分类计数原理与分步计数原理教学提纲
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类计数原理与分步
计数原理
《分类计数原理与分步计数原理(一)》教学设计
柳州地区民族高级中学覃艳莉
相关教材:人民教育出版社的全日制普通高级中学教科书(必修)《数学》第二册(下B)
一、教学内容解析:
1.教学内容:
分类计数原理、分步计数原理,这两个原理也是本次课的教学重点。
2.概念解析:
分类计数原理和分步计数原理都是计算完成一件事共有多少种不同方法数的原理,也叫加法原理和乘法原理。其区别在于:运用加法原理的前提条件是完成一件事有n类办法,选择任何一类办法中任何一种方法都可以独立完成此事,就是说,完成这件事的各种方法是相互独立的,所以总方法数为各类方法数之和;运用乘法原理的前提条件是完成一件事需n个步骤,只有依次完成所有步骤后才能完成这件事,就是说,完成这件事的各个步骤是相互依存的,所以总方法数为各步骤方法数之积。
3.两个计数原理的地位和作用:
分类计数原理与分步计数原理是人们在大量实践经验的基础上归纳出来的基本规律,体现了解决问题时将其分解的两种常用方法,即分类解决或分步解决。
这不仅是今后推导排列数与组合数计算公式的依据,而且这种解决问题的思想与方法贯穿于本章的始终。
二、教学目标设置:
1.知识与技能目标:理解并掌握分类计数原理与分步计数原理,能用它们分析和解决一些简单的应用问题。
2.过程和方法目标:创设情境,将一些实际问题归结为一个分类或分步的计数问题,使学生的建构思维能力得到提升;在总结时用到特殊到一般的思想;在解题时通过类比,举一反三,使学生对两个计数原理有一个更深刻的理解。
3.情感与态度目标:通过学生小组活动,培养学生周密思考、细心分析的良好的学习习惯,使学生在现实生活中面对复杂的事务和现象,能够作出正确的分析,准确的判断,进而拿出完善的处理方案,认识数学知识与现实生活的内在联系及不可分割性。让学生感受到亲切、和谐的学习氛围,在活动中进一步发展学生合作交流的意识和能力。
三、学生学情分析:
1.认知基础分析:
学生在初中学习过用列举法或树状图来解决一些计数问题,已经具备了一定的归纳、类比能力,也能解决一些简单的实际问题,这些形成了学生思维的“最近发展区”。
2.可能学习障碍分析:
正确使用两个计数原理的前提是要学生清楚两个计数原理使用的条件:分类用加法原理,分步用乘法原理,单纯这点学生是容易理解的。加法和乘法在小学就会,那么,在中学再学它与以往有什么不同?不同在于小学阶段重在运算结果的追求,而忽视了其过程中包含的深层次思想;两个原理恰恰深刻反映了人类计数最基本的“大事化小”,即“分解”的思想。更具体地说就是把完成一件事的方法数分成类或分成步去数。学生往往在判断是分类还是分步去完成一件事会有一定的障碍,部分学生对乘法原理的运算结果难以理解。因此,把本节课的教学难点定为:(1)如何判断完成一件事是分类或分步完成;(2)理解分步计数原理中的运算方法,即总方法数为各步骤方法数之积。
3.突破难点分析:
要准确的判断是分类还是分步去完成一件事,首先得明确这是一件什么事,该怎样去完成。在分析的过程中,便会发现有些事可以按某些方法独立完成,有些事需要多个步骤才能完成。能独立完成的就用分类,需多个步骤完成的就用分步。为此,设计了两个小组活动来让学生体会。
对于分步计数原理的运算结果,可利用树状图并结合小学对乘法的理解来突破。
四、教学策略分析:
本节课的课本引例、例题同学们通过预习大多都能看懂。为了贴近学生实际生活,激发学生学习兴趣,在创设情境和例题的选用上,选择了学生所熟悉的校园生活事例。
本节课采用了老师引导启发,学生分小组合作学习的方法进行教学。利用多媒体显示问题情境,让学生通过小组活动,具体地分析比较,进而归纳总结,体现了从特殊到一般的思维过程,既关注了学生的认知基础,又促使学生在原有认知基础上获取知识,提高思维能力,保持高水平的思维活动,符合学生的认知规律。
学生在小组合作交流中,对问题的理解可以得到互补完善。从学生回答问题和学生间的相互评价中,使老师更多地了解学生的理解程度。
五、教学过程:
1.创设情境,揭示课题
同学们,下学期我们就要搬到第一教学楼去学习了,大家观察过第一教学楼共有多少处楼梯吗?(4个)
假设我们班的教室在二楼,那么从一楼到二楼共有多少种不同的走法呢?(请一同学回答)
假设我们班的教室在六楼,那么从一楼到六楼共有多少种不同的走法呢?(让学生充分讨论,在解决问题的过程中产生困惑,从而激发学生的求知欲。)
这些问题实际上都是一些计数问题,都是计算完成一件事共有多少种不同的方法数。我们今天将要学习的分类计数原理和分步计数原理就是为了解决这类问题的。
计算完成一件事共有多少种不同方法,我们应该怎样做呢?(启发学生思考)这就好比我要你去完成一件事,你首先想到的是什么?(这是一件什么事?)然后想到的又是什么呢?(怎样去完成?)在分析的过程中我们才知道怎样完成这件事,其次才是计算完成它的所有方法数。
今天,我们的学习将从这两方面去展开。
设计目的:选择学生身边的素材作为新课引入的实例,利用简单的熟悉的问题情境激发学生学习的积级性,让学生在迫切要求下去探究。
2.逐层探索,构建新知
在刚才的第一问中,我们要完成什么事?要怎样去完成?
从一楼到二楼:(任选一个楼梯口上)一步到位,直接完成。
在第二问中呢,我们要完成什么事?又怎样去完成?(先到二楼,再到三楼,……)
从一楼到六楼:不能直接完成,需要分步完成。
第一步:从一楼到二楼;第二步:从二楼到三楼;第三步:从三楼到四楼;第四步:从四楼到五楼;第五步:从五楼到六楼。
比较两件事的完成过程,你能发现它们的不同之处吗?
完成一件事:一步到位,直接完成;不能直接完成,需要分步完成。
学习小组活动一:议一议,如何完成以下这些事情。
(学生在各自的学习小组内讨论之后,由小组代表发言。)
设计目的:让学生感知完成一件事,可以分类去解决,或者分步去解决。
情境1、节目主持候选人中有4名男同学,8名女同学,
(1)若从中任选一人主持节目;(可以选一名男同学或选一名女同学,都直接完成。在你的选法中,从同学的性别来分,可分为两类,一类是选男同学,一类是选女同学,不管选男还是选女,它们都可以独立地完成这件事。)(2)若从中任选一个男同学和一个女同学共同主持节目。(不能直接完成,需分两步。第一步选一个男同学,第二步选一个女同学。不管选男同学还是选女同学,若少一步则不能完成这件事,这两步的关系是相互依存的。)情境2、书架上有40本不同的语文书,30本不同的数学书,20本不同的英语书,
(1)从书架上任取一本书;
(2)从中任选三本不同科目的书。