实现的主机—⽹络层能够为上层(⽹络互联层)提供⼀个访问接⼝,使得⽹络互联层能真正的利⽤主机-⽹络层来传递IP数据包。
IEEE指定了IEEE802.3和IEEE802.4协议集,他们位于OSI参考模型的物理层和数据链路层,相当于TCP/IP的主机-⽹络层。
采⽤IEEE802.3协议集的⽹络称为以太⽹,采⽤IEEE802.4协议集的⽹络称为令牌环⽹。
以太⽹和令牌环⽹都向⽹络互联层提供访问接⼝。
2.⽹络互联层
⽹络互联层是整个参考模型的核⼼,他的功能是吧IP数据包发送到⽬标主机。
为了尽快发送数据,IP协议把原始数据分为多个数据包,然后沿不同的路径同时传递数据包。
⽹络互联层具备连接异构⽹络的功能。
⽹络互联层采⽤IP协议,它规定了两数据包的格式,并且规定了为数据包寻找路由的流程。
3.传输层
传输层的功能是使源主机与⽬标主机上的进程可以会话。
传输层定义了两种不同服务质量的协议,即TCP(Transmission Control Protocol)和UDP(User Datagram Protocol)。
应⽤层的许多协议:如HTTP、FTP、TELNET都建⽴在TCP协议基础上,SNMP、DNS建⽴在UDP协议的基础上。
4.应⽤层
TCP/IP模型将OSI参考模型中的会话层和表⽰层的的功能合并到了应⽤层实现。
针对各种各样的⽹络应⽤,应⽤层引⼊了许多协议。
tcpip5层协议模型
![tcpip5层协议模型](https://img.taocdn.com/s3/m/df31f6c60342a8956bec0975f46527d3240ca60d.png)
tcpip5层协议模型TCP/IP协议五层模型一、引言TCP/IP是一种用于网络通信的协议族,它由传输控制协议(TCP)和网际协议(IP)组成。
为了更好地理解和管理网络通信,TCP/IP 协议被分为五个层次,分别是物理层、数据链路层、网络层、传输层和应用层。
下面将详细介绍这五层的功能和作用。
二、物理层物理层是TCP/IP协议五层模型中最底层的一层,它负责将比特流转换为物理信号,并通过电缆、光纤等物理媒介进行传输。
物理层的主要功能包括:确定传输介质的接口类型、定义传输介质的电气特性和物理连接方式、实现数据的传送和接收等。
三、数据链路层数据链路层位于物理层之上,主要负责将数据包转换为帧并进行传输。
数据链路层的主要功能包括:通过物理地址(MAC地址)识别不同的网络设备、实现数据帧的封装和解封装、提供可靠的数据传输服务等。
数据链路层还可以将数据帧划分为几个小的数据块(称为分组),以便更高层的协议进行处理。
四、网络层网络层是TCP/IP协议五层模型中的第三层,它负责实现数据包在不同网络之间的传输。
网络层的主要功能包括:实现数据包的分组和路由选择、提供网络互联的功能、处理不同网络之间的通信问题等。
网络层使用IP地址来标识不同的主机和网络,并通过路由器进行数据包的转发。
五、传输层传输层位于网络层之上,主要负责实现端到端的数据传输。
传输层的主要功能包括:提供可靠的数据传输服务、实现数据的分段和重组、处理数据的流量控制和拥塞控制等。
传输层使用端口号来标识不同的应用程序,并通过TCP或UDP协议来实现数据的可靠传输或无连接传输。
六、应用层应用层是TCP/IP协议五层模型中最高层的一层,它负责实现特定的网络应用。
应用层的主要功能包括:提供各种网络服务,如电子邮件、文件传输、远程登录等、实现应用程序之间的通信、处理应用层协议的细节等。
应用层协议有很多,如HTTP、FTP、SMTP等。
七、总结TCP/IP协议五层模型是网络通信中非常重要的一种架构,它通过将网络通信划分为不同的层次,使得网络通信更加灵活、可靠和可管理。
osi和tcpip各层对应的协议图
![osi和tcpip各层对应的协议图](https://img.taocdn.com/s3/m/83b75c5e640e52ea551810a6f524ccbff021ca69.png)
osi和tcpip各层对应的协议图OSI和TCP/IP各层对应的协议图在计算机网络中,通信协议是实现网络通信的重要组成部分。
OSI (开放式系统互联)和TCP/IP(传输控制协议/因特网协议)是两种常用的网络通信协议模型。
它们都将通信过程分为不同的层级,并为每个层级定义了相应的协议。
下面是OSI和TCP/IP各层对应的协议图。
1. 物理层(Physical Layer)OSI模型的物理层负责传输比特流,通过物理介质传输数据。
而TCP/IP模型的物理层包括了计算机网络的硬件,例如网卡、网线等。
在两种模型中,物理层的主要任务是将数据转化为比特流并进行传输。
2. 数据链路层(Data Link Layer)OSI模型的数据链路层负责将数据分割为帧,并为每个帧添加标识,以确保数据的可靠传输。
常见的协议包括以太网协议(Ethernet)和点对点协议(PPP)。
在TCP/IP模型中,数据链路层的功能与OSI模型类似,但没有明确的数据链路层协议,而是依赖于物理层的协议。
3. 网络层(Network Layer)OSI模型的网络层负责将数据从源地址传输到目标地址。
常见的协议包括网际协议(IP)、互联网控制消息协议(ICMP)和地址解析协议(ARP)。
在TCP/IP模型中,网络层也承担了类似的功能,主要使用的协议是网际协议(IP)。
4. 传输层(Transport Layer)OSI模型的传输层提供端到端的可靠传输,通过使用端口号和序列号对数据进行分割与重组。
常用的协议包括传输控制协议(TCP)和用户数据报协议(UDP)。
而TCP/IP模型中的传输层也是负责端到端的可靠传输,主要使用的协议是传输控制协议(TCP)和用户数据报协议(UDP)。
5. 会话层(Session Layer)OSI模型中的会话层负责建立、管理和终止应用程序之间的会话。
它提供了一种机制,使得应用程序能够在通信过程中进行同步和检查点恢复。
在TCP/IP模型中,会话层的功能通常由应用层来承担。
tcpip5层协议模型
![tcpip5层协议模型](https://img.taocdn.com/s3/m/2fd61d5f26d3240c844769eae009581b6bd9bd8f.png)
TCP/IP五层协议模型1. 简介TCP/IP五层协议模型是指互联网通信中使用的一种协议体系,它将互联网通信分为五个层级,每个层级负责不同的功能和任务。
这种协议模型被广泛应用于现代网络通信中,包括互联网、局域网等。
2. TCP/IP五层协议模型的层级结构TCP/IP五层协议模型包括以下五个层级:2.1 物理层物理层是协议模型的最底层,主要负责传输原始的比特流。
它定义了电气、机械、功能和规程等特性,用于实现数据的传输和接收。
物理层的任务包括确定传输介质、接口类型、数据传输速率等。
2.2 数据链路层数据链路层负责将物理层传输的比特流组装成数据帧,并进行传输错误的检测和纠正。
它定义了如何访问物理介质、如何进行数据的分组和组装等。
数据链路层的任务包括帧同步、流量控制、错误检测和纠正等。
2.3 网络层网络层是协议模型的核心层级,负责将数据包从源主机传输到目标主机。
它定义了数据包的路由选择、寻址和分片等。
网络层的任务包括IP地址分配、路由选择、数据包的分组和重组等。
2.4 传输层传输层负责在网络中的两个主机之间建立、维护和终止数据传输的连接。
它定义了数据传输的可靠性、流量控制和拥塞控制等。
传输层的任务包括端口号分配、连接建立和终止、数据分段和重组等。
2.5 应用层应用层是协议模型的最高层级,负责处理特定的应用程序和用户数据。
它定义了应用程序之间的通信协议和数据格式。
应用层的任务包括提供各种网络服务,如电子邮件、文件传输、远程登录等。
3. TCP/IP五层协议模型的工作原理TCP/IP五层协议模型中的各个层级通过不同的协议和机制进行通信和协作。
通常,数据从应用层开始,逐层封装后通过网络传输到目标主机,然后逐层解封装并交给应用层处理。
具体工作流程如下:1.应用层将数据封装成应用层协议数据单元(PDU)。
2.传输层将应用层PDU封装成传输层协议数据单元(PDU)。
3.网络层将传输层PDU封装成网络层协议数据单元(PDU)。
网络编程-TCPIP各层介绍(5层模型讲解)
![网络编程-TCPIP各层介绍(5层模型讲解)](https://img.taocdn.com/s3/m/1da7d2d659f5f61fb7360b4c2e3f5727a5e9240f.png)
⽹络编程-TCPIP各层介绍(5层模型讲解)1、TCP/IP五层协议讲解物理层--数据链路层--⽹络层--传输层--应⽤层我们将应⽤层,表⽰层,会话层并作应⽤层,从tcp/ip五层协议的⾓度来阐述每层的由来与功能,搞清楚了每层的主要协议就理解了整个互联⽹通信的原理。
⾸先,⽤户感知到的只是最上⾯⼀层应⽤层,⾃上⽽下每层都依赖于下⼀层,所以我们从最下⼀层开始切⼊,⽐较好理解每层都运⾏特定的协议,越往上越靠近⽤户,越往下越靠近硬件2、物理层物理层由来:上⾯提到,孤⽴的计算机之间要想⼀起玩,就必须接⼊internet,⾔外之意就是计算机之间必须完成组⽹物理层功能:主要是基于电器特性发送⾼低电压(电信号),⾼电压对应数字1,低电压对应数字03、数据链路层(以太⽹协议:)数据链路层由来:单纯的电信号0和1没有任何意义,必须规定电信号多少位⼀组,每组什么意思数据链路层的功能:定义了电信号的分组⽅式以太⽹协议:早期的时候各个公司都有⾃⼰的分组⽅式,后来形成了统⼀的标准,即以太⽹协议ethernetethernet规定⼀组电信号构成⼀个数据包,叫做‘帧’每⼀数据帧分成:报头head和数据data两部分mac地址:(⽹卡的地址)head中包含的源和⽬标地址由来:ethernet规定接⼊internet的设备都必须具备⽹卡,发送端和接收端的地址便是指⽹卡的地址,即mac地址mac地址:每块⽹卡出⼚时都被烧制上⼀个世界唯⼀的mac地址,长度为48位2进制,通常由12位16进制数表⽰(前六位是⼚商编号,后六位是流⽔线号)⼴播:有了mac地址,同⼀⽹络内的两台主机就可以通信了(⼀台主机通过arp协议获取另外⼀台主机的mac地址)ethernet采⽤最原始的⽅式,⼴播的⽅式进⾏通信,即计算机通信基本靠吼4、⽹络层(ip协议)⽹络层由来:有了ethernet、mac地址、⼴播的发送⽅式,世界上的计算机就可以彼此通信了,问题是世界范围的互联⽹是由⼀个个彼此隔离的⼩的局域⽹组成的,那么如果所有的通信都采⽤以太⽹的⼴播⽅式,那么⼀台机器发送的包全世界都会收到,这就不仅仅是效率低的问题了,这会是⼀种灾难必须找出⼀种⽅法来区分哪些计算机属于同⼀⼴播域,哪些不是,如果是就采⽤⼴播的⽅式发送,如果不是,就采⽤路由的⽅式(向不同⼴播域/⼦⽹分发数据包),mac地址是⽆法区分的,它只跟⼚商有关⽹络层功能:引⼊⼀套新的地址⽤来区分不同的⼴播域/⼦⽹,这套地址即⽹络地址4.1、IP协议:规定⽹络地址的协议叫ip协议,它定义的地址称之为ip地址,⼴泛采⽤的v4版本即ipv4,它规定⽹络地址由32位2进制表⽰范围0.0.0.0-255.255.255.255⼀个ip地址通常写成四段⼗进制数,例:172.16.10.1⼦⽹掩码:将ip地址分为⽹络地址和主机地址所谓”⼦⽹掩码”,就是表⽰⼦⽹络特征的⼀个参数。
OSI参考模型与TCPIP参考模型的异同-并简述各层主要功能
![OSI参考模型与TCPIP参考模型的异同-并简述各层主要功能](https://img.taocdn.com/s3/m/f073dd3c2cc58bd63086bd11.png)
OSI参考模型与TCP/IP参考模型的异同,并简述各层主要功能。
1、OSI 各层的主要功能:物理层:通常规定网络传输媒体的机械、电气、功能、规程等特性,用来实现数据链路实体间透明的比特(Bit) 流传输.数据链路层:提供链路管理、帧同步、差错控制、流量控制、寻址等功能,主要用途是为在相邻网络实体之间建立、维持和释放数据链路连接,并传输数据链路服务数据单元。
网络层:提供路由选择、流量控制等功能,实现源DCE(Data Communication Equipment) 和目标DCE之间的通信建立、维护和终止网络连接,并通过网络连接交换网络服务数据单元。
运输层:主要完成从会话层接收数据,并且把它分成较小的单元,传输给网络层,在优化网络服务的基础上,为源主机和目标主机之间提供可靠的价格、合理的透明传输,使其上面的高层不必关心通信子网的实现细节.应用层:提供给人们解决具体问题的功能,是用户使用OSI 功能的惟一窗口。
2、TCP/ IP 各层的主要功能:主机至网络层:代表了传输能力以及接口的使用。
互联网层:使主机可以把分组发往任何网络并且使分组独立地传向目标。
传输层:主要实现两个不同的协议无连接的UDP 和面向联接的TCP。
应用层:提供解决具体应用问题的功能。
3、两种参考模型相同点:OSI 参考模型与TCP/ IP 参考模型都是用来解决不同计算机之间数据传输的问题.这两种模型都是基于独立的协议栈的概念,都采用分层的方法,每层都建立在它的下一层之上,并为它的上一层提供服务.例如:在两种参考模型中,传输层及其以下的各层都为需要通信的进程提供端到端、与网络无关的传输服务,这些层成了传输服务的提供者;同样,在传输层以上的各层都是传输服务的用户.4、两种参考模型不同点:(1) OSI 参考模型的协议比TCP/ IP 参考模型的协议更具有面向对象的特性。
OSI 参考模型明确了三个主要概念:服务、接口和协议。
这些思想和现代的面向对象的编程技术非常吻合.一个对象有一组方法,该对象外部的进程可以使用它们,这些方法的语义定义该对象提供的服务,方法的参数和结果就是对象的接口,对象内部的代码实现它的协议。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线缆的连接-2
• 标准网线的线序 • 交叉网线的线序 • 制作过程
物理层的设备-1
• 网络接口卡 • 连接计算机和网络硬件 • 按照提供的线缆接口类型可分为RJ-45接 口网卡、光纤网卡等 • 便携式电脑可使用PCMCIA网络接口卡
物理层的设备-2
• 中继器
• 能放大信号 • 延长网络传输距离 • 只包含有一个输入端口和一个输出端口,所以只能接收和转发数据流 • 成本低
• 双绞线TP是目前使用最广,价格相对便宜的一种传输介质 • 由两根绝缘铜导线相互缠绕组成,以减少对邻近线对的电气干扰 • 由若干对双绞线构成的电缆被称为双绞线电缆 • 非屏蔽双绞线UTP和屏蔽双绞线STP
双绞线的标准
• EIA/TIA-568——“商用建筑物电信布线标准”
Cat 5e UTP Cat 5e STP
以太网接口
• RJ-45
• 光纤接口
• FC 圆形带螺纹光纤接头 • ST 卡接式圆形光纤接头 • SC 方型光纤接头 • LC 窄体方形光纤接头 • MT-RJ 收发一体的方型光纤接头
物理层的传输介质
• 有线介质
• 双绞线 • 光纤
• 无线介质
• 无线电 • 微波 • 激光 • 红外线
双绞线
输出脉冲
光缆的结构和传播特性
• 光缆的结构
• 光缆的传播特性 • 损耗 • 色散
外护套 远供电源线 光纤及其包层 填充物
加强芯 包带层
线缆的连接-1
• EIA/TIA 568A和568B • 线缆的连接
• 标准网线 • 交叉网线 • 全反线
直通 交叉
直通/交叉 交叉
直通
T568A标准中RJ-45连接 器的管脚号和颜色编码
物理层的设备-3
• 集线器 • 最初只是一个多端口的中继器 • 可用于星形拓扑结构 • 能够支持各种不同的传输介质和数据传输速率 • 有些集线器具有内部处理能力,例如,可以接受远程管理、 过滤数据或提供网络诊断信息 • 被交换机所取代
光传输系统
• 光传输系统由三个部分组成:光纤传输介质、光源和检测器
电信号
驱动器
光源
光信号 光纤
光检测器
电信号
放大璃 熔硅纤维
光电二极管
光信号在光纤中的传输
• 光脉冲在光纤中的传输是利用了光的全反射原理 • 光纤分为多模光纤和单模光纤
输入脉冲
输出脉冲
输入脉冲
多模光纤 单模光纤
职业证书-企业证书-神州数码 TCP/IP参考模型之物理层
TCP/IP协议参考模型
应用层 传输层 互联网层
应用层 传输层 互联网层
网络接口层
TCP/IP 4层模型
数据链路层 物理层
TCP/IP 5层模型
应用层 表示层 会话层 传输层
网络层
数据链路层 物理层
OSI 7层模型
物理层
物理层-网络的基础
物理层的功能
一:为数据端设备提供传送数据的线路 二:在线路上传输数据
传输介质
PC
网络设备
网络设备
PC
接口
信号的传输
物理层关心的是什么
机械特性 电气特性 功能特性 规程特性
通信设备间硬件连接接口的机械特点
规定了在物理连接上导线的电气连接及有关 的电路的特性
指明物理接口各条信号线的用途
指明利用接口传输的全过程及各项用于传输 的事件发生的合法顺序
• 物理层是TCP/IP模型的最底层 • 物理层为数据传输提供可靠环境
物理层是网络的基 础,正如同公路是 汽车通行的基础一 样
物理层概述
• 物理层是TCP/IP五层模型的最底层,为数据通信的介质提 供规范和定义
• 直接面向实际承担数据传输的物理介质 • 传输单位为比特 • 主要负责在通信线路上比特流如何传输
直通
交叉
交叉
线缆的连接-1
• EIA/TIA 568A和568B • 线缆的连接
• 标准网线 • 交叉网线 • 全反线
管脚号 1 2 3 4 5 6 7 8
用途 发送 + 发送 接收 + 不被使用 不被使用 接收 不被使用 不被使用
颜色 白色和绿色 绿色 白色和橘黄色 蓝色 白色和蓝色 橘黄色 白色和棕色 棕色