高中数学必修二模块综合测试卷2
【状元之路】2014-2015学年高中北师大版数学必修二 模块综合测评(二)
模块综合测评(二)必修2(北师大版)(时间:90分钟满分:120分)第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,共50分.1.如图所示,△ABC为正三角形,AA′∥BB′∥CC′,CC′⊥平面ABC且3AA′=32BB′=CC′=AB,则多面体ABC-A′B′C′的正视图(左视时沿AB方向)是()A BC D解析:几何体的正视图是该几何体从前向后的正投影.答案:D2.已知水平放置的△ABC是按“斜二测画法”得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 中∠ABC 的大小是( )A .30°B .45°C .60°D .90°解析:根据“斜二测画法”可得BC =B ′C ′=2,AO =2A ′O ′= 3.故原△ABC 是一个等边三角形. 答案:C3.已知直线l 的倾斜角为α,若cos α=-45,则直线l 的斜率为( ) A.34 B.43 C .-34D .-43解析:由cos α=-45得sin α=35,所以tan α=-34,即直线l 的斜率为-34.答案:C4.点A (3,-2,4)关于点(0,1,-3)的对称点的坐标为( ) A .(-3,4,-10) B .(-3,2,-4) C.⎝ ⎛⎭⎪⎫32,-12,12 D .(6,-5,11)解析:设点A 关于点(0,1,-3)的对称点的坐标为A ′(x 0,y 0,z 0),则⎩⎪⎨⎪⎧3+x 02=0,-2+y 02=1,4+z2=-3,∴⎩⎪⎨⎪⎧x 0=-3,y 0=4,z 0=-10.∴A ′(-3,4,-10). 答案:A5.已知平面α,β和直线a ,b ,若α∩β=l ,a ⊂α,b ⊂β,且平面α与平面β不垂直,直线a 与直线l 不垂直,直线b 与直线l 不垂直,则( )A .直线a 与直线b 可能垂直,但不可能平行B .直线a 与直线b 可能垂直,也可能平行C .直线a 与直线b 不可能垂直,但可能平行D .直线a 与直线b 不可能垂直,也不可能平行解析:①当a ∥l ;b ∥l 时,a ∥b ;②当a 与b 在α内的射影垂直时a 与b 垂直.答案:B6.如图,在长方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱BB 1、B 1C 1的中点,若∠CMN =90°,则异面直线AD 1和DM 所成角为()A .30°B .45°C .60°D .90°解析:因为MN ⊥DC ,MN ⊥MC , 所以MN ⊥面DCM .所以MN ⊥DM .因为MN ∥AD 1, 所以AD 1⊥DM . 答案:D7.若某多面体的三视图(单位:cm)如图所示,则此多面体的体积是( )A .2 cm 3B .4 cm 3C .6 cm 3D .12 cm 3解析:由三视图知该几何体为三棱锥,它的高等于2,底面是等腰三角形,底边边长等于3,底边上的高为2,所以几何体的体积V =13×12×3×2×2=2(cm 3).答案:A8.若直线y =kx +1与圆x 2+y 2+kx -2y =0的两个交点恰好关于y 轴对称,则k =( )A .0B .1C .2D .3解析:由⎩⎪⎨⎪⎧y =kx +1,x 2+y 2+kx -2y =0,得(1+k 2)·x 2+kx -1=0, ∵两交点恰好关于y 轴对称. ∴x 1+x 2=-k1+k 2=0.∴k =0. 答案:A9.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =2,∠ASC =∠BSC =45°,则棱锥S -ABC 的体积为( )A.33 B.233 C.433D.533解析:如图所示,连接OA ,OB (O 为球心).∵AB =2,∴△OAB 为正三角形.又∵∠BSC =∠ASC =45°,且SC 为直径,∴△ASC 与△BSC 均为等腰直角三角形. ∴BO ⊥SC ,AO ⊥SC . 又AO ∩BO =O , ∴SC ⊥面ABO .∴V S -ABC =V C -OAB +V S -OAB =13·S △OAB ·(SO +OC ) =13×34×4×4 =433,故选C. 答案:C10.若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是( )A .B .C .D .解析:曲线y =3-4x -x 2表示圆(x -2)2+(y -3)2=4的下半圆,如图所示,当直线y =x +b 经过点(0,3)时,b 取最大值3,当直线与半圆相切时,b 取最小值,由|2-3+b |2=2⇒b =1-22或1+22(舍),故b min =1-22,b 的取值范围为.答案:C第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分. 11.已知两条平行直线的方程分别是2x +3y +1=0,mx +6y -5=0,则实数m =__________.解析:由于两直线平行,所以2m =36≠1-5,∴m =4.答案:412.将棱长为3的正四面体的各顶点截去四个棱长为1的小正四面体(使截面平行于底面),所得几何体的表面积为__________.解析:原正四面体的表面积为4×934=93,每截去一个小正四面体,表面减小三个小正三角形,增加一个小正三角形,故表面积减少4×2×34=23,故所得几何体的表面积为7 3.答案:7 313.已知一个等腰三角形的顶点A (3,20),一底角顶点B (3,5),另一顶点C 的轨迹方程是__________.解析:设点C 的坐标为(x ,y ),则由|AB |=|AC |得(x -3)2+(y -20)2=(3-3)2+(20-5)2,化简得(x -3)2+(y -20)2=225.因此顶点C 的轨迹方程为(x -3)2+(y -20)2=225(x ≠3). 答案:(x -3)2+(y -20)2=225(x ≠3)14.已知m ,l 是直线,α、β是平面,给出下列命题:①若l 垂直于α内的两条相交直线,则l ⊥α;②若l 平行于α,则l 平行α内所有直线;③若m ⊂α,l ⊂β,且l ⊥m ,则α⊥β;④若l ⊂β,且l ⊥α,则α⊥β;⑤若m ⊂α,l ⊂β,且α∥β,且m ∥l .其中正确命题的序号是__________(把你认为正确的命题的序号都填上).解析:通过正方体验证. 答案:①④三、解答题:本大题共4小题,满分50分.15.(12分)△ABC 中,A (0,1),AB 边上的高线方程为x +2y -4=0,AC 边上的中线方程为2x +y -3=0,求AB ,BC ,AC 边所在的直线方程.解:由题意知直线AB 的斜率为2, ∴AB 边所在的直线方程为2x -y +1=0. (4分)直线AB 与AC 边中线的交点为B ⎝ ⎛⎭⎪⎫12,2,设AC 边中点D (x 1,3-2x 1),C (4-2y 1,y 1),∵D 为AC 的中点,由中点坐标公式得⎩⎪⎨⎪⎧2x 1=4-2y 1,2(3-2x 1)=1+y 1,∴y 1=1,∴C (2,1),∴BC 边所在的直线方程为2x +3y -7=0, (8分)AC 边所在的直线方程为y =1.(12分)16.(12分)如图,在三棱锥S -ABC 中,已知点D 、E 、F 分别为棱AC ,SA ,SC 的中点.(1)求证:EF ∥平面ABC ;(2)若SA =SC ,BA =BC ,求证:平面SBD ⊥平面ABC . 证明:(1)∵EF 是△SAC 的中位线,∴EF ∥AC . 又∵EF ⊄平面ABC ,AC ⊂平面ABC , ∴EF ∥平面ABC .(6分)(2)∵SA =SC ,AD =DC ,∴SD ⊥AC , 又∵BA =BC ,AD =DC ,∴BD ⊥AC ,又∵SD ⊂平面SBD ,BD ⊂平面SBD ,SD ∩DB =D , ∴AC ⊥平面SBD ,(10分) 又∵AC ⊂平面ABC , ∴平面SBD ⊥平面ABC .(12分)17.(12分)已知点P (2,0),及圆C :x 2+y 2-6x +4y +4=0. (1)当直线l 过点P 且与圆心C 的距离为1时,求直线l 的方程; (2)设过点P 的直线与圆C 交于A 、B 两点,当|AB |=4时,求以线段AB 为直径的圆的方程.解:(1)当直线l 的斜率存在时,设直线l 的斜率为k ,则方程为y -0=k (x -2),又圆C 的圆心为(3,-2),r =3,由|3k -2k +2|k 2+1=1⇒k=-34.(4分)所以直线l 的方程为y =-34(x -2),即3x +4y -6=0,当k 不存在时,l 的方程为x =2,符合题意.(6分)(2)由弦心距d =r 2-⎝ ⎛⎭⎪⎫|AB |22=5,又|CP |=5,知P 为AB 的中点,故以AB 为直径的圆的方程为(x -2)2+y 2=4.(12分)18.(14分)多面体P -ABCD 的直观图及三视图如图所示,其中正视图、侧视图是等腰直角三角形,俯视图是正方形,E 、F 、G 分别为PC 、PD 、BC 的中点.(1)求证:P A ∥平面EFG ; (2)求三棱锥P -EFG 的体积.(1)证明:方法一:如图,取AD 的中点H ,连接GH ,FH .∵E,F分别为PC,PD的中点,∴EF∥CD.(2分)∵G、H分别为BC、AD的中点,∴GH∥CD.∴EF∥GH.∴E,F,H,G四点共面.(4分)∵F,H分别为DP、DA的中点,∴P A∥FH.∵P A⊄平面EFG,FH⊂平面EFG,∴P A∥平面EFG.(6分)方法二:∵E,F,G分别为PC,PD,BC的中点.∴EF∥CD,EG∥PB.(2分)∵CD∥AB,∴EF∥AB.∵PB∩AB=B,EF∩EG=E,∴平面EFG∥平面P AB.∵P A⊂平面P AB,∴P A∥平面EFG.(6分)(2)解:由三视图可知,PD⊥平面ABCD,又∵GC⊂平面ABCD,∴GC⊥PD.∵四边形ABCD 为正方形, ∴GC ⊥CD .∵PD ∩CD =D ,∴GC ⊥平面PCD .(8分)∵PF =12PD =1,EF =12CD =1,∴S △PEF =12EF ·PF =12.(10分) ∵GC =12BC =1,∴V P -EFG =V G -PEF=13S △PEF ·GC=13×12×1=16.(14分)。
人教版高中数学必修二第二章单元测试(二)- Word版含答案
2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.下列推理错误的是( ) A .A ∈l ,A ∈α,B ∈l ,B ∈α⇒l ⊂α B .A ∈α,A ∈β,B ∈α,B ∈β⇒α∩β=AB C .l ⊄α,A ∈l ⇒A ∉α D .A ∈l ,l ⊂α⇒A ∈α2.长方体ABCD -A 1B 1C 1D 1中,异面直线AB ,A 1D 1所成的角等于( ) A .30°B .45°C .60°D .90°3.在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,当BD ∥平面EFGH 时,下面结论正确的是( ) A .E ,F ,G ,H 一定是各边的中点 B .G ,H 一定是CD ,DA 的中点C .BE ∶EA =BF ∶FC ,且DH ∶HA =DG ∶GCD .AE ∶EB =AH ∶HD ,且BF ∶FC =DG ∶GC4.如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为m ,n ,那么m +n 等于( )A .8B .9C .10D .115.如图所示,在正方体ABCD —A 1B 1C 1D 1中,若E 是A 1C 1的中点,则直线CE 垂直于( )A .ACB .BDC .A 1DD .A 1D 16.如图所示,将等腰直角△ABC 沿斜边BC 上的高AD 折成一个二面角,此时∠B ′AC =60°,那么这个二面角大小是( )A .90°B .60°C .45°D .30°7.如图所示,直线P A 垂直于⊙O 所在的平面,△ABC 内接于⊙O ,且AB 为⊙O 的直径,点M 为线段PB 的中点.此卷只装订不密封班级 姓名 准考证号 考场号 座位号现有结论:①BC ⊥PC ;②OM ∥平面APC ;③点B 到平面P AC 的距离等于线段BC 的长,其中正确的是( ) A .①②B .①②③C .①D .②③8.如图,三棱柱111ABC A B C -中,侧棱AA 1⊥底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 中点,则下列叙述正确的是( )A .CC 1与B 1E 是异面直线B .AC ⊥平面ABB 1A 1 C .AE ,B 1C 1为异面直线,且AE ⊥B 1C 1D .A 1C 1∥平面AB 1E9.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定成立的是( ) A .AB ∥mB .AC ⊥mC .AB ∥βD .AC ⊥β10.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( ) A .512πB .3π C .4π D .6π 11.正方体ABCD -A 1B 1C 1D 1中,过点A 作平面A 1BD 的垂线,垂足为点H .以下结论中,错误的是( ) A .点H 是△A 1BD 的垂心 B .AH ⊥平面CB 1D 1C .AH 的延长线经过点C 1D .直线AH 和BB 1所成的角为45°12.已知矩形ABCD ,AB =1,BC ,将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.下列四个命题:①若a ∥b ,a ∥α,则b ∥α;②若a ∥α,b ⊂α,则a ∥b ;③若a ∥α,则a 平行于α内所有的直线;④若a ∥α,a ∥b ,b ⊄α,则b ∥α.其中正确命题的序号是________.14.如图所示,在直四棱柱1111ABCD A B C D -中,当底面四边形A 1B 1C 1D 1满足条件_______时,有A 1C ⊥B 1D 1.(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况)15.已知四棱锥P ABCD -的底面ABCD 是矩形,P A ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则 ①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于PAB △的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的编号)16.如图所示,已知矩形ABCD 中,AB =3,BC =a ,若P A ⊥平面ABCD ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如图所示,长方体1111ABCD A B C D -中,M 、N 分别为AB 、A 1D 1的中点,判断MN 与平面A 1BC 1的位置关系,为什么?18.(12分)如图,三棱柱111ABC A B C -的侧棱与底面垂直,AC =9,BC =12,AB =15,AA 1=12,点D 是AB 的中点. (1)求证:AC ⊥B 1C ; (2)求证:AC 1∥平面CDB 1.19.(12分)如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC . (1)求证:BC ⊥平面P AC .(2)是否存在点E 使得二面角A DE P --为直二面角?并说明理由.20.(12分)如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,B 1C 的中点为O ,且AO ⊥平面BB 1C 1C . (1)证明:B 1C ⊥AB ;(2)若AC ⊥AB 1,∠CBB 1=60°,BC =1,求三棱柱111ABC A B C -的高.21.(12分)如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.(1)求证:P A∥面BDE;(2)求证:平面P AC⊥平面BDE;(3)若二面角E BD C--为30°,求四棱锥P ABCD-的体积.22.(12分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E ABC-的体积.2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.【答案】C【解析】若直线l∩α=A,显然有l⊄α,A∈l,但A∈α.故选C.2.【答案】D【解析】由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD =90°.故选D.3.【答案】D【解析】由于BD∥平面EFGH,所以有BD∥EH,BD∥FG,则AE∶EB=AH∶HD,且BF∶FC=DG∶GC.故选D.4.【答案】A【解析】如图,取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EFH平行,其余4个平面与EFH相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.故选A.5.【答案】B【解析】易证BD⊥面CC1E,则BD⊥CE.故选B.6.【答案】A 【解析】连接B′C,则△AB′C为等边三角形,设AD=a,则B′D=DC=a,B C AC'==,所以∠B′DC=90°.故选A.7.【答案】B【解析】对于①,∵P A⊥平面ABC,∴P A⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∴BC⊥平面P AC,又PC⊂平面P AC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥P A,∵P A⊂平面P AC,∴OM∥平面P AC;对于③,由①知BC⊥平面P AC,∴线段BC的长即是点B到平面P AC的距离.故①②③都正确.8.【答案】C【解析】由已知AC=AB,E为BC中点,故AE⊥BC,又∵BC∥B1C1,∴AE⊥B1C1,故C正确.故选C.9.【答案】D【解析】∵m∥α,m∥β,α∩β=l,∴m∥l.∵AB∥l,∴AB∥m.故A一定正确.∵AC⊥l,m∥l,∴AC⊥m.故B一定正确.∵A∈α,AB∥l,l⊂α,∴B∈α.∴AB⊄β,l⊂β.∴AB∥β.故C也正确.∵AC⊥l,当点C在平面α内时,AC⊥β成立,当点C不在平面α内时,AC⊥β不成立.故D不一定成立.故选D.10.【答案】B【解析】如图所示,作PO⊥平面ABC,则O为△ABC的中心,连接AP,AO.1sin 602ABC S =︒=11194ABC A B C ABC V S OP OP -∴=⨯==,OP ∴=213OA ==,∴tan OP OAP OA ∠=,又02OAP π<∠<,∴3OAP π∠=.故选B .11.【答案】D【解析】因为AH ⊥平面A 1BD ,BD ⊂平面A 1BD ,所以BD ⊥AH . 又BD ⊥AA 1,且AH ∩AA 1=A .所以BD ⊥平面AA 1H .又A 1H ⊂平面AA 1H .所以A 1H ⊥BD ,同理可证BH ⊥A 1D ,所以点H 是△A 1BD 的垂心,故A 正确. 因为平面A 1BD ∥平面CB 1D 1,所以AH ⊥平面CB 1D 1,B 正确.易证AC 1⊥平面A 1BD .因为过一点有且只有一条直线与已知平面垂直,所以AC 1和AH 重合.故C 正确.因为AA 1∥BB 1,所以∠A 1AH 为直线AH 和BB 1所成的角. 因为∠AA 1H ≠45°,所以∠A 1AH ≠45°,故D 错误.故选D . 12.【答案】B【解析】A 错误.理由如下:过A 作AE ⊥BD ,垂足为E ,连接CE ,若直线AC 与直线BD 垂直,则可得BD ⊥平面ACE ,于是BD ⊥CE ,而由矩形ABCD 边长的关系可知BD 与CE 并不垂直.所以直线AC 与直线BD 不垂直.B 正确.理由:翻折到点A 在平面BCD 内的射影恰好在直线BC 上时,平面ABC ⊥平面BCD ,此时由CD ⊥BC 可证CD ⊥平面ABC ,于是有AB ⊥CD .故B 正确. C 错误.理由如下:若直线AD 与直线BC 垂直,则由BC ⊥CD 可知BC ⊥平面ACD ,于是BC ⊥AC ,但是AB <BC ,在△ABC 中∠ACB 不可能是直角.故直线AD 与直线BC 不垂直.由以上分析显然D 错误.故选B .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】④【解析】①中b 可能在α内;②a 与b 可能异面或者垂直;③a 可能与α内的直线异面或垂直.14.【答案】B 1D 1⊥A 1C 1(答案不唯一)【解析】由直四棱柱可知CC 1⊥面A 1B 1C 1D 1,所以CC 1⊥B 1D 1,要使B 1D 1⊥A 1C ,只要B 1D 1⊥平面A 1CC 1,所以只要B 1D 1⊥A 1C 1,还可以填写四边形A 1B 1C 1D 1是菱形,正方形等条件. 15.【答案】①③【解析】由条件可得AB ⊥平面P AD ,∴AB ⊥PD ,故①正确;若平面PBC ⊥平面ABCD ,由PB ⊥BC ,得PB ⊥平面ABCD ,从而P A ∥PB , 这是不可能的,故②错;1·2PCD S CD PD =△,1·2PAB S AB PA =△,由AB =CD ,PD >P A 知③正确;由E 、F 分别是棱PC 、PD 的中点,可得EF ∥CD ,又AB ∥CD ,∴EF ∥AB , 故AE 与BF 共面,④错. 16.【答案】a >6【解析】由题意知:P A ⊥DE ,又PE ⊥DE ,P A ∩PE =P ,∴DE ⊥面P AE ,∴DE ⊥AE .易证△ABE ∽△ECD .设BE =x ,则A B B EC E C D=,即33xa x =-.∴290x ax +=-, 由0∆>,解得a >6.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】平行,见解析.【解析】直线MN ∥平面A 1BC 1.证明如下:∵M ∉平面A 1BC 1,N ∉平面A 1BC 1.∴MN ∉平面A 1BC 1. 如图,取A 1C 1的中点O 1,连接NO 1、BO 1.∵11112N D O C ∥,1112M D B C ∥,∴1NO MB ∥.∴四边形NO 1BM 为平行四边形.∴MN ∥BO 1.又∵BO 1⊂平面A 1BC 1,∴MN ∥平面A 1BC 1. 18.【答案】(1)见解析;(2)见解析. 【解析】(1)∵C 1C ⊥平面ABC ,∴C 1C ⊥AC .∵AC =9,BC =12,AB =15,∴AC 2+BC 2=AB 2,∴AC ⊥BC .又BC ∩C 1C =C ,∴AC ⊥平面BCC 1B 1,而B 1C ⊂平面BCC 1B 1,∴AC ⊥B 1C . (2)连接BC 1交B 1C 于O 点,连接OD .如图,∵O ,D 分别为BC 1,AB 的中点,∴OD ∥AC 1.又OD ⊂平面CDB 1,AC 1⊄平面CDB 1.∴AC 1∥平面CDB 1. 19.【答案】(1)见解析;(2)存在,见解析.【解析】(1)证明∵P A ⊥底面ABC ,∴P A ⊥BC .又∠BCA =90°,∴AC ⊥BC . 又∵AC ∩P A =A ,∴BC ⊥平面P AC .(2)∵DE ∥BC ,又由(1)知,BC ⊥平面P AC ,∴DE ⊥平面P AC . 又∵AE ⊂平面P AC ,PE ⊂平面P AC ,∴DE ⊥AE ,DE ⊥PE . ∴∠AEP 为二面角A DE P --的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC ,∴∠P AC =90°.∴在棱PC 上存在一点E ,使得AE ⊥PC .这时∠AEP =90°, 故存在点E ,使得二面角A DE P --为直二面角.20.【答案】(1)见解析;(2. 【解析】(1)证明 连接BC 1,则O 为B 1C 与BC 1的交点.因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1.又AO ⊥平面BB 1C 1C ,所以B 1C ⊥AO ,故B 1C ⊥平面ABO . 由于AB ⊂平面ABO ,故B 1C ⊥AB .(2)解 在平面BB 1C 1C 内作OD ⊥BC ,垂足为D ,连接AD . 在平面AOD 内作OH ⊥AD ,垂足为H .由于BC ⊥AO ,BC ⊥OD ,故BC ⊥平面AOD ,所以OH ⊥BC . 又OH ⊥AD ,所以OH ⊥平面ABC .因为∠CBB 1=60°,所以△CBB 1为等边三角形.又BC =1,可得OD =.由于AC ⊥AB 1,所以11122OA B C ==.由OH ·AD =OD ·OA,且AD =OH .又O 为B 1C 的中点,所以点B 1到平面ABC, 故三棱柱111ABC A B C -. 21.【答案】(1)见解析;(2)见解析;(3)3P ABCD V -=. 【解析】(1)证明 连接OE ,如图所示.∵O 、E 分别为AC 、PC 的中点,∴OE ∥P A . ∵OE ⊂面BDE ,P A ⊄面BDE ,∴P A ∥面BDE . (2)证明 ∵PO ⊥面ABCD ,∴PO ⊥BD .在正方形ABCD 中,BD ⊥AC ,又∵PO ∩AC =O ,∴BD ⊥面P AC . 又∵BD ⊂面BDE ,∴面P AC ⊥面BDE .(3)解 取OC 中点F ,连接EF .∵E 为PC 中点, ∴EF 为POC △的中位线,∴EF ∥PO .又∵PO ⊥面ABCD ,∴EF ⊥面ABCD ,∴EF ⊥BD . ∵OF ⊥BD ,OF ∩EF =F ,∴BD ⊥面EFO ,∴OE ⊥BD . ∴∠EOF 为二面角E BD C --的平面角,∴∠EOF =30°.在Rt △OEF中,1124OF OC AC ===,∴·tan 30EF OF =︒,∴2OP EF ==.∴2313P ABCD V a -=⨯. 22.【答案】(1)见解析;(2)见解析;(3)V =. 【解析】(1)证明在三棱柱111ABC A B C -中,BB 1⊥底面ABC ,所以BB 1⊥AB . 又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1, 又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1. (2)证明 取AB 的中点G ,连接EG ,FG .因为E ,F 分别是A 1C 1,BC 的中点,所以FG ∥AC ,且12FG AC =. 因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形.所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE ,所以C 1F ∥平面ABE .(3)解 因为AA 1=AC =2,BC =1,AB ⊥BC,所以AB == 所以三棱锥E -ABC的体积1111·12332ABC V S AA ==⨯⨯=△.。
人教版高中数学选择性必修第二册 全册模块综合检测2(含解析)
人教版高中数学选择性必修第二册全册模块综合检测2(原卷版)(时间:120分钟,分值:150分)一、单项选择题(本题共8小题,每小题5分,共40分)1.已知函数f(x)=e2x+1,则f′(0)=()A.0B.eC.2e D.e22.在等差数列{a n}中,a1+a4+a7=36,a2+a5+a8=33,则a3+a6+a9的值为() A.27B.30C.33D.363.已知a>0,b>0,a,b的等比中项为2,则a+1b+b+1a的最小值为()A.3B.4 C.5D.424.函数y=x-12x+1在(1,0)处的切线与直线l:y=ax垂直,则a=() A.-3B.3C.13D.-135.已知等差数列{a n}的前n项和S n满足:S37-S23=a,则S60=()A.4a B.307aC.5a D.407a6.函数f(x)=(x2+2x)e2x的图象大致是()7.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,则芒种日影长为()A.一尺五寸B.二尺五寸C.三尺五寸D.四尺五寸8.已知函数f(x)=x3-x和点P(1,-1),则过点P与该函数图象相切的直线条数为() A.1B.2C.3D.4二、多项选择题(本题共4小题,每小题5分,共20分)9.已知数列{a n}的前n项和为S n,S n=2a n-2,若存在两项a m,a n,使得a m a n=64,则() A.数列{a n}为等差数列B.数列{a n}为等比数列C.a21+a22+…+a2n=4n-13D.m+n为定值10.若函数e x f(x)(e=2.7182…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数为()A.f(x)=2-x B.f(x)=3-xC.f(x)=x3D.f(x)=x2+211.设等比数列{a n}的公比为q,其前n项和为S n,前n项积为T n,并且满足条件a1>1,a6a7>1,a6-1<0,则下列结论正确的是()a7-1A.0<q<1B.a6a8>1C.S n的最大值为S7D.T n的最大值为T612.设f′(x)为函数f(x)的导函数,已知x2f′(x)+xf(x)=ln x,f(1)=12,则下列结论正确的是()A.xf(x)在(1,+∞)单调递增B.xf(x)在(0,1)单调递减C.xf(x)在(0,+∞)上有极大值12D.xf(x)在(0,+∞)上有极小值12三、填空题(本题共4小题,每小题5分,共20分)13.已知等差数列{a n}中,a4=8,a8=4,则其通项公式a n=________.a1a9,则a n=________,数列14.已知正项等比数列{a n}满足a1=1,a2a6a7=116{log2a n}的前n项和为________.15.函数f(x)=12x2-ln x的单调递减区间是________.16.已知函数f(x)=ln x+mx,若函数f(x)的极小值不小于0,则实数m的取值范围为________.四、解答题(本题共6小题,共70分)17.(10分)等比数列{a n}中,已知a1=2,a4=16.(1)求数列{a n}的通项公式a n;(2)若a3,a5分别是等差数列{b n}的第4项和第16项,求数列{b n}的通项公式及前n项和S n.18.(12分)已知函数f(x)=12x2-3ln x.(1)求f(x)在(1,f(1))处的切线方程;(2)试判断f(x)在区间(1,e)上有没有零点.若有,判断零点的个数.19.(12分)设数列{a n}是等差数列,其前n项和为S n,且a3=2,S9=54.(1)求数列{a n}的通项公式;(2)证明:1a1+3+1a2+3+1a3+3+…+1a100+3>13.20.(12分)设函数f(x)=e x-ax-1(a∈R).(1)若a=2,求函数f(x)在区间[0,2]上的最大值和最小值;(2)当x≥0时,f(x)≥0,求a的取值范围.21.(12分)等差数列{a n}中,S3=21,S6=24,(1)求数列{a n}的前n项和公式S n;(2)求数列{|a n|}的前n项和T n.22.(12分)已知a,b∈R,设函数f(x)=e x-ax-b x2+1.(1)若b=0,求f(x)的单调区间;(2)当x∈[0,+∞)时,f(x)的最小值为0,求a+5b的最大值.注:e=2.71828…为自然对数的底数.人教版高中数学选择性必修第二册全册模块综合检测2(解析版)(时间:120分钟,分值:150分)一、单项选择题(本题共8小题,每小题5分,共40分)1.已知函数f (x )=e 2x +1,则f ′(0)=()A .0B .e C .2e D .e 2C解析:∵f (x )=e 2x +1,∴f ′(x )=2e 2x +1,∴f ′(0)=2e.故选C .2.在等差数列{a n }中,a 1+a 4+a 7=36,a 2+a 5+a 8=33,则a 3+a 6+a 9的值为()A .27B .30C .33D .36B解析:因为a 1+a 4+a 7=3a 4=36,所以a 4=12.因为a 2+a 5+a 8=33,所以a 5=11.所以d=a 5-a 4=-1,所以a 3+a 6+a 9=3a 6=3(a 5+d )=30.故选B .3.已知a >0,b >0,a ,b 的等比中项为2,则a +1b +b +1a 的最小值为()A .3B .4C .5D .42C解析:∵a +1b +b +1a =(a +b )+a +b ab=(a +b =54(a +b )≥54·2ab =5,等号成立当且仅当a =b =2,原式的最小值为5.4.函数y =x -12x +1在(1,0)处的切线与直线l :y =ax 垂直,则a =()A .-3B .3C .13D .-13A解析:∵y ′=3(2x +1)2,∴y ′|x =1=13,∴函数在(1,0)处的切线的斜率是13,所以,与此切线垂直的直线的斜率是-3,∴a =-3.故选A .5.已知等差数列{a n }的前n 项和S n 满足:S 37-S 23=a ,则S 60=()A .4aB .307a C .5aD .407aB 解析:因为S 37-S 23=a 24+a 25+…+a 37=a 24+a 372×14=7(a 24+a 37)=a .所以S 60=a 1+a 602×60=30(a 24+a 37)=307a .故选B .6.函数f (x )=(x 2+2x )e 2x 的图象大致是()A 解析:由于f ′(x )=2(x 2+3x +1)·e 2x ,而y =x 2+3x +1的判别式Δ=9-4=5>0,所以y=x 2+3x +1开口向上且有两个根x 1,x 2.不妨设x 1<x 2,所以f (x )在(-∞,x 1),(x 2,+∞)上递增,在(x 1,x 2)上递减.所以C ,D 选项不正确.当x <-2时,f (x )>0,所以B 选项不正确.由此得出A 选项正确.故选A .7.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,则芒种日影长为()A .一尺五寸B .二尺五寸C .三尺五寸D .四尺五寸B解析:由题知各节气日影长依次成等差数列,设为{a n },S n 是其前n 项和,则S 9=9(a 1+a 9)2=9a 5=85.5,所以a 5=9.5,由题知a 1+a 4+a 7=3a 4=31.5,所以a 4=10.5,所以公差d =a 5-a 4=-1.所以a 12=a 5+7d =2.5尺.故选B .8.已知函数f (x )=x 3-x 和点P (1,-1),则过点P 与该函数图象相切的直线条数为()A .1B .2C .3D .4B解析:因为f (1)=13-1=0,所以点P (1,-1)没有在函数的图象上.设切点坐标为(x 0,y 0),则y 0=x 30-x 0,则f ′(x )=3x 2-1.由导数的几何意义可知,过切点的斜率为k =3x 20-1,过P (1,-1)和切点的斜率表示为k =y 0+1x 0-1,-x0,3x20-1,化简可得x20(2x0-3)=0,所以x0=0或x0=32.所以切点有两个,因而有两条切线方程.故选B.二、多项选择题(本题共4小题,每小题5分,共20分)9.已知数列{a n}的前n项和为S n,S n=2a n-2,若存在两项a m,a n,使得a m a n=64,则() A.数列{a n}为等差数列B.数列{a n}为等比数列C.a21+a22+…+a2n=4n-13D.m+n为定值BD解析:由题意,当n=1时,S1=2a1-2,解得a1=2,当n≥2时,S n-1=2a n-1-2,所以S n-S n-1=a n=2a n-2-(2a n-1-2)=2a n-2a n-1,所以a na n-1=2,数列{a n}是以a1=2为首项,q=2为公比的等比数列,a n=2n,故选项A错误,选项B正确;数列{a2n}是以a21=4为首项,q1=4为公比的等比数列,所以a21+a22+…+a2n=a21(1-q n1)1-q1=4×(1-4n)1-4=4n+1-43,故选项C 错误;a m a n=2m2n=2m+n=64=26,所以m+n=6为定值,故选项D正确.故选BD.10.若函数e x f(x)(e=2.7182…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数为()A.f(x)=2-x B.f(x)=3-xC.f(x)=x3D.f(x)=x2+2AD解析:对于选项A,f(x)=2-x,则g(x)=e x f(x)=e x·2-x为实数集上的增函数;对于选项B,f(x)=3-x,则g(x)=e x f(x)=e x·3-x为实数集上的减函数;对于选项C,f(x)=x3,则g(x)=e x f(x)=e x·x3,g′(x)=e x·x3+3e x·x2=e x(x3+3x2)=e x·x2(x+3),当x<-3时,g′(x)<0,∴g(x)=e x f(x)在定义域R上先减后增;对于选项D,f(x)=x2+2,则g(x)=e x f(x)=e x(x2+2),g′(x)=e x(x2+2)+2x e x=e x(x2+2x+2)>0在实数集R上恒成立,∴g(x)=e x f(x)在定义域R上是增函数.故选AD.11.设等比数列{a n}的公比为q,其前n项和为S n,前n项积为T n,并且满足条件a1>1,a6a7>1,a6-1a7-1<0,则下列结论正确的是()A.0<q<1B.a6a8>1C.S n的最大值为S7D.T n的最大值为T6AD 解析:易知q >0,若q >1,则a 6>1,a 7>1,与a 6-1a 7-1>0矛盾,故0<q <1.所以0<a 7<1.所以a 6a 8=a 27<1.因为a 7>0,a 8>0,所以S n 的最大值一定不为S 7.因为0<a 7<1,a 6>1,所以T n 的最大值为T 6,故选AD .12.设f ′(x )为函数f (x )的导函数,已知x 2f ′(x )+xf (x )=ln x ,f (1)=12,则下列结论正确的是()A .xf (x )在(1,+∞)单调递增B .xf (x )在(0,1)单调递减C .xf (x )在(0,+∞)上有极大值12D .xf (x )在(0,+∞)上有极小值12ABD解析:由x 2f ′(x )+xf (x )=ln x 得x >0,则xf ′(x )+f (x )=ln x x ,由[xf (x )]′=ln xx .设g (x )=xf (x ),即g ′(x )=ln xx>0得x >1.由g ′(x )<0得0<x <1,即xf (x )在(1,+∞)单调递增,在(0,1)单调递减,即当x =1时,函数g (x )=xf (x )取得极小值g (1)=f (1)=12.故选ABD .三、填空题(本题共4小题,每小题5分,共20分)13.已知等差数列{a n }中,a 4=8,a 8=4,则其通项公式a n =________.12-n 解析:∵等差数列{a n }中,a 4=8,a 8=4,4=a 1+3d =8,8=a 1+7d =4,解得a 1=11,d =-1,∴a n =11+(n -1)×(-1)=12-n .14.已知正项等比数列{a n }满足a 1=1,a 2a 6a 7=116a 1a 9,则a n =________,数列{log 2a n }的前n 项和为________.2-n +1-n (n -1)2解析:由a 1=1,a 2a 6a 7=1161a 9得a 5=a 1q 4=116,q =12,a n -1=2-n+1.而log 2a n =-n +1,所以{log 2a n }的前n 项和为-n (n -1)2.15.函数f (x )=12x 2-ln x 的单调递减区间是________.(0,1]解析:f (x )=12x 2-ln x ,则f ′(x )=x -1x =x 2-1x =(x +1)(x -1)x≤0,故0<x ≤1.16.已知函数f (x )=ln x +mx,若函数f (x )的极小值不小于0,则实数m 的取值范围为________.1e,+∞解析:由f (x )=ln x +m x 得f ′(x )=1x -m x 2=x -mx2,定义域为(0,+∞).当m ≤0时,f ′(x )>0,函数y =f (x )单调递增,函数无极值;当m >0时,令f ′(x )=0⇒x =m ,当x ∈(0,m )时,f ′(x )<0,函数y =f (x )单调递减;当x ∈(m ,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以当x =m 时,函数y =f (x )取极小值,且为f (m )=ln m +1.依题意有ln m +1≥0⇒m ≥1e ,因此,实数m 的取值范围是1e ,+∞四、解答题(本题共6小题,共70分)17.(10分)等比数列{a n }中,已知a 1=2,a 4=16.(1)求数列{a n }的通项公式a n ;(2)若a 3,a 5分别是等差数列{b n }的第4项和第16项,求数列{b n }的通项公式及前n 项和S n .解:(1)设{a n }的公比为q ,由已知得16=2q 3,解得q =2,所以a n =2n .(2)由(1)得a 3=8,a 5=32,则b 4=8,b 16=32.设{b n }的公差为d b 1+3d =8,b 1+15d =32,b 1=2,d =2.从而b n =2+2(n -1)=2n .所以数列{b n }的前n 项和S n =(2+2n )n2=n 2+n .18.(12分)已知函数f (x )=12x 2-3ln x .(1)求f (x )在(1,f (1))处的切线方程;(2)试判断f (x )在区间(1,e)上有没有零点.若有,判断零点的个数.解:(1)由已知得f ′(x )=x -3x ,有f ′(1)=-2,f (1)=12,∴在(1,f (1))处的切线方程为y -12=-2(x -1),化简得4x +2y -5=0.(2)由(1)知f ′(x )=(x -3)(x +3)x ,因为x >0,令f ′(x )=0,得x = 3.所以当x ∈(0,3)时,有f ′(x )<0,则(0,3)是函数f (x )的单调递减区间;当x ∈(3,+∞)时,有f ′(x )>0,则(3,+∞)是函数f (x )的单调递增区间;当x ∈(1,e)时,函数f (x )在(1,3)上单调递减,在(3,e)上单调递增.又因为f (1)=12,f (e)=12e 2-3>0,f (3)=32(1-ln 3)<0,所以f (x )在区间(1,e)上有两个零点.19.(12分)设数列{a n }是等差数列,其前n 项和为S n ,且a 3=2,S 9=54.(1)求数列{a n }的通项公式;(2)证明:1a 1+3+1a 2+3+1a 3+3+…+1a 100+3>13.(1)解:设数列{a n }的公差为d ,∵S 9=9a 5=54,∴a 5=6,∴d =a 5-a 35-3=2,∴a n =a 3+(n -3)d =2n -4.(2)证明:∵1a n +3=12n -1>22n -1+2n +1=2n +1-2n -1,∴1a 1+3+1a 2+3+1a 3+3+…+1a 100+3>(3-1)+(5-3)+…+(201-199)=201-1>14-1=13,∴1a 1+3+1a 2+3+1a 3+3+…+1a 100+3>13.20.(12分)设函数f (x )=e x -ax -1(a ∈R ).(1)若a =2,求函数f (x )在区间[0,2]上的最大值和最小值;(2)当x ≥0时,f (x )≥0,求a 的取值范围.解:(1)f (x )=e x -2x -1,取f ′(x )=e x -2=0,即x =ln 2,函数在[0,ln 2]上单调递减,在(ln 2,2]上单调递增,且f (0)=0,f (2)=e 2-5,f (ln 2)=1-2ln 2,故函数的最大值为f (2)=e 2-5,最小值为f (ln 2)=1-2ln 2.(2)f (x )=e x -ax -1,f ′(x )=e x -a ,f (0)=0.当a ≤0时,f ′(x )=e x -a >0,函数单调递增,故f (x )≥f (0)=0,成立;当a >0时,f ′(x )=e x -a =0,即x =ln a ,故函数在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (ln a )<f (0)=0,不成立.综上所述,a 的取值范围为(-∞,0].21.(12分)等差数列{a n }中,S 3=21,S 6=24,(1)求数列{a n }的前n 项和公式S n ;(2)求数列{|a n |}的前n 项和T n .解:(1)设{a n }首项为a 1,公差为d ,由S 3=21,S 6=24,a 1+3×22d =21,a 1+6×52d =24,1=9,=-2.∴S n =n ×9+n (n -1)2×(-2)=-n 2+10n .(2)由(1)知,a n =9+(n -1)×(-2)=-2n +11,由a n ≥0得-2n +11≥0,即n ≤112.当n ≤5时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =-n 2+10n ;当n ≥6时,T n =|a 1|+…+|a 5|+|a 6|+…+|a n |=(a 1+a 2+…+a 5)-(a 6+…+a n )=S 5-(S n -S 5)=n 2-10n +50.综上,T nn 2+10n (n ≤5),2-10n +50(n ≥6).22.(12分)已知a ,b ∈R ,设函数f (x )=e x -ax -b x 2+1.(1)若b =0,求f (x )的单调区间;(2)当x ∈[0,+∞)时,f (x )的最小值为0,求a +5b 的最大值.注:e =2.71828…为自然对数的底数.解:(1)f (x )=e x -ax ,f ′(x )=e x -a ,当a ≤0时,f ′(x )=e x -a ≥0恒成立,函数单调递增;当a >0时,f ′(x )=e x -a =0,x =ln a ,当x ∈(-∞,ln a )时,f ′(x )<0,函数单调递减;当x ∈(ln a ,+∞)时,f ′(x )>0,函数单调递增.综上所述,a ≤0时,f (x )在R 上单调递增;a >0时,f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.(2)f (x )=e x-ax -bx 2+1≥0在x ∈[0,+∞)上恒成立,=e -12a -52b ≥0,故a +5b ≤2e ,现在证明存在a ,b ,a +5b =2e ,使f (x )的最小值为0.取a =3e 4,b =5e 4(此时可使f 0),f ′(x )=e x -a -bx x 2+1,f ″(x )=e x -b (x 2+1)x 2+1,b =5e 4<1,故当x ∈[0,+∞)时,(x 2+1)x 2+1≥1,e x ≥1,故f ″(x )≥0,f ′(x )在[0,+∞)上单调递增,f 0,故f (x )在0f (x )min =0.综上所述,a +5b 的最大值为2 e.。
高中数学必修二第二单元单元测试
FB EAND CM必修二第二单元单元测试一、选择题:(本题共12小题,每小题5分,共60分) 1.下列四个条件中,能确定一个平面的是( )A. 一条直线和一个点B.空间两条直线C. 空间任意三点D.两条平行直线2.已知直线l ∥平面α,直线α⊂a ,则l 与a 的位置关系必定是( )A. l 与a 无公共点B. l 与a 异面C.l 与a 相交,D.l ∥a 3.两两相交的四条直线确定平面的个数最多的是( ) A .4个 B .5个 C .6个 D .8个 4.下列命题中正确的个数是( )个①若直线l 上有无数个公共点不在平面α内,则//l α.②若直线l 与平面α平行,则直线l 与平面α内的任意一条直线都平行. ③如果两平行线中的一条与一个平面平行,那么另一条也与这个平面平行. ④垂直于同一条直线的两条直线互相平行. A.0 B.1 C.2 D.35.123,,l l l 是空间三条不同的直线,则下列命题正确的是( ) A.313221//,l l l l l l ⇒⊥⊥ B.313221//,l l l l l l ⊥⇒⊥ C.321321,,////l l l l l l ⇒共面 D.321,,l l l 共点321,,l l l ⇒共面6.如图是正方体的平面展开图,则在这个正方体中:①BM 与ED 平行.②CN 与BE 是异面直线. ③CN 与AF 垂直.④DM 与BN 是异面直线. 以上四个命题中正确的个数是( ) A.1 B.2 C.3 D.47. 已知不同的直线,l m ,不同的平面,αβ,下命题中:①若α∥β,,l α⊂则l ∥β ②若α∥β,,;l l αβ⊥⊥则 ③若l ∥α,m α⊂,则l ∥m ④,,l m αβαββ⊥⋂=⊥若则 真命题的个数有( )A .0个B .1个C .2个D .3个 8. 下列命题中,错误..的命题是( ) A 、平行于同一直线的两个平面平行。
高中数学 模块综合检测2(含解析)新人教A版选择性必修第二册-新人教A版高二选择性必修第二册数学试题
模块综合检测(二)(满分:150分 时间:120分钟)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知f (x )=ln x 2x ,则lim Δx →0f ⎝ ⎛⎭⎪⎫12-f ⎝ ⎛⎭⎪⎫12+Δx Δx =( ) A .-2-ln 2B .-2+ln 2C .2-ln 2D .2+ln 2A [由题意,函数f (x )=ln x 2x , 则f ′(x )=1x ·2x -(2x )′ln x (2x )2=2x -12⎝ ⎛⎭⎪⎫1-12ln x 2x , 则lim Δx →0f ⎝ ⎛⎭⎪⎫12-f ⎝ ⎛⎭⎪⎫12+Δx Δx =-f ′⎝ ⎛⎭⎪⎫12=-2+ln 22×12=-2-ln 2,故选A.] 2.等比数列{a n }是递减数列,前n 项的积为T n ,若T 13=4T 9,则a 8a 15=( )A .±2B .±4C .2D .4C [∵T 13=4T 9,∴a 1a 2…a 9a 10a 11a 12a 13=4a 1a 2…a 9,∴a 10a 11a 12a 13=4.又∵a 10·a 13=a 11·a 12=a 8·a 15,∴(a 8·a 15)2=4,∴a 8a 15=±2.又∵{a n }为递减数列,∴q >0,∴a 8a 15=2.]3.已知公差不为0的等差数列{a n }的前23项的和等于前8项的和.若a 8+a k =0,则k =( )A .22B .23C .24D .25C [等差数列的前n 项和S n 可看做关于n 的二次函数(图象过原点).由S 23=S 8,得S n 的图象关于n =312对称,所以S 15=S 16,即a 16=0,所以a 8+a 24=2a 16=0,所以k =24.]4.已知函数f (x )=(x +a )e x 的图象在x =1和x =-1处的切线相互垂直,则a =( )A .-1B .0C .1D .2A [因为f ′(x )=(x +a +1)e x ,所以f ′(1)=(a +2)e ,f ′(-1)=a e -1=a e ,由题意有f (1)f ′(-1)=-1,所以a =-1,选A.]5.设S n 是公差不为0的等差数列{a n }的前n 项和,S 3=a 22,且S 1,S 2,S 4成等比数列,则a 10=( )A .15B .19C .21D .30B [由S 3=a 22得3a 2=a 22,故a 2=0或a 2=3.由S 1,S 2,S 4成等比数列可得S 22=S 1·S 4,又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d ,故(2a 2-d )2=(a 2-d )(4a 2+2d ),化简得3d 2=2a 2d ,又d ≠0,∴a 2=3,d =2,a 1=1,∴a n =1+2(n -1)=2n -1,∴a 10=19.]6.若函数f (x )=ax -ln x 的图象上存在与直线x +2y -4=0垂直的切线,则实数a 的取值X 围是( )A .(-2,+∞)B .⎝ ⎛⎭⎪⎫12,+∞ C .⎝ ⎛⎭⎪⎫-12,+∞ D .(2,+∞)D [因为函数f (x )=ax -ln x 的图象上存在与直线x +2y -4=0垂直的切线,所以函数f (x )=ax -ln x 的图象上存在斜率为2的切线,故k =f ′(x )=a -1x =2有解,所以a =2+1x ,x >0有解,因为y =2+1x ,x >0的值域为(2,+∞).所以a ∈(2,+∞).]7.已知等差数列{}a n 的前n 项为S n ,且a 1+a 5=-14,S 9=-27,则使得S n 取最小值时的n 为( )A .1B .6C .7D .6或7B [由等差数列{a n }的性质,可得a 1+a 5=2a 3=-14⇒a 3=-7,又S 9=9(a 1+a 9)2=-27⇒a 1+a 9=-6⇒a 5=-3,所以d =a 5-a 35-3=2,所以数列{a n }的通项公式为a n =a 3+(n -3)d =-7+(n -3)×2=2n -13,令a n ≤0⇒2n -13≤0,解得n ≤132,所以数列的前6项为负数,从第7项开始为正数,所以使得S n 取最小值时的n 为6,故选B.]8.若方底无盖水箱的容积为256,则最省材料时,它的高为( )A .4B .6C .4.5D .8A [设底面边长为x ,高为h ,则V (x )=x 2·h =256,∴h =256x 2.∴S (x )=x 2+4xh =x 2+4x ·256x 2=x 2+4×256x ,∴S ′(x )=2x -4×256x 2. 令S ′(x )=0,解得x =8,∴当x =8时,S (x )取得最小值.∴h =25682=4.]二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.设数列{}a n 是等差数列,S n 是其前n 项和,a 1>0,且S 6=S 9,则( )A .d <0B .a 8=0C .S 5>S 6D .S 7或S 8为S n 的最大值ABD [根据题意可得a 7+a 8+a 9=0⇒3a 8=0⇒a 8=0,∵数列{}a n 是等差数列,a 1>0,∴公差d <0,所以数列{}a n 是单调递减数列, 对于A 、B ,d <0,a 8=0,显然成立;对于C ,由a 6>0,则S 5<S 6,故C 不正确;对于D ,由a 8=0,则S 7=S 8,又数列为递减数列,则S 7或S 8为S n 的最大值,故D 正确.故选ABD.]10.如图是y =f (x )导数的图象,对于下列四个判断,其中正确的判断是( )A .f (x )在(-2,-1)上是增函数B .当x =-1时,f (x )取得极小值C .f (x )在(-1,2)上是增函数,在(2,4)上是减函数D .当x =3时,f (x )取得极小值BC [根据图象知当x ∈(-2,-1),x ∈(2,4)时,f ′(x )<0,函数单调递减; 当x ∈(-1,2),x ∈(4,+∞)时,f ′(x )>0,函数单调递增.故A 错误;故当x =-1时,f (x )取得极小值,B 正确;C 正确;当x =3时,f (x )不是取得极小值,D 错误.故选BC.]11.已知等比数列{}a n 的公比q =-23,等差数列{}b n 的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( )A .a 9a 10<0B .a 9>a 10C .b 10>0D .b 9>b 10AD [∵等比数列{}a n 的公比q =-23,∴a 9和a 10异号,∴a 9a 10<0 ,故A 正确;但不能确定a 9和a 10的大小关系,故B 不正确;∵a 9和a 10异号,且a 9>b 9且a 10>b 10,∴b 9和b 10中至少有一个数是负数, 又∵b 1=12>0 ,∴d <0,∴b 9>b 10 ,故D 正确,∴b 10一定是负数,即b 10<0 ,故C 不正确. 故选AD.]12.已知函数f (x )=x ln x ,若0<x 1<x 2,则下列结论正确的是( )A .x 2f (x 1)<x 1f (x 2)B .x 1+f (x 1)<x 2+f (x 2)C .f (x 1)-f (x 2)x 1-x 2<0 D .当ln x >-1时,x 1f (x 1)+x 2f (x 2)>2x 2f (x 1)AD [设g (x )=f (x )x =ln x ,函数单调递增,则g (x 2)>g (x 1),即f (x 2)x 2>f (x 1)x 1,∴x 1f (x 2)>x 2f (x 1),A 正确; 设h (x )=f (x )+x ∴h ′(x )=ln x +2不是恒大于零,B 错误;f (x )=x ln x ,∴f ′(x )=ln x +1不是恒小于零,C 错误;ln x >-1,故f ′(x )=ln x +1>0,函数单调递增.故(x 2-x 1)(f (x 2)-f (x 1))=x 1f (x 1)+x 2f (x 2)-x 2f (x 1)-x 1f (x 2)>0,即x 1f (x 1)+x 2f (x 2)>x 2f (x 1)+x 1f (x 2).f (x 2)x 2=ln x 2>f (x 1)x 1=ln x 1,∴x 1f (x 2)>x 2f (x 1),即x 1f (x 1)+x 2f (x 2)>2x 2f (x 1),D 正确.故选AD.]三、填空题(本题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.数列{a n }的前n 项和为S n ,若a n +1=11-a n(n ∈N *),a 1=2,则S 50=________. 25[因为a n +1=11-a n (n ∈N *),a 1=2,所以a 2=11-a 1=-1,a 3=11-a 2=12,a 4=11-a 3=2,∴数列{a n }是以3为周期的周期数列,且前三项和S 3=2-1+12=32, ∴S 50=16S 3+2-1=25.]14.将边长为1 m 的正三角形薄铁皮,沿一条平行于某边的直线剪成两块,其中一块是梯形,记s =(梯形的周长)2梯形的面积,则s 的最小值是________. 3233[设AD =x (0<x <1),则DE =AD =x ,∴梯形的周长为x+2(1-x )+1=3-x .又S △ADE =34x 2,∴梯形的面积为34-34x 2,∴s =433×x 2-6x +91-x 2(0<x <1), 则s ′=-833×(3x -1)(x -3)(1-x 2)2. 令s ′=0,解得x =13.当x ∈⎝ ⎛⎭⎪⎫0,13时,s ′<0,s 为减函数;当x ∈⎝ ⎛⎭⎪⎫13,1时,s ′>0,s 为增函数.故当x =13时,s 取得极小值,也是最小值,此时s 的最小值为3233.]15.设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =________.32[由S 2=3a 2+2,S 4=3a 4+2相减可得a 3+a 4=3a 4-3a 2,同除以a 2可得2q 2-q -3=0,解得q =32或q =-1.因为q >0,所以q =32.]16.已知函数f (x )是定义在R 上的偶函数,当x >0时,xf ′(x )>f (x ),若f (2)=0,则2f (3)________3f (2)(填“>”“<”)不等式x ·f (x )>0的解集为________.(本题第一空2分,第二空3分)> (-2,0)∪(2,+∞)[由题意,令g (x )=f (x )x ,∵x >0时,g ′(x )=xf ′(x )-f (x )x 2>0.∴g (x )在(0,+∞)单调递增,∵f (x )x 在(0,+∞)上单调递增,∴f (3)3>f (2)2即2f (3)>3f (2).又∵f (-x )=f (x ),∴g (-x )=-g (x ),则g (x )是奇函数,且g (x )在(-∞,0)上递增,又g (2)=f (2)2=0,∴当0<x <2时,g (x )<0,当x >2时,g (x )>0;根据函数的奇偶性,可得当-2<x <0时,g (x )>0,当x <-2时,g (x )<0. ∴不等式x ·f (x )>0的解集为{x |-2<x <0或x >2}.]四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)在等差数列{}a n 中,已知a 1=1,a 3=-5.(1)求数列{}a n 的通项公式;(2)若数列{}a n 的前k 项和S k =-25,求k 的值.[解](1)由题意,设等差数列{}a n 的公差为d ,则a n =a 1+()n -1d ,因为a 1=1,a 3=-5,可得1+2d =-5,解得d =-3,所以数列{}a n 的通项公式为a n =1+()n -1×()-3=4-3n .(2)由(1)可知a n =4-3n ,所以S n =n [1+(4-3n )]2=-32n 2+52n ,又由S k =-25,可得-32k 2+52k =-25,即3k 2-5k -50=0,解得k =5或k =-103,又因为k ∈N *,所以k =5.18.(本小题满分12分)已知函数f (x )=a ln x +12x 2.(1)求f (x )的单调区间;(2)函数g (x )=23x 3-16(x >0),求证:a =1时f (x )的图象不在g (x )的图象的上方.[解](1)f ′(x )=a x +x (x >0),若a ≥0,则f ′(x )>0,f (x )在 (0,+∞)上单调递增;若a <0,令f ′(x )=0,解得x =±-a ,由f ′(x )=(x --a )(x +-a )x >0,得x >-a ,由f ′(x )<0,得0<x <-a .从而f (x )的单调递增区间为(-a ,+∞),单调递减区间为(0,-a ). (2)证明:令φ(x )=f (x )-g (x ),当a =1时,φ(x )=ln x +12x 2-23x 3+16(x >0),则φ′(x )=1x +x -2x 2=1+x 2-2x 3x =(1-x )(2x 2+x +1)x. 令φ′(x )=0,解得x =1.当0<x <1时,φ′(x )>0,φ(x )单调递增;当x >1时,φ′(x )<0,φ(x )单调递减.∴当x =1时,φ(x )取得最大值φ(1)=12-23+16=0,∴φ(x )≤0,即f (x )≤g (x ).故a =1时f (x )的图象不在g (x )的图象的上方.19.(本小题满分12分)已知数列{}a n 的前n 项和为S n ,且2S n =3a n -1.(1)求数列{}a n 的通项公式;(2)若数列{}b n 满足b n =log 3a n +1,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和T n .[解](1)由2S n =3a n -1()n ∈N +得,2S n -1=3a n -1-1()n ≥2.两式相减并整理得,a n =3a n -1()n ≥2.令n =1,由2S n =3a n -1()n ∈N +得,a 1=1.故{}a n 是以1为首项,公比为3的等比数列,因此a n =3n -1()n ∈N +.(2)由b n =log 3a n +1,结合a n =3n -1得,b n =n .则1b n b n +1=1n ()n +1=1n -1n +1 故T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+1n -1n +1=n n +1. 20.(本小题满分12分)某旅游景点预计2019年1月份起前x 个月的旅游人数的和p (x )(单位:万人)与x 的关系近似地满足p (x )=12x (x +1)(39-2x )(x ∈N *,且x ≤12).已知第x 个月的人均消费额q (x )(单位:元)与x 的近似关系是q (x )=⎩⎪⎨⎪⎧ 35-2x (x ∈N *,且1≤x ≤6),160x (x ∈N *,且7≤x ≤12).(1)写出2019年第x 个月的旅游人数f (x )(单位:万人)与x 的函数关系式;(2)问2019年第几个月旅游消费总额最大?最大月旅游消费总额为多少元?[解](1)当x =1时,f (1)=p (1)=37,当2≤x ≤12,且x ∈N *时,f (x )=p (x )-p (x -1)=12x (x +1)(39-2x )-12(x -1)x (41-2x )=-3x 2+40x ,验证x =1也满足此式,所以f (x )=-3x 2+40x (x ∈N *,且1≤x ≤12).(2)第x 个月旅游消费总额(单位:万元)为g (x )=⎩⎨⎧ (-3x 2+40x )(35-2x )(x ∈N *,且1≤x ≤6),(-3x 2+40x )·160x (x ∈N *,且7≤x ≤12),即g (x )=⎩⎪⎨⎪⎧6x 3-185x 2+1 400x (x ∈N *,且1≤x ≤6),-480x +6 400(x ∈N *,且7≤x ≤12). (i)当1≤x ≤6,且x ∈N *时,g ′(x )=18x 2-370x +1 400,令g ′(x )=0,解得x =5或x =1409(舍去).当1≤x <5时,g ′(x )>0,当5<x ≤6时,g ′(x )<0,∴当x =5时,g (x )max =g (5)=3 125.(ii)当7≤x ≤12,且x ∈N *时,g (x )=-480x +6 400是减函数,∴当x =7时,g (x )max =g (7)=3 040.综上,2019年5月份的旅游消费总额最大,最大旅游消费总额为3 125万元.21.(本小题满分12分)已知数列{a n }的通项公式为a n =3n -1,在等差数列{b n }中,b n >0,且b 1+b 2+b 3=15,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列.(1)求数列{a n b n }的通项公式;(2)求数列{a n b n }的前n 项和T n .[解](1)∵a n =3n -1,∴a 1=1,a 2=3,a 3=9.∵在等差数列{b n }中,b 1+b 2+b 3=15,∴3b 2=15,则b 2=5.设等差数列{b n }的公差为d ,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列,∴(1+5-d )(9+5+d )=64,解得d =-10或d =2.∵b n >0,∴d =-10应舍去,∴d =2,∴b 1=3,∴b n =2n +1.故a n b n=(2n+1)·3n-1.(2)由(1)知T n=3×1+5×3+7×32+…+(2n-1)3n-2+(2n+1)3n-1,①3T n=3×3+5×32+7×33+…+(2n-1)3n-1+(2n+1)3n,②①-②,得-2T n=3×1+2×3+2×32+2×33+…+2×3n-1-(2n+1)×3n =3+2×(3+32+33+…+3n-1)-(2n+1)×3n=3+2×3-3n1-3-(2n+1)×3n=3n-(2n+1)×3n=-2n·3n.∴T n=n·3n.22.(本小题满分12分)设函数f (x)=x3-6x+5,x∈R.(1)求f (x)的极值点;(2)若关于x的方程f (x)=a有3个不同实根,某某数a的取值X围;(3)已知当x∈(1,+∞)时,f (x)≥k(x-1)恒成立,某某数k的取值X围.[解](1)f ′(x)=3(x2-2),令f ′(x)=0,得x1=-2,x2= 2.当x∈(-∞,-2)∪(2,+∞)时,f ′(x)>0,当x∈(-2,2) 时,f ′(x)<0,因此x1=-2,x2=2分别为f (x)的极大值点、极小值点.(2)由(1)的分析可知y=f (x)图象的大致形状及走向如图所示.要使直线y=a 与y=f (x)的图象有3个不同交点需5-42=f (2)<a<f (-2)=5+4 2.则方程f (x)=a有3个不同实根时,所某某数a的取值X围为(5-42,5+42).(3)法一:f (x)≥k(x-1),即(x-1)(x2+x-5)≥k(x-1),因为x>1,所以k≤x2+x-5在(1,+∞)上恒成立,令g(x)=x2+x-5,由二次函数的性质得g(x)在(1,+∞)上是增函数,所以g(x)>g(1)=-3,所以所求k的取值X围是为(-∞,-3].法二:直线y=k(x-1)过定点(1,0)且f (1)=0,曲线f (x)在点(1,0)处切线斜率f ′(1)=-3,由(2)中图知要使x∈(1,+∞)时,f (x)≥k(x-1)恒成立需k≤-3.故实数k的取值X围为(-∞,-3].。
高中数学模块综合检测新人教A版必修第二册
模块综合检测(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足i z +2=i,则在复平面内,z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A2.在△ABC 中,a =3,b =2,A =30°,则sin B =( ) A .13 B .23 C .23D .223【答案】A3.某校高一年级有男生450人,女生550人,若在各层中按比例抽取样本,总样本量为40,则在男生、女生中抽取的人数分别为( )A .17,23B .18,22C .19,21D .22,18【答案】B4.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则a -2b 与b 的夹角是( ) A .30° B .60° C .120° D .150° 【答案】C5.在某中学举行的环保知识竞赛中,将三个年级参赛学生的成绩进行整理后分为5组,绘制如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组,已知第二小组的频数是40,则成绩在80~100分的学生人数是( )A .25B .20C .18D .15【答案】D6.2021年是中国共产党成立100周年,电影频道推出“经典频传:看电影,学党史”系列短视频,首批21支短视频全网发布,传扬中国共产党伟大精神,为广大青年群体带来精神感召.小李同学打算从《青春之歌》《闪闪的红星》《英雄儿女》《焦裕禄》等四支短视频中随机选择两支观看,则选择观看《青春之歌》的概率为( )A .12B .13C .14D .25【答案】A7.我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”里记载了这样一个题目:“今有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步.欲知为田几何.”这道题讲的是有一块三角形的沙田,三边长分别为13里,14里,15里,假设1里按500米计算,则该沙田的面积为( )A .15平方千米B .18平方千米C .21平方千米D .24平方千米【答案】C【解析】设在△ABC 中,a =13里,b =14里,c =15里,∴由余弦定理得cos C =132+142-1522×13×14=513,∴sin C =1213.故△ABC 的面积为12×13×14×1213×5002×11 0002=21(平方千米).故选C .8.在三棱锥ABCD 中,△ABC 与△BCD 都是正三角形,平面ABC ⊥平面BCD ,若该三棱锥的外接球的体积为2015π,则△ABC 的边长为( )A .332 B .634 C .633 D .6【答案】D【解析】如图,取BC 中点M ,连接AM ,DM .设等边△ABC 与等边△BCD 的外心分别为N ,G ,三棱锥外接球的球心为O ,连接OA ,OD ,ON ,OG .由V =4π3R 3=2015π,得外接球半径R =15.设△ABC 的边长为a ,则ON =GM =13DM =36a ,AN =23AM =33a .在Rt △ANO 中,由ON 2+AN 2=R 2,得a 212+a 23=15,解得a =6.故选D .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法中错误的是( )A .若事件A 与事件B 互斥,则P (A )+P (B )=1B .若事件A 与事件B 满足P (A )+P (B )=1,则事件A 与事件B 为对立事件C .“事件A 与事件B 互斥”是“事件A 与事件B 对立”的必要不充分条件D .某人打靶时连续射击两次,则事件“至少有一次中靶”与事件“至多有一次中靶”互为对立事件【答案】ABD【解析】若事件A 与事件B 互斥,则有可能P (A )+P (B )<1,故A 不正确;若事件A 与事件B 为同一事件,且P (A )=0.5,则满足P (A )+P (B )=1,但事件A 与事件B 不是对立事件,B 不正确;互斥不一定对立,对立一定互斥,故C 正确;某人打靶时连续射击两次,事件“至少有一次中靶”与事件“至多有一次中靶”既不互斥也不对立,D 错误.故选ABD .10.如图是民航部门统计的今年春运期间十二个城市售出的往返机票的平均价格以及相比去年同期变化幅度的数据统计图表,根据图表,下面叙述正确的是( )A .深圳的变化幅度最小,北京的平均价格最高B .深圳和厦门的春运期间往返机票价格同去年相比有所下降C .平均价格从高到低居于前三位的城市为北京、深圳、广州D .平均价格的涨幅从高到低居于前三位的城市为天津、西安、厦门 【答案】ABC【解析】由图可知深圳对应的小黑点最接近0%,故变化幅度最小,北京对应的条形图最高,则北京的平均价格最高,A 正确;深圳和厦门对应的小黑点在0%以下,故深圳和厦门的价格同去年相比有所下降,B 正确;条形图由高到低居于前三位的城市为北京、深圳和广州,C 正确;平均价格的涨幅由高到低分别为天津、西安和南京,D 错误.故选ABC .11.△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论中正确的是( )A .a 为单位向量B .a ⊥bC .b ∥BC →D .(4a +b )⊥BC →【答案】ACD【解析】由AB →=2a ,得a =12AB →,又AB =2,所以|a |=1,即a 是单位向量,A 正确;a ,b 的夹角为120°,B 错误;因为AC →=AB →+BC →=2a +b ,所以BC →=b ,C 正确;(4a +b )·BC →=4a ·b +b2=4×1×2×cos 120°+4=-4+4=0,D 正确.故选ACD .12.如图,点P 在正方体ABCD -A 1B 1C 1D 1的面对角线BC 1上运动,则( )A .三棱锥A -D 1PC 的体积不变B .A 1P ∥平面ACD 1C .DP ⊥BC 1D .平面PDB 1⊥平面ACD 1【答案】ABD【解析】连接BD 交AC 于点O ,连接DC 1交D 1C 于点O 1,连接OO 1,则OO 1∥BC 1,所以BC 1∥平面AD 1C ,动点P 到平面AD 1C 的距离不变,所以三棱锥PAD 1C 的体积不变,又因为V 三棱锥PAD 1C =V 三棱锥AD 1PC ,所以A 正确;因为平面A 1C 1B ∥平面AD 1C ,A 1P ⊂平面A 1C 1B ,所以A 1P ∥平面ACD 1,B 正确;由于当点P 在B 点时,DB 不垂直于BC 1,即DP 不垂直BC 1,故C 不正确;由于DB 1⊥D 1C ,DB 1⊥AD 1,D 1C ∩AD 1=D 1,所以DB 1⊥平面ACD 1,又因为DB 1⊂平面PDB 1,所以平面PDB 1⊥平面ACD 1,D 正确.故选ABD .三、填空题:本题共4小题,每小题5分,共20分.13.已知复数z =1+3i 1-i ,z -为z 的共轭复数,则z 的虚部为________.【答案】-2【解析】由z =1+3i 1-i =(1+3i )(1+i )(1-i )(1+i )=-2+4i2=-1+2i,得z -=-1-2i,∴复数z 的虚部为-2.14.一组数据按从小到大的顺序排列为1,3,3,x ,7,8,10,11,其中x ≠7,已知该组数据的中位数为众数的2倍,则:(1)该组数据的上四分位数是________; (2)该组数据的方差为________. 【答案】(1)9 (2)11.25【解析】(1)一组数据按从小到大的顺序排列为1,3,3,x ,7,8,10,11,其中x ≠7,∵该组数据的中位数为众数的2倍,∴x +72=2×3,解得x =5.∵8×0.75=6,∴该组数据的上四分位数是8+102=9.(2)该组数据的平均数为:18(1+3+3+5+7+8+10+11)=6,∴该组数据的方差为18[(1-6)2+(3-6)2+(3-6)2+(5-6)2+(7-6)2+(8-6)2+(10-6)2+(11-6)2]=11.25.15.a ,b ,c 分别为△ABC 内角A ,B ,C 的对边.已知ab cos(A -B )=a 2+b 2-c 2,A =45°,a =2,则c =________.【答案】4105【解析】由ab cos(A -B )=a 2+b 2-c 2,得cos(A -B )=2·a 2+b 2-c 22ab=2cos C =-2cos(A+B ),整理,得3cos A cos B =sin A sin B ,所以tan A tan B =3.又A =45°,所以tan A =1,tan B =3.由sin B cos B =3,sin 2B +cos 2B =1,得sin B =31010,cosB =1010.所以sin C =sin(A +B )=22⎝ ⎛⎭⎪⎫31010+1010=255.由正弦定理,得c =a sin C sin A =4105. 16.如图,AB →=3AD →,AC →=4AE →,BE 与CD 交于P 点,若AP →=mAB →+nAC →,则m =________,n =________.【答案】311 211【解析】因为AB →=3AD →,AC →=4AE →,且E 、P 、B 三点共线,D 、P 、C 三点共线,所以存在x ,y 使得AP →=xAE →+(1-x )AB →=14xAC →+(1-x )AB →.因为AP →=yAC →+(1-y )AD →=yAC →+13(1-y )AB →,所以⎩⎪⎨⎪⎧14x =y ,1-x =13(1-y ),解得x =811,y =211,所以AP →=14×811AC →+⎝ ⎛⎭⎪⎫1-811AB →=211AC →+311AB →=311AB →+211AC →.又因为AP →=mAB →+nAC →,所以m =311,n =211.四、解答题:本题共6小题,17题10分,其余小题为12分,共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.已知复数z =m 2-m i(m ∈R),若|z |=2,且z 在复平面内对应的点位于第四象限. (1)求复数z ;(2)若z 2+az +b =1+i,求实数a ,b 的值.解:(1)∵z =m 2-m i,|z |=2,∴m 4+m 2=2,得m 2=1.又∵z 在复平面内对应的点位于第四象限,∴m =1,即z =1-i.(2)由(1)得z =1-i,∴z 2+az +b =1+i ⇒(1-i)2+a (1-i)+b =1+i.∴(a +b )-(2+a )i =1+i,∴⎩⎪⎨⎪⎧a +b =1,2+a =-1,解得a =-3,b =4.18.在①b +b cos C =2c sin B ,②S △ABC =2CA →·CB →,③(3b -a )cos C =c cos A ,三个条件中任选一个,补充在下面问题中,并解决问题.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足________. (1)求cos C 的值;(2)若点E 在AB 上,且AE →=2EB →,EC =413,BC =3,求sin B .解:(1)若选①:因为b +b cos C =2c sin B ,由正弦定理可得sin B +sin B cos C =2sin C sin B .因为sin B ≠0,所以1+cos C =2sin C .联立⎩⎨⎧1+cos C =2sin C ,sin 2C +cos 2C =1,解得cos C =13,sin C =223,故cos C =13. 若选②:因为S △ABC =2CA →·CB →,所以12ab sin C =2ba cos C ,即sin C =22cos C >0,联立sin 2C +cos 2C =1,可得cos C =13.若选③:因为(3b -a )cos C =c cos A ,由正弦定理可得(3sin B -sin A )cos C =sin C cosA ,所以3sinB cosC =sin A cos C +sin C cos A =sin(A +C )=sin B .因为sin B ≠0,所以cos C =13.(2)由余弦定理可得cos ∠AEC =AE 2+EC 2-AC 22AE ·EC =49c 2+EC 2-b 243c ·EC ,cos ∠BEC =BE 2+EC 2-BC 22BE ·EC=19c 2+EC 2-a 223c ·EC ,因为cos ∠AEC +cos ∠BEC =0,所以49c 2+EC 2-b 243c ·EC +19c 2+EC 2-a 223c ·EC =0,即2c 2+9EC 2-3b 2-6a 2=0,则2c 2-3b 2=6a 2-9EC 2=6×9-9×419=13,①同时cos C =a 2+b 2-c 22ab =13,即b 2-c 2=2b -9,②联立①②可得b 2+4b -5=0,解得b =1,则c =22,故cos B =a 2+c 2-b 22ac =223,则sin B=13. 19.如图所示,在四棱锥MABCD 中,底面ABCD 为直角梯形,BC ∥AD ,∠CDA =90°,AD =4,BC =CD =2,△MBD 为等边三角形.(1)求证:BD ⊥MC ;(2)若平面MBD ⊥平面ABCD ,求三棱锥CMAB 的体积. (1)证明:取BD 中点O ,连接CO 、MO ,如图所示: ∵△MBD 为等边三角形,且O 为BD 中点,∴MO ⊥BD . 又BC =CD ,O 为BD 中点,∴CO ⊥BD .又MO ∩CO =O ,∴BD ⊥平面MCO . ∵MC ⊂平面MCO ,∴BD ⊥MC .(2)解:∵平面MBD ⊥平面ABCD ,且平面MBD ∩平面ABCD =BD ,MO ⊥BD , ∴MO ⊥平面ABCD .由(1)知MB =MD =BD =22,MO =MB 2-BO 2=6,S △ABC =12BC ·CD =2,∴V CMAB =V MABC =13×S △ABC ×MO =263.20.某冰糖橙为甜橙的一种,云南著名特产,以味甜皮薄著称.该橙按照等级可分为四类:珍品、特级、优级和一级(每箱有5 kg).某采购商打算采购一批该橙子销往省外,并从采购的这批橙子中随机抽取100箱,利用橙子的等级分类标准得到的数据如下表:等级 珍品 特级 优级 一级 箱数 40 30 10 20 售价/(元·kg -1)36302418(2)按照分层抽样的方法,从这100箱橙子中抽取10箱,试计算各等级抽到的箱数; (3)若在(2)抽取的特级品和一级品的箱子上均编上号放在一起,再从中抽取2箱,求抽取的2箱中两种等级均有的概率.解:(1)依题意可知,样本中的100箱不同等级橙子的平均价格为36×410+30×310+24×110+18×210=29.4(元/kg). (2)依题意,珍品抽到110×40=4(箱),特级抽到110×30=3(箱),优级抽到110×10=1(箱),一级抽到110×20=2(箱).(3)抽到的特级有3箱,编号为A 1,A 2,A 3,抽到的一级有2箱,编号为B 1,B 2. 从中抽取2箱,有(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2)共10种可能,两种等级均有的有(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2)共6种可能,∴所求概率p =610=35.21.已知向量a =(3cos ωx ,sin ωx ),b =(cos ωx ,cos ωx ),其中ω>0,记函数f (x )=a ·b .(1)若函数f (x )的最小正周期为π,求ω的值;(2)在(1)的条件下,已知△ABC 的内角A ,B ,C 对应的边分别为a ,b ,c ,若f ⎝ ⎛⎭⎪⎫A 2=3,且a=4,b +c =5,求△ABC 的面积.解:(1)f (x )=a ·b =3cos 2ωx +sin ωx ·cos ωx =3(cos 2ωx +1)2+sin 2ωx2=sin ⎝⎛⎭⎪⎫2ωx +π3+32. ∵f (x )的最小正周期为π,且ω>0,∴2π2ω=π,解得ω=1.(2)由(1)得f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3+32.∵f ⎝ ⎛⎭⎪⎫A 2=3,∴sin ⎝ ⎛⎭⎪⎫A +π3=32. 由0<A <π,得π3<A +π3<4π3,∴A +π3=2π3,解得A =π3.由余弦定理a 2=b 2+c 2-2bc cos A ,得16=b 2+c 2-bc .联立b +c =5,得bc =3. ∴S △ABC =12bc sin A =12×3×32=334.22.“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称.某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分为100分(90分及以上为认知程度高).现从参赛者中抽取了x 人,按年龄分成5组,第一组:[20,25),第二组:[25,30),第三组:[30,35),第四组:[35,40),第五组:[40,45),得到如图所示的频率分布直方图,已知第一组有6人.(1)求x ;(2)求抽取的x 人的年龄的中位数(结果保留整数);(3)从该市大学生、军人、医务人员、工人、个体户,五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为1~5组,从5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛,分别代表相应组的成绩,年龄组中1~5 组的成绩分别为93,96,97,94,90,职业组中1~5 组的成绩分别为93,98,94,95,90.①分别求5个年龄组和5个职业组成绩的平均数和方差;②以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度,并谈谈你的感想.解:(1)根据频率分布直方图得第一组的频率为0.01×5=0.05,∴6x=0.05,解得x =120.(2)设中位数为a ,则0.01×5+0.07×5+(a -30)×0.06=0.5,∴a =953≈32,则中位数为32.(3)①5个年龄组成绩的平均数为x 1=15×(93+96+97+94+90)=94,方差为s 21=15×[(-1)2+22+32+02+(-4)2]=6.5个职业组成绩的平均数为x 2=15×(93+98+94+95+90)=94,方差为s 22=15×[(-1)2+42+02+12+(-4)2]=6.8.②从平均数来看两组的认知程度相同,从方差来看年龄组的认知程度更稳定.。
新教材苏教版高中数学必修第二册模块综合测评
模块综合测评(时间120分钟,满分150分)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求)1.复数z 满足(3-2i)z =4+3i(i 为虚数单位),则复数在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限A [由题意得,z =4+3i 3-2i =(4+3i )(3+2i )(3-2i )(3+2i )=613+17i 13,则复数z 在复平面内对应的点位于第一象限,故选A.]2.将一颗质地均匀的骰子(一种各个面分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和为大于8的偶数的概率为( )A.112B.19C.16D.14B [将先后两次的点数记为有序实数对(x ,y ),则共有6×6=36(个)基本事件,其中点数之和为大于8的偶数有(4,6),(6,4),(5,5),(6,6),共4种,则满足条件的概率为436=19.故选B. ]3.从2名男同学和3名女同学中任选2人参加社区服务,则选中的恰有一名女同学的概率为( )A .0.3B .0.4C .0.5D .0.6D [设2名男生为a ,b,3名女生为A ,B ,C, 则任选2人的种数为ab ,aA ,aB ,aC ,bA ,bB ,bC ,AB ,AC ,BC 共10种,其中恰有一名女生为aA ,aB ,aC ,bA ,bB ,bC 共6种, 故恰有一名女同学的概率P =610=0.6 .故选D.]4.已知△ABC 为等腰三角形,满足AB =AC =3,BC =2,若P 为底边BC上的动点,则AP→(AB →+AC →)( ) A .有最大值8B .是定值2C .有最小值1D .是定值4D [如图,设AD 是等腰三角形底边BC 上的高,长度为3-1= 2.故AP →·(AB →+AC →)=(AD →+DP →)·2AD→=2AD →2+2DP →·AD→=2AD →2=2×(2)2=4.故选D.] 5.在△ABC 中,若lg sin A -lg cos B -lg sin C =lg 2,则△ABC 是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形A [因为lg sin A -lg cosB -lg sinC =lg 2,所以lg sin A cos B sin C=lg 2. 所以sin A =2cos B sin C .因为∠A +∠B +∠C =180°,所以sin(B +C )=2cos B sin C ,所以sin(B -C )=0.所以∠B =∠C ,所以△ABC 为等腰三角形.]6.《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳌臑.在鳌臑P -ABC 中,P A ⊥平面ABC ,P A =4,AB =BC =2,鳌臑P -ABC 的四个顶点都在同一个球上,则该球的表面积是( )A .16πB .20πC .24πD .64πC [四棱锥P -ABC 的四个面都是直角三角形,∵AB =BC =2,∴AB ⊥BC ,又P A ⊥平面ABC ,∴AB 是PB 在平面ABC上的射影,P A ⊥CA ,∴BC ⊥PB ,取PC 中点O ,则O 是P -ABC外接球球心.由AB =BC =2得AC =22,又P A =4,则PC =8+16=26,OP =6, 所以球表面积为S =4π(OP )2=4π×(6)2=24π.故选C.]7.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知三个向量m =⎝ ⎛⎭⎪⎫a ,cos A 2,n =⎝ ⎛⎭⎪⎫b ,cos B 2,p =⎝ ⎛⎭⎪⎫c ,cos C 2共线,则△ABC 的形状为( ) A .等边三角形 B .等腰三角形C .直角三角形D .等腰直角三角形 A [∵向量m =⎝ ⎛⎭⎪⎫a ,cos A 2,n =⎝ ⎛⎭⎪⎫b ,cos B 2共线, ∴a cos B 2=b cos A 2.由正弦定理得sin A cos B 2=sin B cos A 2.∴2sin A 2cos A 2 cos B 2=2sin B 2cos B 2cos A 2.则sin A 2=sin B 2.∵0<A 2<π2,0<B 2<π2,∴A 2=B 2,即A =B .同理可得B =C .∴△ABC 的形状为等边三角形.故选A.]8.如图,在正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别为棱BB 1,CC 1的中点,点O 为上底面的中心,过E ,F ,O 三点的平面把正方体分为两部分,其中含A 1的部分为V 1,不含A 1的部分为V 2,连接A 1和V 2的任一点M ,设A 1M 与平面A 1B 1C 1D 1所成角为α,则sin α的最大值为( )A.22B.255C.265D.266B [连接EF ,因为EF ∥平面ABCD ,所以过EFO 的平面与平面ABCD 的交线一定是过点O且与EF 平行的直线,过点O 作GH ∥BC 交CD 于点G ,交AB 于H 点,则GH ∥EF ,连接EH ,FG ,则平行四边形EFGH 即为截面,则五棱柱A 1B 1EHA -D 1C 1FGD 为V 1,三棱柱EBH -FCG 为V 2,设M 点为V 2的任一点,过M 点作底面A 1B 1C 1D 1的垂线,垂足为N ,连接A 1N , 则∠MA 1N 即为A 1M 与平面A 1B 1C 1D 1所成的角,所以∠MA 1N =α.因为sin α=MN A 1M ,要使α的正弦值最大,必须MN 最大,A 1M 最小,当点M 与点H 重合时符合题意.故(sin α)max =⎝ ⎛⎭⎪⎫MN A 1M max =HN A 1H =255.故选B.] 二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.如图是2020年春运期间十二个城市售出的往返机票的平均价格以及相比去年同期变化幅度的数据统计图,给出下列4个结论其中结论正确的是( )A .深圳的变化幅度最小,北京的平均价格最高;B .深圳和厦门往返机票的平均价格同去年相比有所下降;C .平均价格从高到低位于前三位的城市为北京,深圳,广州;D .平均价格的涨幅从高到低位于前三位的城市为天津,西安,上海.ABC [对于A.由图可知深圳对应的小黑点最接近0%,故变化幅度最小,北京对应的条形图最高,则北京的平均价格最高,故A 正确;对于B.由图可知深圳和厦门对应的小黑点在0%以下,故深圳和厦门的价格同去年相比有所下降,故B 正确; 对于C 由图可知条形图由高到低居于前三位的城市为北京、深圳和广州,故C 正确;对于D 由图可知平均价格的涨幅由高到低分别为天津、西安和南京,故D 错误.故选ABC.]10.已知圆锥的顶点为P ,母线长为2,底面半径为3,A ,B 为底面圆周上两个动点,则下列说法正确的是( )A .圆锥的高为1B .三角形P AB 为等腰三角形C.三角形P AB面积的最大值为3D.直线P A与圆锥底面所成角的大小为π6ABD[如图所示:PO=22-()32=1,A正确;P A=PB=2,B正确;易知直线P A与圆锥底面所成的角为∠P AO=π6,D正确;取AB中点为C,设∠P AC=θ,则θ∈⎣⎢⎡⎭⎪⎫π6,π2,S△P AB=2sin θ·2cos θ=2sin 2θ,当θ=π4时,面积有最大值为2,C错误.故选ABD.]11.以下对各事件发生的概率判断正确的是()A.连续抛两枚质地均匀的硬币,有3个基本事件,出现一正一反的概率为1 3B.每个大于2的偶数都可以表示为两个素数的和,例如12=5+7,在不超过15的素数中随机选取两个不同的数,其和等于14的概率为1 15C.将一个质地均匀的骰子先后抛掷2次,记下两次向上的点数,则点数之和为6的概率是5 36D.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是12BCD[对于A,连续抛两枚质地均匀的硬币,其样本区间为Ω={(正,正),(正,反),(反,正),(反,反)};有4个基本事件,出现一正一反事件A包含的样本点为(正,反),(反,正),所以A错误;对于B,从集合{2,3,5,7, 11,13}中取出两个数,其样本空间Ω={(2,3),(2,5),(2,7),(2,11),(2,13),(3,5),(3,7),(3,11),(3,13),(5,7),(5,11),(5,13),(7,11),(7,13),(11,13)},即包含15个基本等可能事件,“两个数的和为14”的事件B仅包含一个样本点(3,11),所以P(B)=115,所以B正确;对于C,样本空间有36个样本点,“点数和为6”的事件C包含5个样本点(1,5),(2,4),(3,3),(4,2),(5,1),即P(C)=536,所以C正确;对于D,从四件产品中取出两件,其样本空间为Ω={(正1,正2),(正2,正3),(正1,正3),(正1,次),(正2,次),(正3,次)},故共有6个基本等可能事件,“全是正品”的事件的样本点为3个,所以P(D)=12,所以故选BCD.]12.已知复数z对应复平面内点A,则下列关于复数z,z1,z2结论正确的是()A. |z+2i|表示点A到点(0,2)的距离B. 若|z-1|=|z+2i|,则点A的轨迹是直线C. ||z1|-|z2||≤|z1+z2|≤|z1|+|z2|D. |z1z2|=|z1||z2|BCD[对于A,|z+2i|表示点A到点(0,-2)的距离,所以A错误;对于B, |z-1|=|z+2i|表示A点到M(1,0)和N(0,-2)的距离相等,所以A的轨迹是MN的垂直平分线,是一条直线,所以B正确;由复数模的性质知,C、D均正确,故选BCD.]三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.2019年国际山地旅游大会于8月29日在贵州黔西南州召开,据统计有来自全世界的4 000名女性和6 000名男性徒步爱好者参与徒步运动,其中抵达终点的女性与男性徒步爱好者分别为1 000名和2 000名,抵达终点的徒步爱好者可获得纪念品一份.若记者随机电话采访参与本次徒步运动的1名女性和1名男性徒步爱好者,其中恰好有1名徒步爱好者获得纪念品的概率是________.512[“男性获得纪念品,女性没有获得纪念品”的概率为2 0006 000×3 0004 000=14,“男性没有获得纪念品,女性获得纪念品”的概率为4 0006 000×1 0004 000=16,故“恰好有1名徒步爱好者获得纪念品”的概率为14+16=512.]14.已知向量a=(1,-2),b=(x,3y-5),且a∥b,若x,y均为正数,则xy 的最大值是________.2524[∵a∥b,∴(3y-5)×1+2x=0,即2x+3y=5.∵x>0,y>0,∴5=2x+3y≥26xy,∴xy≤2524,当且仅当3y=2x时取等号.]15.掷红、白两颗骰子,事件A={红骰子点数小于3},事件B={白骰子点数小于3},则事件P(AB)=__________,P(A+B)=________.1 959[由掷红、白两颗骰子,向上的点数共6×6=36种可能,红色骰子的点数分别记为红1,红2,…,白色骰子的点数分别记为白1,白2,…其中红骰子点数小于3的有1,2二种可能,其中白骰子点数小于3的有1,2二种可能,事件A={红1,白1},{红1,白2},{红1,白3},{红1,白4},{红1,白5},{红1,白6},{红2,白1},{红2,白2},{红2,白3},{红2,白4},{红2,白5},{红2,白6},共12种事件B={白1,红1},{白1,红2},{白1,红3},{白1,红4},{白1,红5},{白1,红6},{白2,红1},{白2,红2},{白2,红3},{白2,红4},{白2,红5},{白2,红6},共12种,事件AB={红1,白1},{红1,白2},{红2,白1},{红2,白2},共4种,故P(AB)=436=19,事件A+B共有12+12-4=20种,故P(A+B)=2036=59.]16.如图,四棱锥P-ABCD中,ABCD是矩形,P A⊥平面ABCD,P A=AB=1,BC=2,四棱锥外接球的球心为O,点E是棱AD上的一个动点.给出如下命题:①直线PB与直线CE是异面直线;②BE与PC一定不垂直;③三棱锥E-BCO的体积为定值;④CE+PE的最小值为2 2.其中正确命题的序号是________.(将你认为正确的命题序号都填上)①③④[对于①,∵直线PB经过平面ABCD内的点B,而直线CE在平面ABCD内不过B,∴直线PB与直线CE是异面直线,故①正确;对于②,当E在线AD上且AE=14AD位置时,BE⊥AC,因为P A⊥平面ABCD,BE⊂平面ABCD,所以P A⊥BE,又P A∩AC=A,P A⊂平面P AC,AC⊂平面P AC,∴BE⊥平面P AC,则BE垂直PC,故②错误;对于③,由题意知,四棱锥P-ABCD的外接球的球心为O是PC的中点,则△BCE的面积为定值,且O到平面ABCD的距离为定值,∴三棱锥E-BCO的体积为定值,故③正确;对于④,设AE=x,则DE=2-x,∴PE+EC=1+x2+1+(2-x)2.由其几何意义,即平面内动点(x,1)与两定点(0,0),(2,0)距离和的最小值知,其最小值为22,故④正确.故答案为①③④.]四、解答题(本大题共6小题,共10分,解答应写出文字说明、证明过程或演算)17.(本小题满分10分)benti从青岛市统考的学生数学考试试卷中随机抽查100份数学试卷作为样本,分别统计出这些试卷总分,由总分得到如下的频率分布直方图.(1)求这100份数学试卷成绩的中位数;(2)从总分在[55,65)和[135,145)的试卷中随机抽取2份试卷,求抽取的2份试卷中至少有一份总分少于65分的概率.[解](1)记这100份数学试卷成绩的中位数为x(95<x<105),则0.002×10+0.008×10+0.013×10+0.015×10+(x-95)×0.024=0.5,解得x=100,所以中位数为100.(2)总分在[55,65)的试卷共有0.002×10×100=2(份),记为A,B,总分在[135,145)的试卷共有0.004×10×100=4(份),记为a,b,c,d,则从上述6份试卷中随机抽取2份的结果为{A,B},{A,a},{A,b},{A,c},{A,d},{B,a},{B,b},{B,c},{B,d},{a ,b },{a ,c },{a ,d },{b ,c },{b ,d },{c ,d },共计15个样本点,且是等可能的.至少有一份总分少于65分的有:{A ,B },{A ,a },{A ,b },{A ,c },{A ,d },{B ,a },{B ,b },{B ,c },{B ,d },共计9个样本点,所以抽取的2份至少有一份总分少于65分的概率P =915=35.18.(本小题满分12分)已知向量m =(cos α,sin α),n =(-1,2).(1)若m ∥n ,求sin α-2cos αsin α+cos α的值; (2)若|m -n |=2,α∈⎝ ⎛⎭⎪⎫π2,π,求cos ⎝ ⎛⎭⎪⎫α+π4的值. [解] (1)因为m ∥n ,所以sin α=-2cos α.所以原式=-2cos α-2cos α-2cos α+cos α=-4cos α-cos α=4. (2)因为 |m -n |=2,所以2sin α-cos α=2.所以cos 2α=4(sin α-1)2,所以1-sin 2α=4(sin α-1)2,所以α∈⎝ ⎛⎭⎪⎫π2,π, 所以sin α=35,cos α=-45. 所以原式=-7210.19.(本小题满分12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A .(1)证明:sin B =cos A ;(2)若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C .[解] (1)证明:由正弦定理知a sin A =b sin B =c sin C =2R ,∴a =2R sin A ,b =2R sin B ,代入a =b tan A 得sin A =sin B ·sin A cos A ,又∵A ∈(0,π),∴sin A >0,∴1=sin B cos A ,即sin B =cos A .(2)由sin C -sin A cos B =34知,sin(A +B )-sin A cos B =34,∴cos A sin B =34.由(1)知,sin B =cos A ,∴cos 2A =34,由于B 是钝角,故A ∈⎝ ⎛⎭⎪⎫0,π2,∴cos A =32,A =π6. sin B =32,B =2π3,∴C =π-(A +B )=π6.20.(本小题满分12分)如图,E 是以AB 为直径的半圆上异于A ,B 的点,矩形ABCD 所在的平面垂直于该半圆所在的平面,且AB =2AD =2.(1)求证:EA ⊥EC ;(2)设平面ECD 与半圆弧的另一个交点为F .①证明:EF ∥AB ;②若EF =1,求三棱锥E -ADF 的体积.[解] (1)证明:∵平面ABCD ⊥平面ABE ,平面ABCD ∩平面ABE =AB ,BC ⊥AB ,BC ⊂平面ABCD ,∴BC ⊥平面ABE .又∵AE ⊂平面ABE ,∴BC ⊥AE .∵E 在以AB 为直径的半圆上,∴AE ⊥BE ,又∵BE ∩BC =B ,BC ,BE ⊂平面BCE ,∴AE ⊥平面BCE .又∵CE ⊂平面BCE ,∴EA ⊥EC .(2)①证明:∵AB ∥CD ,AB ⊄平面CED ,CD ⊂平面CED ,∴AB ∥平面CED .又∵AB ⊂平面ABE ,平面ABE ∩平面CED =EF ,∴AB ∥EF .②取AB 的中点O ,EF 的中点O ′,在Rt △OO ′F 中,OF =1,O ′F =12,∴OO ′=32.由(1)得BC ⊥平面ABE ,又已知AD ∥BC ,∴AD ⊥平面ABE .故V E -ADF =V D -AEF =13·S △AEF ·AD =13·12·EF ·OO ′·AD =312.21.(本小题满分12分)已知△ABC 中,三个内角A ,B ,C 所对的边分别是a ,b ,c .(1)证明:a cos B +b cos A =c ;(2)在①2c -b cos B =a cos A ,②c cos A =2b cos A -a cos C ,③2a -b cos C cos A =c cos B cos A 这三个条件中任选一个补充在下面问题中,并解答若a =7,b =5,________,求△ABC 的周长.[解] (1)根据余弦定理:a cos B +b cos A =a ·a 2+c 2-b 22ac +b ·b 2+c 2-a 22bc=a 2+c 2-b 2+b 2+c 2-a 22c=c ,所以a cos B +b cos A =c . (2)选①:因为2c -b cos B =a cos A ,所以2c ·cos A =b cos A +a cos B ,所以由(1)中所证结论可知,2c cos A =c ,即cos A =12,因为A ∈(0,π),所以A =π3;选②:因为c cos A =2b cos A -a cos C ,所以2b cos A =a cos C +c cos A , 由(1)中的证明过程同理可得,a cos C +c cos A =b ,所以2b cos A =b ,即cos A =12,因为A ∈(0,π),所以A =π3;选③:因为2a -b ·cos C cos A =c ·cos B cos A ,所以2a cos A =b cos C +c cos B ,由(1)中的证明过程同理可得,b cos C +c cos B =a ,所以2a cos A =a ,即cos A =12,因为A ∈(0,π),所以A =π3.在△ABC 中,由余弦定理知,a 2=b 2+c 2-2bc cos A =25+c 2-10c ·12=49,即c 2-5c -24=0,解得c =8或c =-3(舍),所以a +b +c =7+5+8=20,即△ABC 的周长为20.22. (本小题满分12分)如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,小区的两个出入口设置在点 A 及点 C 处,且小区里有一条平行于 BO 的小路CD .(1)已知某人从 C 沿 CD 走到 D 用了10分钟,从D 沿DA 走到 A 用了6分钟,若此人步行的速度为每分钟50米,求该扇形的半径OA 的长(精确到1米)(2)若该扇形的半径为OA =a ,已知某老人散步,从 C 沿CD 走到D ,再从D 沿DO 走到O ,试确定C 的位置,使老人散步路线最长.[解] (1)法一:设该扇形的半径为r 米,连接CO . 由题意,得CD =500(米),DA =300(米),∠CDO =60°,在△CDO 中,CD 2+OD 2-2CD ·OD ·cos 60 °=OC 2,即5002+()r -3002-2×500×()r -300×12=r 2, 解得r =4 90011≈445(米).法二:连接AC ,作OH ⊥AC ,交AC 于H ,由题意,得CD =500(米), AD =300(米),∠CDA =120° ,在△CDA 中,AC 2=CD 2+AD 2-2·CD ·AD ·cos 120°=5002+3002+2×500×300×12=7002.AC =700(米). cos ∠CAD =AC 2+AD 2-CD 22·AC ·AD=1114. 在直角△HAO 中,AH =350(米),cos ∠HAO =1114,OA =AH cos ∠HAO=4 90011≈445(米). (2)连接OC ,设∠DOC =θ,θ∈⎝ ⎛⎭⎪⎫0,2π3, 在△DOC 中,由正弦定理得CD sin θ=DO sin ⎝ ⎛⎭⎪⎫2π3-θ=OC sin π3=2a 3, 于是CD =2a 3sin θ,DO =2a 3sin ⎝⎛⎭⎪⎫2π3-θ,则 DC +DO =2a 3⎣⎢⎡⎦⎥⎤sin θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=2a sin ⎝ ⎛⎭⎪⎫θ+π6 ,θ∈⎝ ⎛⎭⎪⎫0,2π3 所以当θ=π3时,DC +DO 最大为2a ,此时C 在弧AB 的中点处.。
【检测】高中数学必修一、必修二综合测试卷(二)
高一数学上学期期末综合测试卷(二)(必修一、必修二)一、选择题1. 下列函数中与函数xy 1=相等的是 )(A 2)(1x y =)(B 331xy =)(C 21xy =)(D 22y x = 2. 集合}),{(x y y x A ==,集合}5412),{(⎩⎨⎧=+=-=y x y x y x B 之间的关系是)(A B A ∈ )(B A B ∈ )(C B A ⊆ )(D A B ⊆3. 已知函数()2()log 1,()1,f x x f a a =+==若则)(A 0 )(B 1 )(C 2 )(D 34.关于函数3()f x x = 的性质表述正确的是)(A 奇函数,在(,)-∞+∞上单调递增 )(B 奇函数,在(,)-∞+∞上单调递减 )(C 偶函数,在(,)-∞+∞上单调递增 )(D 偶函数,在(,)-∞+∞上单调递减5. 已知4)(3-+=bx ax x f ,若6)2(=f ,则=-)2(f)(A 14- )(B 14 )(C 6- )(D 106. 设 1.50.90.4814,8,2a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小顺序为 ( )A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >>7.已知)(x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的( ) A .函数)(x f 在(1,2)或[)2,3内有零点 B .函数)(x f 在(3,5)内无零点C .函数)(x f 在(2,5)内有零点D .函数)(x f 在(2,4)内不一定有零点 8. 函数y x=3与y x=--3的图象关于下列那种图形对称( )A .x 轴B .y 轴C .直线y x =D .原点中心对称9. 如果一个正四面体的体积为9 dm 3,则其表面积S 的值为( ).A 、183dm 2B 、18 dm 2C 、123dm 2D 、12 dm 210. 已知一个铜质的五棱柱的底面积为16cm 2,高为4cm ,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是( ) A. 2cm; B.cm 34; C.4cm; D.8cm 。
2020学年高中数学模块综合检测(含解析)新人教A版必修2(2021-2022学年)
模块综合检测(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.过点A(3,-4),B(-2,m)的直线l的斜率为-2,则m的值为( )A.6ﻩB.1C.2ﻩ D.4解析:选A由题意知kAB=错误!未定义书签。
=-2,∴m=6.2.圆x2+y2+2x-4y=0的圆心坐标和半径分别是( )A.(1,-2),5B.(1,-2),错误!C.(-1,2),5 ﻩD.(-1,2),错误!未定义书签。
解析:选D圆的方程化为标准方程为(x+1)2+(y-2)2=5,其圆心是(-1,2),半径为错误!未定义书签。
3.在空间直角坐标系Oxyz中,点A在z轴上,它到点(2错误!,错误!,1)的距离是错误!,则点A 的坐标是()A.(0,0,-1) B.(0,1,1)C.(0,0,1)D.(0,0,13)解析:选C由点A在z轴上,可设A(0,0,z),∵点A到点(2错误!未定义书签。
,错误!,1)的距离是13,∴(2错误!未定义书签。
-0)2+(\r(5)-0)2+(z-1)2=13,解得z=1,故A 的坐标为(0,0,1),故选C.4.过点(1,2)且与原点距离最大的直线方程是()A.x+2y-5=0 B.2x+y-4=0C.x+3y-7=0 ﻩ D.x-2y+3=0解析:选A结合图形可知,所求直线为过点(1,2)且与原点和点(1,2)连线垂直的直线,其斜率为-错误!未定义书签。
,直线方程为y-2=-12(x-1),即x+2y-5=0.5.若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面βﻬ的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交解析:选D由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l相交.6.若点P(2,-1)为圆(x-1)2+y2=25的弦AB的中点,则直线AB的方程是( )A.x-y-3=0 B.2x+y-3=0C.x+y-1=0 D.2x-y-5=0解析:选A 设圆心为C(1,0),则AB⊥CP,∵k CP=-1,∴k AB=1,∴直线AB的方程是y+1=x-2,即x-y-3=0。
高中数学人教A版必修二 模块综合测评 Word版含答案
模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.过点A(3,-4),B(-2,m)的直线l的斜率为-2,则m的值为() A.6 B.1C.2 D.4【解析】由题意知k AB=m+4-2-3=-2,∴m=6.【答案】 A2.在x轴、y轴上的截距分别是-2、3的直线方程是() A.2x-3y-6=0 B.3x-2y-6=0C.3x-2y+6=0 D.2x-3y+6=0【解析】由直线的截距式得,所求直线的方程为x-2+y3=1,即3x-2y+6=0.【答案】 C3.已知正方体外接球的体积是323π,那么正方体的棱长等于()A.2 2 B.22 3C.423 D.433【解析】设正方体的棱长为a,球的半径为R,则43πR3=323π,∴R=2.又∵3a=2R=4,∴a=43 3.【答案】 D4.关于空间直角坐标系Oxyz中的一点P(1,2,3)有下列说法:①点P到坐标原点的距离为13;②OP 的中点坐标为⎝ ⎛⎭⎪⎫12,1,32;③与点P 关于x 轴对称的点的坐标为(-1,-2,-3); ④与点P 关于坐标原点对称的点的坐标为(1,2,-3); ⑤与点P 关于坐标平面xOy 对称的点的坐标为(1,2,-3). 其中正确的个数是( ) A .2 B .3 C .4D .5【解析】 点P 到坐标原点的距离为12+22+32=14,故①错;②正确;与点P 关于x 轴对称的点的坐标为(1,-2,-3),故③错;与点P 关于坐标原点对称的点的坐标为(-1,-2,-3),故④错;⑤正确,故选A.【答案】 A5.如图1,在长方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱BB 1、B 1C 1的中点,若∠CMN =90°,则异面直线AD 1和DM 所成角为( )图1A .30°B .45°C .60°D .90°【解析】 因为MN ⊥DC ,MN ⊥MC , 所以MN ⊥平面DCM . 所以MN ⊥DM .因为MN ∥AD 1,所以AD 1⊥DM . 【答案】 D6.(2015·福建高考)某几何体的三视图如图2所示,则该几何体的表面积等于( )图2A .8+2 2B .11+2 2C .14+2 2D .15【解析】 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3,所以该几何体的表面积为8+22+3=11+2 2.【答案】 B7.已知圆x 2+y 2+2x +2y +k =0和定点P (1,-1),若过点P 的圆的切线有两条,则k 的取值范围是( )A .(-2,+∞)B .(-∞,2)C .(-2,2)D .(-∞,-2)∪(2,+∞)【解析】 因为方程x 2+y 2+2x +2y +k =0表示一个圆,所以 4+4-4k >0,所以k <2.由题意知点P (1,-1)在圆外,所以12+(-1)2+2×1+2×(-1)+k >0,解得k >-2,所以-2<k <2.【答案】 C8.在三棱柱ABC -A 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB 1C 1C 的中心,则AD 与平面BB 1C 1C 所成角的大小是( )A .30°B .45°C .60°D .90°【解析】 如图,取BC 的中点E ,连接DE 、AE 、AD .依题设知AE ⊥平面BB 1C 1C .故∠ADE 为AD 与平面BB 1C 1C 所成的角.设各棱长为2,则AE =32×2=3,DE =1.∵tan ∠ADE =AE DE =31=3, ∴∠ADE =60°,故选C. 【答案】 C9.(2015·开封高一检测)若m 、n 为两条不重合的直线,α、β为两个不重合的平面,则下列说法中正确的是( )①若直线m 、n 都平行于平面α,则m 、n 一定不是相交直线; ②若直线m 、n 都垂直于平面α,则m 、n 一定是平行直线;③已知平面α、β互相垂直,且直线m 、n 也互相垂直,若m ⊥α,则n ⊥β; ④若直线m 、n 在平面α内的射影互相垂直,则m ⊥n . A .② B .②③ C .①③D .②④【解析】 对于①,m 与n 可能平行,可能相交,也可能异面; 对于②,由线面垂直的性质定理可知,m 与n 一定平行,故②正确; 对于③,还有可能n ∥β;对于④,把m ,n 放入正方体中,如图,取A 1B 为m ,B 1C 为n ,平面ABCD 为平面α,则m 与n 在α内的射影分别为AB 与BC ,且AB ⊥BC .而m 与n 所成的角为60°,故④错.因此选A.【答案】 A10.(2015·全国卷Ⅱ)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( )A.53B.213C.253D.43【解析】在坐标系中画出△ABC (如图),利用两点间的距离公式可得|AB |=|AC |=|BC |=2(也可以借助图形直接观察得出),所以△ABC 为等边三角形.设BC 的中点为D ,点E 为外心,同时也是重心.所以|AE |=23|AD |=233,从而|OE |=|OA |2+|AE |2=1+43=213,故选B. 【答案】 B11.(2016·重庆高一检测)已知P (x ,y )是直线kx +y +4=0(k >0)上一点,P A 是圆C :x 2+y 2-2y =0的一条切线,A 是切点,若P A 长度的最小值为2,则k 的值是( )【导学号:09960153】A .3 B.212 C .2 2D .2【解析】 圆C :x 2+y 2-2y =0的圆心是(0,1),半径是r =1,∵P A 是圆C :x 2+y 2-2y =0的一条切线,A 是切点,P A 长度的最小值为2,∴圆心到直线kx +y +4=0的最小距离为5,由点到直线的距离公式可得|1+4|k 2+1=5,∵k >0,∴k =2,故选D. 【答案】 D12.(2016·德州高一检测)将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D -ABC 的体积为( )A.212a 3 B.a 312 C.24a 3D.a 36【解析】 取AC 的中点O ,如图,则BO =DO =22a ,又BD =a ,所以BO ⊥DO ,又DO ⊥AC , 所以DO ⊥平面ACB , V D -ABC=13S △ABC ·DO =13×12×a 2×22a =212a 3. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知两条平行直线的方程分别是2x +3y +1=0,mx +6y -5=0,则实数m =________.【解析】 由于两直线平行,所以2m =36≠1-5,∴m =4.【答案】 414.一个横放的圆柱形水桶,桶内的水漫过底面周长的四分之一,那么当桶直立时,水的高度与桶的高度的比为________.【解析】 设圆柱形水桶的底面半径为R ,高为h ,桶直立时,水的高度为x . 横放时水桶底面在水内的面积为⎝ ⎛⎭⎪⎫14πR 2-12R 2,水的体积为V 水=⎝ ⎛⎭⎪⎫14πR 2-12R 2h .直立时水的体积不变,则有V 水=πR 2x , ∴x ∶h =(π-2)∶4π. 【答案】 (π-2)∶4π15.已知一个等腰三角形的顶点A (3,20),一底角顶点B (3,5),另一顶点C 的轨迹方程是________.【解析】 设点C 的坐标为(x ,y ), 则由|AB |=|AC |得 (x -3)2+(y -20)2 =(3-3)2+(20-5)2, 化简得(x -3)2+(y -20)2=225.因此顶点C 的轨迹方程为(x -3)2+(y -20)2=225(x ≠3). 【答案】 (x -3)2+(y -20)2=225(x ≠3)16.(2015·湖南高考)若直线3x -4y +5=0与圆x 2+y 2=r 2(r >0)相交于A ,B 两点,且∠AOB =120°(O 为坐标原点),则r =__________.【解析】 如图,过点O 作OD ⊥AB 于点D ,则|OD |=532+(-4)2=1.∵∠AOB =120°,OA =OB , ∴∠OBD =30°,∴|OB |=2|OD |=2,即r =2. 【答案】 2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)直线l 1过点A (0,1),l 2过点B (5,0),如果l 1∥l 2且l 1与l 2的距离为5,求l 1,l 2的方程.【解】 若直线l 1,l 2的斜率都不存在,则l 1的方程为x =0,l 2的方程为x =5,此时l1,l2之间距离为5,符合题意;若l1,l2的斜率均存在,设直线的斜率为k,由斜截式方程得直线l1的方程为y=kx+1,即kx-y+1=0,由点斜式可得直线l2的方程为y=k(x-5),即kx-y-5k=0,在直线l1上取点A(0,1),则点A到直线l2的距离d=|1+5k|1+k2=5,∴25k2+10k+1=25k2+25,∴k=125.∴l1的方程为12x-5y+5=0,l2的方程为12x-5y-60=0.综上知,满足条件的直线方程为l1:x=0,l2:x=5或l1:12x-5y+5=0,l2:12x-5y-60=0.18.(本小题满分12分)已知圆C1:x2+y2-4x+2y=0与圆C2:x2+y2-2y-4=0.(1)求证:两圆相交;(2)求两圆公共弦所在直线的方程.【导学号:09960154】【解】(1)证明:圆C1:x2+y2-4x+2y=0与圆C2:x2+y2-2y-4=0化为标准方程分别为圆C1:(x-2)2+(y+1)2=5与圆C2:x2+(y-1)2=5,则圆心坐标分别为C1(2,-1)与C2(0,1),半径都为5,故圆心距为(2-0)2+(-1-1)2=22,又0<22<25,故两圆相交.(2)将两圆的方程作差即可得出两圆的公共弦所在直线的方程,即(x2+y2-4x +2y)-(x2+y2-2y-4)=0,得x-y-1=0.19.(本小题满分12分)如图3,在三棱锥A-BPC中,AP⊥PC,AC⊥BC,M 为AB中点,D为PB中点,且△PMB为正三角形.图3(1)求证:DM∥平面APC;(2)求证:平面ABC⊥平面APC.【证明】 (1)∵M 为AB 的中点,D 为PB 的中点, ∴MD ∥AP .又∵DM ⊄平面APC ,AP ⊂平面APC , ∴DM ∥平面APC .(2)∵△PMB 为正三角形,D 为PB 中点, ∴MD ⊥PB .又∵MD ∥AP ,∴AP ⊥PB . 又∵AP ⊥PC ,PC ∩PB =P ,∴AP ⊥平面PBC . ∵BC ⊂平面PBC ,∴AP ⊥BC .又∵AC ⊥BC ,且AC ∩AP =A ,∴BC ⊥平面APC . 又∵BC ⊂平面ABC ,∴平面ABC ⊥平面APC .20.(本小题满分12分)已知△ABC 的顶点A (0,1),AB 边上的中线CD 所在的直线方程为2x -2y -1=0,AC 边上的高BH 所在直线的方程为y =0.(1)求△ABC 的顶点B 、C 的坐标;(2)若圆M 经过A 、B 且与直线x -y +3=0相切于点P (-3,0),求圆M 的方程. 【解】 (1)AC 边上的高BH 所在直线的方程为y =0,所以AC 边所在直线的方程为x =0,又CD 边所在直线的方程为2x -2y -1=0, 所以C ⎝ ⎛⎭⎪⎫0,-12, 设B (b,0),则AB 的中点D ⎝ ⎛⎭⎪⎫b 2,12,代入方程2x -2y -1=0, 解得b =2, 所以B (2,0).(2)由A (0,1),B (2,0)可得,圆M 的弦AB 的中垂线方程为4x -2y -3=0,① 由与x -y +3=0相切,切点为(-3,0)可得,圆心所在直线方程为y +x +3=0,②①②联立可得,M ⎝ ⎛⎭⎪⎫-12,-52,半径|MA |=14+494=502,所以所求圆方程为⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y +522=252.21.(本小题满分12分)如图4,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E ,F 分别是A 1C 1,BC 的中点.图4(1)求证:平面ABE ⊥平面B 1BCC 1; (2)求证:C 1F ∥平面ABE ; (3)求三棱锥E -ABC 的体积.【解】 (1)证明:在三棱柱ABC -A 1B 1C 1中,BB 1⊥底面ABC ,所以BB 1⊥AB . 又因为AB ⊥BC , 所以AB ⊥平面B 1BCC 1, 又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1.(2)证明:取AB 的中点G ,连接EG ,FG . 因为E ,F 分别是A 1C 1,BC 的中点, 所以FG ∥AC ,且FG =12AC . 因为AC ∥A 1C 1,且AC =A 1C 1, 所以FG ∥EC 1,且FG =EC 1,所以四边形FGEC 1为平行四边形.所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE ,所以C 1F ∥平面ABE .(3)因为AA 1=AC =2,BC =1,AB ⊥BC ,所以AB =AC 2-BC 2= 3.所以三棱锥E -ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33.22.(本小题满分12分)已知圆M 过两点A (1,-1),B (-1,1),且圆心M 在x +y -2=0上.(1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,PC 、PD 是圆M 的两条切线,C 、D 为切点,求四边形PCMD 面积的最小值.【导学号:09960155】【解】 (1)法一 线段AB 的中点为(0,0),其垂直平分线方程为x -y =0.解方程组⎩⎨⎧x -y =0,x +y -2=0. 所以圆M 的圆心坐标为(1,1),半径r =(1-1)2+(-1-1)2=2.故所求圆M 的方程为(x -1)2+(y -1)2=4.法二 设圆M 的方程为(x -a )2+(y -b )2=r 2,(r >0), 根据题意得⎩⎨⎧ (1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0.解得a =b =1,r =2. 故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)由题知,四边形PCMD 的面积为S =S △PMC +S △PMD =12|CM |·|PC |+12|DM |·|PD |.又|CM |=|DM |=2,|PC |=|PD |,所以S =2|PC |,而|PC |=|PM |2-|CM |2=|PM|2-4,即S=2|PM|2-4.因此要求S的最小值,只需求|PM|的最小值即可,即在直线3x+4y+8=0上找一点P,使得|PM|的值最小,所以|PM|min=|3×1+4×1+8|32+42=3,所以四边形PCMD面积的最小值为S=2|PM|2-4=232-4=2 5.。
高中数学必修2模块测试试卷
必修2测试卷一、选择题(每小题4分共40分)1、圆锥过轴的截面是( )A 圆 B 等腰三角形 C 抛物线 D 椭圆2、若一条直线与两个平行平面中的一个平行,则这条直线与另一个平面的位置关系是( )。
A 平行 B 相交 C 在平面内 D 平行或在平面内3、一个西瓜切3刀,最多能切出( )块。
A 4 B 6 C 7 D 8 4.下图中不可能成正方体的是( )5.三个球的半径之比是1:2:3,那么最大的球的表面积是其余两个球的表面积之和的( )A .1倍B .2倍C .541倍 D .431倍6.以下四个命题中正确命题的个数是( )①过空间一点作已知平面的垂线有且只有一条②过空间一点作已知平面的平行线有且只有一条③过空间一点作已知直线的垂线有且只有一条④过空间一点作已知直线的平行线有且只有一条A .1 B .2 C .3 D .47.若)0,(),4,9(),2,3(x C B A --三点共线,则x 的值是( )A .1 B .-1 C .0 D .7 8.已知直线06:1=++my x l 和直线023)2(:2=++-m y x m l 互相平行,则实数m 的值是( )A .-1或3 B .-1 C .-3 D .1或-3 9.已知直线l 的方程为02543=-+y x ,则圆122=+yx 上的点到直线l 的最大距离是( )A .1 B .4 C .5 D .6 10.点)1,3,2(-M 关于坐标原点的对称点是( )A .(-2,3,-1)B .(-2,-3,-1)C .(2,-3,-1)D .(-2,3,1) 二、填空题(每题4分共16分)11、从长方体一个顶点出发的三个面的面积分别为6、8、12,则其对角线长为 12.将等腰三角形绕底边上的高旋转180o ,所得几何体是______________; 13.圆C :1)6()2(22=-++y x 关于直线0543=+-y x 对称的圆的方程是___________________;14.经过点)4,3(--P ,且在x 轴、y 轴上的截距相等的直线l 的方程是______________________。
高中数学必修二第二章《点、直线、平面之间的位置关系》单元测试卷及答案
B.平面 ADC ⊥平面 BDC D.平面 ADC ⊥平面 ABC
二、填空题(本大题共 4 个小题,每小题 5 分,共 20 分,把正确答案填在题中横线上)
13.直线 l 与平面 α所成角为 30°, l∩α= A, m? α, A m ,则 m 与 l 所成角的取值范围是 ________ . 14.如图所示, 在正方体 ABCD -A1B1C1D1 中,M 、N 分别是棱 AA1 和 AB 上的点, 若∠ B1MN 是直角,则∠ C1MN 等于 ________.
A.1 条
B.2 条
C. 3 条
D.4 条
7.如图, A 是平面 BCD 外一点, E、 F 、G 分别是 BD、 DC、 CA 的中点,设过这三点的平
面为 α,则在图中的 6 条直线 AB、AC、AD 、BC、CD 、DB 中,与平面 α平行的直线有 ( )
A.0 条
B.1 条
C. 2 条
D.3 条
D.如果平面 α不垂直于平面 β,那么平面 α内一定不存在直线垂直于平面 β 4.已知 α、β是两个平面,直线 l , l ,若以① l⊥ α;② l ∥β;③ α⊥β中两个为条件,
另一个为结论构成三个命题,则其中正确的命题有(
)
A .①③ ? ②;①② ? ③
B.①③ ? ②;②③ ? ①
C.①② ? ③;②③ ? ①
8.已知三棱柱 ABC-A1B1C1 的侧棱与底面边长都相等, A1 在底面 ABC 内的射影为△ ABC
的中心 O,则 AB1 与底面 ABC 所成角的正弦值为(
)
A. 1 3
B. 2 3
C. 3 3
D. 2 3
9.等腰 Rt△ABC 中, AB=BC =1, M 为 AC 的中点,沿 BM 把它折成二面角,
高中数学必修二模块综合测试卷(包含答案)(K12教育文档)
高中数学必修二模块综合测试卷(包含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修二模块综合测试卷(包含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修二模块综合测试卷(包含答案)(word版可编辑修改)的全部内容。
高中数学必修二模块综合测试卷(含答案)一、选择题:(共10小题,每小题5分)1. 在平面直角坐标系中,已知(1,2)A -,(3,0)B ,那么线段AB 中点的坐标为( ) A .(2,1)- B . (2,1) C .(4,2)- D .(1,2)- 2。
直线y kx =与直线21y x =+垂直,则k 等于( )A .2-B .2C .12-D .133.圆2240x y x +-=的圆心坐标和半径分别为( )A .(0,2),2B .(2,0),4C .(2,0),2-D .(2,0),2 4. 在空间直角坐标系中,点(2,1,4)-关于x 轴的对称点的坐标为( ) A .(2,1,4)-- B .(2,1,4)- C .(2,1,4)--- D .(2,1,4)-5. 将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为( ) A .2π B .4π C .8π D .16π6. 下列四个命题中错误的...是( ) A .若直线a 、b 互相平行,则直线a 、b 确定一个平面 B .若四点不共面,则这四点中任意三点都不共线 C .若两条直线没有公共点,则这两条直线是异面直线 D .两条异面直线不可能垂直于同一个平面7。
2020-2021学年新教材人教A版数学必修第二册模块综合测评 Word版含解析
模块综合测评(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z满足(z-1)i=1+i,则z等于()A.-2-i B.-2+iC.2-i D.2+iC[由(z-1)i=1+i,两边同乘以-i,则有z-1=1-i,所以z=2-i。
]2.已知向量a与b的夹角为30°,且|a|=1,|2a-b|=1,则|b|等于()A. 6 B.错误!C.错误!D.错误!C[由题意可得a·b=|b|cos 30°=错误!|b|,4a2-4a·b+b2=1,即4-23|b|+b2=1,由此求得|b|=错误!,故选C.]3.设z=错误!+i,则|z|等于()A.错误!B.错误!C.错误! D.2B[∵z=错误!+i=错误!+i=错误!+i=错误!+错误!i,∴|z|=错误!=错误!.]4.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是()A.45 B.50C.55 D.60B[由频率分布直方图,知低于60分的频率为(0。
01+0.005)×20=0.3.∴该班学生人数n=错误!=50.]5.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为( )A.1 cm B.2 cmC.3 cm D.错误!cmB[S表=πr2+πrl=πr2+πr·2r=3πr2=12π,∴r2=4,∴r=2(cm).]6.已知向量a=(cos θ-2,sin θ),其中θ∈R,则|a|的最小值为()A.1 B.2 C.错误!D.3A[因为a=(cos θ-2,sin θ),所以|a|=错误!=错误!=错误!,因为θ∈R,所以-1≤cos θ≤1,故|a|的最小值为错误!=1.故选A.]7.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4 B.0.6C.0.8 D.1B[5件产品中有2件次品,记为a,b,有3件合格品,记为c,d,e,从这5件产品中任取2件,样本点有(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e)共10种.恰有一件次品的结果有6种,则其概率为P=错误!=0。
高中数学必修二综合测试题(含答案)
高中数学必修二综合测试题(含答案)高二数学必修二综合测试题一、选择题(本大题共12小题,每小题5分,共60分)1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面;③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行.其中正确的命题是()A.①② B.②④ C.①③ D.②③2.过点P(1,3)且垂直于直线x2y3的直线方程为()A.2x y1 B.2x y5 C.x2y5D.x2y73.圆(x-1)2+y2=1的圆心到直线y=3x的距离是()A.2 B.2 C.1 D.34.已知F1,F2是椭圆x2/16+y2/9=1的左右焦点,P为椭圆上一个点,且A.2 B. C. D.5.已知空间两条不同的直线m,n和两个不同的平面α,β,则下列命题中正确的是()A.若m//α,n⊥α,则m//n B.若α∩β=m,m⊥n,则n⊥αC.若m//α,n//α,则m//n D.若m//α,m⊥β,αβ=n,则m//n6.圆x2+y2-2x+4y-20=0截直线5x-12y+c=0所得的弦长为8,则c的值是()A.10 B.10或-68 C.5或-34 D.-687.已知ab0,则直线ax+by=c通过()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限8.正方体ABCD—A1B1C1D1中,E、F分别是AA1与CC1的中点,则直线ED与D1F所成角的大小是()A.1/5 B.113° C. D.232°9.在三棱柱ABC—A1B1C1中,各棱长相等,侧面BC1C 的中心为D,则AD与平面BC1C所成角的大小是()10.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD 成60°的角;④AB与CD所成的角是60°。
人教版高中数学必修二第二章单元测试(二)及参考答案
2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.下列推理错误的是( ) A.A ∈l ,A ∈α,B ∈l ,B ∈α⇒l ⊂α B.A ∈α,A ∈β,B ∈α,B ∈β⇒α∩β=AB C.l ⊄α,A ∈l ⇒A ∉α D.A ∈l ,l ⊂α⇒A ∈α2.长方体ABCD -A 1B 1C 1D 1中,异面直线AB ,A 1D 1所成的角等于( ) A.30°B.45°C.60°D.90°3.在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,当BD ∥平面EFGH 时,下面结论正确的是( ) A.E ,F ,G ,H 一定是各边的中点 B.G ,H 一定是CD ,DA 的中点C.BE ∶EA =BF ∶FC ,且DH ∶HA =DG ∶GCD.AE ∶EB =AH ∶HD ,且BF ∶FC =DG ∶GC4.如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为m ,n ,那么m +n 等于()A.8B.9C.10D.115.如图所示,在正方体ABCD —A 1B 1C 1D 1中,若E 是A 1C 1的中点,则直线CE 垂直于()A.ACB.BDC.A 1DD.A 1D 16.如图所示,将等腰直角△ABC 沿斜边BC 上的高AD 折成一个二面角,此时∠B ′AC =60°,那么这个二面角大小是()A.90°B.60°C.45°D.30°7.如图所示,直线P A 垂直于⊙O 所在的平面,△ABC 内接于⊙O ,且AB 为⊙O 的直径,点M 为线段PB 的中点.现有结论:①BC ⊥PC ;②OM ∥平面APC ;③点B 到平面P AC 的距离等于线段BC此卷只装订不密封班级 姓名 准考证号 考场号 座位号的长,其中正确的是( ) A.①②B.①②③C.①D.②③8.如图,三棱柱111ABC A B C -中,侧棱AA 1⊥底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 中点,则下列叙述正确的是() 1与B 1E 是异面直线B.AC ⊥平面ABB 1A 1C.AE ,B 1C 1为异面直线,且AE ⊥B 1C 1D.A 1C 1∥平面AB 1E9.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定成立的是( ) A.AB ∥mB.AC ⊥mC.AB ∥βD.AC ⊥β10.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( ) A.512π B.3π C.4π D.6π 11.正方体ABCD -A 1B 1C 1D 1中,过点A 作平面A 1BD 的垂线,垂足为点H .以下结论中,错误的是( )A.点H 是△A 1BD 的垂心B.AH ⊥平面CB 1D 1C.AH 的延长线经过点C 1D.直线AH 和BB 1所成的角为45°12.已知矩形ABCD ,AB =1,BC =将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中( )A.存在某个位置,使得直线AC 与直线BD 垂直B.存在某个位置,使得直线AB 与直线CD 垂直C.存在某个位置,使得直线AD 与直线BC 垂直D.对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.下列四个命题:①若a ∥b ,a ∥α,则b ∥α;②若a ∥α,b ⊂α,则a ∥b ;③若a ∥α,则a 平行于α内所有的直线;④若a ∥α,a ∥b ,b ⊄α,则b ∥α.其中正确命题的序号是________.14.如图所示,在直四棱柱1111ABCD A B C D -中,当底面四边形A 1B 1C 1D 1满足条件_______时,有A 1C ⊥B 1D 1.(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况)15.已知四棱锥P ABCD -的底面ABCD 是矩形,P A ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于PAB △的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的编号)16.如图所示,已知矩形ABCD 中,AB =3,BC =a ,若P A ⊥平面ABCD ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如图所示,长方体1111ABCD A B C D -中,M 、N 分别为AB 、A 1D 1的中点,判断MN 与平面A 1BC 1的位置关系,为什么?18.(12分)如图,三棱柱111ABC A B C -的侧棱与底面垂直,AC =9,BC =12,AB =15,AA 1=12,点D 是AB 的中点. (1)求证:AC ⊥B 1C ; (2)求证:AC 1∥平面CDB 1.19.(12分)如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC .(1)求证:BC ⊥平面P AC .(2)是否存在点E 使得二面角A DE P --为直二面角?并说明理由.20.(12分)如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,B 1C 的中点为O ,且AO ⊥平面BB 1C 1C . (1)证明:B 1C ⊥AB ;(2)若AC ⊥AB 1,∠CBB 1=60°,BC =1,求三棱柱111ABC A B C -的高.21.(12分)如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.(1)求证:P A∥面BDE;(2)求证:平面P AC⊥平面BDE;(3)若二面角E BD C--为30°,求四棱锥P ABCD-的体积.22.(12分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC =1,E,F分别是A1C1,BC的中点. (1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E ABC-的体积.2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.【答案】C【解析】若直线l ∩α=A ,显然有l ⊄α,A ∈l ,但A ∈α.故选C.2.【答案】D【解析】由于AD ∥A 1D 1,则∠BAD 是异面直线AB ,A 1D 1所成的角,很明显∠BAD =90°.故选D.3.【答案】D【解析】由于BD ∥平面EFGH ,所以有BD ∥EH ,BD ∥FG ,则AE ∶EB =AH ∶HD ,且BF ∶FC =DG ∶GC .故选D.4.【答案】A【解析】如图,取CD 的中点H ,连接EH ,HF.在四面体CDEF 中,CD ⊥EH ,CD ⊥FH ,所以CD ⊥平面EFH ,所以AB ⊥平面EFH ,所以正方体的左、右两个侧面与EFH 平行,其余4个平面与EFH 相交,即n =4.又因为CE 与AB 在同一平面内,所以CE 与正方体下底面共面,与上底面平行,与其余四个面相交,即m =4,所以m +n =4+4=8.故选A. 5.【答案】B【解析】易证BD ⊥面CC 1E ,则BD ⊥CE .故选B. 6.【答案】A【解析】连接B ′C ,则△AB ′C 为等边三角形,设AD =a,则B ′D =DC =a,B C AC '=,所以∠B ′DC =90°.故选A.7.【答案】B【解析】对于①,∵P A ⊥平面ABC ,∴P A ⊥BC ,∵AB 为⊙O 的直径,∴BC ⊥AC ,∴BC ⊥平面P AC ,又PC ⊂平面P AC ,∴BC ⊥PC ;对于②,∵点M 为线段PB 的中点,∴OM ∥P A ,∵P A ⊂平面P AC ,∴OM ∥平面P AC ;对于③,由①知BC ⊥平面P AC ,∴线段BC 的长即是点B 到平面P AC 的距离.故①②③都正确.8.【答案】C【解析】由已知AC =AB ,E 为BC 中点,故AE ⊥BC , 又∵BC ∥B 1C 1,∴AE ⊥B 1C 1,故C 正确.故选C. 9.【答案】D【解析】∵m ∥α,m ∥β,α∩β=l ,∴m ∥l .∵AB ∥l ,∴AB ∥m .故A 一定正确. ∵AC ⊥l ,m ∥l ,∴AC ⊥m .故B 一定正确.∵A ∈α,AB ∥l ,l ⊂α,∴B ∈α.∴AB ⊄β,l ⊂β.∴AB ∥β.故C 也正确. ∵AC ⊥l ,当点C 在平面α内时,AC ⊥β成立,当点C 不在平面α内时,AC ⊥β不成立.故D 不一定成立.故选D. 10.【答案】B【解析】如图所示,作PO ⊥平面ABC ,则O 为△ABC 的中心,连接AP ,AO .1sin 602ABC S =︒=.11194ABC A B C ABC V S OP OP -∴=⨯==,OP ∴=又213OA ==,∴tan OP OAP OA ∠=又02OAP π<∠<,∴3OAP π∠=.故选B.11.【答案】D【解析】因为AH ⊥平面A 1BD ,BD ⊂平面A 1BD ,所以BD ⊥AH . 又BD ⊥AA 1,且AH ∩AA 1=A .所以BD ⊥平面AA 1H.又A 1H ⊂平面AA 1H .所以A 1H ⊥BD ,同理可证BH ⊥A 1D ,所以点H 是△A 1BD 的垂心,故A 正确. 因为平面A 1BD ∥平面CB 1D 1,所以AH ⊥平面CB 1D 1,B 正确.易证AC 1⊥平面A 1BD .因为过一点有且只有一条直线与已知平面垂直,所以AC 1和AH 重合.故C 正确.因为AA 1∥BB 1,所以∠A 1AH 为直线AH 和BB 1所成的角. 因为∠AA 1H ≠45°,所以∠A 1AH ≠45°,故D 错误.故选D. 12.【答案】B【解析】A 错误.理由如下:过A 作AE ⊥BD ,垂足为E ,连接CE,若直线AC 与直线BD 垂直,则可得BD ⊥平面ACE ,于是BD ⊥CE ,而由矩形ABCD 边长的关系可知BD 与CE 并不垂直.所以直线AC 与直线BD 不垂直.B 正确.理由:翻折到点A 在平面BCD 内的射影恰好在直线BC 上时,平面ABC ⊥平面BCD ,此时由CD ⊥BC 可证CD ⊥平面ABC ,于是有AB ⊥CD .故B 正确. C 错误.理由如下:若直线AD 与直线BC 垂直,则由BC ⊥CD 可知BC ⊥平面ACD ,于是BC ⊥AC ,但是AB <BC ,在△ABC 中∠ACB 不可能是直角.故直线AD 与直线BC 不垂直.由以上分析显然D 错误.故选B.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】④【解析】①中b 可能在α内;②a 与b 可能异面或者垂直;③a 可能与α内的直线异面或垂直.14.【答案】B 1D 1⊥A 1C 1(答案不唯一)【解析】由直四棱柱可知CC 1⊥面A 1B 1C 1D 1,所以CC 1⊥B 1D 1,要使B 1D 1⊥A 1C ,只要B 1D 1⊥平面A 1CC 1,所以只要B 1D 1⊥A 1C 1,还可以填写四边形A 1B 1C 1D 1是菱形,正方形等条件. 15.【答案】①③【解析】由条件可得AB ⊥平面P AD ,∴AB ⊥PD ,故①正确;若平面PBC ⊥平面ABCD ,由PB ⊥BC ,得PB ⊥平面ABCD ,从而P A ∥PB , 这是不可能的,故②错;1·2PCD S CD PD =△,1·2PAB S AB PA =△,由AB =CD ,PD >P A 知③正确;由E 、F 分别是棱PC 、PD 的中点,可得EF ∥CD ,又AB ∥CD ,∴EF ∥AB ,故AE 与BF 共面,④错. 16.【答案】a >6【解析】由题意知:P A ⊥DE ,又PE ⊥DE ,P A ∩PE =P ,∴DE ⊥面P AE ,∴DE ⊥AE .易证△ABE ∽△ECD .设BE =x ,则AB BE CE CD =,即33xa x =-.∴290x ax +=-,由0∆>,解得a >6.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】平行,见解析.【解析】直线MN ∥平面A 1BC 1.证明如下:∵M ∉平面A 1BC 1,N ∉平面A 1BC 1.∴MN ∉平面A 1BC 1. 如图,取A 1C 1的中点O 1,连接NO 1、BO 1.∵11112N D O C ∥,1112M D B C ∥,∴1NO MB ∥.∴四边形NO 1BM 为平行四边形.∴MN ∥BO 1.又∵BO 1⊂平面A 1BC 1,∴MN ∥平面A 1BC 1. 18.【答案】(1)见解析;(2)见解析. 【解析】(1)∵C 1C ⊥平面ABC ,∴C 1C ⊥AC .∵AC =9,BC =12,AB =15,∴AC 2+BC 2=AB 2,∴AC ⊥BC .又BC ∩C 1C =C ,∴AC ⊥平面BCC 1B 1,而B 1C ⊂平面BCC 1B 1,∴AC ⊥B 1C . (2)连接BC 1交B 1C 于O 点,连接OD .如图,∵O ,D 分别为BC 1,AB 的中点,∴OD ∥AC 1.又OD ⊂平面CDB 1,AC 1⊄平面CDB 1.∴AC 1∥平面CDB 1. 19.【答案】(1)见解析;(2)存在,见解析.【解析】(1)证明∵P A ⊥底面ABC ,∴P A ⊥BC .又∠BCA =90°,∴AC ⊥BC . 又∵AC ∩P A =A ,∴BC ⊥平面P AC .(2)∵DE ∥BC ,又由(1)知,BC ⊥平面P AC ,∴DE ⊥平面P AC . 又∵AE ⊂平面P AC ,PE ⊂平面P AC ,∴DE ⊥AE ,DE ⊥PE . ∴∠AEP 为二面角A DE P --的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC ,∴∠P AC =90°.∴在棱PC 上存在一点E ,使得AE ⊥PC .这时∠AEP =90°,故存在点E ,使得二面角A DE P --为直二面角. 20.【答案】(1)见解析;. 【解析】(1)证明 连接BC 1,则O 为B 1C 与BC 1的交点.因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1.又AO ⊥平面BB 1C 1C ,所以B 1C ⊥AO ,故B 1C ⊥平面ABO . 由于AB ⊂平面ABO ,故B 1C ⊥AB .(2)解 在平面BB 1C 1C 内作OD ⊥BC ,垂足为D ,连接AD . 在平面AOD 内作OH ⊥AD ,垂足为H .由于BC ⊥AO ,BC ⊥OD ,故BC ⊥平面AOD ,所以OH ⊥BC . 又OH ⊥AD ,所以OH ⊥平面ABC .因为∠CBB 1=60°,所以△CBB 1为等边三角形.又BC =1,可得OD =.由于AC ⊥AB 1,所以11122OA B C ==.由OH ·AD =OD ·OA ,且AD ==得OH =.又O 为B 1C 的中点,所以点B 1到平面ABC, 故三棱柱111ABC A B C -. 21.【答案】(1)见解析;(2)见解析;(3)3P ABCD V -=. 【解析】(1)证明 连接OE ,如图所示.∵O 、E 分别为AC 、PC 的中点,∴OE ∥P A . ∵OE ⊂面BDE ,P A ⊄面BDE ,∴P A ∥面BDE . (2)证明 ∵PO ⊥面ABCD ,∴PO ⊥BD .在正方形ABCD 中,BD ⊥AC ,又∵PO ∩AC =O ,∴BD ⊥面P AC . 又∵BD ⊂面BDE ,∴面P AC ⊥面BDE . (3)解 取OC 中点F ,连接EF .∵E 为PC 中点, ∴EF 为POC △的中位线,∴EF ∥PO .又∵PO ⊥面ABCD ,∴EF ⊥面ABCD ,∴EF ⊥BD . ∵OF ⊥BD ,OF ∩EF =F ,∴BD ⊥面EFO ,∴OE ⊥BD . ∴∠EOF 为二面角E BD C --的平面角,∴∠EOF =30°.在Rt △OEF 中,1124OF OC AC ===,∴·tan 30EF OF =︒=,∴2OP EF ==.∴2313P ABCD V a -=⨯=. 22.【答案】(1)见解析;(2)见解析;(3)V =. 【解析】(1)证明在三棱柱111ABC A B C -中,BB 1⊥底面ABC ,所以BB 1⊥AB . 又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1, 又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1. (2)证明 取AB 的中点G ,连接EG ,FG .因为E ,F 分别是A 1C 1,BC 的中点,所以FG ∥AC ,且12FG AC =. 因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形.所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE ,所以C 1F ∥平面ABE .(3)解 因为AA 1=AC =2,BC =1,AB ⊥BC ,所以AB 所以三棱锥E -ABC的体积1111·12332ABC V S AA ==⨯⨯=△.。
最新高中数学必修二模块综合测试卷(2)
高中数学必修二模块综合测试卷(二)一、选择题:(共10小题,每小题5分)1、若直线经过()(1,0),4,3A B 两点,则直线AB 嘚倾斜角为( ) A 、30︒ B 、45︒ C 、60︒ D 120︒ 2、下列图形中不一定是平面图形嘚是( )A 、三角形B 、平行四边形C 、梯形D 、四边相等嘚四边形 3、已知圆心为(1,2)C -,半径4r =嘚圆方程为( ) A 、()()22124x y ++-= B 、()()22124x y -++= C 、()()221216x y ++-= D 、()()221216x y -++= 4、直线134x y+=与,x y 轴所围成嘚三角形嘚周长等于( ) A 、6 B 、12 C 、24 D 、605、ABC 嘚斜二侧直观图如图所示,则ABC 嘚面积为( )A 、1B 、2C 、22D 、26、下列说法正确嘚是( )A 、//,//a b b a αα⊂⇒B 、,a b b a αα⊥⊂⇒⊥C 、,//a b a b αα⊥⊥⇒D 、,a a αββα⊥⊂⇒⊥ 7、如图,AB 是O 嘚直径,C 是圆周上不同于,A B 嘚任意一点,PA ⊥平面ABC ,则四面体P ABC -嘚四个面中,直角三角形嘚个数有( )A 、4个B 、3个C 、2个D 、1个8、已知圆221:1O x y +=与圆()()222:3416O x x -++=,则圆1O 与圆2O 嘚位置关系为( )A 、相交B 、内切C 、外切D 、相离9、如图是正方体嘚平面展开图,则在这个正方体中AB 与CD 嘚位置关系为( )A 、相交B 、平行Oxy12()C ABOC APBDBAC 、异面而且垂直D 、异面但不垂直10、对于任意实数a ,点(),2P a a -与圆22:1C x y +=嘚位置关系嘚所有可能是( )A 、都在圆内B 、都在圆外C 、在圆上、圆外D 、在圆上、圆内、圆外 二、填空题:(共4小题,每小题5分) 11、已知一个球嘚表面积为236cm π,则这个球嘚体积为 3cm 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修二模块综合测试卷(二)
姓名 班级 学号
一、选择题:(共10小题,每小题5分)
1
、若直线经过((1,0),A B 两点,则直线AB 的倾斜角为( ) A 、30︒ B 、45︒ C 、60︒ D 120︒ 2、下列图形中不一定是平面图形的是( )
A 、三角形
B 、平行四边形
C 、梯形
D 、四边相等的四边形 3、已知圆心为(1,2)C -,半径4r =的圆方程为( ) A 、()()2
2
124x y ++-= B 、()()2
2
124x y -++= C 、()()2
2
1216x y ++-= D 、()()2
2
1216x y -++= 4、直线
134
x y
+=与,x y 轴所围成的三角形的周长等于( ) A 、6 B 、12 C 、24 D 、60
5、ABC 的斜二侧直观图如图所示,则ABC 的面积为(
A 、1
B 、2
C 、2
D 6、下列说法正确的是( )
A 、//,//a b b a αα⊂⇒
B 、,a b b a αα⊥⊂⇒⊥
C 、,//a b a b αα⊥⊥⇒
D 、,a a αββα⊥⊂⇒⊥ 7、如图,AB 是O 的直径,C 是圆周上不同于,A B 的任意一点,
PA ⊥平面ABC ,则四面体P ABC -的四个面中,直角三角形的
个数有( )
A 、4个
B 、3个
C 、2个
D 、1个
8、已知圆22
1:1O x y +=与圆()()2
2
2:3416O x x -++=,则圆1O 与圆2O 的位置关系为
( )
A 、相交
B 、内切
C 、外切
D 、相离
9、如图是正方体的平面展开图,则在这个正方体中AB 与CD 的位置关系为( )
A 、相交
B 、平行
C 、异面而且垂直
D 、异面但不垂直
10、对于任意实数a ,点(),2P a a -与圆2
2
:1C x y +=的位置关系的所有可能是( ) A 、都在圆内 B 、都在圆外 C 、在圆上、圆外 D 、在圆上、圆内、圆外
A
D
二、填空题:(共4小题,每小题5分)
11、已知一个球的表面积为2
36cm π,则这个球的体积为 3
cm 。
12、过两条异面直线中的一条且平行于另一条的平面有 个。
13、已知点Q 是点(3,4,5)P 在平面xOy 上的射影,则线段PQ 的长等于 。
14、已知直线l 与直线4350x y -+=关于y 轴对称,则直线l 的方程为 。
三、解答题:(共6小题) 15、(本小题满分12分)如图,在平行四边形ABCD 中,边AB 所在直线方程为
220x y --=,点(2,0)C 。
(1)求直线CD 的方程;(2)求AB 边上的高CE 所在直线的方程。
16、(本小题满分12分)已知一个几何体的三视图如图所示。
(1)求此几何体的表面积;(2)如果点,P Q 在正视图中所示位置:P 为所在线段中点,Q 为顶点,求在几何体表面上,从
P 点到Q 点的最短路径的长。
17、(本小题满分14分)如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点。
(1)求证://EF 平面PAB ;
(2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=︒,求证:平面PEF ⊥平面PBC 。
18、(本小题满分14分)设直线240x y ++=和圆2
2
2150x y x +--=相交于点,A B 。
(1)求弦AB 的垂直平分线方程;(2)求弦AB 的长。
19、(本小题满分14分)如图(1),边长为2的正方形ABEF 中,,D C 分别为,EF AF 上的点,且ED CF =,现沿DC 把CDF 剪切、拼接成如图(2)的图形,再将,,BEC CDF ABD 沿,,BC CD BD 折起,使,,E F A 三点重合于点A '。
(1)求证:BA CD '⊥;(2)求四面体B A CD '-体积的最大值。
20、(本小题满分14分)已知圆C 的圆心为原点O
,且与直线0x y ++=相切。
(1)求圆C 的方程;(2)点P 在直线8x =上,过P 点引圆C 的两条切线,PA PB ,切点为,A B ,求证:直线AB 恒过定点。
D
3图()
E
参考答案
一、选择题:(共10小题,每小题5分) ADCBB CACDB 二、填空题:(共4小题,每小题5分)
11、36π 12、1 13、5 14、4350x y +-= 三、解答题:
15、解:(1) 四边形ABCD 为平行四边形,//AB CD ∴。
2C D A B
k k
∴==。
∴直线CD 的方程为()22y x =-,即240x y --=。
(2)CE AB ⊥ ,11
2
CE AB k k ∴=-
=-。
∴直线CE 的方程为()1
22
y x =-
-,即220x y +-=。
16、(1)由三视图知:此几何体是一个圆锥加一个圆柱,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和。
(
)
)
21
22
S a a π=
⋅=圆锥侧,
()()2224S a a a ππ=⋅=圆柱侧, 2S a π=圆柱底,
所以)
222245S a a a a πππ=
++=
表面。
(2)沿P 点与Q 点所在母线剪开圆柱侧面,如图。
则,
PQ =
==所以从P 点到
Q 点在侧面上的最短路径的长为。
17、证明:(1),E F 分别是,AC BC 的中点,//EF AB ∴。
又EF ⊄平面PAB ,AB ⊂平面PAB , //EF ∴平面PAB .
(2)在三角形PAC 中,PA PC = ,E 为AC 中点, PE AC ∴⊥。
平面PAC ⊥平面ABC ,平面PAC ⋂平面ABC AC =, PE ∴⊥平面ABC 。
PE BC ∴⊥。
C
又//,90EF AB ABC ∠=︒,
EF BC ∴⊥,又EF PE E ⋂=, BC ∴⊥平面PEF 。
∴平面PEF ⊥平面PBC 。
18、(1)圆方程可整理为:()2
2
116x y -+=,
所以,圆心坐标为()1,0,半径4r =,
易知弦AB 的垂直平分线过圆心,且与直线AB 垂直, 而1,22
AB l k k =-∴=,
所以,由点斜式方程可得:()21y x =-, 整理得:220x y --=。
(2)圆心()1,0到直线240x y ++=
的距离d =
=
故AB ==
19、(1)证明:折叠前,,BE EC BA AD ⊥⊥, 折叠后,BA A C BA A D ''''⊥⊥
又A C A D A '''⋂=,所以BA '⊥平面A CD ', 因此BA CD '⊥。
(2)解:设()02A C x x '=<<,则2A D x '=-。
因此()1
22
A CD S x x '=
- , ()11122332B A CD A CD V BA S x x ''-'∴=⋅=⨯⨯- ()2
1113x ⎡⎤=--+⎣
⎦
所以当1x =时,四面体B A CD '-体积的最大值为1
3。
20、解:(1)依题意得:圆C
的半径4r ==, 所以圆C 的方程为2
2
16x y +=。
(2),PA PB 是圆C 的两条切线,
,OA AP OB BP ∴⊥⊥。
D
3图()
,A B ∴在以OP 为直径的圆上。
设点P 的坐标为()8,,b b R ∈, 则线段OP 的中点坐标为4,2b ⎛⎫ ⎪⎝⎭。
∴以OP 为直径的圆方程为()22
2
244,22b b x y b R ⎛⎫⎛⎫
-+-=+∈ ⎪ ⎪⎝⎭⎝⎭
化简得:22
80,x y x by b R +--=∈
AB 为两圆的公共弦,
∴直线AB 的方程为816,x by b R +=∈
所以直线AB 恒过定点()2,0。