数字图像处理计算题复习精华版要点教学文案

合集下载

数字图像处理期末复习基本内容度最终版

数字图像处理期末复习基本内容度最终版

第1章 数字图像处理的基本知识1.1 连续图像如何转换为数字图像?数字图像将图像看成是许多大小相同、形状一致的像素组成。

这样,数字图像可以用二维矩阵表示。

将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像(连续图像)信号,再由模拟/数字转化器(ADC )得到原始的数字图像信号。

图像的数字化包括离散和量化两个主要步骤。

在空间将连续坐标过程称为离散化,而进一步将图像的幅度值(可能是灰度或色彩)整数化的过程称为量化。

1.2当对模拟图像取样时不满足取样定律将出现什么现象?从取样图像中恢复原来的图像需要满足二维的香农取样定理,否则出现失真现象。

1.3图像处理的基础、最主要的任务是什么?图像处理的基础是数学,最主要的任务就是各种算法的设计和实现。

1.4 数字图像处理主要包括哪些研究内容?1)图像变换;2)图像增强;3)图像复原; 4)图像压缩编码;5)图像分割与特征提取。

1.5 数字图像研究的三大方面:提高视觉效果、特征提取和目标识别、编码和压缩数据。

1.6 计算下面图像的平均灰度值,写出计算下面图像平均灰度值的Matlab 程序245631536262⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦答:a=[2 4 5 6;3 1 5 3;6 2 6 2];average=mean2(a);运行结果,平均average=3.751.7 写出画大小为512512⨯的黑底(灰度值为0),中央有200200⨯大小白(灰度值为1)正方形图像的Matlab 程序。

答:x=zeros(512);x(256-100:256+99,256-100:256+99)=1;imshow(x)1.8 数字图像处理就是将图像转换为一个数字矩阵存放在计算机中,并采用一定的算法对其进行处理。

第2章图像处理中的常用数学变换2.1 (教材51页)用Matlab编程做出如图2.37所示图像的二维离散余弦变换(a)(b)图2.37答:% DCTa=ones(64);a(29:36,29:36)=0; % 8*8% a(29:36,31:34)=0; % 4*8f=dct2(a);figure, imshow(a,'notruesize')figure,imshow(log(abs(f)+1),'notruesize')2.2 做出对灰度图像’lenagray.bmp’进行傅里叶变换,并把直流分量平移到中央的Matlab程序,并注明每个程序的作用。

北京理工大学数字图像处理结课复习

北京理工大学数字图像处理结课复习

北京理工大学数字图像处理结课复习1. 什么是数字图像?以数字格式存放的图像称为数字图像2. 数字图像处理技术有哪些?利用计算机对图像进行去除噪声、增强、复原、分割、提取特征等的理论、方法和技术称为数字图像处理。

图像获取、表示和表现、图像复原、图像增强、图像分析、图像重建、图像压缩编码3. 数字图像的基本类型黑白图像(二值图像)、灰度图像、索引图像、彩色图像4.数字图像处理系统组成部分?图像输入系统,图像处理与分析系统、图像输出系统、图像存储系统。

5.数字化过程的两个步骤图像数字化:指将模拟图像经过离散化之后,得到用数字表示的图像。

第一步:空间采样第二步:量化6.什么是灰度直方图?灰度直方图是灰度级的函数,描述的是图像中该灰度级的像素个数。

即:横坐标表示灰度级,纵坐标表示图像中该灰度级出现的个数。

7. 图像与直方图的对应关系是多对一的映射关系8.图像的文件格式:位图、矢量图.9.数学上的卷积运算在信号处理和图像处理学科上通常又称为滤波10.线性移不变系统的性质①调谐输入总产生同频率的调谐输出;②系统的传递函数——一个仅依赖于频率的复值函数,包含了系统的全部信息;③传递函数对一调谐信号输入只产生两种影响——幅度的变化和相们的平移(时间原点的平移)11.图像的基本统计分析量(1) 图像的信息量(2) 图像灰度平均值(3). 图像灰度众数(4). 图像灰度中值(5) 图像灰度方差(6). 图像灰度值域12. 三种基本运算类型:点运算、代数运算、几何运算13.什么是点运算?点运算与几何运算的主要区别是什么?所谓点运算是指像素值(像素点的灰度值)通过运算之后,可以改善图像的显示效果。

这是一种像素的逐点运算。

点运算实际上是灰度到灰度的映射过程,点运算不会改变图像内像素点之间的空间位置关系。

几何变换不改变像素值,而可能改变像素所在的位置。

14.灰度插值的基本方法有哪些?最邻近插值法、双线性插值(一阶插值)、高阶插值15.齐次坐标表示为了能够用统一的矩阵线性变换形式,表示和实现这些常见的图像几何变换,就需要引入一种新的坐标,即齐次坐标。

数字图像处理复习要点总结-推荐下载

数字图像处理复习要点总结-推荐下载


1
uv F( , )
ab a b
(x,y)点;M
是集合内坐标点的总数。一个特殊的系统函数
8、图像尖锐化处理(在频谱空间相当于高通滤波):用于增强图像的边缘及灰 度跳变部分。
9、Prewitt 算子(边缘检测算子):包括两个有向算子(一个水平,一个垂直, 一般称为模板)。
两个特殊模板: PV
3、三基色混色及色度表示原理 (1) 相加混色(彩色电视机)和相减混色(彩色电影、幻灯片、绘画原 料); (2) 相加、相减混色区别:一、相加混色是由发光体发出的光相加而产 生各种颜色,而相减混色是先有白色光,尔后从中减去某些成分 (吸收)得到各种颜色;二、相加混色的三基色是红、绿、蓝,而 相减混色的三基色是黄、青、紫,也就是说相加混色的补色就是相 减混色的基色。 (3) 格拉斯曼定律:一、所有颜色都可以用互相独立的三基色混合得到; 二、假如三基色的混合比例相等,则色调和色饱和度也相等;三、 任意两种颜色相混合产生的新颜色与采用三基色分别合成这两种颜 色的各自成分混合起来得到的结果相等;四、混合色的光亮度是原 来各分量光亮度的总和。 (4) 色调表示各种颜色的种类,色饱和度表示颜色的深浅。
(8) 卷积定理: 卷积公式 f (x, y) g(x, y) f ( , )g(x , y )dd

f (x, y) g(x, y) F (u, v) G(u, v) f (x, y) g(x, y) F (u, v) G(u, v)
4、傅里叶变换的性质: (1) 可分性:一个二维的傅里叶变换可用二次一维傅里叶变换实现
F (u, v) FTx FTy [ f (x, y)]
(2) 线性: FT[a1 f1 (x, y) a2 f 2 (x, y)] a1FT[ f1 (x, y)] a2 FT[ f 2 (x, y)]

《数字图像处理》复习重点总结(杂)

《数字图像处理》复习重点总结(杂)

出 //非几何变换:原图灰度为 f(x,y),g(x,y)=T[f(x,y)], 没有位置变化,灰度值变换 R=T(r),R,r∈(0~255)//
3 模板运算、应用(★):所谓模板就是一个系数矩阵(必须为奇数列);模板大小:经常是奇数;模板系
数: 矩阵的元素 w1 w2 w3 w4 w5 w6 w7 w8 w9。对于某图象的子图像:z1 z2 z3 z4 z5 z6 z7 z8 z9z5 的模板运
第三章:图像变换 1 图像变换、基本运算方法:加减法:C(x,y) = A(x,y) ±B(x,y) 乘法:C(x,y) = A(x,y) * B(x,y) //求反:g(x,y) = 255 - f(x,y) 异或:g(x,y) = f(x,y) ⊕ h(x,y) 或:g(x,y) = f(x,y) ∪ h(x,y)与:g(x,y) = f(x,y) ∩ h(x,y) //
腐蚀;定义:B • S =(B ⊕ S)⊗ S;结果:1)填充对象内细小空洞 2)连接邻近对象 3)在不明显改变面 积前提下,平滑对象的边缘
第六章:图像特征提取与识别 1 表示方法: ①链码,定义:1)链码是一种边界的编码表示法。2)用边界的方向作为编码依据。为简化边 界的描述。一般描述的是边界点集。②区域骨架 ,概念,反映什么特性骨架:中轴线。设:R 是一个区域,B 为 R 的边界点,对于 R 中的点 p,找 p 在 B 上“最近”的邻居。如果 p 有多于一个的邻居,称它属于 R 的中轴(骨架) 2 边界特性: ①形状数(★)形状数定义:最小差分链码。 要会算:差分链码,最小差分链码。 差分链
第五章:图像分割 1 图像分割的定义和五大特性 // 令集合 R 代表整个图像区域,对 R 的分割可看作将 R 分成 N 个满足一下五 个条件的非空子集(子区域)R1,R2…RN: ①完备性: i=1 到 N 对 Ri 求和=R②独立性(各子区互不重叠): i,j,i≠j,有 Ri∩Rj= ③单一性(同子区具有某些相同特性):对 i=1,2…N,有 P(Ri)=TRUE ④互斥性(不 同子区具有某些不同特性):对 i≠j,有 P(Ri∪Rj)=FALSE ⑤连通性(同子区像素具有连通性):对 i=1,2,...,N, Ri 是连通的区域 // 对图像的划分满足以上定义,则 Ri(i-1,2,3…n)就称为 R 的分割。 // 2 边缘检测:(★)边缘连接,模板运算的概念,和锐化模板有区别,Huff 变换。// 基于边缘检测的霍夫变换 的原理:把直线上点的坐标变换到过点的直线的系数域,通过利用共线和直线相交的关系,使直线的提取问题 转化为计数问题。 3 阈值分割:通过取灰度门限对图像像素进行分类,该方法基于:(1)同一分割区域内由灰度值相近的像素 点组成;(2)目标物和背景、不同目标物之间的灰度值有明显差异,可通过取门限区分。 // 4 区域生长(★):// 根据所用邻域方式和相似性准则的不同,区域生长法可以分为简单生长(像素+像素)、 质心生长法(区域+像素)和混合生长法(区域+区域)//①简单生长法:按时限确定的相似性准则,生长点 (种子点为第一生长点)接收(合并)其邻域(比如 4 邻域)的像素点,该区域生长。接收后的像素点成为 成长点,其值取种子点的值。重复该过程,直到不能生长为止,到此该区域生成。简单生长法的相似性准则为: |f(m,n)-f(s,t)|<T1, 其中 f(s,t)为种子(s,t)处的灰度值,f(m,n)为(s,t)邻域点(m,n)的灰度值,T1 为相似门限。F(s,t) 始终取种子点的值,因此这种方法对种子点的依赖性强 // ②质心生长法:相似性准则变为:|f(m,n)-f(s,t)|<T2, 这里的 f(s,t)(带上划线)是已生长区域内所有像素(所有生长点)的灰度平均值。即用已生成区域的像素灰度 均值(类似质心)作为基准,这样就可以客服简单生长法中过分依赖种子点的缺陷。 // √5 数学形态学方法: 1) 腐蚀:定义:E = B ⊗ S = { x,y | Sxy⊆ B};结果:使二值图像减小一圈;算法:·用 3x3 的结构元素,扫描 图像的每一个像素;·用结构元素与其覆盖的二值图像做“与”操作;·如果都为 1,结果图像该像素为 1。否则 为 0。2)膨胀:定义:E = B ⊕ S = { x,y | Sxy∩B ≠Ф};结果:使二值图像扩大一圈;算法:·用 3x3 的结构 元素,扫描图像的每一个像素;·用结构元素与其覆盖的二值图像做“与”操作; ·如果都为 0,结果图像该像素 为 0。否则为 1。3)开运算:思路:先腐蚀,再膨胀;定义:B o S = (B ⊗ S)⊕ S;结果:1)消除细小对 象 2)在细小粘连处分离对象 3)在不改变形状的前提下,平滑对象的边缘。4)闭运算:思路:先膨胀、再

数字图像处理复习要点

数字图像处理复习要点

1.数字图像处理研究的主要内容:图像变换,图像的数字化,图像增强,图像恢复(也叫图像复原),图像编码(也叫图像压缩),图像重建,图像分析,图像分割。

(大概了解下每个含义)2.什么是数字图像:数字图像是指又被称作像素的小块区域组成的二维矩阵。

3.数字图像处理:用数字计算机及其他有关数字技术,对图像施加某种运算和处理,从而达到某种预想的目的。

4.数字图像处理的困难性在于:运算量打,存储量大。

5.数字图像工程:人工智能,模式识别,图像处理三维一体。

6.人眼在灰度变化剧烈区估计灰度能力差(对应高频信息)。

在灰度变化平缓区估计灰度能力好(对应低频信息)--马赫带效应7.人眼亮适应快(即对由暗变亮适应快),暗适应慢(对由亮变暗适应慢)。

9.人眼辨色能力强,辨别灰度能力差。

10.椎体细胞与杆状细胞的区别?人的视网膜有对红,绿,蓝颜色敏感程度不同的三种椎体细胞,两外还有一种在光功率极端低得条件下才起作用的杆状细胞,杆状细胞主要提供视野的整体视像,对低照度较敏感。

(联想:人在白天看到的东西是彩色的,这时主要是椎体细胞在工作,夜晚时看到的东西基本是灰色的黑白图像,此事主要是杆状细胞在起作用)11.常用的颜色模型:面向设备:CMY,RGB,YUV,YIQ,YCrCb面向视觉系统:HSV,HIS面向计算:CIE-XYZ12.图像的采集与显示:图像的获取即将图像采集到计算机中的过程,主要涉及成像及数模转换技术显示是将数字图像转化为适合人们使用的形式。

13.什么是抖动?在数字通信中,数字信号的有效瞬时相对其理想位置的短期的非积累性变化。

抖动有两种主要类型:确定性抖动和随机性抖动。

确定性抖动是由可识别的干扰信号造成的,这种抖动通常幅度有限,具备特定的(而非随机的)产生原因,而且不能进行统计分析。

随机抖动是指由较难预测的因素导致的时序变化。

例如,能够影响半导体晶体材料迁移率的温度因素,就可能造成载子流的随机变化。

另外,半导体加工工艺的变化,例如掺杂密度不均,也可能造成抖动。

(完整版)数字图像处理复习整理

(完整版)数字图像处理复习整理

(完整版)数字图像处理复习整理《数字图像处理》复习第⼀章绪论数字图像处理技术的基本内容:图像变换、图像增强、图象恢复、图像压缩编码、图像分割、图像特征提取(图像获取、表⽰与描述)、彩⾊图像处理和多光谱及⾼光谱图像处理、形态学图像处理第⼆章数字图像处理基础2-1 电磁波谱与可见光1.电磁波射波的成像⽅法及其应⽤领域:⽆线电波(1m-10km)可以产⽣磁共振成像,在医学诊断中可以产⽣病⼈⾝体的横截⾯图像☆微波(1mm-1m)⽤于雷达成像,在军事和电⼦侦察领域⼗分重要红外线(700nm-1mm)具有全天候的特点,不受天⽓和⽩天晚上的影响,在遥感、军事情报侦察和精确制导中⼴泛应⽤可见光(400nm-700nm)最便于⼈理解和应⽤最⼴泛的成像⽅式,卫星遥感、航空摄影、天⽓观测和预报等国民经济领域☆紫外线(10nm-400nm)具有显微镜⽅法成像等多种成像⽅式,在印刷技术、⼯业检测、激光、⽣物学图像及天⽂观测X射线(1nm-10nm)应⽤于获取病⼈胸部图像和⾎管造影照⽚等医学诊断、电路板缺陷检测等⼯业应⽤和天⽂学星系成像等伽马射线(0.001nm-1nm)主要应⽤于天⽂观测2-2 ⼈眼的亮度视觉特征2.亮度分辨⼒——韦伯⽐△I/I(I—光强△I—光照增量),韦伯⽐⼩意味着亮度值发⽣较⼩变化就能被⼈眼分辨出来,也就是说较⼩的韦伯⽐代表了较好的亮度分辨⼒2-3 图像的表⽰3.⿊⽩图像:是指图像的每个像素只能是⿊或⽩,没有中间的过渡,⼀般⼜称为⼆值图像(⿊⽩图像⼀定是⼆值图像,⼆值图像不⼀定是⿊⽩图像)灰度图像:是指图像中每个像素的信息是⼀个量化了的灰度级的值,没有彩⾊信息。

彩⾊图像:彩⾊图像⼀般是指每个像素的信息由R、G、B三原⾊构成的图像,其中的R、B、G是由不同的灰度级来描述的。

4.灰度级L、位深度k L=2^k5.储存⼀幅M×N的数字图像所需的⽐特 b=M×N×k例如,对于⼀幅600×800的256灰度级图像,就需要480KB的储存空间(1KB=1024Byte 1Byte=8bit)2-4 空间分辨率和灰度级分辨率6.空间分辨率是图像中可分辨的最⼩细节,主要由采样间隔值决定,反映了数字化后图像的实际分辨率。

数字图像处理复习提纲

数字图像处理复习提纲

A=zeros(12,12);
b = ~A;
figure, imshow(b);
b(:,4:1:6)=0;
b(:,10:1:12)=0;
figure,imshow(b);
c=b’;
figure,imshow(c);
4 设下面图像的灰度矩阵如下,请用 直方图均衡化方法修正该图像灰度 矩阵。详细写出直方图均衡化的实 现步骤和最后修正后的图像矩阵B, 并画出修正矩阵的直方图。
数字图像处理复习内容概括
第一章 数字图像处理概念与基础
1、图像的定义 2、数字图像处理的定义 3、产生图像的类别 4、数字图像处理的特点与主要方法 5、图像的类型 6、图像简单Matlab处理(读取、显示和存储、抽取、旋转, 提 取、翻转)与应用 7、图像矩阵的基本运算(算术、关系和逻辑) 8、简单函数的M文件编程
X1 X2 X3 X4 X5 X6 X7 x8
11、分别用中值滤波、四邻域法、八邻域法、sobel算子和prewitt算子编程实现对具有 10%的‘gaussian’噪声图像(image.tif) 的增强处理。
12、用低通滤波和高通滤波的方法编程实现图像(image.tif) 的增强处理。
13、应用Matlab实现的Huffman编码函数和Huffman译码函数编程实现图像(image.tif)压 缩处理。
4、主要掌握的内容
(1) 灰度变换中的线形、指数、对数增强方法分别具有什么增强特点?
(2)为什么对比度拉伸能够实现图像对比度增强? (3) 什么是图像灰度直方图?图像直方图反映了图像的什么特征? (4) 直方图均衡化图像处理主要实现思想什么?他的实现过程与matlab实现程序。 (5) 直方图规定化图像处理的主要实现思想什么?掌握处理步骤与matlab实现程序。

数字图像处理复习资料

数字图像处理复习资料

数字图像处理复习资料第1章绪论第2章数字图像处理基本概念1. 解答题(1)什么叫数字图像?答:数字图像,又称为数码图像或数位图像,是二维图像用有限数字数值像素的表示。

数字图像是由模拟图像数字化得到的、以像素为基本元素的、可以用数字计算机或数字电路存储和处理的图像。

(2)数字图像处理包括哪些内容?答:图像数字化;图像变换;图像增强;图像恢复;图像压缩编码;图像分割;图像分析与描述;图像的识别分类。

(3)数字图像处理系统包括哪些部分?答:输入(采集);存储;输出(显示);通信;图像处理与分析。

(4)从“模拟图像”到“数字图像”要经过哪些步骤?答:图像信息的获取;图像信息的存储;图像信息处理;图像信息的传输;图像信息的输出和显示。

(5)什么叫数字图像的“空间分辨率”和“幅度分辨率”?各由数字化哪个过程决定?答:空间分辨率是指图像可辨认的临界物体空间几何长度的最小极限;幅度分辨率是指幅度离散,每个像素都有一个强度值,称该像素的灰度,一般量化采用8。

(6)数字图像1600´1200什么意思?灰度一般取值范围0~255,其含义是什么?答:数字图像1600x1200表示空间分辨率为1600x1200像素;灰度范围0~255指示图像的256阶灰阶,就是通过不同程度的灰色来来表示图像的明暗关系,8的灰度分辨率。

(7)P42:2,3,6(直方图概念),10,112.图像的数字化包括哪两个过程?它们对数字化图像质量有何影响?答:采样;量化采样是将空间上连续的图像变换成离散的点,采样频率越高,还原的图像越真实。

量化是将采样出来的像素点转换成离散的数量值,一幅数字图像中不同灰度值得个数称为灰度等级,级数越大,图像越是清晰。

3数字化图像的数据量与哪些因素有关?答:图像分辨率;采样率;采样值。

6.什么是灰度直方图?它有哪些应用?从灰度直方图中你可可以获得哪些信息?答:灰度直方图反映的是一幅图像中各灰度级像素出现的频率之间的关系;它可以用于:判断图像量化是否恰当;确定图像二值化的阈值;计算图像中物体的面积;计算图像信息量。

数字图像处理简复习重点介绍

数字图像处理简复习重点介绍

数字图像处理简复习重点介绍第一篇:数字图像处理简复习重点介绍1、数字图像处理的主要研究内容包含很多方面,请列出并简述其中的4种。

2、什么是图像识别与理解?5、简述图像几何变换与图像变换的区别。

6、图像的数字化包含哪些步骤?简述这些步骤。

7、图像量化时,如果量化级比较小会出现什么现象?为什么?8、简述二值图像与彩色图像的区别。

9、简述二值图像与灰度图像的区别。

10、简述灰度图像与彩色图像的区别。

11、简述直角坐标系中图像旋转的过程。

13、举例说明使用邻近行插值法进行空穴填充的过程。

14、举例说明使用均值插值法进行空穴填充的过程。

15、均值滤波器对高斯噪声的滤波效果如何?试分析其中的原因。

16、简述均值滤波器对椒盐噪声的滤波原理,并进行效果分析。

17、中值滤波器对椒盐噪声的滤波效果如何?试分析其中的原因。

18、使用中值滤波器对高斯噪声和椒盐噪声的滤波结果相同吗?为什么会出现这种现象?19、使用均值滤波器对高斯噪声和椒盐噪声的滤波结果相同吗?为什么会出现这种现象? 20、写出腐蚀运算的处理过程。

21、写出膨胀运算的处理过程。

22、为什么YUV表色系适用于彩色电视的颜色表示?23、简述白平衡方法的主要原理。

24、YUV表色系的优点是什么?25、请简述快速傅里叶变换的原理。

26、傅里叶变换在图像处理中有着广泛的应用,请简述其在图像的高通滤波中的应用原理。

27、傅里叶变换在图像处理中有着广泛的应用,请简述其在图像的低通滤波中的应用原理。

28、小波变换在图像处理中有着广泛的应用,请简述其在图像的压缩中的应用原理。

29、什么是图像的无损压缩?给出2种无损压缩算法。

2、对于扫描结果:aaaabbbccdeeeeefffffff,若对其进行霍夫曼编码之后的结果是:f=01e=11a=10b=001c=0001d=0000。

若使用行程编码和霍夫曼编码的混合编码,压缩率是否能够比单纯使用霍夫曼编码有所提高?31、DCT变换编码的主要思想是什么?32、简述DCT变换编码的主要过程。

数字图像处理复习要点3

数字图像处理复习要点3

数字图像处理复习要点第一章数字图像基本概念和编程知识(基本概念)1.图像:图像是对客观存在的物体的一种相似性的、生动的写真或描述。

2.图像分为:(1)模拟图像:空间坐标和明暗程度连续变化,计算机无法直接处理(2)数字图像:空间坐标和明暗程度均不连续,用离散的数字表示,便于计算机处理3.图像处理分为:(1)模拟图像处理:利用光学、照相和电子学方法对模拟图像的处理称为模拟图像处理。

如放大、缩小、显微等。

(2)数字图像处理:利用计算机对数字图像进行系列操作,从而获得某种预期结果的技术,又称计算机图像处理。

4.数字图像处理的三个层次:(1)低级图像处理(狭义的图像处理):主要满足对图像进行各种加工以改善图像的视觉效果并为自动识别打基础,或对图像进行压缩编码以减少所需存储空间或传输时间、传输通路的要求。

输入是图像,输出也是图像,即图像之间进行变换。

包括:图像采集、获取及存储;图像重建;图像变换、滤波、增强、恢复/复原、拼接;图像(视频)压缩编码;图像数字水印和图像信息隐藏。

(2)中级图像处理(图像分析):主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。

输入是图像,输出是数据。

这里数据可以是对目标图像测量的结果,或是基于测量的符号表示。

它们描述了图像中目标的特点和性质。

包括:边缘检测、图像分割;目标表达、描述、测量(包括二值图像处理等);目标颜色、形状、文理、空间、运动等的分析;目标检测、提取、跟踪、识别和分类。

(3)高级图像处理(图像理解):在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行动。

输入是图像,输出是一种描述,要利用客观世界的知识使计算机进行联想、思考及推论,从而理解图像所表现的内容。

包括:(序列、立体)图像配准、匹配、融合;3-D表示、建模、重构、场景恢复;图像解释、推理(包括语义描述、信息模型、专家系统等);基于内容的图像和视频检索(本课程不研究)5.数字图像处理三个层次之间的区别:6.数字图像处理与相关学科的联系和区别:(1)计算机视觉(computer vision)主要目标是用计算机来模仿人的视觉,并做出推断和采取行动,是人工智能的一个分支。

数字图像处理复习要点及答案

数字图像处理复习要点及答案

一、简答1、简述图像数字化的过程;如何进行量化与取样的综合选择?并说明理由。

图像数字化包括采样和量化两个过程,对于缓变的图像,应该细量化,粗采样,以避免假轮廓;对于细节丰富的图像,应该细采样,粗量化,以避免模糊。

2、简述三基色原理。

⑴自然界中的绝大部分彩色,都可以由三种基色按一定比例混合得到;反之,任意一种彩色均可被分解为三种基色。

⑵作为基色的三种彩色,要相互独立,即其中任何一种基色都不能由另外两种基色混合来产生。

⑶由三基色混合而得到的彩色光的亮度等于参与混合的各基色的亮度之和。

⑷三基色的比例决定了混合色的色调和色饱和度。

3、简述奈奎斯特取样定理的意义。

要从抽样信号中无失真地恢复原信号,抽样频率应大于2倍信号最高截至频率。

抽样频率小于2倍频谱最高频率时,信号的频谱有混叠。

抽样频率大于2倍频谱最高频率时,信号的频谱无混叠。

4、简述傅里叶变换频谱的分布特点与意义。

1、从分布上看,频谱中心处于屏幕中心,从中心向四周呈辐射状分布;离中心越远,频率越高,能量越小;2、中心点即直流分量点对应着图像的平均亮度;低频区域对应图像的实体细节;高频区域对应图像的边缘轮廓。

5、简述图像噪声分类与特点。

椒盐噪声的特征:出现位置是随机的,但噪声的幅值是基本相同的。

高斯噪声的特征:出现在位置是一定的(每一点上),但噪声的幅值是随机的。

6、简述灰度直方图的概念与特点。

灰度直方图是灰度级的函数,描述的是图像中该灰度级的像素个数。

即:横坐标表示灰度级,纵坐标表示图像中该灰度级出现的个数。

特点:(1)所有的空间信息全部丢失。

(2)每一灰度级的像素个数可直接得到。

7、简述直方图均衡与直方图规格化的概念。

直方图均衡方法的基本思想是对在图像中像素个数多的灰度级进行展宽,而对像素个数少的灰度级进行缩减。

从而达到清晰图像的目的。

用以改变图像整体偏暗或整体偏亮,灰度层次不丰富的情况,将直方图的分布变成均匀分布直方图规格化:把已知直方图的图像变成期望直方图图像的过程8、列举图像平滑的主要代表算法,简述其处理原理与处理效果。

数字图像处理-复习纲要.doc

数字图像处理-复习纲要.doc

《数字图像处理》复习纲要第1章引论1.数字图像、图像处理、图像分析/理解2,数字图像处理发展的基本历程和应用领域3,请列出图像处理与模式识别的10个具体应用例子4.请给出图像处理与模式识别系统结构框图第2章图像与成像系统1.图像获取(数字化)2.数字图像的描述()3.理解灰度图像和彩色图像的关系4.理解RGB空间和YUV、HSI空间的关系。

以及YUV、HIS的优点是什么?第3章图像处理中的正交变换1.离散傅里叶变换,DCT变换基本公式(2维)2.请写出下面变换的数学表达式:ID CFT, 2D CFT, ID DFT, 2D DFT, ID DCT3.计算:x(0)=l,x(l)=2,x(2)=3 三点的DFT (多项式表达)x(0,0)=l,x(0, 1)=2, x(l,0)=3, x(l, 1)=4 四点的DFT (多项式表达)4.理解傅里叶变换,DCT变换,小波变换的可分离性。

5.说明图像小波变换的优点。

6.Gabor变换与傅立叶变换的关系。

第4章图像增强1.什么是直方图,直方图修改(灰度变换)的作用是什么?2.什么是直方图均衡,直方图规定,它们的作用是什么?3.图像平滑与图像锐化的区别(它们都是图像增强的方式,平滑主要是去除噪声,而锐化是增强边缘)4.什么是邻域平均、什么是中值滤波。

(会计算)5.图像平滑的方法有哪些?邻域平均、中值滤波(空域),低通滤波器(频域)6.了解图像的锐化包括一阶、二阶微分。

了解哪些算子是一阶,那些是二阶一阶导数/梯度算子(Roberts, Sobel, Prewitt)、二阶导数Laplacian算子:各自主要特征、优缺点、主要作用、怎么运用。

以及这些算子(Prewitt, Roberts, Laplacian)的形式是什么?7.图像锐化包括使用算子(空域),以及高通滤波器(频域)。

8.理解高、低通滤波器的特点。

9.掌握什么是同态滤波,要求画出框图。

10.什么是伪彩色图像处理。

2024数字图像处理复习材料

2024数字图像处理复习材料

图像处理复习简答题1:1.图像锐化与图像平滑有何区分与联系?答:图象锐化是用于增加边缘,导致高频重量增加,会使图象清楚; 图象平滑用于去噪,对图象高频重量即图象边缘会有影响。

都属于图象增加,改善图象效果。

2.频域空间的增加方法对应的三个步骤:(平滑与锐化)答:假定原图像为f(x,y),经傅立叶变换为F(u,v),输出图像为g(x,y),则频率域锐化过程描述为:(1) 将图像f(x,y)从图像空间转换到频域空间,得到F(u,v);(2) 在频域空间中通过不同的??滤波函数H(u,v)对图像进行不同的增加,得到G(u,v) (3) 将增加后的图像再从频域空间转换到图像空间,得到图像g(x,y)。

(平滑—>低通滤波器, 锐化—>高通滤波器)3.图像数据压缩的必要性答:(1)数字图像的浩大数据对计算机的处理速度、存储容量都提出过高的要求。

因此必需把数据量压缩。

(2)从传送图像的角度来看,则更要求数据量压缩。

在信道带宽、通信链路容量肯定的前提下,采纳编码压缩技术,削减传输数据量,是提高通信速度的重要手段 。

4.图像锐化滤波的常用方法? 答:○1以梯度值代替原来像素值;○2给定一个阈值,若梯度值小于这个阈值,则修改这个像素的灰度值,反之则保持不变; ○3给图像背景给予一个固定的灰度值; ○4给图像前景给予一个固定的灰度值;○5通过一个阈值,给图像的前景和背景分别给予不同的固定的灰度值。

简答题2 1. 图像滤波的主要目的是什么?主要方法有哪些? 2. 图像噪声有哪些主要类型,主要特点是什么? 3. 如何理解中值滤波的不变性? 4. 什么是梯度倒数加权法平滑?5. 什么是Laplacian 算子?它有哪些特征?6. 罗伯特梯度与Sobel 梯度有什么区分?7. 依据像素的梯度值生成不同的梯度图像的方法有哪些? 8. 定向检测的模板有哪些?9. 频率域滤波的主要滤波器有哪些?各有什么特点? 10.同态滤波的基本操作有哪些?简答题2(答案)1. 图像滤波可以从图像中提取空间尺度信息,突出图像的空间信息,压抑其它无关的信息,或者去除图像的某些信息,复原其它的信息。

数字图像处理计算题复习精华版要点

数字图像处理计算题复习精华版要点

30452 计算题复习一、直方图均衡化(P68)对已知图像进行直方图均衡化修正。

例:表1 为已知一幅总像素为n=64 ×64 的8bit 数字图像(即灰度级数为8),各灰度级(出现的频率)分布列于表中。

要求将此幅图像进行均衡化修正(变换),并画出修正(变换)前后的直方图。

表1解:对已知图像均衡化过程见下表:画出直方图如下:b)均衡化后直方图** 以下部分不用写在答题中。

其中:①r k、n k中k = 0,1,⋯,7k②p(r r k) = n k/n,即计算各灰度级像素个数占所有像素个数的百分比,其中n n j,在此题中n=64 ×64。

j0k③s k计p r(r j),即计算在本灰度级之前(包含本灰度级)所有百分比之和。

j0④s k并int[( L 1) s k计0.5] ,其中L 为图像的灰度级数(本题中L = 8) ,int[ ] 表示对方括号中的数字取整。

⑤s k s k并⑥n sk 为映射对应关系r k→ s k 中r k所对应的n k之和。

⑦p s(s k) n sk/n ,或为映射对应关系r k→ s k 中r k所对应的p r(r k)之和。

a)原始图像直方图二、 模板运算 使用空间低通滤波法对图像进行平滑操作( P80)空间低通滤波法是应用模板卷积方法对图像每一个像素进行局部处理。

模板(或称掩模)就是一个滤 波器,它的响应为 H (r, s ),于是滤波输出的数字图像 g (x,y )用离散卷积表示为klg (x, y ) f (x r, y s )H (r,s ) (4.2.6)r ks l式中: x , y = 0, 1, 2, ⋯ , N-1; k 、 l 根据所选邻域大小来决定。

具体过程如下:( 1 ) 将模板在图像中按从左到右、从上到下的顺序移动, 将模板中心与每个像素依次重合 (边缘像素除外) ( 2)将模板中的各个系数与其对应的像素一一相乘,并将所有的结果相加;3)将( 2)中的结果赋给图像中对应模板中心位置的像素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

30452计算题复习一、直方图均衡化(P68)对已知图像进行直方图均衡化修正。

例:表1为已知一幅总像素为n=64×64的8bit数字图像(即灰度级数为8),各灰度级(出现的频率)分布列于表中。

要求将此幅图像进行均衡化修正(变换),并画出修正(变换)前后的直方图。

表1原图像灰度级r k原各灰度级像素个数n k原分布概率p r(r k)r0=0 790 0.19r1=1 1023 0.25r2=2 850 0.21r3=3 656 0.16r4=4 329 0.08r5=5 245 0.06r6=6 122 0.03r7=7 81 0.02解:对已知图像均衡化过程见下表:原图像灰度级r k原各灰度级像素个数n k原分布概率p r(r k)累积分布函数s k计取整扩展s k并确定映射对应关系r k→s k新图像灰度级s k新图像各灰度级像素个数n sk新图像分布概率p s(s k) r0=0 790 0.19 0.19 1 0→1 1 790 0.19 r1=1 1023 0.25 0.44 3 1→3 3 1023 0.25 r2=2 850 0.21 0.65 5 2→5 5 850 0.21r3=3 656 0.16 0.81 6 3→66 985 0.24r4=4 329 0.08 0.89 6 4→6r5=5 245 0.06 0.95 7 5→77 448 0.11r6=6 122 0.03 0.98 7 6→7r7=7 81 0.02 1.00 7 7→7画出直方图如下:(a )原始图像直方图 (b )均衡化后直方图**以下部分不用写在答题中。

其中:① r k 、n k 中k = 0,1,…,7② p r (r k )= n k /n ,即计算各灰度级像素个数占所有像素个数的百分比,其中∑==kj jnn 0,在此题中n =64×64。

③ ∑==kj jrk r p s 0)(计,即计算在本灰度级之前(包含本灰度级)所有百分比之和。

④ ]5.0)1int[(+-=计并k k s L s ,其中L 为图像的灰度级数(本题中L = 8),int[ ]表示对方括号中的数字取整。

⑤ 并k k s s =⑥ n sk 为映射对应关系r k →s k 中r k 所对应的n k 之和。

⑦ n n s p sk k s /)(=,或为映射对应关系r k →s k 中r k 所对应的p r (r k )之和。

二、 模板运算 使用空间低通滤波法对图像进行平滑操作(P80)空间低通滤波法是应用模板卷积方法对图像每一个像素进行局部处理。

模板(或称掩模)就是一个滤波器,它的响应为H (r ,s ),于是滤波输出的数字图像g(x ,y )用离散卷积表示为)6.2.4(),(),(),(∑∑-=-=--=lls k k r s r H s y r x f y x g式中:x ,y = 0,1,2,…,N -1;k 、l 根据所选邻域大小来决定。

具体过程如下: (1)将模板在图像中按从左到右、从上到下的顺序移动,将模板中心与每个像素依次重合(边缘像素除外); (2)将模板中的各个系数与其对应的像素一一相乘,并将所有的结果相加; (3)将(2)中的结果赋给图像中对应模板中心位置的像素。

对于空间低通滤波器而言,采用的是低通滤波器。

由于模板尺寸小,因此具有计算量小、使用灵活、适于并行计算等优点。

常用的3*3低通滤波器(模板)有:模板不同,邻域内各像素重要程度也就不同。

但无论怎样的模板,必须保证全部权系数之和为1,这样可保证输出图像灰度值在许可范围内,不会产生灰度“溢出”现象。

1 7 1 8 1 7 1 1 1 1 1 5 1 1 1 1 1 1 5 5 5 1 1 7 1 1 5 5 5 1 8 1 8 1 1 5 1 1 1 1 8 1 1 5 1 1 8 1 1 1 1 5 1 1 1 1 1 7 1 8 1 7 1 1解:低通滤波的步骤为:(1)将模板在图像中按从左到右、从上到下的顺序移动,将模板中心与每个像素依次重合(边缘像素除外); (2)将模板中的各个系数与其对应的像素一一相乘,并将所有的结果相加; (3)将(2)中的结果赋给图像中对应模板中心位置的像素。

如图中第2行第2列处的值 = (1*1+1*7+1*1+1*1+2*1+1*1+1*1+1*1+1*5)/10 = 2 (其他位置同样方法计算可得)由此步骤可得处理结果为(空白处自己计算后填入)1 7 1 8 1 7 1 1 1 211 7 1 1 8 1 8 1 1 1 1 7 1 8 1 7 1 1三、 中值滤波与邻域平均中值滤波(P81)中值滤波是对一个滑动窗口内的诸像素灰度值排序,用中间值代替窗口中心像素的原来灰度值,它是一种非线性的图像平滑法。

它对脉冲干扰及椒盐噪声的抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊。

但它对点、线等细节较多的图像却不太合适。

局部平滑法(邻域平均法 或 移动平均法)(P76)局部平滑法是一种直接在空间域上进行平滑处理的技术。

用邻域内各像素的灰度平均值代替该像素原来的灰度值,实现图像的平滑。

设有一幅N ×N 的图像f (x ,y ),若平滑图像为g (x ,y ),则有)1.2.4(),(1),(,∑∈=sj i j i f My x g式中x ,y = 0,1,…,N -1;s 为(x ,y )邻域内像素坐标的集合; M 表示集合s 内像素的总数。

可见邻域平均法就是将当前像素邻域内各像素的灰度平均值作为其输出值的去噪方法。

设图像中的噪声是随机不相关的加性噪声,窗口内各点噪声是独立同分布的,经过(4.2.1)平滑后,信号与噪声的方差比可望提高M 倍。

这种算法简单,但它的主要缺点是在降低噪声的同时使图像产生模糊,特别在边缘和细节处。

而且邻域越大,在去噪能力增强的同时模糊程度越严重。

例:对下图做3*3中值滤波处理和3*3邻域平均处理,写出处理结果,并比较邻域平均与中值滤波的差异。

1 7 1 8 1 7 1 1 1 1 1 5 1 1 1 1 1 1 5 5 5 1 1 7 1 1 5 5 5 1 8 1 8 1 1 5 1 1 1 1 8 1 1 5 1 1 8 1 1 1 1 5 1 1 1 1 1 7 1 8 1 7 1 1解:(1)中值滤波是对一个滑动窗口内的诸像素灰度值排序,用中间值代替窗口中心像素的原来灰度值,它是一种非线性的图像平滑法。

题目中的图像经3*3中值滤波后的结果为(忽略边界):1 7 1 8 1 7 1 1 1 1 5 5 5 1 1 1 1 1 5 5 5 1 1 7 1 1 5 5 5 1 1 18 1 1 5 1 1 1 18 1 1 1 1 1 1 11 1 1 1 1 1 1 11 7 1 8 1 7 1 1(2)局部平滑法(邻域平均法或移动平均法)是用邻域内各像素的灰度平均值代替该像素原来的灰度值,实现图像的平滑。

题目中的图像经3*3局部平滑法(邻域平均法或移动平均法)后的结果为(忽略边界):1 7 1 8 1 7 1 11 19/9 38/9 40/9 38/9 23/9 21/9 11 71 18 18 11 11 7 1 8 1 7 1 1中值滤波法和局部平滑法(邻域平均法或移动平均法)均能有效削弱椒盐噪声,但中值滤波法比邻域平均法更有效,且滤波后图像中的轮廓比较清晰。

四、霍夫曼编码(P124)例:设有一信源A={a1, a2, a3, a4, a5, a6},对应概率P={0.1, 0.4, 0.06, 0.1, 0.04, 0.3}. (1)进行霍夫曼编码(要求大概率的赋码字0,小概率的赋码字1),给出码字;(2)计算平均码长,信源熵和编码效率。

解:(1)编码步骤1)缩减信源符号数量将信源符号按出现概率从大到小排列,然后结合2)对每个信源符号赋值从(消减到)最小的信源开始,逐步回到初始信源由此可得哈夫曼编码结果见下表平均码长2.2504.0.0506.0.041.031.023.014.01∑-==⨯+⨯+⨯+⨯+⨯+⨯==L i i ip B β(其中,i β是灰度值为i 的编码长度,i p 为灰度值为i a 的概率,L 为灰度级数) 信源熵14.2log 21=-=∑-=i L i ip pH编码效率973.02.214.2===B H η五、费诺—仙农编码(P126)费诺—仙农编码与Huffman编码相反,采用从上到下的方法。

香农-范诺编码算法步骤:(1)按照符号出现的概率减少的顺序将待编码的符号排成序列。

(2)将符号分成两组,使这两组符号概率和相等或几乎相等。

(3)将第一组赋值为0,第二组赋值为1。

(4)对每一组,重复步骤2的操作。

例:设一副灰度级为8的图象中,各灰度所对应的概率分别为0.04,0.05,0.06,0.07,0.10,0.10,0.18,0.40,要求对其进行费诺.仙侬编码。

解:根据费诺—仙农编码的方法进行分组和赋值如下图所示所得编码结果如下表六、 算术编码(P127)例:编码来自1个4-符号信源{a 1, a 2, a 3, a 4}的由5个符号组成的符号序列:b 1b 2b 3b 4b 5 = a 1a 2a 3a 3a 41a 2a 3a 4a 信源符号概率初始子区间0.20.20.40.2[0 , 0.2][0.8 , 1.0][0.4 , 0.8][0.2 , 0.4]解:由L C F N l s s *+=(新子区间的起始位置=前子区间的起始位置+当前符号的区间左端*前子区间长度) L C F N r s e *+=(新子区间的结束位置=前子区间的起始位置+当前符号的区间右端*前子区间长度)可得,对于{a 1,a 2,a 3,a 3,a 4},有 a 1 [0,0.2]a1a2 [0.2*0.2,0.2*0.4]=[0.04,0.08]a1a2a3 [0.04+0.04*0.4,0.04+0.04*0.8]=[0.056,0.072] a1a2a3a3 [0.056+0.016*0.4,0.056+0.016*0.8]=[0.0624,0.0688] a1a2a3a3a4[0.0624+0.0064*0.8,0.056+0.0064*1]=[0.06752,0.0688]解码过程 0.068702020340....=-(1)0.068 在区间[0 ,0.2] ,可知第一个源符号为a 1(2)在区间[0.2-0.4]中,第二个为a 2(3)在区间[0.4-0.8]中,第三个为a 3(4)在区间[0.4-0.8]中,第四个为a 3(5)在区间[0.8-1]中,第五个为a 43402000680...=-750404070....=-87504040750....=-七、 区域分割状态法(峰谷法、灰度阈值法)(P155)基本思想是,确定一个合适的阈值T 。

相关文档
最新文档