matlab边缘检测

合集下载

canny边缘检测matlab代码

canny边缘检测matlab代码

canny边缘检测matlab代码Canny边缘检测是一种常用的图像处理算法,它可以有效地检测图像中的边缘,并将其显示为白色线条。

在Matlab中,可以使用以下代码实现Canny边缘检测:1. 读取图像首先,需要读取待处理的图像。

可以使用imread函数来读取图片:```matlabimg = imread('image.jpg');```其中,image.jpg是待处理的图片文件名。

2. 灰度化Canny算法只能处理灰度图像,因此需要将彩色图像转换为灰度图像。

可以使用rgb2gray函数来实现:```matlabgray_img = rgb2gray(img);```3. 高斯滤波在进行边缘检测之前,需要对图像进行高斯滤波来消除噪声。

可以使用fspecial和imfilter函数来实现:```matlabgaussian_filter = fspecial('gaussian', [5 5], 1);blur_img = imfilter(gray_img, gaussian_filter, 'replicate');```其中,[5 5]表示高斯核的大小为5x5,1表示标准差。

4. 计算梯度幅值和方向接下来,需要计算每个像素点的梯度幅值和方向。

可以使用Sobel算子来计算梯度,并利用arctan函数计算方向角度:```matlabsobel_x = [-1 0 1; -2 0 2; -1 0 1];sobel_y = [-1 -2 -1; 0 0 0; 1 2 1];grad_x = imfilter(blur_img, sobel_x, 'replicate');grad_y = imfilter(blur_img, sobel_y, 'replicate');grad_mag = sqrt(grad_x.^2 + grad_y.^2);grad_dir = atan(grad_y ./ grad_x);```5. 非极大值抑制由于Sobel算子计算出的梯度幅值可能会有多个峰值,因此需要进行非极大值抑制来保留边缘。

基于Matlab的图像边缘检测算法的实现及应用汇总

基于Matlab的图像边缘检测算法的实现及应用汇总

目录摘要 (1)引言 (2)第一章绪论 (3)1.1 课程设计选题的背景及意义 (3)1.2 图像边缘检测的发展现状 (4)第二章边缘检测的基本原理 (5)2.1 基于一阶导数的边缘检测 (8)2.2 基于二阶导的边缘检测 (9)第三章边缘检测算子 (10)3.1 Canny算子 (10)3.2 Roberts梯度算子 (11)3.3 Prewitt算子 (12)3.4 Sobel算子 (13)3.5 Log算子 (14)第四章MATLAB简介 (15)4.1 基本功能 (15)4.2 应用领域 (16)第五章编程和调试 (17)5.1 edge函数 (17)5.2 边缘检测的编程实现 (17)第六章总结与体会 (20)参考文献 (21)摘要边缘是图像最基本的特征,包含图像中用于识别的有用信息,边缘检测是数字图像处理中基础而又重要的内容。

该课程设计具体考察了5种经典常用的边缘检测算子,并运用Matlab进行图像处理结果比较。

梯度算子简单有效,LOG 算法和Canny 边缘检测器能产生较细的边缘。

边缘检测的目的是标识数字图像中灰度变化明显的点,而导函数正好能反映图像灰度变化的显著程度,因而许多方法利用导数来检测边缘。

在分析其算法思想和流程的基础上,利用MATLAB对这5种算法进行了仿真实验,分析了各自的性能和算法特点,比较边缘检测效果并给出了各自的适用范围。

关键词:边缘检测;图像处理;MATLAB仿真引言边缘检测在图像处理系统中占有重要的作用,其效果直接影响着后续图像处理效果的好坏。

许多数字图像处理直接或间接地依靠边缘检测算法的性能,并且在模式识别、机器人视觉、图像分割、特征提取、图像压缩等方面都把边缘检测作为最基本的工具。

但实际图像中的边缘往往是各种类型的边缘以及它们模糊化后结果的组合,并且在实际图像中存在着不同程度的噪声,各种类型的图像边缘检测算法不断涌现。

早在1965 年就有人提出边缘检测算子,边缘检测的传统方法包括Kirsch,Prewitt,Sobel,Roberts,Robins,Mar-Hildreth 边缘检测方法以及Laplacian-Gaussian(LOG)算子方法和Canny 最优算子方法等。

Matlab在边缘检测与边界提取中的应用

Matlab在边缘检测与边界提取中的应用

Matlab在边缘检测与边界提取中的应用在计算机视觉领域中,边缘检测与边界提取是非常重要的任务。

边缘是图像中物体不同区域之间的分界线,边界提取则是通过检测图像中的边缘,从而凸显物体的轮廓。

边缘检测与边界提取在许多应用中都发挥着重要作用,如图像分割、目标识别和机器视觉等。

Matlab是一种功能强大且流行的科学计算软件,它提供了许多用于边缘检测和边界提取的工具和函数。

下面将介绍一些常用的Matlab函数和技术,它们在边缘检测与边界提取中的应用。

一、基于梯度的边缘检测梯度是表示图像中变化的指标,边缘通常是图像灰度值变化剧烈的区域。

Matlab中的Sobel、Prewitt和Roberts等函数可以方便地计算图像的梯度,从而实现边缘检测。

例如,使用Sobel算子可以对图像进行边缘检测:```I = imread('image.jpg');gray = rgb2gray(I);sobel_x = edge(gray, 'sobel', 'horizontal');sobel_y = edge(gray, 'sobel', 'vertical');imshowpair(sobel_x, sobel_y, 'montage');```上述代码首先加载并灰度化图像,然后使用Sobel算子分别计算水平和垂直方向上的梯度。

最后,使用imshowpair函数将水平和垂直边缘结果以并排的方式展示出来。

二、基于Canny算法的边缘检测Canny算法是一种广泛应用于边缘检测的算法,它通过多步骤的处理来准确地检测边缘。

在Matlab中,可以使用edge函数以及一些参数来实现Canny算法。

下面是一个使用Canny算法进行边缘检测的示例:```I = imread('image.jpg');gray = rgb2gray(I);canny = edge(gray, 'canny');imshow(canny);```上述代码中,首先加载并灰度化图像,然后使用edge函数采用Canny算法进行边缘检测。

Matlab中的图像分割与边缘检测方法

Matlab中的图像分割与边缘检测方法

Matlab中的图像分割与边缘检测方法引言图像处理是一门研究如何对数字图像进行处理、分析、改进和理解的学科。

图像分割与边缘检测在图像处理中占据着重要的地位。

图像分割是将图像划分为多个具有语义意义的区域或对象的过程,而边缘检测则是找到图像中不连续的区域边界。

Matlab作为一种强大的软件工具,提供了丰富的图像处理函数和工具箱,本文将探讨在Matlab中应用的图像分割与边缘检测方法。

一、图像分割方法1. 基于阈值的分割基于阈值的分割是一种简单但有效的方法。

该方法将图像像素的灰度值与预设的阈值进行比较,根据比较结果将像素分配到不同的区域。

在Matlab中,可以使用imbinarize和graythresh函数来实现基于阈值的分割。

2. 区域增长法区域增长法基于像素之间的相似性来进行分割。

该方法从种子像素开始,通过判断邻域像素与种子像素的相似度来不断扩展区域。

在Matlab中,可以使用imsegf和regiongrowing函数来实现区域增长法。

3. 聚类方法聚类方法将图像像素分为多个类别,每个类别代表一个区域。

该方法通常使用聚类算法,比如k-means算法或者模糊c-均值算法。

在Matlab中,可以使用kmeans和fcm函数来实现聚类方法。

4. 模型驱动法模型驱动法基于数学模型来描述图像中的区域。

该方法通过定义一个能够衡量图像中区域特征的能量函数,并通过优化算法来最小化能量函数,从而得到分割结果。

在Matlab中,可以使用activecontour和chanvese函数来实现模型驱动法。

二、边缘检测方法1. Sobel算子Sobel算子是一种经典的边缘检测算子。

其基本思想是通过计算像素与其周围像素之间的差异来检测边缘。

在Matlab中,可以使用imgradient和imgradientxy函数来实现Sobel算子。

2. Canny算子Canny算子是一种广泛使用的边缘检测算子。

它利用高斯平滑、梯度计算、非极大值抑制和双阈值法来检测边缘。

边缘提取和边缘检测matlab程序代码大全

边缘提取和边缘检测matlab程序代码大全

附录Part1:对cameraman原始图像处理的仿真程序:clcclear allclose allA = imread('cameraman.bmp'); % 读入图像subplot(2,4,1);imshow(A);title('原图');x_mask = [1 0;0 -1]; % 建立X方向的模板y_mask = rot90(x_mask); % 建立Y方向的模板I = im2double(A); % 将图像数据转化为双精度dx = imfilter(I, x_mask); % 计算X方向的梯度分量dy = imfilter(I, y_mask); % 计算Y方向的梯度分量grad = sqrt(dx.*dx + dy.*dy); % 计算梯度grad = mat2gray(grad); % 将梯度矩阵转换为灰度图像level = graythresh(grad); % 计算灰度阈值BW = im2bw(grad,level); % 用阈值分割梯度图像subplot(2,4,2);imshow(BW); % 显示分割后的图像即边缘图像title('Roberts');y_mask = [-1 -2 -1;0 0 0;1 2 1];x_mask = y_mask';I = im2double(A);dx = imfilter(I, x_mask);dy = imfilter(I, y_mask);grad = sqrt(dx.*dx + dy.*dy); % 计算梯度grad = mat2gray(grad);level = graythresh(grad);BW = im2bw(grad,level);subplot(2,4,3);imshow(BW); % 显示分割后的图像即边缘图像title('Sobel');y_mask = [-1 -1 -1;0 0 0;1 1 1];x_mask = y_mask';dx = imfilter(I, x_mask);dy = imfilter(I, y_mask);grad = sqrt(dx.*dx + dy.*dy); % 计算梯度grad = mat2gray(grad);level = graythresh(grad);BW = im2bw(grad,level); % 用阈值分割梯度图像subplot(2,4,4);imshow(BW); % 显示分割后的图像即边缘图像title('Prewitt');mask=[0,-1,0;-1,4,-1;0,-1,0]; % 建立模板dx = imfilter(I, mask); % 计算梯度矩阵grad = mat2gray(dx); % 将梯度矩阵转化为灰度图像BW = im2bw(grad,0.58); % 用阈值分割梯度图像subplot(2,4,5);imshow(BW); % 显示分割后的图像,即梯度图像title('Laplacian');mask=[0,0,-1,0,0;0,-1,-2,-1,0;-1,-2,16,-2,-1;0,-1,-2,-1,0;0,0,-1,0,0]; % 建立模板dx = imfilter(I, mask); % 计算梯度矩阵grad = mat2gray(dx); % 将梯度矩阵转化为灰度图像BW = im2bw(grad,0.58);subplot(2,4,6);imshow(BW); % 显示分割后的图像,即梯度图像title('log');BW1 = edge(I,'canny'); % 调用canny函数subplot(2,4,7);imshow(BW1); % 显示分割后的图像,即梯度图像title('Canny');mask1=[-1 -2 -1;0 0 0;1 2 1]; % 建立方向模板mask2=[-2 -1 0;-1 0 1;0 1 2];mask3=[-1 0 1;-2 0 2;-1 0 1];mask4=[0 1 2;-1 0 1;-2 -1 0];mask5=[1 2 1;0 0 0;-1 -2 -1];mask6=[2 1 0;1 0 -1;0 -1 -2];mask7=[1 0 -1;2 0 -2;1 0 -1];mask8=[0 -1 -2;1 0 -1;2 1 0];d1 = imfilter(I, mask1); % 计算8个领域的灰度变化d2 = imfilter(I, mask2);d3 = imfilter(I, mask3);d4 = imfilter(I, mask4);d5 = imfilter(I, mask5);d6 = imfilter(I, mask6);d7 = imfilter(I, mask7);d8 = imfilter(I, mask8);dd = max(abs(d1),abs(d2)); % 取差值变化最大的元素组成灰度变化矩阵dd = max(dd,abs(d3));dd = max(dd,abs(d4));dd = max(dd,abs(d5));dd = max(dd,abs(d6));dd = max(dd,abs(d7));dd = max(dd,abs(d8));grad = mat2gray(dd); % 将灰度变化矩阵转化为灰度图像BB = grad;FW=median(BB(:))/0.6745;B = BB.*BB;B = sum(B(:));FX= sqrt(B/256^2);FS=sqrt(max(FX^2-FW^2,0));T=sqrt(2)*FW^2/FS; % 计算最佳阈值grad = mat2gray(BB);BW2=im2bw(grad,T); % 用最佳阈值分割梯度图像subplot(2,4,8);imshow(BW2); % 显示分割后的图像,即边缘图像title('sobel改进算子');Part2加入高斯噪声后的cameraman仿真程序:clcclear allclose allA = imread('cameraman.bmp'); % 读入图像V=0.009;X=imnoise(A,'gaussian',0,V);subplot(2,4,1);imshow(X);%添加均值为0、方差0.09的高斯噪声x_mask = [1 0;0 -1]; % 创建X方向的模板y_mask = rot90(x_mask); % 创建Y方向的模板I = im2double(X); % 图像数据双精度转化dx = imfilter(I, x_mask); % X方向的梯度分量的计算dy = imfilter(I, y_mask); % Y方向的梯度分量的计算grad = sqrt(dx.*dx + dy.*dy); % 梯度计算grad = mat2gray(grad); % 梯度矩阵转换成灰度图像level = graythresh(grad); % 计算灰度阈值BW = im2bw(grad,level); % 使用阈值分割梯度图像subplot(2,4,2);imshow(BW); % 显示分割后的图像即边缘图像title('Roberts');y_mask = [-1 -2 -1;0 0 0;1 2 1];x_mask = y_mask';dx = imfilter(I, x_mask);dy = imfilter(I, y_mask);grad = sqrt(dx.*dx + dy.*dy);grad = mat2gray(grad); % 梯度矩阵转为灰度图像level = graythresh(grad); % 计算灰度阈值BW = im2bw(grad,level); % 用阈值分割梯度图像subplot(2,4,3);imshow(BW); % 显示分割后的图像即边缘图像title('Sobel');y_mask = [-1 -1 -1;0 0 0;1 1 1];x_mask = y_mask';dx = imfilter(I, x_mask);dy = imfilter(I, y_mask);grad = sqrt(dx.*dx + dy.*dy);grad = mat2gray(grad);level = graythresh(grad);BW = im2bw(grad,level);subplot(2,4,4);imshow(BW); % 显示分割后的图像即边缘图像title('Prewitt');mask=[0,-1,0;-1,4,-1;0,-1,0]; % 建立模板dx = imfilter(I, mask); % 计算梯度矩阵grad = mat2gray(dx); % 将梯度矩阵转化为灰度图像BW = im2bw(grad,0.58); % 用阈值分割梯度图像subplot(2,4,5);imshow(BW); % 显示分割后的图像,即梯度图像title('Laplacian');mask=[0,0,-1,0,0;0,-1,-2,-1,0;-1,-2,16,-2,-1;0,-1,-2,-1,0;0,0,-1,0,0]; % 建立模板dx = imfilter(I, mask); % 计算梯度矩阵grad = mat2gray(dx); % 将梯度矩阵转化为灰度图像BW = im2bw(grad,0.58); % 用阈值分割梯度图像subplot(2,4,6);imshow(BW); % 显示分割后的图像,即梯度图像title('log');BW1 = edge(I,'canny'); % 调用canny函数subplot(2,4,7);imshow(BW1); % 显示分割后的图像,即梯度图像title('Canny');mask1=[-1 -2 -1;0 0 0;1 2 1]; % 建立方向模板mask2=[-2 -1 0;-1 0 1;0 1 2];mask3=[-1 0 1;-2 0 2;-1 0 1];mask4=[0 1 2;-1 0 1;-2 -1 0];mask5=[1 2 1;0 0 0;-1 -2 -1];mask6=[2 1 0;1 0 -1;0 -1 -2];mask7=[1 0 -1;2 0 -2;1 0 -1];mask8=[0 -1 -2;1 0 -1;2 1 0];d1 = imfilter(I, mask1); % 计算8个领域的灰度变化d2 = imfilter(I, mask2);d3 = imfilter(I, mask3);d4 = imfilter(I, mask4);d5 = imfilter(I, mask5);d6 = imfilter(I, mask6);d7 = imfilter(I, mask7);d8 = imfilter(I, mask8);dd = max(abs(d1),abs(d2)); % 取差值变化最大的元素组成灰度变化矩阵dd = max(dd,abs(d3));dd = max(dd,abs(d4));dd = max(dd,abs(d5));dd = max(dd,abs(d6));dd = max(dd,abs(d7));dd = max(dd,abs(d8));grad = mat2gray(dd); % 将灰度变化矩阵转化为灰度图像BB = grad;FW=median(BB(:))/0.6745;B = BB.*BB;B = sum(B(:));FX= sqrt(B/256^2);FS=sqrt(max(FX^2-FW^2,0));T=sqrt(2)*FW^2/FS; % 计算最佳阈值grad = mat2gray(BB); % 将梯度矩阵转化为灰度图像BW2=im2bw(grad,T); % 用最佳阈值分割梯度图像subplot(2,4,8);imshow(BW2); % 显示分割后的图像,即边缘图像title('sobel改进算子');加入椒盐噪声的边缘检测程序:function jingdianI=imread('lenna.bmp');I1=imnoise(I,'salt & pepper');%添加椒盐噪声,默认值为0.02 figure,imshow(I1);%添加均值为0、方差0.002的高斯噪声title('添加椒盐噪声后原图')B1=edge(I1,'roberts');B2=edge(I1,'sobel');B3=edge(I1,'prewitt');B4=edge(I1,'canny');B5=edge(I1,'log');subplot(2,3,1);imshow(B1);title('roberts算子检测');subplot(2,3,2);imshow(B2);title('sobel算子检测');subplot(2,3,3);imshow(B3);title('prewitt算子检测');subplot(2,3,4);imshow(B4);title('canny算子检测');subplot(2,3,5)imshow(B5);title('log算子检测');B1=edge(I1,'roberts');%调用roberts算子检测图像B2=edge(I1,'sobel');%调用soble算子进行边缘检测B3=edge(I1,'prewitt');%调用prewitt算子进行边缘检测B4=edge(I1,'canny');%调用canny算子对图像进行边缘检测B5=edge(I1,'log');%调用log算子对图像进行边缘检测subplot(2,3,1);%设置图像布局imshow(B1);title('roberts算子检测');%现实图像并命名为roberts算子检测subplot(2,3,2);imshow(B2);title('sobel算子检测');subplot(2,3,3);imshow(B3);title('prewitt算子检测');subplot(2,3,4);imshow(B4);title('canny算子检测');subplot(2,3,5)imshow(B5);title('log算子检测');mask1=[-1 -2 -1;0 0 0;1 2 1]; % 建立方向模板mask2=[-2 -1 0;-1 0 1;0 1 2];mask3=[-1 0 1;-2 0 2;-1 0 1];mask4=[0 1 2;-1 0 1;-2 -1 0];mask5=[1 2 1;0 0 0;-1 -2 -1];mask6=[2 1 0;1 0 -1;0 -1 -2];mask7=[1 0 -1;2 0 -2;1 0 -1];mask8=[0 -1 -2;1 0 -1;2 1 0];I = im2double(I1); % 将数据图像转化为双精度d1 = imfilter(I, mask1); % 计算8个领域的灰度变化d2 = imfilter(I, mask2);d3 = imfilter(I, mask3);d4 = imfilter(I, mask4);d5 = imfilter(I, mask5);d6 = imfilter(I, mask6);d7 = imfilter(I, mask7);d8 = imfilter(I, mask8);dd = max(abs(d1),abs(d2)); % 取差值变化最大的元素组成灰度变化矩阵dd = max(dd,abs(d3));dd = max(dd,abs(d4));dd = max(dd,abs(d5));dd = max(dd,abs(d6));dd = max(dd,abs(d7));dd = max(dd,abs(d8));grad = mat2gray(dd); % 将灰度变化矩阵转化为灰度图像level = graythresh(grad); % 计算灰度阈值BW = im2bw(grad,level); % 用阈值分割梯度图像BB = grad;FW=median(BB(:))/0.6745;B = BB.*BB;B = sum(B(:));FX= sqrt(B/256^2);FS=sqrt(max(FX^2-FW^2,0));T=sqrt(2)*FW^2/FS; % 计算最佳阈值grad = mat2gray(BB); % 将梯度矩阵转化为灰度图像BW2=im2bw(grad,T); % 用最佳阈值分割梯度图像subplot(2,3,6);imshow(BW2); % 显示分割后的图像,即边缘图像title('加入椒盐噪声的sobel改进算子');。

Matlab多种图像边缘检测方法

Matlab多种图像边缘检测方法

Matlab多种图像边缘检测方法1、用Prewitt算子检测图像的边缘I = imread('bacteria.BMP');BW1 = edge(I,'prewitt',0.04); % 0.04为梯度阈值figure(1);imshow(I);figure(2);imshow(BW1);2、用不同σ值的LoG算子检测图像的边缘I = imread('bacteria.BMP');BW1 = edge(I,'log',0.003); % σ=2imshow(BW1);title('σ=2')BW1 = edge(I,'log',0.003,3); % σ=3figure, imshow(BW1);title('σ=3')3、用Canny算子检测图像的边缘I = imread('bacteria.BMP');imshow(I);BW1 = edge(I,'canny',0.2);figure,imshow(BW1);4、图像的阈值分割I=imread('blood1.tif');imhist(I); % 观察灰度直方图,灰度140处有谷,确定阈值T=140I1=im2bw(I,140/255); % im2bw函数需要将灰度值转换到[0,1]范围内figure,imshow(I1);5、用水线阈值法分割图像afm = imread('afmsurf.tif');figure, imshow(afm);se = strel('disk', 15);Itop = imtophat(afm, se); % 高帽变换Ibot = imbothat(afm, se); % 低帽变换figure, imshow(Itop, []); % 高帽变换,体现原始图像的灰度峰值figure, imshow(Ibot, []); % 低帽变换,体现原始图像的灰度谷值Ienhance = imsubtract(imadd(Itop, afm), Ibot);% 高帽图像与低帽图像相减,增强图像figure, imshow(Ienhance);Iec = imcomplement(Ienhance); % 进一步增强图像Iemin = imextendedmin(Iec, 20); figure,imshow(Iemin) % 搜索Iec中的谷值Iimpose = imimposemin(Iec, Iemin);wat = watershed(Iimpose); % 分水岭分割rgb = label2rgb(wat); figure, imshow(rgb); % 用不同的颜色表示分割出的不同区域6、对矩阵进行四叉树分解I = [ 1 1 1 1 2 3 6 61 12 1 4 5 6 81 1 1 1 10 15 7 71 1 1 1 20 25 7 720 22 20 22 1 2 3 420 22 22 20 5 6 7 820 22 20 20 9 10 11 1222 22 20 20 13 14 15 16];S = qtdecomp(I,5);full(S)7、将图像分为文字和非文字的两个类别I=imread('4-11.jpg');I1=I(:,:,1);I2=I(:,:,2);I3=I(:,:,3);[y,x,z]=size(I);d1=zeros(y,x);d2=d1;myI=double(I);I0=zeros(y,x);for i=1:xfor j=1:y%欧式聚类d1(j,i)=sqrt((myI(j,i,1)-180)^2+(myI(j,i,2)-180)^2+(myI(j,i,3)-180)^2);d2(j,i)=sqrt((myI(j,i,1)-200)^2+(myI(j,i,2)-200)^2+(myI(j,i,3)-200)^2);if (d1(j,i)>=d2(j,i))I0(j,i)=1;endendendfigure(1);imshow(I);% 显示RGB空间的灰度直方图,确定两个聚类中心(180,180,180)和(200,200,200) figure(2);subplot(1,3,1);imhist(I1);subplot(1,3,2);imhist(I2);subplot(1,3,3);imhist(I3);figure(4);imshow(I0);8、形态学梯度检测二值图像的边缘I=imread('wrod213.bmp');imshow(I);I=~I; % 腐蚀运算对灰度值为1的进行figure, imshow(I);SE=strel('square',3); % 定义3×3腐蚀结构元素J=imerode(~I,SE);BW=(~I)-J; % 检测边缘figure,imshow(BW);9、形态学实例——从PCB图像中删除所有电流线,仅保留芯片对象I=imread('circbw.tif');imshow(I);SE=strel('rectangle',[40 30]); % 结构定义J=imopen(I,SE); % 开启运算figure,imshow(。

基于matlab的图像边缘检测算法研究和仿真设计

基于matlab的图像边缘检测算法研究和仿真设计

基于matlab的图像边缘检测算法研究和仿真目录第1章绪论 11.1 序言 11.2 数字图像边缘检测算法的意义 1第2章传统边缘检测方法及理论基础 2 2.1 数字图像边缘检测的现状与发展 22.2 MATLAB和图像处理工具箱的背景知识 32.3 数字图像边缘检测关于边缘的定义 42.4 基于一阶微分的边缘检测算子 42.5 基于二阶微分的边缘检测算子 7第3章编程和调试 103.1 edge函数 103.2 边缘检测的编程实现 11第4章总结 13第5章图像边缘检测应用领域 13附录参考文献 15第1章绪论§1.1 序言理解图像和识别图像中的目标是计算机视觉研究的中心任务,物体形状、物体边界、位置遮挡、阴影轮廓及表面纹理等重要视觉信息在图像中均有边缘产生。

图像边缘是分析理解图像的基础,它是图像中最基本的特征。

在Marr的计算机视觉系统中,图像边缘提取占据着非常重要位置,它位于系统的最底层,为其它模块所依赖。

图像边缘提取作为计算机视觉领域最经典的研究课题,长期受到人们的重视。

图像边缘主要划分为阶跃状和屋脊状两种类型。

阶跃状边缘两侧的灰度值变化明显,屋脊状边缘则位于灰度增加与减少的交界处。

传统的图像边缘检测方法大多是从图像的高频分量中提取边缘信息,微分运算是边缘检测与提取的主要手段。

由于传统的边缘检测方法对噪声敏感,所以实际运用效果有一定的局限性。

近年来,越来越多的新技术被引入到边缘检测方法中,如数学形态学、小波变换、神经网络和分形理论等。

Canny于1986年提出基于最优化算法的边缘检测算子,得到了广泛的应用,并成了与其它实验结果作比较的标准。

其原因在于他最先建立了优化边缘检测算子的理论基础,提出了迄今为止定义最为严格的边缘检测的三个标准。

另外其相对简单的算法使得整个过程可以在较短的时间实现。

实验结果也表明,Canny算子在处理受加性高斯白噪声污染的图像方面获得了良好的效果[1]。

Matlab图像的锐化处理及边缘检测

Matlab图像的锐化处理及边缘检测

Matlab图像锐化处理及边缘检测本章要点:☑图像边缘锐化的基本方法☑微分运算☑梯度锐化☑边缘检测6.1 图像边缘锐化的基本方法物体的边缘是以图像局部特性不连续性的形式出现。

本质上边缘常意味着一个区域的终结和另一个区域的开始。

图像边缘信息在图像分析和人的视觉中都是十分重要的,是图像识别中提取图像特征的一个重要特性。

图像的边缘有方向和幅度两个特性。

通常,延边缘走向的像素变化平缓,而垂直于边缘走向的像素变化剧烈。

边缘的描述包含以下几个方面:(1)边缘点——它两边像素的灰度值有显著的不同。

边缘点也存在于这样一对邻点之间即一个在较亮的区域内部,另一个在外部。

(2)边缘法线方向——在某点灰度变化最剧烈的方向,与边缘方向垂直。

(3)边缘方向——与边缘法线方向垂直,是目标边界的切线方向。

(4)边缘位置——边缘所在的坐标位置。

(5)边缘强度——沿边缘法线方向图像局部的变化强度的量度。

粗略地区分边缘种类可以有两种,其一是阶跃状边缘,它两边像素的灰度值有显著的不同,其二是屋顶状边缘,它位于灰度值从增加到减少的变化转折点。

这些变化分别对应景物中不同的物理状态。

边缘是图像上灰度变化比较剧烈的地方,如果一个像素落在图像中某一个物体的边界上,那么它的邻域将成为一个灰度级的变化带。

对这种变化最有用的两个特征是灰度的变化率和方向,在灰度变化突变处进行微分,将产生高值。

经典的边缘提取方法是考虑图像的每个像素在某个领域内的变化,利用边缘邻近一阶或二阶方向导数变化规律,来检测边缘。

图像灰度值的显著变化可以用一阶差分替代一阶微分的梯度来表示,它们分别以梯度向量的幅度和方向来表示。

因此图像中陡峭边缘的梯度值将是很大的;那些灰度变化平缓的地方,梯度值是比较小的;而那些灰度值相同的地方,梯度值将为零。

图像经过梯度运算能灵敏地检测出边界线,这种微分边缘检测算子运算简单易行,但有方向性。

利用计算机进行图像锐化处理有两个目的,一是与柔化处理相反,增强图像边缘,使模糊的图像变得更加清晰起来,颜色变得鲜明突出,图像的质量有所改善,产生更适合人观察和识别的图像,本章的梯度锐化就是介绍这方面的内容。

matlabcanny边缘检测代码接霍夫变换-概述说明以及解释

matlabcanny边缘检测代码接霍夫变换-概述说明以及解释

matlabcanny边缘检测代码接霍夫变换-概述说明以及解释1.引言1.1 概述边缘检测是图像处理中的一个重要任务,它广泛应用于计算机视觉、图像分析和模式识别等领域。

边缘检测的目标是找到图像中不同区域之间的边界,并将其表示为像素强度的变化。

Canny边缘检测算法是一种经典且常用的边缘检测方法。

它通过一系列的图像处理步骤来提取图像中的边缘信息。

Canny算法的特点是能够检测出细且准确的边缘,并且对于图像中的噪声具有较好的抵抗能力。

Matlab是一种功能强大的数学软件,广泛应用于科学计算、数据可视化和图像处理等领域。

Matlab提供了丰富的图像处理函数和工具箱,其中包括了Canny边缘检测的实现代码。

本文的主要目的是介绍Matlab中Canny边缘检测的代码实现,并结合Hough变换算法进行边缘检测的应用。

通过使用Matlab中的相关函数和工具,我们可以有效地实现Canny边缘检测,并结合Hough变换来进一步处理和分析图像中的边缘特征。

本文将首先回顾Canny边缘检测算法的原理和步骤,然后介绍Matlab中的Canny边缘检测代码的使用方法。

接着,我们将介绍Hough 变换算法的原理和应用,并展示如何将Canny边缘检测与Hough变换相结合来实现更精确的边缘检测。

最后,我们将对Canny边缘检测和Hough变换的优缺点进行讨论,总结这两种方法在边缘检测中的应用。

同时,我们也将展望未来的研究方向,探讨如何进一步改进和优化边缘检测算法,以满足不断发展的图像处理需求。

通过阅读本文,读者将能够理解Canny边缘检测算法和Hough变换算法的原理,掌握Matlab中相关代码的使用方法,并了解边缘检测在实际应用中的优势和局限性。

希望本文能为读者在图像处理领域的学习和研究提供一定的帮助和启示。

文章结构是指文章的整体框架和组织形式。

一个良好的文章结构可以使读者更好地理解和领会文章的内容,同时也有助于文章的逻辑性和条理性。

matlab sobel函数 -回复

matlab sobel函数 -回复

matlab sobel函数-回复使用MATLAB中的Sobel函数进行边缘检测在图像处理中,边缘检测是一种常用的技术,用于检测图像中物体的边界。

边缘检测是图像处理中的一个关键步骤,通常在图像分析、计算机视觉和机器学习任务中被广泛应用。

MATLAB是一种功能强大的数值计算和数据可视化软件,它提供了许多用于图像处理的函数,其中包括用于边缘检测的Sobel函数。

Sobel算子是一种常用的边缘检测算法,可以通过计算图像中的强度梯度来检测边缘。

在这篇文章中,我们将一步一步地介绍如何使用MATLAB中的Sobel函数进行边缘检测。

第一步:读取图像首先,我们需要载入要进行边缘检测的图像。

在MATLAB中,可以使用imread函数读取图片。

例如,我们可以使用以下代码读取一个名为“image.jpg”的图像文件:matlabimage = imread('image.jpg');第二步:将图像转换为灰度图像Sobel算子只能应用于灰度图像,因此在应用Sobel算子之前,我们需要将图像转换为灰度图像。

幸运的是,MATLAB提供了灵活的函数来完成这个任务。

我们可以使用rgb2gray函数将彩色图像转换为灰度图像:matlabgrayImage = rgb2gray(image);第三步:应用Sobel算子现在,我们已经将图像转换为灰度图像,接下来我们可以使用MATLAB 中的Sobel函数对图像应用Sobel算子。

Sobel函数可以通过计算图像中每个像素的梯度来检测边缘。

Sobel函数的基本语法如下:matlabsobelImage = edge(grayImage, 'Sobel');在这个例子中,grayImage是我们要进行边缘检测的灰度图像,'Sobel'表示我们要使用Sobel算子进行边缘检测。

第四步:显示结果完成边缘检测后,我们可以使用MATLAB中的imshow函数显示结果图像。

matlab边缘检测代码

matlab边缘检测代码

MATLAB边缘检测代码边缘检测是图像处理中常用的技术,用于识别图像中物体的轮廓。

在MATLAB中,我们可以使用不同的方法进行边缘检测,例如Sobel算子、Canny算子等。

本文将介绍MATLAB中常用的边缘检测方法,并给出相应的代码示例。

1. Sobel算子Sobel算子是一种基于梯度的边缘检测算法,通过计算图像灰度值的一阶导数来识别边缘。

在MATLAB中,我们可以使用edge函数来实现Sobel算子。

img = imread('image.jpg'); % 读取图像gray_img = rgb2gray(img); % 将彩色图像转换为灰度图像edge_img = edge(gray_img, 'sobel'); % 使用Sobel算子进行边缘检测imshow(edge_img); % 显示结果上述代码首先读取一张彩色图像,并将其转换为灰度图像。

然后使用edge函数对灰度图像进行Sobel边缘检测,并将结果显示出来。

2. Canny算子Canny算子是一种基于多阶段处理的边缘检测算法,它能够有效地抑制噪声并提取出清晰、准确的边缘。

在MATLAB中,我们同样可以使用edge函数来实现Canny算子。

img = imread('image.jpg'); % 读取图像gray_img = rgb2gray(img); % 将彩色图像转换为灰度图像edge_img = edge(gray_img, 'canny'); % 使用Canny算子进行边缘检测imshow(edge_img); % 显示结果上述代码与Sobel算子的示例代码类似,只是将edge函数的第二个参数设置为'canny'来使用Canny算子进行边缘检测。

3. Laplacian算子Laplacian算子是一种基于二阶导数的边缘检测算法,它能够检测出图像中的灰度变化区域。

matlabcanny边缘检测代码接霍夫变换

matlabcanny边缘检测代码接霍夫变换

matlabcanny边缘检测代码接霍夫变换全文共四篇示例,供读者参考第一篇示例:Matlab是一个强大的数学软件工具,其图像处理工具箱可以帮助我们进行各种图像处理操作,比如边缘检测和霍夫变换。

本文将分享如何使用Matlab进行Canny边缘检测,并结合霍夫变换进行线检测。

Canny边缘检测是一种经典的边缘检测算法,它的优点是能够检测到边缘的细节,并且对噪声具有一定的鲁棒性。

在Matlab中,我们可以通过一行简单的代码来实现Canny边缘检测:```edgeImage = edge(rgb2gray(image), 'canny');```以上代码中,我们首先将原始图像转换为灰度图像,然后调用Matlab的'edge'函数,并指定边缘检测算法为Canny,最后我们将得到的边缘图像存储在edgeImage中。

接下来,我们可以将边缘图像显示出来,以便进行进一步的处理和分析。

```imshow(edgeImage);通过上述代码,我们可以看到Canny边缘检测算法的效果,边缘比较清晰,同时也保留了边缘的细节信息。

接下来,我们将介绍如何使用霍夫变换来进行线检测。

霍夫变换是一种经典的图像处理算法,其主要应用是检测直线和圆等几何形状。

在Matlab中,我们可以通过一行代码来实现霍夫变换的线检测:```[H,theta,rho] = hough(edgeImage);peaks = houghpeaks(H, 10);lines = houghlines(edgeImage, theta, rho, peaks);imshow(image);hold on;for k = 1 : length(lines)xy = [lines(k).point1; lines(k).point2];plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');endhold off;以上代码中,我们首先调用Matlab的'hough'函数来计算霍夫变换的极坐标空间。

数字图像处理及MATLAB实现边缘检测

数字图像处理及MATLAB实现边缘检测

实验报告
实验名称边缘检测
课程名称数字图像处理及MATLAB实现
专业:班级:
学生姓名:学号:
同组人:指导教师:
实验日期: 成绩:
实验结果
(附图)
结果分析分析LOG算子的优缺点
算子模板的基本要求是对应中心像素的系数是正的,而对
应中心像素邻近的
系数应是负的,且它们的和应为零。

2.实验2:Canny算子检测边缘实验
实验结果
(附图)
结果分析分析Canny算子的优缺点和适用场合
Canny算子检测出的边缘完整、连续且细锐。

从实验结果中
可以看出,这种方法对医用CT图像的边缘检测非常适用,对
于利用计算机进行医学图像处理有着重要的现实意义。

subplot(2,3,5);
imshow(I4);
title('prewittËã×Ó·Ö¸î½á¹û');
axis([0,256,0,256]);
grid on;
axis on;
实验结果
(附图)
Soleb算子具有平滑效果,由于微分增强了噪音,这一点是特别引人注意的特性。

经分析,由于
Robert
算子通常会在图像边缘附近的区域内产生较宽的响
应,故采用上述算子检测的边缘图像常需做细化处理,边缘定位的精度不是很高
Prewitt
算子利用像素点上下、左右邻点灰度差,在边缘处达到
极值检测边缘。

对噪声具有平滑作用,定位精度不够高。

matlab edge函数用法

matlab edge函数用法

matlab edge函数用法
```matlab
BW = edge(I, method)
```
其中,I 是输入图像,method 是边缘检测方法的名称。

以下是一些常用的边缘检测方法以及它们在 edge 函数中的使用方式:
- Roberts 方法:这是一种基于差分的边缘检测算法,通过计算图像中相邻像素之间的差异来检测边缘。

在 edge 函数中,可以使用字符串'Roberts'来指定使用 Roberts 方法。

- Sobel 和 Prewitt 方法:可以检测垂直方向和/或水平方向上的边缘。

在 edge 函数中,可以使用字符串'Sobel'或'Prewitt'来指定使用这两种方法。

在使用 edge 函数时,需要根据具体的需求和应用场景选择合适的边缘检测方法,并调整相关参数以获得最佳的效果。

如果你需要进一步了解边缘检测的原理和应用,请查阅相关文献和资料。

robert算子边缘检测matlab代码

robert算子边缘检测matlab代码

robert算子边缘检测matlab代码罗伯特(Roberts)算子是一种边缘检测算子,用于检测图像中的边缘。

以下是一个简单的MATLAB代码示例,用于应用罗伯特算子进行边缘检测:```matlab%读取图像originalImage=imread('lena.jpg');%请替换成你的图像文件路径%将图像转换为灰度图grayImage=rgb2gray(originalImage);%罗伯特算子边缘检测robertsX=[10;0-1];robertsY=[01;-10];%使用卷积进行边缘检测edgeX=conv2(double(grayImage),robertsX,'same');edgeY=conv2(double(grayImage),robertsY,'same');%计算边缘强度edgeMagnitude=sqrt(edgeX.^2+edgeY.^2);%显示结果figure;subplot(2,2,1),imshow(originalImage),title('原始图像');subplot(2,2,2),imshow(grayImage),title('灰度图');subplot(2,2,3),imshow(edgeMagnitude,[]),title('罗伯特算子边缘检测结果');subplot(2,2,4),imshowpair(edgeX,edgeY,'montage'),title('X方向和Y方向边缘');%设置图像标题suptitle('罗伯特算子边缘检测');```请确保将`'lena.jpg'`替换为你实际使用的图像文件路径。

这个代码使用了罗伯特算子的卷积核进行水平(X方向)和垂直(Y方向)方向的边缘检测,然后计算了边缘强度,并显示了原始图像、灰度图和边缘检测结果。

matlab练习程序(Canny边缘检测)

matlab练习程序(Canny边缘检测)

matlab练习程序(Canny边缘检测) 我可没直接调⽤系统函数,要是那样就太⽔了。

其实我的matlab代码很容易就能翻译成c/c++的。

canny边缘检测⼀共四个部分: 1.对原图像⾼斯平滑 2.对⾼斯平滑后的图像进⾏sobel边缘检测。

这⾥需要求横的和竖的还有联合的,所以⼀共三个需要sobel边缘检测图像。

3.对联合的sobel检测图像进⾏⾮极⼤抑制 4.连接边缘点并进⾏滞后阈值处理。

下⾯是代码:main.mclear all;close all;clc;img=imread('lena.jpg');imshow(img);[m n]=size(img);img=double(img);%%canny边缘检测的前两步相对不复杂,所以我就直接调⽤系统函数了%%⾼斯滤波w=fspecial('gaussian',[5 5]);img=imfilter(img,w,'replicate');figure;imshow(uint8(img))%%sobel边缘检测w=fspecial('sobel');img_w=imfilter(img,w,'replicate'); %求横边缘w=w';img_h=imfilter(img,w,'replicate'); %求竖边缘img=sqrt(img_w.^2+img_h.^2); %注意这⾥不是简单的求平均,⽽是平⽅和在开⽅。

我曾经好长⼀段时间都搞错了figure;imshow(uint8(img))%%下⾯是⾮极⼤抑制new_edge=zeros(m,n);for i=2:m-1for j=2:n-1Mx=img_w(i,j);My=img_h(i,j);if My~=0o=atan(Mx/My); %边缘的法线弧度elseif My==0 && Mx>0o=pi/2;elseo=-pi/2;end%Mx处⽤My和img进⾏插值adds=get_coords(o); %边缘像素法线⼀侧求得的两点坐标,插值需要M1=My*img(i+adds(2),j+adds(1))+(Mx-My)*img(i+adds(4),j+adds(3)); %插值后得到的像素,⽤此像素和当前像素⽐较adds=get_coords(o+pi); %边缘法线另⼀侧求得的两点坐标,插值需要M2=My*img(i+adds(2),j+adds(1))+(Mx-My)*img(i+adds(4),j+adds(3)); %另⼀侧插值得到的像素,同样和当前像素⽐较isbigger=(Mx*img(i,j)>M1)*(Mx*img(i,j)>=M2)+(Mx*img(i,j)<M1)*(Mx*img(i,j)<=M2); %如果当前点⽐两边点都⼤置1if isbiggernew_edge(i,j)=img(i,j);endendendfigure;imshow(uint8(new_edge))%%下⾯是滞后阈值处理up=120; %上阈值low=100; %下阈值set(0,'RecursionLimit',10000); %设置最⼤递归深度for i=1:mfor j=1:nif new_edge(i,j)>up &&new_edge(i,j)~=255 %判断上阈值new_edge(i,j)=255;new_edge=connect(new_edge,i,j,low);endendendfigure;imshow(new_edge==255)get_coords.mfunction re=get_coords(angle) %angle是边缘法线⾓度,返回法线前后两点 sigma=0.000000001;x1=ceil(cos(angle+pi/8)*sqrt(2)-0.5-sigma);y1=ceil(-sin(angle-pi/8)*sqrt(2)-0.5-sigma);x2=ceil(cos(angle-pi/8)*sqrt(2)-0.5-sigma);y2=ceil(-sin(angle-pi/8)*sqrt(2)-0.5-sigma);re=[x1 y1 x2 y2];endconnect.mfunction nedge=connect(nedge,y,x,low) %种⼦定位后的连通分析neighbour=[-1 -1;-1 0;-1 1;0 -1;0 1;1 -1;1 0;1 1]; %⼋连通搜寻[m n]=size(nedge);for k=1:8yy=y+neighbour(k,1);xx=x+neighbour(k,2);if yy>=1 &&yy<=m &&xx>=1 && xx<=nif nedge(yy,xx)>=low && nedge(yy,xx)~=255 %判断下阈值nedge(yy,xx)=255;nedge=connect(nedge,yy,xx,low);endendendend每步运⾏效果:原图⾼斯模糊后sobel边缘检测后⾮极⼤抑制后上阈值120,下阈值100检测结果。

matlab-图像处理-边缘检测算法五种

matlab-图像处理-边缘检测算法五种

matlab-图像处理-边缘检测算法五种五种实现matlab边缘检测算法:⽅法⼀:matlab⾃带的edge函数:将图⽚保存为lena.jpgI=imread('lena.jpg');%提取图像img=rgb2gray(I);[m,n]=size(img);BW1=edge(img,'sobel'); %⽤Sobel算⼦进⾏边缘检测BW2=edge(img,'roberts');%⽤Roberts算⼦进⾏边缘检测BW3=edge(img,'prewitt'); %⽤Prewitt算⼦进⾏边缘检测BW4=edge(img,'log'); %⽤Log算⼦进⾏边缘检测BW5=edge(img,'canny'); %⽤Canny算⼦进⾏边缘检测h=fspecial('gaussian',5);%?⾼斯滤波BW6=edge(img,'canny');%⾼斯滤波后使⽤Canny算⼦进⾏边缘检测subplot(2,3,1), imshow(BW1);title('sobel edge check');subplot(2,3,2), imshow(BW2);title('roberts edge check');subplot(2,3,3), imshow(BW3);title('prewitt edge check');subplot(2,3,4), imshow(BW4);title('log edge check');subplot(2,3,5), imshow(BW5);title('canny edge check');subplot(2,3,6), imshow(BW6);title('gasussian&canny edge check'); 效果如下图所⽰:⽅法⼆:Laplacian算法clear;sourcePic=imread('lena.jpg');%图像读⼊grayPic=mat2gray(sourcePic);%实现图像的矩阵归⼀化操作[m,n]=size(grayPic);newGrayPic=grayPic;LaplacianNum=0;%经Laplacian操作得到的每个像素的值LaplacianThreshold=0.2;%设定阈值for j=2:m-1 %进⾏边界提取for k=2:n-1LaplacianNum=abs(4*grayPic(j,k)-grayPic(j-1,k)-grayPic(j+1,k)-grayPic(j,k+1)-grayPic(j,k-1));if(LaplacianNum > LaplacianThreshold)newGrayPic(j,k)=255;elsenewGrayPic(j,k)=0;endendendfigure,imshow(newGrayPic);title('Laplacian算⼦的处理结果') 效果图如下:⽅法三:Prewitt算法%Prewitt 算⼦的实现:clear;sourcePic=imread('lena.jpg');grayPic=mat2gray(sourcePic);[m,n]=size(grayPic);newGrayPic=grayPic;PrewittNum=0;PrewittThreshold=0.5;%设定阈值for j=2:m-1 %进⾏边界提取for k=2:n-1PrewittNum=abs(grayPic(j-1,k+1)-grayPic(j+1,k+1)+grayPic(j-1,k)-grayPic(j+1,k)+grayPic(j-1,k-1)-grayPic(j+1,k-1))+abs(grayPic(j-1,k+1)+grayPic(j,k+1)+grayPic(j+1,k+1)-grayPic(j-1,k-1)-grayPic(j,k-1)-grayPic(j+1,k-1)); if(PrewittNum > PrewittThreshold)newGrayPic(j,k)=255;elsenewGrayPic(j,k)=0;endendendfigure,imshow(newGrayPic);title('Prewitt算⼦的处理结果') 效果图如下:⽅法四:Sobel算法%Sobel 算⼦的实现:clear;sourcePic=imread('lena.jpg');grayPic=mat2gray(sourcePic);[m,n]=size(grayPic);newGrayPic=grayPic;sobelNum=0;sobelThreshold=0.7;for j=2:m-1for k=2:n-1sobelNum=abs(grayPic(j-1,k+1)+2*grayPic(j,k+1)+grayPic(j+1,k+1)-grayPic(j-1,k-1)-2*grayPic(j,k-1)-grayPic(j+1,k-1))+abs(grayPic(j-1,k-1)+2*grayPic(j-1,k)+grayPic(j-1,k+1)-grayPic(j+1,k-1)-2*grayPic(j+1,k)-grayPic(j+1,k+1)); if(sobelNum > sobelThreshold)newGrayPic(j,k)=255;elsenewGrayPic(j,k)=0;endendendfigure,imshow(newGrayPic);title('Sobel算⼦的处理结果') 效果如下:⽅法五:Roberts 算⼦的实现%Roberts 算⼦的实现:clear all;clc;sourcePic=imread('lena.jpg');grayPic=mat2gray(sourcePic);[m,n]=size(grayPic);newGrayPic=grayPic;robertsNum=0;robertThreshold=0.2;for j=1:m-1for k=1:n-1robertsNum = abs(grayPic(j,k)-grayPic(j+1,k+1)) + abs(grayPic(j+1,k)-grayPic(j,k+1)); if(robertsNum > robertThreshold)newGrayPic(j,k)=255;elsenewGrayPic(j,k)=0;endendendfigure,imshow(newGrayPic);title('roberts算⼦的处理结果') 效果图:。

基于matlab的图像边缘检测原理及应用

基于matlab的图像边缘检测原理及应用

目录一.前言----------------------------------------- 二.边缘检测的与提取-----------------------1.边缘检测的定义---------------------------2.图像边缘检测算法的研究内容---------3.边缘检测算子------------------------------3.1.Sobel算子-----------------------------3.2.Canny算子----------------------------4.基于Matlab的实验结果与分析--------- 三.图像边缘检测的应用---------------------一.前言在实际图像边缘检测问题中,图像的边缘作为图像的一种基本特征,经常被应用到较高层次的图像应用中去。

它在图像识别,图像分割,图像增强以及图像压缩等的领域中有较为广泛的应用,也是它们的基础。

图像边缘是图像最基本的特征之一,往往携带着一幅图像的大部分信息。

而边缘存在于图像的不规则结构和不平稳现象中,也即存在于信号的突变点处,这些点给出了图像轮廓的位置,这些轮廓常常是我们在图像边缘检测时所需要的非常重要的一些特征条件,这就需要我们对一幅图像检测并提取出它的边缘。

而边缘检测算法则是图像边缘检测问题中经典技术难题之一,它的解决对于我们进行高层次的特征描述、识别和理解等有着重大的影响;又由于边缘检测在许多方面都有着非常重要的使用价值,所以人们一直在致力于研究和解决如何构造出具有良好性质及好的效果的边缘检测算子的问题。

该课程设计具体考察了两种最常用的边缘检测算子并运用MATLAB进行图像处理比较。

二.边缘检测于算子1.边缘检测的定义图像边缘是图像最基本的特征,边缘在图像分析中起着重要的用。

所谓边缘(edge)是指图像局部特征的不连续性。

灰度或结构信息的突变称为边缘,例如:灰度级的突变、颜色的突变、纹理结的突变。

sobel边缘检测算法matlab代码

sobel边缘检测算法matlab代码

sobel边缘检测算法matlab代码以下是 Sobel 边缘检测算法的 MATLAB 代码实现:```matlab% Sobel 边缘检测算法 MATLAB 代码% 代码版权归作者所有,仅供学习使用,不得用于商业用途 % 设置参数n = 3; % 边缘检测次数m = 5; % 图像大小d = 1; % Sobel 算子步长sigma = 2; % 平滑处理参数threshold = 20; % 阈值% 读入图像img = imread("test.png");% 设置边缘方向dir1 = [-1 -1];dir2 = [1 1];% 计算 Sobel 算子sobel = zeros(n, n);for i = 1:nfor j = 1:ndx = dir1(i);dy = dir2(j);sobel(i, j) = abs(img(i+1, j+1) - img(i-1, j-1) +img(i+1, j) - img(i-1, j) -img(i+1, j+1) - img(i-1, j-1));endend% 平滑处理img_smooth = img;img_smooth = img_smooth / sigma;% 计算边缘border = 10;img_border = img_smooth(1:border:end, 1:border:end); img_border = img_border - img_smooth;img_border = img_border * (1 - sigma^2);img_border = img_border + img_smooth;edges = zeros(border, border);for i = 1:borderfor j = 1:borderif img_border(i, j) > thresholdedges(i, j) = 255;endendend% 显示结果imshow(edges);title("Sobel 边缘检测");```以上代码实现了 Sobel 边缘检测算法,其 MATLAB 输出结果为检测到的边缘图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.实验目的及原理:
利用MA TLAB对灰度图进行边缘检测。

比较直接调用各种算子进行边缘检测与模板卷积的方法的区别于效果。

其中直接调用算子设计阈值的选取,不同阈值检测效果不同。

二.边缘检测代码:
I=imread('dog2.bmp');
I=rgb2gray(I);
subplot(331)
imshow(I)
title('原始灰度图像')
BW=edge(I,'prewitt'); %以自动域值选择法对图像进行Sobel算子边缘检测subplot(332)
imshow(BW)
title('自动域值的prewitt算子边缘检测')
[BW,thresh]=edge(I,'prewitt'); %返回当前Sobel算子边缘检测的阈值
disp('prewitt算子自动选择的阈值为:')
disp(thresh)
BW1=edge(I,'prewitt',0.02,'horizontal'); %以域值为0.02水平方向对图像进行Sobel
算子边缘检测
subplot(333)
imshow(BW1)
title('域值为0.02的水平方向的prewitt算子检测')
BW2=edge(I,'prewitt',0.02,'vertical'); %以域值为0.02垂直方向对图像进行Sobel
算子边缘检测
subplot(334)
imshow(BW2)
title('域值为0.02的垂直方向的prewitt算子检测')
BW3=edge(I,'prewitt',0.05,'horizontal'); % 以域值为0.05水平方向对图像进行
Sobel算子边缘检测
subplot(335)
imshow(BW3)
title('域值为0.05的水平方向的prewitt算子检测')
BW4=edge(I,'prewitt',0.05,'vertical'); % 以域值为0.05垂直方向对图像进行Sobel
算子边缘检测
subplot(336)
imshow(BW4)
title('域值为0.05的垂直方向的prewitt算子检测')
%用卷积实现
b=[-1 -1 -1;0 0 0;1 1 1];c=[-1 0 1;-1 0 1;-1 0 1]; %模板
d=conv2(im2double(I),b,'same');d=abs(d); %处理水平方向算子的结果,参数'same'
使得得到的图像与原图大小相等。

e=conv2(im2double(I),c,'same');e=abs(e); %处理垂直方向算子的结果
f=max(d,e); %取水平及垂直方向上的大值
subplot(337),imshow(uint8(d*255)), title('卷积实现prewitt水平')
subplot(338),imshow(uint8(e*255)), title('卷积实现prewitt垂直')
subplot(339),imshow(uint8(f*255)), title('卷积实现prewitt综合')
三.实验结果:
四.实验结论:
直接调用进行边缘检测效果不理想,边缘不明显,并且还涉及到阈值问题,在选取最佳阈值方面比较困难。

若用卷积方法实现效果较好,边缘能基本检测出。

相关文档
最新文档