反应热计算
化学反应热的常用计算方法是什么
化学反应热的常用计算方法是什么化学反应热是指一个化学反应在标准状态下吸收或释放的热量。
热量是一种能量形式,通常以焦耳(J)为单位表示。
在化学反应过程中,化学键的形成与断裂会引起能量的变化,从而产生热量。
因此,化学反应热是反应前后能量变化的差值,可以根据化学反应方程式计算出来。
目前,化学反应热的常用计算方法包括:物理法、热量计定量法、焓变计量法和燃烧热法等。
下面将逐一介绍这些方法。
一、物理法物理法的基本原理是根据热力学第一定律的能量守恒原理,用热量平衡来计算化学反应热。
该方法常用于高温下的物理化学反应,如固态反应、化学气相传递和放热物质的熔融等反应。
物理法的优点是测量简单,不需要专门的化学实验室,成本低廉。
但是该方法需要一定的实际经验和专业知识,实验操作不太方便,误差较大。
二、热量计定量法热量计定量法是一种直接测量化学反应热的方法。
该方法基于热量计原理,将反应物与试剂混合后,通过测量它们间产生的热量来计算化学反应热。
常用的热量计包括恒温容器热量计、差示扫描量热法和大气压缩量热计。
其中,恒温容器热量计是最常用的测量化学反应热的设备。
该方法测量精度较高、可靠性较强,也比较容易操作。
但是该方法需要专业的实验室和设备,成本较高。
三、焓变计量法焓变计量法是一种定量测量化学反应热的方法。
该方法通过测量反应物的吉布斯自由能变化量,并利用焓—吉布斯定理计算化学反应热。
焓变计量法的优点是测量精度高,误差较小,不受外部环境影响。
同时,该方法还可以用于热力学性质的研究,具有一定的理论意义。
但是,该方法需要专业的实验室和设备,成本较高。
四、燃烧热法燃烧热法是一种常用的测量有机化合物化学反应热的方法。
该方法基于燃烧产生的热量计算化学反应热。
通常将样品在氧气中燃烧,产生的热量通过水进行吸收,利用热量平衡计算化学反应热。
燃烧热法的优点是该方法测量简单,误差较小,可以比较准确地测量化学反应热。
但是该方法需要针对具体样品和反应方程式进行一定的优化,不适用于水溶液反应,且能耗较高。
反应热计算公式
反应热计算公式(1)ΔH=反应物总键能之和-生成物总键能之和。
(2)ΔH=生成物总能量-反应物总能量=H(生成物)-H(反应物)。
(3)ΔH=正反应活化能-逆反应活化能。
公式1 ΔH=反应物总键能之和-生成物总键能之和。
例1、(2021·浙江选考)已知共价键的键能与热化学方程式信息如下表:则2O(g)=O2(g)的ΔH为()A.428 kJ·mol-1 B.-428 kJ·mol-1C.498 kJ·mol-1 D.-498 kJ·mol-1解析:解析:选D由热化学方程式可知,2×(H—H)+(O—O)-4×(H—O)=-482 kJ·mol-1,代入数据解得,O—O=498 kJ·mol-1,形成化学键放出能量,故D正确公式2、ΔH=生成物总能量-反应物总能量=H(生成物)-H(反应物)。
解析:选A酸根离子对应的酸越弱,结合氢离子能力越强,E对应的是高氯酸根离子,高氯酸是最强的无机酸,酸根离子结合氢离子能力最弱,故A错误;能量越低越稳定,A最稳定,故B正确;ΔH=生成物的总能量-反应物的总能量=64+60-2×100=-76 kJ·mol-1,故C正确;3ClO-(aq)===2Cl-(aq)+ClO3-(aq)的ΔH=生成物的总能量-反应物的总能量=反应物的键能之和-生成物的键能之和=0+64-3×60=-116 kJ·mol-1,B→A+D的反应为放热反应,故D正确。
公式3、ΔH=正反应活化能-逆反应活化能。
例3、由N2O和NO反应生成N2和NO2的能量变化如图所示。
根据图示可知,反应N2O(g)+NO(g)=N2(g)+NO2(g)的反应热为____________解析:ΔH=正反应活化能-逆反应活化能。
ΔH=209kJ·mol-1-348kJ·mol-1=-139 kJ·mol-1。
化学反应热计算
5.已知CH4(g)+2O2(g)=CO2(g)+ 2H2O(l); ΔH=-890 kJ/mol,现有CH4和 CO的混合气体共0.75 mol,完全燃烧后,生成
CO2气体和18 g液态H2O,并放出515 kJ热量, CO燃烧的热化学方程式为______________,写
能量比金刚石的高
2.已知 2H2(g)+O2(g)=2H2O(l) ΔH=-571.6 kJ/mol CO(g)+1/2O2(g)=2CO2(g) ΔH=-283.0 kJ/mol
某H2 和CO的混合气体完全燃烧时放 出113.74 kJ热量,同时生成3.6 g液态水, 则原混合气体中H2和CO的物质的量之比为 ( C) A. 2∶1 B. 1∶2 C.1∶1 D.2∶3
4.火箭发射时可用肼(N2H4)为燃料,以二氧 化氮作氧化剂,它们互相反映生成氮气和水蒸气 。已知:N2(g)+2O2(g)=2NO2(g) ΔH=+67.7 kJ/mol N2H4(gቤተ መጻሕፍቲ ባይዱ+O2(g)=N2(g)+2H2O(g) ΔH=-534 kJ/mol 则N2H4和NO2反映的热化学方程式为 _____________________。
3.由氢气和氧气反映生成1 mol水蒸气放热241.8 kJ,写出该反映的热化学方程式:_______。 若1 g水蒸气转化成液态水放热2.444 kJ,则反映 H2(g)+1/2O2(g)=H2O(l)的ΔH =____ kJ/mol。氢气的燃烧热为____kJ/mol。
H2(g)+1/2O2(g)=H2O(g) ΔH=-241.8 kJ/mol,-285.8 提示:可将反映H2(g)+1/2O2(g)=H2O(l) 当作两步:H2(g)+1/2O2(g)=H2O(g)和 H2O(g)=H2O(l),问题就迎刃而解。
反应热计算的类型及练习
反应热计算的类型及练习一、反应热的几种计算方法:1.根据反应物和生成物的能量总和计算:ΔH=生成物的能量总和-反应物的能量总和。
2.根据反应物和生成物的活化能计算:ΔH=反应物的活化能-生成物的活化能。
3.根据反应物和生成物的键能和计算:ΔH=反应物的键能和-生成物的键能和。
4.根据物质燃烧放热数值计算:Q(放)=n(可燃物)×ΔH。
5.根据比热公式进行计算:Q=cmΔT。
6.根据盖斯定律计算:①化学反应不管是一步完成还是分几步完成,其反应热是相同的。
②化学反应的反应热只与反应的始态(各反应物)和终态(各生成物)有关,而与具体反应的途径无关。
【盖斯定律计算反应热的技巧】(1)虚拟路径法:若反应物A变为生成物D,可以有两个途径:①由A直接变成D,反应热为ΔH;②由A经过B变成C,再由C变成D,每步的反应热分别为ΔH1、ΔH2、ΔH3,如图所示:,则有:ΔH=ΔH1+ΔH2+ΔH3。
(2)加和法:①确定待求反应的热化学方程式。
②找出待求热化学方程式中各物质出现在已知方程式中的位置(是同侧还是异侧)。
③利用同侧相加、异侧相减进行处理。
④根据待求方程式中各物质的化学计量数通过乘除来调整已知反应的化学计量数,并消去中间产物。
⑤实施叠加并确定反应热的变化。
【推论】①任何化学反应的反应热和其逆反应的反应热大小相等,符号相反。
②任何化学反应,当各物质系数发生变化时,反应热的数值也随之发生变化。
反应热与反应物各物质的物质的量成正比。
③方程式相加减时,左边和左边相加减,右边和右边相加减,反应热也要跟着进行加减。
二、配套练习1. 在化学反应中,只有极少数能量比平均能量高得多的反应物分子发生碰撞时才可能发生化学反应,这些分子称为活化分子,使普通分子变成活化分子所需提供的最低限度的能量叫活化能,其单位通常用kJ/mol表示。
请认真观察下图,然后回答问题:(1)图中所示反应是________(填“吸热”或“放热”)反应,该反应的ΔH=________(用含E1、E2的代数式表示)。
反应热的计算
1、浓硫酸和氢氧化钠固体反应生成1mol水时,放出的热量一定大于57.3kJ(浓硫酸稀释和氢氧化钠固体溶解时都会放出热量)
2、醋酸和氢氧化钠溶液反应生成1mol水时,放出的热量一定小于57.3kJ(醋酸电离会吸热)
3、稀硫酸和氢氧化钡溶液反应生成1mol水时,放出的热量一定大于57.3kJ(SO42-和Ba2+反应生成的BaSO4沉淀会放热)
-116
练习3:[2018年全国II卷]CH4-CO2催化重整反应为:CH4(g)+ CO2(g)=2CO(g)+2H2(g)
已知:C(s)+2H2(g)=CH4(g) ΔH=-75 kJ·mol−1
C(s)+O2(g)=CO2(g) ΔH=-394 kJ·mol−1
C(s)+
O2(g)=CO(g) ΔH=-111 kJ·mol−1
练习:下列各组热化学方程式中,△H1>△H2的是( )①H2(g)+Cl2(g)=2HCl(g) △H1 H2(g)+I2(g)=2HI(g) △H2②C2H4O2(1)+2O2(g)=2CO2(g)+2H2O(g) △H1 C2H4O2(1)+2O2(g)=2CO2(g)+2H2O(l) △H2③CaCO3(s)=CaO(s)+CO2(g) △H1 Na2O(s)+H2O(l)=2NaOH( aq) △H2④2H2S(g)+3O2(g)=2SO2(g)+2H2O(g) △H1 2H2S(g)+O2(g)=2S(s)+2H2O(g) △H2A.②③ B.①④ C.①② D.③④
+247
3.利用燃烧热求反应热
第三节 化学反应热的计算
答:生成1 mol NaCl时放出热量411 kJ。
14
2.关于燃烧热的计算 【例2】乙醇的燃烧热△H=-1366.8 kJ/mol,在25℃、 101kPa时,1 kg乙醇充分燃烧后放出多少热量?
解析: n(C2H5OH)=1000 g / 46g/mol
=21.74mol 1 kg C2H5OH燃烧后产生的热量: 1366.8 kJ/ mol× 21.74mol=2.971×104kJ 答:1 kg C2H5OH充分燃烧后放出2.971×104kJ的热量。
3
1.看图理解盖斯定律 海拨400m B
2.用能量守恒定律论证盖斯定律
S
L
A 海拨100m
△H1+△H2= 0
4
3.盖斯定律直观化
A
B
C
பைடு நூலகம்△H
a
=
△H1+△H2
ΔH=ΔH1+ΔH2=ΔH3+ΔH4+ΔH5
5
4.盖斯定律在科学研究中的重要意义
有些反应进行得很慢,有些反应不容易直接发生,有些 反应的产品不纯(有副反应发生)„这些都给测量反应 热造成了困难,利用盖斯定律可以间接地把它们的反应 热计算出来。
放热1016.5kJ
23
( A )
A.806g B.1000g C.1250g D.1500g
21
3、已知: Zn ( s ) +1/2O2 ( g ) = ZnO ( s ) ΔH = -351.1 kJ/mol Hg ( l) +1/2O2 ( g ) = Hg O ( s ) ΔH = -90.7 kJ/mol 则可知: Zn ( s ) + Hg O ( s ) = ZnO ( s ) + Hg ( s ) ΔH 3= kJ/mol。 则ΔH 3为多少? ΔH 3= -260.4kJ/mol 4、已知: 2C(s) + O2 ( g ) =2CO ( g) ΔH = -221 kJ/mol 2H2 ( g ) + O2 ( g ) = 2H2O ( g ) ΔH = -483.6 kJ/mol 则C(s) + H2O ( g ) =CO ( g) + H2( g )的ΔH为多少? ΔH = +131.3kJ/mol
化学反应热的计算
【跟踪训练】 已知 ① CO(g)+1/2O2(g)=CO2(g) ΔH1=-283kJ/mol ② H2(g)+1/2O2(g)=H2O(l) ΔH2=-285.8 kJ/mol ③C2H5OH(l)+3O2(g)=2CO2(g)+3 H2O(l) ΔH3=-1370 kJ/mol 试计算: 2CO(g)+4H2(g)=H2O(l)+ C2H5OH(l) 的ΔH
A
4、钛(Ti)被称为继铁、铝之后的第三金属,钛白(TiO2)是目前最好的白色颜料。制备TiO2和Ti的原 料是钛铁矿,我国的钛铁矿储量居世界首位。含有Fe2O3的钛铁矿(主要成分为FeTiO3)制取TiO2的流程如
下:
(1)步骤①加Fe的目的是:___________________; 将Fe3+还原为Fe2+
ΔH =-339.2 kJ/mol
【归纳总结—反应热的计算方法】
1、依据热化学方程式比例式求算 2、依据盖斯定律加和求算 3、依据燃烧热:Q(放)=n可燃物×丨△H丨 4、根据键能:△H=E反应物总键能—E生成物总键能 5、依据总能量:△H=E生成物-E反应物 6、根据比热容公式计算中和
【课堂练习】
化学反应热的计算
化学反应与能量 化学反应热的计算
【盖斯定律】
不管化学反应是一步完成或分几步完成,其反应热相同。化学反应的反应热只与反应体系的始 态和终态有关, 与反应的途径无关。
△H1
△H2
△H3
A
B
C
D
△H △H= △H1 + △H2 + △H3
已知: C(g)+O2 (g) = CO2 (g) △H1 =-393.5kJ/mol CO(g)+1/2O2 (g)= CO2 (g) △H2 =-283 kJ/mol
反应热的测量和计算
活动与探究
在稀溶液中,酸跟碱发生中和反应而生成
1molH20,这时的反应热叫做中和热. 思考:1mol H2SO4 与 2 mol NaOH 完全反应 放出114.6 KJ 的热量,此反应的中和热 为114.6 KJ /mol。对吗?Why?
答: 不对,不是生成1 mol 水,中和热 是57.3 KJ /mol
活动与探究
1、请大家观察简易量 热计的构造,分析一下, 量热计直接测定的数据是 什么?是焓变的数值吗?
Q:中和反应放出是的体热系量(。溶液)温度的变 m:反应混合液化的质量。 c:反应混合液的比热容。 2、根Δ据t体:系反温应度前变后化溶可液以温求度得的什差么值物。理量?
时, △H数值不变,但符号相反.
可逆反应用
该△H数值是指该反应 完全进行时的数值.
选修 化学反应原理
专题一 化学反应与能量变化
第一单元 化学反应中的热效应
反应热的测量与计算
问题讨论:
前面我们已经学习了热化学方程式的有关 知识,在热化学方程式中提供了反应热的数据, 那么,这些数据是通过什么途径获得的呢?
规定:
当∆H为“-”( ∆H<0)时,为放热反应;
当∆H为“+”( ∆H>0)时,为吸热反应.
化学键断裂时吸收总能量= 679kJ
化学键形成时放出总能量= 862kJ
ΔH=[436kJ/mol+243kJ/mol]- 431kJ/mol×2=-183kJ/mol
从键能角度看:
ΔH=反应物总键能-生成物总键能 反应物分子断键时吸收的能量
〈 生成物分子成键时释放的能量 放热反应
反应物分子断键时吸收的能量 > 生成物分子成键时释放的能量 吸热反应
盖斯定律 反应热的计算(高中化学选修4)
如图1所示,反应的始态到达终态有三个不同的途径: 途径1:经过一步反应直接达到终态,反应热为△H 途径2:经过两步反应达到终态,反应热分别为△H1、 △H2,总反应热为: △H1 + △H2 途径3:经过三步反应达到终态,反应热分别为△H3、 △H4、△H5,总反应热为:△H3+△H4+△H5
中间产物1 △H 1 △H 2
解析:根据“化学反应的能量变化与反应物消耗量、 生成物的生成量成正比”。可知: (1)生成1mol NaCl消耗的金属Na的质量是1g的多少倍, 则反应放出的热量就是17.87kJ的多少倍。 (2)消耗22.4LCl2时消耗的金属Na的质量是1g的多少倍, 则反应放出的热量就是17.87kJ的多少倍。
应用时要注意调整化学计量数,设法抵消中间产物。
课堂练习 1.已知热化学方程式:
①C(s)+O2(g)=CO2(g)
△H=-393.5kJ/mol
②2CO(g)+O2(g)=2CO2(g) △H=-566.0kJ/mol 求C(s)+ 1 O2(g)=CO(g)的反应热。 2 2.已知热化学方程式:
例3:已知热化学方程式:
①C(s)+O2(g)=CO2(g) △H=-393.5kJ/mol
②2CO(g)+O2(g)=2CO2(g) △H=-566.0kJ/mol 求C(s)+ 1 O2(g)=CO(g)的反应热。 2 分析: 欲求2C(s)+O2(g)=2CO(g)的反应热,可以认 为C(s)先是燃烧生成CO(g),然后由CO(g)燃烧生成 CO2(g)。转化关系表示如下:
热化学方程式1 ± 热化学方程式2 = 热化学方程式3 (△H1) (△H2) (△H3)
化学化学反应热的计算
化学化学反应热的计算化学反应热的计算化学反应热是指化学反应在一定条件下的热变化量,即反应前后吸收或放出的能量差。
根据热力学第一定律,化学反应热可以表示为反应物和生成物的内能差与外界做功的和。
本文将介绍化学反应热的计算方法。
一、化学反应热的定义化学反应热可以用热量单位热焓(enthalpy)表示,也可以用能量单位焓(enthalpy)表示。
在实际应用中,通常使用热量单位热焓来表示化学反应热。
热焓是物质在常压下的热量变化,表示为ΔH。
化学反应热的计算需要注意以下几点:1、化学反应的状态方程必须已知,并且反应方程的物质量比要确定。
2、在实际条件下,反应物和生成物之间存在着热量交换,包括气体扩散、液体膨胀、固体变形等。
这些不可逆过程会使得实验结果产生误差,因此计算化学反应热时应该考虑到这些过程的影响。
3、反应时需要考虑反应物和生成物的相对热力学稳定性,因为它们的稳定性不同,热变化量也会不同。
二、计算化学反应热的方法计算化学反应热的最常用方法是利用反应热热量变化定律:ΔH = ∑ΔHf(生成物) - ∑ΔHf(反应物)其中,ΔHf表示标准生成焓,是在标准状态下单位物质生成的热焓变化量。
标准状态是指温度为298K,压力为1 atm (标准大气压),物质浓度为1 mol/L。
化学反应的热焓变化量ΔH可以通过测量反应中放热或吸热的热量来确定。
这种方法被称为热计法。
热计法的基本原理是利用热量转换原理,将反应放出的或吸收的热量转化为热量变化量。
热计法的具体实施流程如下:1、反应器的温度、压力、物质浓度等各项指标应调节好。
2、将反应物加入反应器中,测量反应物的温度。
3、根据反应物的初始温度和反应前后温度变化,测量反应放出或吸收的热量。
4、利用反应热热量变化定律,计算反应热。
三、化学反应热的计算举例以2H2(g) + O2(g) → 2H2O(g)为例,计算其反应热。
1、查表得到反应物和生成物的标准生成焓:∑ΔHf(2H2(g)) = 0 kJ/mol∑ΔHf(O2(g)) = 0 kJ/mol∑ΔHf(2H2O(g)) = -483.6 kJ/mol2、代入反应热热量变化定律,计算反应热:ΔH = ∑ΔHf(2H2O(g)) - ∑ΔHf(2H2(g) + O2(g))ΔH = (-483.6) - (0 + 0) = -483.6 kJ/mol因此,2H2(g) + O2(g) → 2H2O(g)反应放出的热量为483.6 kJ/mol。
化学反应热的计算
6. 在100 g 碳不完全燃烧所得气体中,CO占1/3 体积,CO2占2/3体积,且
C(s)+1/2O2(g)=CO(g) △H=-110.35kJ/mol
CO(g)+1/2O2(g)=CO2(g) △H=-282.57kJ/mol
你知道神六的火箭燃料是什么吗?
5:某次发射火箭,用N2H4(肼)在NO2中燃烧,生成 N2、液态H2O。已知: ①N2(g)+2O2(g)==2NO2(g) △H1=+67.2kJ/mol ②N2H4(g)+O2(g)==N2(g)+2H2O(l) △H2=-534kJ/mol 假如都在相同状态下,请写出发射火箭反应的热化学 方程式。
8.已知 ① CO(g)+1/2O2(g)=CO2(g) ΔH1= -283.0 kJ/mol ② H2(g)+1/2O2(g)=H2O(l) ΔH2= -285.8 kJ/mol ③C2H5OH(l)+ 3O2(g)=2CO2(g)+3H2O(l) ΔH3=1370 kJ/mol 试计算④2CO(g)+4H2(g)=H2O(l)+C2H5OH(l)的 ΔH
⑤NH4Cl(s)= NH4Cl(aq) △H5=?
则第⑤个方程式中的反应热△H是________。 根据盖斯定律和上述反应方程式得:
⑤=④+③+②+①的逆写,
即△H5 = +16.3kJ/mol
4:同素异形体相互转化但反应热相当小而且转化速率 慢,有时还很不完全,测定反应热很困难。现在可根据 盖斯提出的观点“不管化学反应是一步完成或分几步完 成,这个总过程的热效应是相同的”。已知:
1.9反应热计算
B
六、不同温度的ΔrHm——基尔霍夫定律
(1)若温度变化范围不大时,可将视为常数,则可写成:
rH m ( T 2 ) rH m ( T 1 ) C p ( T 2 T 1 )
·若ΔCp = 0 ,则反应热不随温度而变; ·若ΔCp > 0 ,则当温度升高时,反应热将增大; ·若ΔCp < 0 ,则当温度升高时,反应热将减小。
一、赫斯定律
例如:求C(s)和O2 (g)生成CO(g)的反应热。
已知:(1) C(O s2 )(g)C2O (g) H r m,1
(2) C O (g ) 1 2O 2(g ) C O 2(g )
r Hm,2
则(1)-(2)得(3)
(3) C( s1 2 )O2(g)CO(rHg m,3 )
rH m ,3 rH m ,1 rH m,2
• 只有条件(如温度、压力)相同的反应,聚集状态相同的 同一物质才能相消或合并;
• 将反应式乘以(或除以)某数时,ΔH也必须同时乘(或除) 以该数。
例11:在298.15K,100kPa下,已知
① C(石)墨 1/2O 2(g)C(O g) ;rHm ,1(29 .18 K 5)11 .5k0J /mol ② 3F(se)2O 2(g)F3O e4(s) ;rHm ,2(29 .18 K 5)11.41 k8 J /mol
由物质的标准摩尔生成焓,可以计算化学反应的热 效应。例如,对于某化学反应可设计成:
aA+dD
T, p
r
H
O m
gG+hH T, p
H 1
最稳定单质
T, p
H 2
ΔH1ΔrHm OΔH2 rHm OH2H1
考点精讲:反应热的计算
反应热的计算【考点精讲】反应热的计算是化学概念和化学计算的一个结合点。
反应热的大小与反应的条件、反应物、生成物的种类、状态及物质的量有关。
反应热计算的类型及方法:(1)根据热化学方程式计算:反应热与反应物的物质的量成正比。
(2)根据反应物和生成物的能量计算:ΔH=生成物的能量和-反应物的能量和。
(3)根据反应物和生成物的键能计算:通常人们把拆开1 mol某化学键所吸收的能量看成该化学键的键能,键能通常用E表示,单位为kJ/mol或kJ·mol-1。
方法:ΔH=∑E(反应物)-∑E(生成物),即ΔH等于反应物的键能总和与生成物的键能总和之差。
如反应H2(g)+Cl2(g)=2HCl(g)ΔH=E(H—H)+E(Cl—Cl)-2E(H—Cl)。
(4)根据盖斯定律计算:化学反应的反应热只与反应的始态(各反应物)和终态(各生成物)有关,而与反应的途径无关。
可以采用虚拟路径法或方程式加合法计算。
(5)根据物质的燃烧热数值计算:Q(放)=n(可燃物)×|ΔH|。
(6)根据比热公式进行计算:Q=cmΔt。
【典例精析】例题1 在一定条件下,甲烷与一氧化碳的燃烧的热化学方程式分别为:CH4(g)+2O2(g)=CO2(g)+2H2O(l)△H =-890kJ/mol2CO(g)+O2(g)=2CO2(g)△H=-mol一定量的甲烷与一氧化碳的混合气完全燃烧时,放出的热量为kJ,生成的CO2用过量的饱和石灰水完全吸收,可得到50g白色沉淀。
求混合气体中甲烷和一氧化碳的体积比。
思路导航:由所给热化学方程式可知,甲烷与一氧化碳的燃烧热分别为890kJ/mol、283kJ/mol。
设混合气体中甲烷与一氧化碳的物质的量分别为x mol和y mol。
50g白色沉淀即的碳酸钙,由碳的守恒可知:x+y=两气体燃烧放出的热量可列等式:890x+283y=解得:x=y=故混合气体中甲烷和一氧化碳的体积比为2:3。
化学反应热的测定与计算方法
化学反应热的测定与计算方法在化学反应中,反应热是指反应过程中吸收或释放的能量。
测定反应热的准确与否对于研究化学反应的热力学性质、确定化学反应的特性以及工业生产等领域都具有重要意义。
本文将介绍几种常用的化学反应热的测定与计算方法。
一、常压条件下的反应热测定法常压条件下的反应热测定法主要通过观察反应过程中产生或吸收的热量来确定反应热。
其中常见的方法有:1. 定容量热量计法该方法使用热量计测量反应过程中所产生或吸收的热量。
首先,将反应溶液装入热量计中,记录初始温度并观察温度的变化。
然后,观察反应的物质消耗或生成情况,测量反应后的最终温度。
通过计算反应过程中温度的变化,结合物质的量来确定反应的热量。
2. 连续流动热量计法该方法通过将反应物连续引入热量计中,观察反应物混合过程中所释放或吸收的热量。
首先,在热量计中设置反应槽和热电偶温度探头。
然后,将反应物以恒定的流速引入反应槽中,并通过对输出温度信号的记录,计算反应过程中产生的热量。
二、恒压条件下的反应热测定法恒压条件下的反应热测定法主要通过测量化学反应过程中的温度变化和压力变化,来确定反应热。
其中常见的方法有:1. 恒焓法该方法使用燃烧热计测量恒压下的反应热。
首先,在恒压条件下将反应物燃烧,通过测定燃烧过程中产生的热量来计算反应热。
该方法适用于可以燃烧的物质反应的热量测定。
2. 蒸气量法该方法通过测量恒压条件下溶液中溶质的蒸气量的变化来确定反应热。
首先,将溶液注入恒温恒压器中,观察温度和压力的变化。
然后,通过以下公式计算反应热:ΔH = q/Δn其中,ΔH为反应热,q为吸附热,Δn为溶质的摩尔数差值。
三、反应热的计算方法反应热的计算方法主要通过热化学方程式和标准生成焓来计算。
具体步骤如下:1. 根据反应物和生成物,编写平衡化学方程式。
2. 根据平衡化学方程式,确定物质的量比。
3. 根据给定的反应物和生成物的标准生成焓,计算反应物和生成物的生成焓差。
4. 根据生成焓差,计算反应热。
化学反应热的计算
化学反应热的计算【知识要点】利用反应热的概念、盖斯定律、热化学方程式进行有关反应热的计算【知识回顾】1、计算焓变的两个公式⑴∆H=E(生,总)-E(反,总)⑵∆H=E(反应物断键总吸收能量)-E(生成物成键总放出能量)2、计算燃烧热:101kPa时,1mol纯物质完全燃烧生成稳定的氧化物时所放出的热量。
3、盖斯定律:不管化学反应是一步完成或分几步完成,其反应热相同。
一、根据比例关系计算ΔH1、【例题1】25℃、101kPa时,使1.0g钠与足量的氯气反应,生成氯化钠晶体并放出17.87kJ的热量,求:(1)生成1molNaCl的反应热。
(2)这个反应的热化学方程式。
【练习一】1、已知25℃、101kPa时,16gCH4完全燃烧放出890.3kJ热量,求:(1)燃烧48g CH4的反应热。
(2)这个反应的热化学方程式。
2、已知25℃、101kPa时,4gH2完全燃烧放出571.6kJ热量,求生成1molH2O(l)的反应热。
3、根据图1和图2,写出反应的热化学方程式。
图1 图2【例题2】乙醇的燃烧热ΔH=-1366.8kJ/mol,在25℃、101kPa时,1kg乙醇充分燃烧后放出多少热量?【练习二】1、已知石墨的燃烧热:△H=-393.5kJ/mol(1)写出石墨的完全燃烧的热化学方程式。
(2)在相同气压下,1kg石墨充分燃烧后放出多少热量?2、25℃、101kPa时,12g乙酸完全燃烧放出174.06kJ,写出乙酸燃烧的热化学方程式:3、葡萄糖是人体所需能量的重要来源之一。
葡萄糖燃烧的热化学方程式为:C 6H12O6(s)+6O2(g)=6CO2(g)+6H2O(l) ΔH=-2800kJ/mol葡萄糖在人体组织中氧化的热化学方程式与它燃烧的热化学方程式相同。
计算 100 g 葡萄糖在人体中完全氧化时所产生的热量。
4、在一定温度下,CO和CH4燃烧的热化学方程式分别为2CO(g)+O2(g)===2CO2(g)ΔH=-566 kJ/molCH4(g)+2O2(g)===CO2(g)+2H2O(l)ΔH=-890 kJ/mol1 molCO和3 mol CH4组成的混合气体,在相同条件下完全燃烧时,释放的热量为()A.2 912 kJ B.2 953 kJ C.3 236 kJ D.3 867 kJ【例题3】已知①1 mol H2分子中化学键断裂时需要吸收436 kJ的能量;②1 mol Cl2分子中化学键断裂时需要吸收243 kJ的能量;③由H原子和Cl原子形成1 mol HCl分子时释放431 kJ的能量。
第2节 反应热的计算
第二节反应热的计算[明确学习目标]能进行反应焓变的简单计算。
1.盖斯定律(1)一个化学反应,不管是一步完成的还是分几步完成的,其反应热是01相同的。
(2)在一定条件下,化学反应的反应热只与02反应体系的始态和终态有关,而与03反应进行的途径无关。
2.盖斯定律的意义根据盖斯定律,我们可以利用已知反应的反应热来计算未知反应的反应热。
例如,若某个化学反应的ΔH=+a kJ/mol,则其逆反应的ΔH=01-a_kJ/mol;若某个反应的化学方程式可由另外几个反应的化学方程式相加减而得到,则该反应的反应热也可以由这几个反应的02反应热相加减而得到。
1.判断正误,正确的打“√”,错误的打“×”。
(1)不管化学反应是一步完成或分几步完成,其反应热是相同的。
()(2)根据盖斯定律,几个热化学方程式中ΔH直接相加即可得目标反应的反应热。
()(3)有些反应的反应热不能直接测得,可通过盖斯定律间接计算得到。
()(4)反应热只与反应体系的始态和终态有关,与反应的途径无关。
()答案(1)√(2)×(3)√(4)√2.已知C(s)+O2(g)===CO2(g)ΔH1=-393.5 kJ·mol-1C(s)+12O2(g)===CO(g)ΔH2=-110.5 kJ·mol-1,则2 mol C在O2中完全燃烧,放出的热量为()A.221 kJ B.787 kJC.393.5 kJ D.110.5 kJ答案 B3.已知:①2H2(g)+O2(g)===2H2O(l)ΔH=-571.6 kJ·mol-1;②2H2O(g)===2H2(g)+O2(g)ΔH=+483.6 kJ·mol-1。
现有18 g液态H2O,蒸发时吸收的热量为()A.88 kJ B.44 kJC.4.89 kJ D.2.45 kJ答案 B4.已知热化学方程式:SO2(g)+12O2(g)SO3(g)ΔH=-98.32 kJ·mol-1,在容器中充入2 mol SO2和1 mol O2,充分反应,最终放出的热量() A.=196.64 kJ B.=98.32 kJC.<196.64 kJ D.>196.64 kJ答案 C知识点一对盖斯定律的理解1.从反应途径角度2.从能量守恒角度[深化理解]对于下图所示的过程:从反应途径角度,A―→D:ΔH=ΔH1+ΔH2+ΔH3=-(ΔH4+ΔH5+ΔH6);从能量守恒角度:ΔH1+ΔH2+ΔH3+ΔH4+ΔH5+ΔH6=0。
13化学反应热的计算解析
13化学反应热的计算解析化学反应热是指在进行化学反应时产生或吸收的热量,是一个重要的热力学概念。
化学反应热的计算可以帮助我们了解反应的放热或吸热程度,从而预测反应的方向或速率。
在进行化学反应热的计算时,通常使用反应焓变来表示反应热量的变化。
反应焓变是化学反应过程中,反应物和生成物之间焓的变化量。
化学反应的热量可以通过以下两种方式进行计算:1. 通过反应焓变的计算:反应焓变可以通过反应物和生成物之间的焓差来计算。
反应焓变的公式可以表示为ΔH = ΣH(生成物) - ΣH(反应物)。
其中ΔH表示反应焓变,ΣH(生成物)表示生成物的总焓,ΣH(反应物)表示反应物的总焓。
反应焓变的单位通常为焦耳/mol或千焦/mol。
2.通过热量平衡方程进行计算:热量平衡方程可以用来计算化学反应的热量。
热量平衡方程表示为Σq=0,其中Σq为反应物和生成物之间吸热和放热的总和。
通过热量平衡方程可以计算出反应的热量变化。
在进行化学反应热的计算时,需要注意以下几点:1.反应物和生成物的热化学性质需要事先确定:在进行反应焓变计算时,需要确保反应物和生成物的热化学性质是准确的。
通常可以通过实验方法或文献数据来获取反应物和生成物的热化学性质。
2.反应物和生成物的物质量需要明确:在计算反应焓变时,需要明确反应物和生成物的物质量,以便正确计算反应的热量变化。
3.考虑反应的放热或吸热性质:在计算反应焓变时,需要考虑反应是放热还是吸热的性质。
放热反应ΔH为负值,吸热反应ΔH为正值。
综上所述,化学反应热的计算是一个重要的热力学问题,可以通过反应焓变或热量平衡方程来计算。
在进行化学反应热的计算时,需要注意反应物和生成物的热化学性质、物质量和反应的放热或吸热性质。
通过正确计算反应热,我们可以更好地了解化学反应的热力学性质,为实验设计和反应优化提供参考。
反应热的计算(原卷版)
反应热的计算一、反应热的计算1.根据热化学方程式计算热化学方程式中反应热数值与各物质的化学计量数成正比。
例如,a A(g)+b B(g)===c C(g)+d D(g)ΔHa b c d|ΔH|n(A)n(B)n(C)n(D)Q则2.根据反应物、生成物的键能计算(1)ΔH=生成物总能量-反应物总能量=H(生成物)-H(反应物)(2)ΔH=反应物总键能之和-生成物总键能之和常见物质中的化学键数目12123.根据物质的燃烧热数值计算Q(放)=n(可燃物)×|ΔH(燃烧热)|。
4.根据盖斯定律计算若反应物A变为生成物D,可以有两个途径①由A直接变成D,反应热为ΔH;②由A经过B变成C,再由C变成D,每步的反应热分别为ΔH1、ΔH2、ΔH3。
如图所示:则有ΔH=ΔH1+ΔH2+ΔH3。
二、“盖斯定律”型反应热的思维认知模型1.题型特征:由多个已知热化学方程式,求目标热化学方程式的反应热ΔH或写出目标热化学方程式的热化学方程式。
此类题型比较成熟,特征、分值及出现在试卷中的位置较为固定。
2.计算依据:盖斯定律:即不管化学反应分一步完成或几步完成,反应热相同.化学反应的反应热只与反应体系的始态和终态有关,与反应途径无关。
3.解题思路:首先观察最终方程式的反应物和生成物,利用已知方程式的加法或减法消去最终方程式没有出现的中间产物,得到总反应方程式。
然后,将两个方程式加减乘除得到新的反应方程式,焓变也随之变化。
最后,根据消元的路径代入数据求出目标反应方程式焓变。
4.解题步骤:观察反应物、生成物在已知式中的位置,根据目标方程式中各物质计量数和位置的需要,对已知方程式进行处理,或调整计量数或调整反应方向.突破解题最大的难点,具体而言可以分以下步骤:1)若目标热化学反应方程式中只与一个已知热化学方程式共有的某物质为参考物,以此参照物在目标热化学反应方程式中的位置及计量数确定分热化学方程式的计量数、ΔH 的改变量及加减.若目标热化学反应方程式中某物质,在多个已知的热化学方程式中出现,则在计算确定ΔH时暂时不考虑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•下标“c”表示combustion。
三、由标准摩尔燃烧焓计算ΔrHm
所谓完全燃烧是指被燃物质变成最稳定的氧化物或 单质(即最稳定的产物)。 指定产物通常规定为:
C CO2 (g) S SO2 (g)
Cl HCl(aq)
H H2 O(l) N N2 (g)
金属 游离态
298.15 K时的燃烧焓值见附录3。
1 1 2 2 b(T2 T1 ) c(T23 T13 ) 2 3
四、由键焓估算ΔrHm
例如:在298.15 K时,自光谱数据测得气相水分 子分解成气相原子的两个键能分别为:
H 2 O(g) = H(g)+OH(g) OH(g) = H(g)+O(g) r H m (1) 502.1 kJ mol-1 r H m (2) =423.4 kJ mol-1
则O-H(g)的键焓等于这两个键能的平均值
H m (OH,g) (502.1 423.4) kJ mol / 2 = 462.8 kJ mol-1
1
四、由键焓估算ΔrHm
显然,一个化学反应的热效应:
O r H m
O (H b, m )反应物
O (H b, m ) 产物
aA +dD
H1
r H m (T2 )
T2
r Hm (T1 )
gG+hH
H 2
aA+dD
T1
gG+hH
若反应物与产物在T1与T2之间无相变化,则
H1 T aC p, m (A) dC p, m (D) dT T
2
T1
T1
2
C p 反应物 dT
1
H 2 T 2 gC p, m (G) hC p, m (H) dT T 2 C p 产物 dT
-1
显然,根据标准摩尔燃烧焓的定义,所指定产物如 CO 2 (g), H 2 O 等的标准摩尔燃烧焓,在任何温度T 时,其值均为零。
三、由标准摩尔燃烧焓计算ΔrHm
由物质的燃烧焓,可以计算化学反应的热效应。
aA+dD
T, p
O r H m
gG+hH T, p
H 1
完全燃烧的产物
H 2
T, p
B
O ( pB f H m ) 产物
B
B
O (rB f H m )反应物
O Bf H m (B)
式中 p B和 r B分别表示产物和反应物在化学计量方程式 中的计量系数。系数B对反应物为负,对产物为正
三、由标准摩尔燃烧焓计算ΔrHm
绝大多数的有机化合物不能由稳定的单质直接合 成,因而标准摩尔生成焓无法直接测得。但通过实验 可测得燃烧过程的热效应。 在标准压力p =100KPa和指定温度下,1摩尔某 种物质完全燃烧的恒压热效应称为该物质的标准摩尔 燃烧焓: 用符号 Δ H O c m (物质、相态、温度)表示。
B
三、由标准摩尔燃烧焓计算ΔrHm
O 298K Δr H m
B
O Bc H m (B,298.15K)
任意化学反应的焓变值等于各反应物燃烧焓的总和减 去各产物燃烧焓的总和。 例如:在298.15 K和标准压力下,有反应:
(COOH)2 (s) 2CH 3OH(l) (COOCH 3 ) 2 (s) 2H 2O(l) (A) (B) (C) (D)
O ΔH1 Δ r H m ΔH 2
B
O r H m H 2 H1 O ( rB f H m )反应物
O O H 2 g f H m ( G ) h f H m (H)
B
O ( pB f H m )产物
二、由标准摩尔生成焓计算ΔrHm
O r H m
O O O O r H m (298K) f H m (H , , aq) f H m (Cl , , aq) - f H m (HCl,g)
75.14 kJ mol-1
O HCl, g 92.30 kJ mol-1 Δf H m
O Δf H m H , , aq 0
② 3Fe( s ) 2O2 ( g ) Fe3O4 ( s); r H m .15K ) 1118 .4kJ / m ol , 2 ( 298 求:Fe3O4 ( s) 4C (石墨) 3Fe( s) 4CO( g ); r H m (298.15K ) ?
T T
1
六、不同温度的ΔrHm——基尔霍夫定律
r H m (T2 ) H1 r H m (T1 ) H 2
r H m (T1 ) T
T2
1
(C )
p 产物
C p 反应物 dT
r H m (T1 ) T C p dT
1
T2
则 Δr H
O m
Δc H (A) 2Δc H (B) - Δc H (C)
O m O m O m
四、由键焓估算ΔrHm
从原则上讲,只要能知道化学键能和反应中的
化学键的变化情况,就可以算出化学反应的热效应。
但到目前为止,化学键的键能数据既不完善,也不
够精确。通常采用键焓的方法来解决这一问题。 某个键的键焓是诸种化合物中该键键能的平均 值。
三、由标准摩尔燃烧焓计算ΔrHm
例如:在298.15 K及标准压力下:
r m O Δ H CH COOH, l,298K c m 3 则 O -1 2CO 2 (g) 2H 2 O(l) CH COOH(l) 2O ( g) 3 2 Δ H 870.3 kJ mol
870.3 kJ mol
二、由标准摩尔生成焓计算ΔrHm
例如:在298.15 K时
1 1 O H 2 g, p Cl 2 g, p O HCl g, p O 2 2 反应焓变为: O -1 Δr H m (298.15K) -92.31kJ mol
这就是HCl(g)的标准摩尔生成焓: O Δf H m (HCl,g,298.15K) -92.31kJ mol -1
——基尔霍夫定律
式中ΔCp为产物恒压热容总和与反应物恒压热容总和之差,即
C p gC p,m (G) hC p,m (H) [aC p,m (A) dC p,m (D)]
BC p , m (B)
B
六、不同温度的ΔrHm——基尔霍夫定律
(1)若温度变化范围不大时,可将视为常数,则可写成:
Δf H
O (物质,相态,温度) m
二、由标准摩尔生成焓计算ΔrHm
Δf H
O (最稳定单质,T)= m
0 kJ/mol
标准状态: •固体、纯液体:指定温度T时,压力为标准压力pθ下的纯固 体和纯液体。 •气体:指定温度T时,压力为标准压力pθ下的具有理想气体 性质的纯气体。
最稳定的单质:在温度T时,标准压力下最稳定形态的单质。
r H m (T2 ) r H m (T1 ) C p (T2 T1 )
· 若ΔCp = 0 ,则反应热不随温度而变; · 若ΔCp > 0 ,则当温度升高时,反应热将增大; · 若ΔCp < 0 ,则当温度升高时,反应热将减小。
六、不同温度的ΔrHm——基尔霍夫定律
(2)若反应物和产物的恒压热容与温度有关,其函数关系式为:
C p , m a bT cT 2
a Ba(B)
B
C p a bT cT 2 c Bc(B) b Bb(B)
B
B
T2 T1
r H m (T2 ) r H m (T1 ) C p dT
积分可得:
r H m (T2 ) r H m (T1 ) a(T2 T1 )
例12:
2O (1)HCl(g)H H (aq, ) Cl (aq, ), r H m 75.14kJ / m ol (2)1/2H ( g ) 1 / 2 Cl ( g ) HCl(g), H 2 2 r m 92.30kJ / m ol 求 f H m (Cl , aq, )
第九节 化学反应 热效应的计算
一、赫斯定律
反应的热效应只与起始和终了状态有关,与变 化途径无关。不管反应是一步完成的,还是分几步 完成的,其热效应相同。 赫斯定律只是对非体积功为零条件下的等容或 等压反应才严格适用。 应用:对于无法直接测定反应热的化学反应,可 以用赫斯定律,利用容易测定的反应热来计算不容易 测定的反应热。
CO(g)r H m,3
r H m,3 r H m,1 r H m,2
• 只有条件(如温度、压力)相同的反应,聚集状态相同的 同一物质才能相消或合并; • 将反应式乘以(或除以)某数时,ΔH也必须同时乘(或除) 以该数。
例11:在298.15K,100kPa下,已知
① C (石墨) 1 / 2O2 ( g ) CO( g ); r H m,1 (298.15K ) 110.5kJ / m ol
等温等压下化学反应的热效应等于生成物焓的 总和减去反应物焓的总和:
rH Q p H
产物 H 反应物
由于物质的焓的绝对值无法求得。为此,采用相对 标准来进行计算。
在标准压力下,反应温度时,由最稳定的单质生 成标准状态下1mol化合物的焓变,称为该物质的在此 温度下的标准摩尔生成焓,用下述符号表示:
解: ① ×4 -②:
4C(石墨) 2O2 ( g ) Fe3O4 (s) 4CO( g ) 3Fe(s) 2O2 ( g )