2012上海中考数学试卷第24题答案分析
2012上海中考数学试题及答案
![2012上海中考数学试题及答案](https://img.taocdn.com/s3/m/7b7c81ec27fff705cc1755270722192e453658ca.png)
2012上海中考数学试题及答案本文为中考数学试题及答案的整理,旨在帮助考生更好地了解2012年上海中考数学试题的内容和解题思路。
以下为试题及答案。
1. 选择题1)单选题1. 下列哪个数是有理数?A. √3B. -πC. eD. 5!答案:D2. 若25 ÷ x = 5,则x=?A. -5B. 5/25C. 1/5D. 5答案:C2)多选题1. 设函数f(x)=ax+b,若f(1)=2,f(-1)=0,则以下哪些条件是成立的?I. a=-1 II. a+b=2 III. b=1A. 仅IB. 仅I和IIC. 仅I和IIID. I、II和III答案:B2. 下列哪些数是整数?I. -√2 II. 0.5 III. -7 IV. 10%A. 仅I和IIIB. 仅III和IVC. 仅II和IIID. I、III和IV答案:A、C2. 解答题1)填空题1. 某班学生身高的范围是150cm~170cm,若身高是整数,且大于160cm的学生人数是30人,则身高是整数的学生人数是_________。
答案:102. 已知矩形ABCD的周长为24cm,若AD的长为4cm,则矩形的面积为_________。
答案:28 cm²2)计算题1. 已知函数f(x)的定义域为Df={x|x∈R},且f(x)=2x+3,求f(1)+f(2)的值。
答案:112. 某超市中,牛奶的原价为30元/袋,现在正在优惠促销活动,打9折出售。
若一位顾客购买了5袋牛奶,他需要支付的金额为_________元。
答案:135元3. 解析几何题1. 平面上有三点A(-2, 1),B(3, -2)和C(1, 4),求三角形ABC的面积。
答案:10.5平方单位2. 已知圆和正方形的面积相等,已知圆的半径r=4cm,求正方形的面积。
答案:32平方厘米以上为2012年上海中考数学试题及答案的选取和整理。
希望对考生们的备考有所帮助。
祝愿大家取得优异的成绩!。
2012上海中考数学试题及答案
![2012上海中考数学试题及答案](https://img.taocdn.com/s3/m/b9a279cd690203d8ce2f0066f5335a8102d266db.png)
2012上海中考数学试题及答案2012年上海中考数学试题及答案如下:一、选择题1. 下列四个数中,最小的是()A. 2×3B. 3+2C. 2-3D. 3×2解析:对于这道题,我们可以直接计算得出结果,也可以将这几个数列举出来,比较大小。
最小的是2-3,因此选C。
2. 若a:b=3:5,b:c=4:7,求a:c的值。
()A. 3:7B. 9:14C. 5:12D. 3:4解析:根据比例的传递规律,可以得到a:c=3×4:5×7=12:35,因此选C。
3. 以下各数是7的倍数的是()A. 140B. 153C. 156D. 168解析:7的倍数的个位数只有0和7。
因此,选A。
4. 若两个正数的和是60,差是12,求这两个数。
()A. 24, 36B. 30, 42C. 36, 24D. 42, 30解析:设这两个数为x和y,根据题意可以得到x+y=60,x-y=12。
解这个方程组可以得到x=36,y=24,因此选A。
5. 下面说法正确的是()A. 将正方体的一个面对折,顶点个数不变。
B. 任意一个折叠成果的四个面上的顶点个数之和是8。
C. 正方体的一个面对折后,边长增加。
D. 将正方体的一条棱旋转180°,顶点个数不变。
解析:只有选项B是正确的,因为正方体的每个面上都有4个顶点,四个面共有16个顶点,对折成立方体时,每个顶点只会发生两两重合,因此顶点个数之和依然是8。
二、填空题1. 乘法口诀表中,49出现的格子中填的数字之和是\_\_\_。
答案:25。
解析:从乘法口诀表可以看出,49出现在第七行的第七列,所以填的数字是7,题目要求数字之和,所以答案是7。
2. 已知等差数列3, \_\_\_, 9, \_\_\_, 15,公差是2,前100项的和是\_\_\_。
答案:5050。
解析:这个等差数列的首项是3,公差是2,所以第n项的值可以表示为3+(n-1)×2。
2012年历年上海市初三数学中考试卷及答案
![2012年历年上海市初三数学中考试卷及答案](https://img.taocdn.com/s3/m/a8036184ba1aa8114531d95a.png)
2012年上海市中考数学试卷一.选择题(共6小题)1.(2012上海)在下列代数式中,次数为3的单项式是()A. xy2B. x3+y3C..x3y D..3xy考点:单项式。
解答:解:根据单项式的次数定义可知:A、xy2的次数为3,符合题意;B、x3+y3不是单项式,不符合题意;C、x3y的次数为4,不符合题意;D、3xy的次数为2,不符合题意.故选A.2.(2012上海)数据5,7,5,8,6,13,5的中位数是()A. 5 B. 6 C. 7 D. 8考点:中位数。
解答:解:将数据5,7,5,8,6,13,5按从小到大依次排列为:5,5,5,6,7,8,13,位于中间位置的数为6.故中位数为6.故选B.3.(2012上海)不等式组的解集是()A. x>﹣3 B. x<﹣3 C. x>2 D. x<2考点:解一元一次不等式组。
解答:解:,由①得:x>﹣3,由②得:x>2,所以不等式组的解集是x>2.故选C.4.(2012上海)在下列各式中,二次根式的有理化因式是()A.B.C.D.考点:分母有理化。
解答:解:∵×=a﹣b,∴二次根式的有理化因式是:.故选:C.5.(2012上海)在下列图形中,为中心对称图形的是()A.等腰梯形B.平行四边形C.正五边形D.等腰三角形考点:中心对称图形。
解答:解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选:B.6.(2012上海)如果两圆的半径长分别为6和2,圆心距为3,那么这两个圆的位置关系是() A.外离B.相切C.相交D.内含考点:圆与圆的位置关系。
解答:解:∵两个圆的半径分别为6和2,圆心距为3,又∵6﹣2=4,4>3,∴这两个圆的位置关系是内含.故选:D.二.填空题(共12小题)7.(2012上海)计算= .考点:绝对值;有理数的减法。
解答:解:|﹣1|=1﹣=,故答案为:.8.因式分解:xy﹣x= .考点:因式分解-提公因式法。
2012上海中考数学试题及答案
![2012上海中考数学试题及答案](https://img.taocdn.com/s3/m/2bfb777d4a73f242336c1eb91a37f111f1850d8a.png)
2012上海中考数学试题及答案2012年上海中考数学试题及答案一、选择题(共10分,每题2分)1. 下列哪个数是无理数?A. 0.33333…(循环小数)B. πC. √2D. √4答案:C2. 如果一个三角形的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形答案:B3. 以下哪个选项不是单项式?A. 3x^2B. -5yC. 2x^3yD. x^2 + y答案:D4. 一个圆的半径为r,那么它的面积是:A. πrB. πr^2C. 2πrD. 4πr^2答案:B5. 以下哪个代数式是二次根式?A. √xB. √x + 1C. √(x + 1)D. x√y答案:A二、填空题(共10分,每题2分)6. 如果一个数的平方根是4,那么这个数是________。
答案:167. 一个正数的倒数是1/5,那么这个数是________。
答案:58. 如果一个角的补角是120°,那么这个角是________。
答案:60°9. 如果一个数的绝对值是2,那么这个数可以是________或________。
答案:2 或 -210. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是________。
答案:24cm³三、解答题(共80分)11. 解一元一次方程:3x + 5 = 14答案:3x = 14 - 53x = 9x = 312. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。
答案:根据勾股定理,斜边长度c = √(3² + 4²) = √(9 + 16) = √25 = 513. 一个长方体的长、宽、高分别是a、b、c,求它的表面积。
答案:长方体的表面积S = 2(ab + bc + ac)14. 已知一个二次函数y = ax² + bx + c,当x = 2时,y的最大值为4,求a、b、c的值。
2012年上海市中考数学试题及答案(解析版)
![2012年上海市中考数学试题及答案(解析版)](https://img.taocdn.com/s3/m/e3047352f7ec4afe04a1dfda.png)
ACDB EO2012年上学期第一次学力检测九年级数学试题卷温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!参考公式:二次函数y =ax 2+bx +c 图象的顶点坐标是)44,2(2ab ac a b --. 一、 选择题(本大题共10小题,每小题3分,共30分。
每小题都有四个备选答案,请把你认为正确的一个答案的代号填在答题纸的相应位置). 1、13-的倒数是( )A .3B .-3C .13D .13-2、今年2月,随着第四条水泥熟料生产线的点火投产,浙江尖峰水泥熟料已达年产6000000吨,用科学记数法可记作( )A .80.610⨯吨 B . 70.610⨯吨 C . 6610⨯吨 D . 7610⨯吨 3、下面简单几何体的左视图是( )4、已知同一平面内的⊙O 1、⊙O 2的直径分别为6cm 、2cm ,且O 1O 2=4cm ,则两圆的位置关系为( ) A .外切 B .内切 C .相交 D .以上都不正确5、抛物线23(2)32y x =---的顶点坐标是( )A. (2, -3)B. (2,3 )C. (-2, 3 )D. (-2,-3 )6、一次函数5+-=x y 图象与反比例函数xy 6=图象的交点情况是( ) A. 只有一个交点,坐标是(2,3) B. 只有一个交点,坐标是(-1,6) C. 有两个交点,坐标是(2,3)、(3,2) D. 没有交点 7、如图,AB 是O ⊙的直径,弦CD AB ⊥于点E ,连结OC , 若5OC =,8CD =,则tan COE ∠=( ) A .35B .45C .43D .34 8、将半径为30cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 ( )A .10cmB .20cmC .30cmD .60cm9、在物理实验课上,小明用弹簧秤将铁块A 悬于盛有水的水槽中(如图),然后匀速向上提起,直至铁块完全露出水面一定高度,则能反映弹簧秤的读数y (单位:N )与铁块被 提起的高度x (单位:cm )之间的函数关系的图象大致是( )A .B .C .D . 正面Oy x Oy x Oy xOyx10.如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论:( ) ①△AED ≌△AEF ; ②△ABE ∽△ACD ; ③BE DC DE +=; ④222BE DC DE += 其中正确的是 A .②④; B .①④;C .②③;D .①③.二、填空题(本大题共6题,每题4分,共24分.请把答案填在答题纸中相应的横线上) 11、分解因式:x 2-9= .12、某校组织了一次数学竞赛活动,其中有4名学生的平均成绩为80分,另外有6名学生的平均成绩为90分,则这10名学生的平均成绩为 _________ 分.13、已知一次函数的图象经过点(0,1),且满足y 随x 的增大而增大,则该一次函数的解析式可以为 _________ .14. 如图是圆锥的主视图(单位:cm), 则圆锥的表面积为________cm 2(结果保留π). 15、如图所示,将边长为2的等边三角形沿x 轴正方向连续翻转2012次,依次得到点P 1,P 2,P 3…P 2012. 则点P 2012的坐标是 _________ .16、如图,矩形OABC 的两边OA ,OC 在坐标轴上,且OC =2OA ,M ,N 分别为OA ,OC 的中点,BM 与AN 交于点E ,且四边形EMON 的面积为2,(1)△ABE 的面积是 .(2)经过点B 的双曲线的解析式为三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)(2)解方程: 12111xx x -=--17、(1)计算:18、如图,在ΔABC 和ΔDCB 中,AC 与BD 相交于点O , AB = DC ,AC = BD. (1)求证: ΔABC ≌ΔDCB ;(2) Δ0BC 的形状是 。
上海中考数学压轴题汇总—24题(2012-2021)-真题
![上海中考数学压轴题汇总—24题(2012-2021)-真题](https://img.taocdn.com/s3/m/b6ad08fd2dc58bd63186bceb19e8b8f67c1cefad.png)
2012-2021年上海中考数学真题解答题第24题201224.(本题满分12分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分4分)如图,在平面直角坐标系中,二次函数26y ax x c =++的图像经过点()4,0A 、()1,0B -,与y 轴交于点C ,点D 在线段OC 上,=OD t ,点E 在第二象限,∠=90ADE,1=2tan DAE ∠,EF OD ⊥,垂足为F .(1)求这个二次函数的解析式;(2)求线段EF 、OF 的长(用含t 的代数式表示);(3)当∠ECA =∠OAC 时,求t的值.公众号:奥孚升学公众号:奥孚:奥孚升学公众号:奥孚升学孚升学众号:奥孚升学众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:201324.如图9,在平面直角坐标系xoy 中,顶点为M 的抛物线2(0y ax bx a =+>)经过点A和x 轴正半轴上的点B ,AO OB ==2,0120AOB ∠=.(1)求这条抛物线的表达式;(2)联结OM ,求AOM ∠的大小;公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:孚升学公众号:奥奥孚升学公众公众奥孚升学公众号:奥孚公众号:奥孚升升学公众号公众号:(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.图9公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:201424.在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴相较于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点(),0P t ,且3t >,如果BDP 和CDP 的面积相等,求t 的值.公众号:奥孚升学孚升学公众号:奥公众号:奥孚升:奥孚升学公众号学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:201524.已知在平面直角坐标系xOy 中(如图),抛物线24y ax =-与x 轴的负半轴(XRS )相交于点A ,与y 轴相交于点B ,AB=P 在抛物线上,线段AP 与y 轴的正半轴交于点C ,线段BP 与x 轴相交于点D ,设点P 的横坐标为m .(1)求这条抛物线的解析式;(2)用含m 的代数式表示线段CO 的长;(3)当3tan 2ODC ∠=时,求PAD ∠的正弦值.201624.如图,抛物线25y ax bx =+-(0a ≠)经过点(4,5)A -,与x 轴的负半轴交于点B ,与y 轴交于点C ,且5OC OB =,抛物线的顶点为D ;(1)求这条抛物线的表达式;(2)联结AB 、BC 、CD 、DA ,求四边形ABCD 的面积;(3)如果点E 在y 轴的正半轴上,且BEO ABC ∠=∠,求点E的坐标;公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号孚升学公众号:奥孚升学公众号:奥孚升学号:奥孚升学奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:201724.(本题满分12分,每小题满分各4分)已知在平面直角坐标系xOy 中(如图8),已知抛物线2y x bx c =-++经过点()2,2A ,对称轴是直线1x =,顶点为B .(1)求这条抛物线的表达式和点B的坐标;公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号公众号:奥孚升学公众号:奥孚升学公公众号公众:奥孚升学公众号:奥孚升升学公众号公众号:(2)点M 在对称轴上,且位于顶点上方,设它的纵坐标为m ,联结AM ,用含m 的代数式表示AMB ∠的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C 在x 轴上.原抛物线上一点P 平移后的对应点为点Q ,如果OP OQ =,求点Q 的坐标.行计算、画(作)图行计算、画(作)图计合理、有效的运算途径程,合理解释推理演绎的正确性算、画(作)图公众号升学公众号:奥孚升学:奥孚升学公众号:奥孚升学孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:201824.(12分)在平面直角坐标系xOy 中(如图).已知抛物线y=﹣x 2+bx +c 经过点A (﹣1,0)和点B (0,),顶点为C ,点D 在其对称轴上且位于点C 下方,将线段DC 绕点D 按顺时针方向旋转90°,点C 落在抛物线上的点P 处.(1)求这条抛物线的表达式;(2)求线段CD 的长;(3)将抛物线平移,使其顶点C 移到原点O 的位置,这时点P 落在点E 的位置,公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号奥孚升学公众号:奥孚升学公众号:奥孚升学公公众号:奥孚升学公众号:奥孚升学公众公众孚升学学:奥孚升孚升学公众号众号:如果点M 在y 轴上,且以O 、D 、E 、M 为顶点的四边形面积为8,求点M 的坐标.公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:201924.(12分,第(1)小题满分4分,第(2)①小题满分3分,第(2)②小题满分5分)在平面直角坐标系xOy 中(如图9),已知抛物线y =x 2-2x ,其顶点为A.(1)写出这条抛物线的开口方向、顶点A 的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”①试求抛物线y =x 2-2x 的“不动点”的坐标;②平移抛物线y =x 2-2x ,使所得新抛物线的顶点B 是该抛物线的“不动点”,其对称轴与x 轴交于点C ,且四边形QABC 是梯形,求新抛物线的表达式.公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:202024.在平面直角坐标系xOy 中,直线y =﹣12x +5与x 轴、y 轴分别交于点A 、B (如图).抛物线y =ax 2+bx (a ≠0)经过点A .(1)求线段AB 的长;(2)如果抛物线y =ax 2+bx 经过线段AB 上的另一点C ,且BC(3)如果抛物线y =ax 2+bx 的顶点D 位于△AOB 内,求a的取值范围.公众号:奥孚升学公众号:奥孚升:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:202124.已知抛物线2(0)y ax c a =+≠过点(3,0),(1,4)P Q.公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公公众号:孚升学公众号:奥孚公众公众众号:奥孚升学公众号:奥孚升升学(1)求抛物线的解析式;(2)点A 在直线PQ 上且在第一象限内,过A 作AB x 轴于B ,以AB 为斜边在其左侧作等腰直角ABC .①若A 与Q 重合,求C 到抛物线对称轴的距离;②若C 落在抛物线上,求C的坐标.学公众号:奥孚升学公众号:奥孚升学孚升学升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥公众号:奥孚升公众号:奥孚升学公众号公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥公众号:奥孚升公众号:奥孚升学公众号公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚孚升学公众号:奥孚升学公众号:公众号公众公众号:奥孚升学:奥孚升学公众号:奥孚升公众号:奥孚升学。
2012年上海中考数学真题卷含答案解析
![2012年上海中考数学真题卷含答案解析](https://img.taocdn.com/s3/m/9643e93d02768e9951e73899.png)
2012年上海市初中毕业统一学业考试数学3A(满分:150分 时间:100分钟)第Ⅰ卷(选择题,共24分)一、选择题(本大题共6题,每题4分,满分24分)1.在下列代数式中,次数为3的单项式是( )A.xy 2B.x 3+y 3C.x 3yD.3xy 2.数据5,7,5,8,6,13,5的中位数是( ) A.5 B.6 C.7 D.83.不等式组{-2x <6,x -2>0的解集是( )A.x>-3B.x<-3C.x>2D.x<24.在下列各式中,二次根式√a -b 的有理化因式是( ) A.√a +b B.√a +√b C.√a -bD.√a -√b5.在下列图形中,为中心对称图形的是( )A.等腰梯形B.平行四边形 C .正五边形 D.等腰三角形6.如果两圆的半径分别为6和2,圆心距为3,那么这两圆的位置关系是( ) A.外离 B.相切 C.相交 D.内含第Ⅱ卷(非选择题,共126分)二、填空题(本大题共12题,每题4分,满分48分)7.计算:|12-1|= . 8.因式分解:xy-x= .9.已知正比例函数y=kx(k ≠0),点(2,-3)在函数图象上,则y 随x 的增大而 (选填“增大”或“减小”).10.方程√x+1=2的根是.11.如果关于x的一元二次方程x2-6x+c=0(c是常数)没有实数根,那么c的取值范围是.12.将抛物线y=x2+x向下平移2个单位,所得新抛物线的解析式为.13.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.14.某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如下表所示(其中每个分数段可包括最小值,不包括最大值),结合表格的信息,可得测试分数在80~90分数段的学生有名.0~9090~1000.25⃗⃗⃗⃗ =a,AB⃗⃗⃗⃗ =b,那么AC⃗⃗⃗⃗ =(用a,b表示).15.如图,已知梯形ABCD,AD∥BC,BC=2AD,如果AD16.在△ABC中,点D,E分别在AB,AC上,∠AED=∠B,如果AE=2,△ADE的面积为4,四边形BCED的面积为5,那么边AB的长为.17.我们把两个三角形的重心之间的距离叫做重心距,在同一平面内有两个边长相等的等边三角形,如果当它们的一边重合时重心距为2,那么当它们的一对角成对顶角时重心距为 .18.如图所示,Rt △ABC 中,∠C=90°,BC=1,∠A=30°,点D 为边AC 上的一动点,将△ADB 沿直线BD 翻折,点A 落在点E 处,如果DE ⊥AD,那么DE= .三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算:12×(√3-1)2+1√2-1+312-(√22)-1.20.(本题满分10分)解方程:x x+3+6x 2-9=1x -3.21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,在Rt △ABC 中,∠ACB=90°,D 是边AB 的中点,BE ⊥CD,垂足为E. 已知AC=15,cos A=35. (1)求线段CD 的长;(2)求sin∠DBE的值.22.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元)与生产数量x(吨)的函数关系式如图所示.(1)求y与x的函数关系式,并写出其定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)3B23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)如图所示,在菱形ABCD中,点E、F分别在边BC、CD上,∠BAF=∠DAE,AE与BD交于点G.(1)求证:BE=DF;(2)当DFFC =ADDF时,求证:四边形BEFG是平行四边形.24.(本题满分12分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分4分)如图,在平面直角坐标系中,二次函数y=ax2+6x+c过点A(4,0)和B(-1,0),并与y轴交于点C,点D在线段OC上,设DO=t,点E在第二象限,∠ADE=90°,tan∠DAE=12,EF⊥OD于F.(1)求二次函数的解析式;(2)用含t的代数式表示EF和OF的长;(3)当∠ECA=∠CAO时,求t的值.25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)已知扇形AOB中,∠AOB=90°,OA=OB=2,C为AB⏜上的动点,且不与A、B重合,OE⊥AC于E,OD⊥BC于D.(1)若BC=1,求OD的长;(2)在△DOE中,是否存在长度保持不变的边?若存在,求出该边的长;若不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y与x的函数关系式及定义域.2012年上海市初中毕业统一学业考试一、选择题1.A根据单项式定义,可知选项A、C、D中的代数式均为单项式,又由单项式的次数定义可知次数为3的单项式是xy2,故选A.评析本题主要考查了单项式和单项式次数的定义,属于容易题.正确理解两个概念是解决此类问题的关键,易混易错之处是当计算单项式的次数时,常常忽略指数是1的字母,导致确定单项式的次数有误.2.B根据中位数的定义,先把该组数据排序,若有奇数个,则中位数是中间的那个数;若有偶数个,则中位数是中间两个数的平均数.显然在给出的7个数据中,排序后最中间的数据是6,故选B.3.C解不等式-2x<6得x>-3,解不等式x-2>0得x>2,∴不等式组{-2x<6,的解集为x>2.故选C.x-2>04.C根据有理化因式的定义,只要二次根式√a-b乘一个适当的因式,能将其转化为有理式即可.而√a-b·√a-b=a-b,故选C.评析 本题主要考查有理化因式的概念,有理化因式的形式分为两种:①√a 的有理化因式是√a ;②√a ±√b 的有理化因式是√a ∓√b ,属简单题. 5.B 因为绕一个点旋转180度后能与自身重合的图形是中心对称图形,所以选项中的四种图形,只有平行四边形是中心对称图形,故选B.6.D 设R=6,r=2,d=3,则R-r=6-2=4>3,即R-r>d,所以两圆内含.故选D. 二、填空题7.答案 12解析 根据有理数的运算法则和绝对值的意义,得|12-1|=|-12|=12. 8.答案 x(y-1)解析 本题运用提取公因式法进行因式分解,所以xy-x=x(y-1). 9.答案 减小解析 ∵点(2,-3)在函数图象上,∴把(2,-3)代入y=kx(k ≠0)中,得-3=2k,解得k=-32,显然k<0,故y 随x 的增大而减小.评析 本题综合考查了待定系数法求函数的解析式、正比例函数的性质等知识点.熟练掌握正比例函数的性质是解题关键,属容易题. 10.答案 x=3解析 可以把无理方程转化成算术平方根,2是x+1的算术平方根,则x+1=4,易得x=3. 11.答案 c>9解析 由题意得Δ=b 2-4ac<0,即(-6)2-4×1×c<0,解得c>9.. 12.答案 y=x 2+x-2解析 因为二次函数的图象平移时遵循“上加下减,左加右减”的规律,所以向下平移2个单位后,所得抛物线的解析式是y=x 2+x-2. 13.答案 13解析 P(恰好为红球)=红球的个数白球的个数+红球的个数=36+3=13. 14.答案 150解析根据频数、频率分布的知识可知,所有的频数之和等于总数,所有频率之和等于1,则得分数在80~90分数段分数在80~90分数段的学生的频率为1-0.2-0.25-0.25=0.3,由频率=频数总数的学生有0.3×500=150(名).15.答案2a+b解析利用向量的加法法则易知AC⃗⃗⃗ =AB⃗⃗⃗⃗ +BC⃗⃗⃗ =2a+b.16.答案3解析∵∠AED=∠B,∠A是公共角,∴△ADE∽△ACB,∴S △ADE∶S△ACB=AE2∶AB2,即4∶9=22∶AB2,∴AB=3..17.答案4解析如图1和图2所示,等边三角形的重心是它三条中线的交点,交点分每一条中线得到的两条线段的比值(短∶长)为1∶2,当两个等边三角形一边重合时,重心距是两条短线段之和,所以每条短线段的长度为1,长线段的长度为2.因此当两个等边三角形的一对角成对顶角时,重心距为2+2=4.评析本题主要考查了等边三角形的重心及其性质,属中等难度题.18.答案√3-1解析如图,由翻折的性质可知AD=DE,∠ADP=∠EDP.又由AD⊥ED 得,∠ADP=∠EDP=45°,所以∠BDC=45°,因为∠C=90°,所以BC=CD=1,又因为∠A=30°,BC=1,所以AB=2,AC=√3,所以DE=AD=√3-1.评析本题涉及的知识点有对折、等腰直角三角形、垂直、解直角三角形,有一定区分度,属中等难度题.三、解答题19.解析原式=12×(4-2√3)+√2+1+√3-√2(8分)=2-√3+√2+1+√3-√2=3.(10分)评析本题主要考查了实数的混合运算、分数指数、负指数以及分母有理化、完全平方公式等,均是中考常考的基础知识,但是学生容易马虎丢分,属中等难度题.20.解析去分母,得x(x-3)+6=x+3,(3分)整理,得x2-4x+3=0,(5分)解得x1=1,x2=3.(9分)经检验,x=3是增根,x=1是原方程的根.所以原方程的根是x=1.(10分)21.解析(1)在Rt△ABC中,∠ACB=90°,AC=15,cos A=ACAB =35,(1分)∴AB=25.(2分)∵D是AB的中点,∴CD=AB2=252.(4分)(2)在Rt△ABC中,BC=√AB2-AC2=20.(5分)∵BD=CD=AB2=252,∴∠DCB=∠DBC.(6分)∴cos∠DCB=cos∠ABC=BCAB =45.(7分)在Rt△CEB中,∠E=90°, CE=BC·cos∠BCE=16.(8分)∴DE=CE-CD=72.(9分)在Rt△DEB中,∠DEB=90°,∴sin∠DBE=DEBD =725.(10分)22.解析(1)设函数解析式为y=kx+b,(1分)得{10=10k+b,6=50k+b.(2分)解得{k=-110,b=11.(3分)∴y与x的函数关系式为y=-110x+11,(4分)定义域是10≤x≤50.(5分)(2)由题意,得xy=280,(6分)即x(-110x+11)=280,(7分)整理,得x2-110x+2800=0,(8分)解得x1=40,x2=70.(9分)x=70不合题意,舍去.答:该产品的生产数量为40吨.(10分)评析本题主要考查了利用函数图象获取信息、建立函数模型、确定函数解析式和定义域.属中等难度题.23.证明(1)∵∠BAF=∠DAE,∴∠BAE+∠EAF=∠DAF+∠EAF,∴∠BAE=∠DAF.(1分)∵四边形ABCD是菱形,∴AB=AD,∠ABE=∠ADF.(3分)∴△ABE≌△ADF,(4分)∴BE=DF.(5分)(2)∵DFFC =ADDF,DF=BE,∴DFFC=ADBE.(6分)∵AD∥BC,∴DGGB =ADBE,(7分)∴DFFC =DGGB,(8分)∴GF∥BC.(9分)∵BE=DF,BC=DC,∴BEBC =DFDC,(10分)∴EF∥BD.(11分)∴四边形BEFG是平行四边形.(12分)24.解析(1)由二次函数y=ax2+6x+c过点A(4,0)、B(-1,0),得{0=16a+24+c,0=a-6+c.(1分)解得{a=-2,c=8.(2分)∴二次函数的解析式为y=-2x2+6x+8.(3分)(2)∵点D在线段OC上,点E在第二象限,∠ADE=90°,EF⊥OD,∴∠EDF+∠ADO=∠DAO+∠ADO=90°,∴∠EDF=∠DAO,∴Rt△DFE∽Rt△AOD,(4分)∴EFDO =DFAO=DEAD.(5分)在Rt△ADE中,∠ADE=90°,tan∠DAE=DEAD =1 2 ,∴EFDO =DFAO=12,∴EF=12DO,DF=12AO.(6分)∵DO=t,∴EF=t2,(7分)∵点A的坐标为(4,0),∴AO=4,DF=2,∴OF=t-2.(8分)(3)由(1)得,点C的坐标为(0,8).延长CE交x轴于点G,设点G的坐标为(x,0).∵∠ECA=∠CAO,∴CG=AG,(9分)∴√x2+82=√(x-4)2,解得x=-6,∴GO=6.(10分)由已知,可得点F在线段OD上,又∵OF=t-2,∴FC=OC-OF=10-t.(11分)∵EF∥GO,∴EFGO =CF CO,∴t26=10-t8,解得t=6.(12分)评析本题主要考查了二次函数解析式的确定、相似三角形的判定与性质、三角函数、勾股定理等知识的综合应用.本题共有3个小题,第(1)小题较易,第(2)小题难度适中,把相似三角形和三角函数结合起来求解较为简便,第(3)小题偏难,利用勾股定理列方程是解题关键.25.解析(1)在扇形AOB中,∵OD⊥BC,∴BD=12BC.(1分)∵BC=1,∴BD=12.(2分)∵OB=2,∴OD=√OB2-BD2=√152.(3分)(2)存在,边DE的长度保持不变.(4分)连结AB,∵∠AOB=90°,OA=OB=2,∴AB=√OB2+OA2=2√2.(5分)∵OD⊥BC,OE⊥AC,∴CD=BD,CE=AE,(7分)∴DE=12AB=√2.(8分)(3)连结OC,∵点C在AB⏜上,∴OC=OB.∵OD⊥BC,∴∠COD=12∠BOC,同理,∠COE=12∠AOC,(9分)∴∠DOE=12∠BOC+12∠AOC=12∠AOB,∵∠AOB=90°,∴∠DOE=45°.(10分)过点D作DH⊥OE,垂足为H.在Rt△OBD中,OD=√OB2-BD2=√4-x2.在Rt△ODH中,∠DOH=45°,OH=DH=OD·sin45°=√2√4-x2.(11分)2x.(12分)在Rt△DEH中,HE=√DE2-DH2=√22∴OE=OH+HE=√2√4-x2+√22x.2OE·DH,∵S△DOE=12,(13分)∴函数解析式为y=4-x2+x√4-x24定义域为0<x<√2.(14分)评析本题是几何与代数综合的压轴题,综合考查了垂径定理、勾股定理、三角形的中位线的性质、等腰直角三角形的性质以及利用三角形面积进行函数建模,综合性比较强,尤其是第(2)问存在性问题设计得比较巧妙.。
解答2012年上海市中考数学试题
![解答2012年上海市中考数学试题](https://img.taocdn.com/s3/m/e826b539b90d6c85ec3ac645.png)
2012年上海市中考数学试卷(有解析)如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(﹣1,0),与y轴交于点C,点D在线段OC上,OD=t,点E在第二象限,∠ADE=90°,tan∠DAE=,EF⊥OD,垂足为F.(1)求这个二次函数的解析式;(2)求线段EF、OF的长(用含t的代数式表示);(3)当∠ECA=∠OAC时,求t的值解:(1)二次函数y=ax2+6x+c的图象经过点A(4,0)、B(﹣1,0),∴,解得,∴这个二次函数的解析式为:y=﹣2x2+6x+8;(2)∵∠EFD=∠EDA=90°∴∠DEF+∠EDF=90°,∠EDF+∠ODA=90°,∴∠DEF=∠ODA∴△EDF∽△DAO∴.∵,∴=,∴,∴EF=t.同理,∴DF=2,∴OF=t﹣2.(3)∵抛物线的解析式为:y=﹣2x2+6x+8,∴C(0,8),OC=8.如图,连接EC、A C,过A作EC的垂线交CE于G点.∵∠ECA=∠OAC,∴∠OA C=∠GCA(等角的余角相等);在△CA G与△OCA中,,∴△CA G≌△OCA,∴CG=4,A G=OC=8.如图,过E点作EM⊥x轴于点M,则在Rt△A EM中,∴EM=OF=t﹣2,AM=OA+AM=OA+EF=4+t,由勾股定理得:∵AE2=AM2+EM2=;在Rt△A EG中,由勾股定理得:∴EG===∵在Rt△ECF中,EF=t,CF=OC﹣OF=10﹣t,CE=CG+EG=+4由勾股定理得:EF2+CF2=CE2,即,解得t1=10(不合题意,舍去),t2=6,∴t=6.解析:分析: (1)已知点A、B坐标,用待定系数法求抛物线解析式即可;(2)关键是证明△EDF∽△DAO,然后利用相似三角形对应边的比例关系以及三角形函数的定义求解;(3)如解答图,通过作辅助线构造一对全等三角形:△CAG≌△OCA,得到CG、AG的长度;然后利用勾股定理求得AE、EG的长度(用含t的代数式表示);最后在Rt△ECF中,利用勾股定理,得到关于t的无理方程,解方程求出t的值.点评:本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理和待定系数法求二次函数解析式等多个知识点,难度较大.第(3)问中,涉及到无理方程的求解,并且计算较为复杂,注意不要出错.。
2012年上海中考数学压轴题24和25题独家答案(新光明张老师)
![2012年上海中考数学压轴题24和25题独家答案(新光明张老师)](https://img.taocdn.com/s3/m/daa6eb395727a5e9856a61f4.png)
24.如图,已知二次函数 的图像过点 和 ,交 轴于点 ,点 在线段 上, .点 在第二象限内, , , 于点 .
(1)求二次函数的解析式;
(2)求 和 的长(用含 的代数式表示).
(3)当 时,求 的值.
解: (1)代入 可得:
,所以 .
(2)在 中, ;
因为 , ,所以 , ;
又 ,所以 ,所以 .
在 ,易知 ,所以 ;
在 中, ,所以 ,
所以 .
定义域: .
在 中, ,
所以 .
因为 ,
所以在 和 中, ,即 ,
所以 .
在 中, ,
所以 .
(3)延长 交 轴于点 ,可知 ,
由(2)可得 ,
因为 ,所以 ,
设 ,所以 ,解得 .
很明显 ,所以 ,
代入数据可得 ,解得 .
25.如下图:在扇形 中, , .点 是 上的一个动点,且不与 重合. , ,垂足分别为 ,
(1)当 时,求 的值;
(2)在 中是否有边不改变?若存在,请求出改边长,若不存在,请说明理由。
(3)设 , 的面积为 ,求函数解析式和定义域。
解: (1)因为 ,所以 ,
在 中, .
(2)存在不变的边为 .
连接 ,在 中,易知 ;
因为 ,所以 ;同理可知 ,
在 中,由中位线性质可知 .
(3)过 作 于点 ,并连接 ;
(高清版)2012年上海市中考数学试卷
![(高清版)2012年上海市中考数学试卷](https://img.taocdn.com/s3/m/96985ac9a8956bec0975e3e8.png)
数学试卷 第1页(共14页) 数学试卷 第2页(共14页)绝密★启用前上海市2012年中考数学试题数 学一、选择题(本大题共6小题,每小题4分,满分24分) 1.在下列代数式中,次数为3的单项式是( )A .2xyB .33x y +C .3x yD .3xy 2.数据5,7,5,8,6,13,5的中位数是( )A .5B .6C .7D .8 3.不等式组2620x x -⎧⎨-⎩<>的解集是( ) A .3x ->B .3x -<C .2x >D .2x < 4.在下列各式中,( )ABCD5.在下列图形中,为中心对称图形的是( )A .等腰梯形B .平行四边形C .正五边形D .等腰三角形6.如果两圆的半径长分别为6和2,圆心距为3,那么这两个圆的位置关系是 ( ) A .外离B .相切C .相交D .内含二、填空题(本大题共12小题,每小题4分,满分48分) 7.计算1|1|2-= . 8.因式分解xy x -= .9.已知正比例函数(0)y kx k =≠,点(2,3)-在函数上,则y 随x 的增大而 (增大或减小).10.2的根是 .11.如果关于x 的一元二次方程260x x c -+=(c 是常数)没有实根,那么c 的取值范围是 .12.将抛物线2y x x =+向下平移2个单位,所得抛物线的表达式是 .13.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 .14.某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值),结合表1的信息,可测得测试分数在15.如图,已知梯形ABCD ,AD BC ∥,2BC AD =,如果AD a =,=AB b ,那么AC =(用,a b r r表示).16.在ABC △中,点D 、E 分别在AB 、AC 上,ADE B ∠=∠,如果2AE =,ADE △的面积为4,四边形BCDE 的面积为5,那么AB 的长为 .17.我们把两个三角形的中心之间的距离叫做重心距,在同一个平面内有两个边长相等的等边三角形,如果当它们的一边重合时,重心距为2,那么当它们的一对角成对顶角时,重心距为.18.如图,在Rt ABC △中,90C ∠=o,30A ∠=o,1BC =,点D 在AC 上,将ADB △沿直线BD 翻折后,将点A 落在点E 处,如果AD ED ⊥,那么线段DE 的长为 .三、解答题(本大题共7小题,满分78分) 19.(本小题满分10分)121211)32-⨯+-.20.(本小题满分10分) 解方程:261393x x x x +=+--.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共14页) 数学试卷 第4页(共14页)21.(本题满分10分,第(1)小题满分4分.第(2)小题满分6分)如图在Rt ABC △中,90ACB ∠=o ,D 是边AB 的中点,BE CD ⊥,垂足为点E .已知15AC =,3cos 5A =. (1)求线段CD 的长; (2)求sin DBE ∠的值.22.某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y (万元/吨)与生产数量x (吨)的函数关系式如图所示. (1)求y 关于x 的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量. (注:总成本=每吨的成本⨯生产数量)23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)已知:如图,在菱形ABCD 中,点E 、F 分别在边BC 、CD ,BAF DAE ∠=∠,AE 与BD 交于点G .(1)求证:BE DF = (2)当要DF ADFC DF=时,求证:四边形BEFG 是平行四边形.24.(本题满分12分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分4分) 如图在平面直角坐标系中,二次函数26y ax x c =++的图象经过点(4,0)A 、(1,0)B -,与y 轴交于点C ,点D 在线段OC 上,OD t =,点E 在第二象限,90ADE ∠=o ,1tan 2DAE ∠=,EF OD ⊥,垂足为F .(1)求这个二次函数的解析式;(2)求线段EF 、OF 的长(用含t 的代数式表示); (3)当ECA OAC ∠=∠时,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分) 如图,在半径为2的扇形AOB 中,90AOB ∠=o,点C 是弧AB 上的一个动点(不与点A 、B 重合)OD BC ⊥,OE AC ⊥,垂足分别为D 、E . (1)当1BC =时,求线段OD 的长;(2)在DOE △中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD x =,DOE △的面积为y ,求y 关于x 的函数关系式,并写出它的定义域.上海市2012年中考数学试题数学答案解析一、选择题1.【答案】A【解析】由单项式次数的概念:∴次数为3的单项式是2xy 所以本题选项为A .数学试卷 第5页(共14页)数学试卷 第6页(共14页)【解析】根据绝对值的定义,∵1111222-==.所以本题答案为12. 【提示】首先计算出绝对值里面的结果,再根据:a 是负有理数时,a 的绝对值是它的相数学试卷 第7页(共14页) 数学试卷 第8页(共14页)3193=. 【提示】根据概率公式,求摸到红球的概率,即用红球除以小球总个数即可得出得到红【解析】解:设等边三角形的中线长为a ,则其重心到对边的距离为:3a , ∵它们的一边重合时(图1),重心距为2,∴223a =,解得3a =, ∴当它们的一对角成对顶角时(图2)重心距443433a ==⨯=.【提示】先设等边三角形的中线长为a ,再根据三角形重心的性质求出a 的值,进而可数学试卷 第9页(共14页) 数学试卷 第10页(共14页)(3)63x x x -+=+,整理,得2430x x -+=,解得11x =,23x =.经检验:3x =是方程的增根,1x =是原方程的根, 故原方程的根为1x =.【提示】观察可得最简公分母是(3)(3)x x +-,方程两边乘最简公分母,可以把分式方程数学试卷 第11页(共14页)数学试卷 第12页(共14页)(2)关键是证明EDF DAO △∽△,然后利用相似三角形对应边的比例关系以及三角形函数的定义求解;(3)如解答图,通过作辅助线构造一对全等三角形:GCA OAC △≌△,得到CG 、AG的长度;然后利用勾股定理求得AE 、EG 的长度(用含t 的代数式表示);最后在【提示】根据OD BC ⊥可得出22BD BC ==,在Rt BOD △中利用勾股定理即可求出OD 的长;(2)连接AB ,由AOB △是等腰直角三角形可得出AB 的长,再根据D 和E 是中点可得出DE =(3)由BD x =,可知OD =,由于12∠=∠,34∠=∠,所以2345∠+∠=︒,数学试卷 第13页(共14页) 数学试卷 第14页(共14页)过D 作DF OE ⊥,DF =EF =即可得出结论. 【考点】垂径定理,勾股定理,三角形中位线定理.。
2012年上海市中考数学试卷及答案解析
![2012年上海市中考数学试卷及答案解析](https://img.taocdn.com/s3/m/cb5bec1703d8ce2f006623e2.png)
2012年上海市中考数学试卷一.选择题(共6小题)1.(2012上海)在下列代数式中,次数为3的单项式是()A. xy2B. x3+y3C..x3y D..3xy考点:单项式。
解答:解:根据单项式的次数定义可知:A、xy2的次数为3,符合题意;B、x3+y3不是单项式,不符合题意;C、x3y的次数为4,不符合题意;D、3xy的次数为2,不符合题意.故选A.2.(2012上海)数据5,7,5,8,6,13,5的中位数是()A. 5 B. 6 C. 7 D. 8考点:中位数。
解答:解:将数据5,7,5,8,6,13,5按从小到大依次排列为:5,5,5,6,7,8,13,位于中间位置的数为6.故中位数为6.故选B.3.(2012上海)不等式组的解集是()A. x>﹣3 B. x<﹣3 C. x>2 D. x<2考点:解一元一次不等式组。
解答:解:,由①得:x>﹣3,由②得:x>2,所以不等式组的解集是x>2.故选C.4.(2012上海)在下列各式中,二次根式的有理化因式是()A.B.C.D.考点:分母有理化。
解答:解:∵×=a﹣b,∴二次根式的有理化因式是:.故选:C.5.(2012上海)在下列图形中,为中心对称图形的是()A.等腰梯形B.平行四边形C.正五边形D.等腰三角形考点:中心对称图形。
解答:解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选:B.6.(2012上海)如果两圆的半径长分别为6和2,圆心距为3,那么这两个圆的位置关系是() A.外离B.相切C.相交D.内含考点:圆与圆的位置关系。
解答:解:∵两个圆的半径分别为6和2,圆心距为3,又∵6﹣2=4,4>3,∴这两个圆的位置关系是内含.故选:D.二.填空题(共12小题)7.(2012上海)计算= .考点:绝对值;有理数的减法。
解答:解:|﹣1|=1﹣=,故答案为:.8.因式分解:xy﹣x= .考点:因式分解-提公因式法。
2012上海中考数学试题及答案
![2012上海中考数学试题及答案](https://img.taocdn.com/s3/m/6e9d182b1611cc7931b765ce050876323112748c.png)
2012上海中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -1答案:B2. 已知一个长方体的长、宽、高分别为10cm、8cm和6cm,其体积是多少立方厘米?A. 480B. 240C. 120D. 360答案:A3. 以下哪个表达式的结果为偶数?A. (2x + 1)(2y + 1)B. (2x - 1)(2y - 1)C. (2x + 1)(2y - 1)D. (2x - 1)(2y + 1)答案:C4. 一个数除以3的余数是2,除以5的余数是1,那么这个数除以15的余数是多少?A. 3B. 2C. 1D. 0答案:A5. 已知一个二次方程x^2 + ax + b = 0,其中a和b是整数,且该方程有一个根是2,那么另一个根是什么?A. a - bB. b - aC. a + bD. a - 2b答案:A6. 下列哪个选项不是有理数?A. √2B. πC. 1/3D. -5答案:A7. 一个等差数列的前三项和为12,且第二项是5,那么这个等差数列的公差是多少?A. 1B. 2C. 3D. 4答案:B8. 一个圆的直径是14cm,那么它的半径是多少厘米?A. 7B. 14C. 28D. 21答案:A9. 一个班级有40名学生,其中1/4是女生,那么这个班级有多少名女生?A. 10B. 15C. 20D. 25答案:A10. 一个数的60%是120,那么这个数是多少?A. 180B. 192C. 200D. 220答案:C二、填空题(每题4分,共40分)答案:1212. 一个长方体的长是12cm,宽是8cm,高是10cm,它的表面积是_________平方厘米。
答案:59213. 一个数的75%比它的一半多30,那么这个数是_________。
答案:12014. 一个数除以3后,再加上10,结果是17,那么这个数是_________。
2012年上海中考数学试卷及参考答案
![2012年上海中考数学试卷及参考答案](https://img.taocdn.com/s3/m/fd492d180242a8956aece440.png)
2012年上海中考数学试题一、选择题(本大题共6小题,每小题4分,满分24分).1.(2012上海市,1,4分)在下列代数式中,次数为3的单项式是()A.xy2B.x3-y3C.x3yD.3xyA本题考察了单项式的概念,需要学生掌握单项式的次数概念才能够获得正确答案.根据单项式次数的概念求解.由单项式次数的概念:∴次数为3的单项式是xy2.所以本题选项为A.⑴单项式的定义:由数字与字母或字母与字母的相乘组成的代数式叫做单项式⑵单项式的次数:一个单项式中的所有字母的指数的和叫做这个单项式的次数2.(2012上海市,2,4分)数据5,7,5,8,6,13,5的中位数是()A.5B.6C.7D.8B本题考察了中位数的求解方法,需要学生掌握中位数的求解方法才能够获得正确答案.根据中位数的求解方法.由中位数的求解方法①将一组数据从小到大或者从大到小整齐排列;②进行中位数求解;数据排列:5,5,5,6,7,8,13数据个数:7个∴中位数是:6所以本题选择B中位数求解的前提是有顺序地将数据排列清楚,然后按照数据的个数进行求解当数据个数为奇数时,中位数就是最中间的那个数当数据个数为偶数时,中位数就是最中间的两个数的平均数3.(2012上海市,3,4分)不等式组2620xx-ìí-î<>的解集是()A.x>-3B.x<-3C.x>2D.x<2C本题考察了一元一次不等式组求解方法,需要学生掌握不等式组的求解方法才能获得正确答案.根据不等式组的求解方法先将两个一元一次不等式单独求解出来,然后结合数轴把答案表示出来∵2620xx-ìí-î<①>②由①,得-3x>由②,得>2x∴>2x所以本题选择C⑴不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
⑵最后的结果要取两个不等式公共有的部分4.(2012上海市,4,4分)在下列各式中,二次根式a b -的有理化因式是()A .a b+B .a b+C .a b-D .a b-C本题考察了有理化因式的定义,需要学生掌握有理化因式的定义才能获得正确答案.根据有理化因式的概念由有理化因式的定义,∵()()a b a b a b -·-=-所以本题选择C判断是否是某个二次根式的有理化因式,最好的方法就是将选项分别和这个二次根式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。
上海中考数学第24题分析(上)
![上海中考数学第24题分析(上)](https://img.taocdn.com/s3/m/42ca8bc15901020207409ce8.png)
上海中考数学压轴题第24题分析(上)前言,成绩优秀的学生,脑子灵活,对数学有兴趣有感觉的同学,他们是特别不喜欢常规套路解题的,他们追求的是方法越巧越妙,方法越省事越舒服;但对大多数同学而言,尤其四认认真真写解答过程的女孩子来说,她们需要的是按部就班的解题步骤和规定约定俗成的烂背于心的解题套路;希望她们在漫漫地求学路上逐步找回数学感觉吧。
一、我们先来复习下二次函数的基本知识: 1、一般式:c bx ax y ++=2;2、顶点式:()k m x a y a b ac a b x a y +-=⇒-+⎪⎭⎫ ⎝⎛+=222442; 3、两根式:()()21x x x x a y --=;4、对称点式:()()m x x x x a y +--=21,其中()m x A ,1,()m x B ,2为二次函数图像的2个对称点。
5、单调性:0>a ,在⎪⎭⎫ ⎝⎛-∞-a b 2,上为减区间,在⎪⎭⎫⎝⎛+∞-,2a b 上为增区间; 6、最值:0<a ,a b ac y 442max-=;0>a ,ab ac y 442min -=。
7、①若0=b ,则对称轴为y 轴;②若0=c ,则过原点;③韦达:a b x x -=+21,acx x =21; ④弦长公式:()()a a ac b a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=-+=-=-=4442221221221218、快速配方法:aa b c a b x a cx a b x a c bx ax y ⋅⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+−−−−−−−−−→−+⎪⎭⎫ ⎝⎛+−−−−→−++=⨯-2222222系数常数项平分一次项系数除提二次项系数整理的:a b ac a b x a y 44222-+⎪⎭⎫ ⎝⎛+=; 例:⎪⎭⎫⎝⎛-⋅⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛--=-⎪⎭⎫ ⎝⎛--=-+-=3249149321293213322222x x x x x y ; 由此可得,不怕c b a ,,的系数有多复杂,都可以快速准确的配方。
上海市中考数学试卷及答案(Word版)(00002)
![上海市中考数学试卷及答案(Word版)(00002)](https://img.taocdn.com/s3/m/fdfcc61d69eae009591bec4e.png)
1 / 142012年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.在下列代数式中,次数为3的单项式是( )A 2xy ;B 33+x y ;C .3x y ;D .3xy .2数据5,7,5,8,6,13,5的中位数是( )A .5;B .6;C .7 ;D .8.3.不等式组2<62>0x x ⎧⎨⎩--的解集是( )A .>3x -;B .<3x -;C .>2x ;D .<2x .4.在下列各式中,二次根式 )ABCD.5在下列图形中,为中心对称图形的是( )A .等腰梯形;B .平行四边形;C .正五边形;D .等腰三角形.6如果两圆的半径长分别为6和2,圆心距为3,那么这两个圆的位置关系是( )A .外离;B .相切;C .相交;D .内含.二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】 7.计算112-=.8.因式分解=xy x -.9.已知正比例函数()=0y kx k ≠,点()2,3-在函数上,则y 随x 的增大而(增大或减小).10的根是.11.如果关于x 的一元二次方程26+=0x x c -(c 是常数)没有实根,那么c 的取值范围是.12.将抛物线2=+y x x 向下平移2个单位,所得抛物线的表达式是.13.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.14.某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值),结合表1的信息,可测得测试分数在80~90分数段的学生有名.3 / 1415.如图,已知梯形ABCD ,AD ∥BC ,=2BC AD ,如果=AD a ,=AB b ,那么=AC (用a ,b 表示).16.在△ABC 中,点D 、E 分别在AB 、AC 上,=ADE B ∠∠,如果=2AE ,△ADE 的面积为4,四边形BCDE 的面积为5,那么AB 的长为.17.我们把两个三角形的中心之间的距离叫做重心距,在同一个平面内有两个边长相等的等边三角形,如果当它们的一边重合时,重心距为2,那么当它们的一对角成对顶角时,重心距为.18.如图,在Rt △ABC 中,=90C ∠,=30A ∠,=1BC ,点D 在AC 上,将△ADB 沿直线BD 翻折后,将点A 落在点E 处,如果AD ED ⊥,那么线段DE 的长为.三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)BCA)112211+32-⨯-⎝⎭.20.(本题满分10分)解方程:261393xx x x+=+--.21.(本题满分10分,第(1)小题满分4分.第(2)小题满分6分)如图在Rt△ABC中,∠=90ACB,D是边AB的中点,BE⊥CD,垂足为点E.己知=15AC,3=5cosA.(1)求线段CD的长;(2)求sin∠DBE的值.22.某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示.(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)5 / 1423.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)己知:如图,在菱形ABCD中,点E、F分别在边BC、CD,∠BAF =∠DAE,AE与BD交于点G.(1)求证:=BE DF(2)当要DFFC=ADDF时,求证:四边形BEFG是平行四边形.DEB7 / 1424.(本题满分12分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分4分)如图,在平面直角坐标系中,二次函数26y ax x c =++的图像经过点()4,0A 、()1,0B -,与y 轴交于点C ,点D 在线段OC 上,=OD t ,点E 在第二象限,∠=90ADE ,1=2tan DAE ∠,EF OD ⊥,垂足为F .(1)求这个二次函数的解读式;(2)求线段EF 、OF 的长(用含t 的代数式表示); (3)当∠ECA =∠OAC 时,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)AOB,点C是弧AB上的一个动点(不与点A、B重合)如图,在半径为2的扇形AOB中,∠=90OD⊥BC,OE⊥AC,垂足分别为D、E.BC时,求线段OD的长;(1)当=1(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;BD x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.(3)设=2012年上海市初中毕业统一学业考试数学试卷参考答案一、选择题9 / 141、A ;2、B ;3、C ;4、C ;5、B ;6、D 二、 填空题7、21; 8、()1x y -; 9、减小 ; 10、3x = ; 11、>9c ; 12、2=+2y x x - ;13、31;14、150; 15、2a b + ; 16、3; 17、4; 181. 三、 解答题19.解 :原式=23122324-+++- =231232-+++-=3.20.解:x(x-3)+6=x-3x 2-4x+3=0 x1=2或x2=3经检验:x=3是方程的增根 x=1是原方程的根21.225(或12.5); 257.22.① y=-101x+11(10≤x ≤50) ② 40.23.证明:(1)∵四边形ABCD 是菱形,11 / 14∴AB=AD,∠ABC=∠ADF, ∵∠BAF=∠DAE,∴∠BAF﹣∠EAF=∠DAE﹣∠EAF,即:∠BAE=∠DAF。