机械控制工程基础实验指导书(08年)
机械控制工程基础实验指导书
![机械控制工程基础实验指导书](https://img.taocdn.com/s3/m/010c82c42cc58bd63186bd62.png)
实验箱简介机械控制工程基础实验模块由六个模拟运算单元及元器件库组成,这些模拟运算单元的输入回路和反馈回路上配有多个各种参数的电阻、电容,因此可以完成各种自动控制模拟运算。
例如构成比例环节、惯性环节、积分环节、比例微分环节,PID环节和典型的二阶、三阶系统等。
利用本实验机所提供的多种信号源输入到模拟运算单元中去,再使用本实验机提供的虚拟示波器界面可观察和分析各种自动控制原理实验的响应曲线。
主实验板根据功能本实验机划分了各种实验区均在主实验板上。
实验区组成见表1。
虚拟示波器的使用一、设置用户可以根据不同的要求选择不同的示波器,具体设置方法如下: 1、示波器的一般用法:运行LABACT 程序,选择“工具”栏中的‘单迹示波器’项或‘双迹示波器’项,将可直接弹出该界面。
‘单迹示波器’项的频率响应要比‘双迹示波器’项高,将可观察每秒6500个点;‘双迹示波器’项只能观察每秒3200个点。
点击开始即可当作一般的示波器使用。
2、实验使用:运行LABACT 程序,选择‘自动控制 / 微机控制 / 控制系统’菜单下的相应实验项目,再选择开始实验,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1、CH2测孔测量波形。
二、虚拟示波器的使用1、虚拟示波器的一般使用图1 虚拟示波器运行界面图1为示波器的时域显示和相平面显示界面,只要点击开始,示波器就运行了,此时就可以用实验机上CH1和 CH2来观察波形。
CH1和 CH2各有输入范围选择开关,当输入电压小于-5V ~+5V 应选用x1档,如果大于此输入范围应选用x5挡(表示衰减5倍)。
该显示界面中提供了示波和X-Y 两种方式,示波就是普通示波器的功能,它提供了示波器的时域显示,X-Y 相当于真实示波器中的X-Y 选项;如果需要用X-Y 功能,只要选中X-Y 选项即可,它提供了示波器的相平面显示,进行非线性系统的相平面分析,实验中必须用X-Y 功能。
《机械控制工程》实验指导书(DOC)
![《机械控制工程》实验指导书(DOC)](https://img.taocdn.com/s3/m/49ee8b34aa00b52acec7ca11.png)
机械工程控制实验指导书南昌大学机电工程学院2014 年10 月目录1.概述 (2)2.实验一典型环节的电路模拟与软件仿真研究 (6)3.实验二典型系统动态性能和稳定性分析 (13)4.实验三典型环节(或系统)的频率特性测量 (17)5. 实验操作指导 (22)6. 典型环节仿真实验硬件模块配置及信号设置表 (23)7. 阶跃信号及响应曲线图 (25)一. 实验系统构成实验系统由上位PC微机(含实验系统上位机软件)、ACT-I实验箱、并行通讯线等组成。
ACT-I 实验箱内装有以ADC812芯片(含数据处理系统软件)为核心构成的数据处理卡,通过并口与PC 微机连接。
1 .实验箱ACT-I简介ACT-I控制理论实验箱(见图1 )主要由电源部分U1单元、信号源部分U2单元、与PC机通讯及数据处理U3单元、元器件单元U4非线性单元U5〜U7以及模拟电路单元U8〜U16 等共16个单元组成。
(1)电源单元U1包括电源开关、保险丝、+ 5V、—5V、+ 15V、—15V、0V以及1.3V〜15V可调电压的输出,它们提供了实验箱所需的所有工作电源。
(2)信号源单元U2可以产生频率与幅值可调的周期方波信号、周期斜坡信号、周期抛物线信号以及正弦信号,并提供与周期阶跃、斜坡、抛物线信号相配合的周期锁零信号。
该单元面板上配置的拨键S1和S2用于周期阶跃、斜坡、抛物线信号的频率段选择,可有以下4种状态:①S1和S2均下拨一一输出信号周期的调节范围为2〜60ms;②S1上拨、S2下拨一一输出信号周期的调节范围为0.2〜6s;③S1下拨、S2上拨一一输出信号周期的调节范围为20〜600ms;④S1和S2均上拨一一输出信号周期的调节范围为0.16〜7s;另有电位器RP1用于以上频率微调。
电位器RP2、RP3和RP4依次分别用于周期阶跃、斜坡与抛物线信号的幅值调节。
在上述S1和S2的4种状态下,阶跃信号的幅值调节范围均为0〜14V;除第三种状态外,其余3种状态的斜坡信号和抛物线信号的幅值调节范围均为0〜15V;在第三种状态时,斜坡信号的幅值调节范围为0〜10V,抛物线信号的幅值调节范围为0〜2.5V。
机械工程控制基础实验指导书
![机械工程控制基础实验指导书](https://img.taocdn.com/s3/m/17ee9ad23186bceb19e8bb2a.png)
《机械工程控制基础》实验指导书青岛科技大学前言机械工程控制基础是针对过程装备与控制工程专业而开设的一门专业基础课,主要讲解自动控制原理的主要内容,是一门理论性较强的课程,为了帮助学生学好这门课,能够更好的理解理论知识,在课堂教学的基础上增加了该实验环节。
《机械工程控制基础》实验指导书共编写了4个实验,有实验一、典型环节模拟研究实验二、典型系统动态性能和稳定性分析实验三、控制系统的频率特性分析实验四、调节器参数对系统调节质量的影响《机械工程控制基础》实验指导书的编写主要依据“控制工程基础”教材的内容,结合本课程教学大纲的要求进行编写。
利用计算机和MATLAB程序完成实验。
注:1)每个实验的实验报告均由5部分组成,最后一部分“实验数据分析”或“思考题”必须写。
2)每个实验所记录的图形均需标出横轴和纵轴上的关键坐标点。
目录实验一典型环节模拟研究 (4)一、实验目的二、实验要求三、实验原理四、实验内容及步骤五、实验报告要求实验二典型系统动态性能和稳定性分析 (7)一、实验目的二、实验要求三、实验原理四、实验内容及步骤五、实验报告要求实验三控制系统的频率特性分析 (9)一、实验目的二、实验要求三、实验原理四、实验内容及步骤五、实验报告要求实验四调节器参数对系统调节质量的影响 (11)一、实验目的二、实验要求三、实验原理四、实验内容及步骤五、实验报告要求附录一:MATLAB6.5的使用 (13)实验一典型环节模拟研究一、实验目的1.熟悉各种典型环节的阶跃响应曲线2.了解参数变化对典型环节动态特性的影响。
二、实验要求1.观测并记录各种典型环节的阶跃响应曲线2.观测参数变化对典型环节阶跃响应的影响,测试并记录相应的曲线三、实验原理1.惯性环节(一阶环节),如图1-1所示。
(a) 只观测输出曲线(b) 可观测输入、输出两条曲线图1-1 惯性环节原理图2.二阶环节,如图1-2所示。
或图1-2 二阶环节原理图3.积分环节,如图1-3所示。
机械基础实验指导书(正稿)
![机械基础实验指导书(正稿)](https://img.taocdn.com/s3/m/572da1ddad51f01dc281f155.png)
《机械工程基础》实验指导书黄志诚编景德镇陶瓷学院机电学院机设教研室2008年9月目录实验一、低碳钢拉伸时力学性能的测定 (2)实验二、渐开线齿廓的范成实验 (6)实验三、减速器的拆装 (10)实验四、轴系结构组合设计 (14)实验一、低碳钢拉伸时力学性能的测定一、 实验目的1、观察低碳钢拉伸过程中的弹性、屈服、强化、颈缩、断裂等物理现象。
2、测定低碳钢的屈服极限(屈服点)σs ,强度极限(抗拉强度)σb ,断后伸长率δ和断面收缩率ψ。
二、 实验设备及工具a) WE 型液压式万能试验机; b) SH-350试样分划器; c) 游标卡尺;d)低碳钢长试样(l =100mm ,d=10mm )。
拉伸试件按国标GB/T 6397—1986制作。
如图2-1所示,拉伸试件采用哑铃状,由工作部分、圆弧过渡部分和夹持部分组成。
若以L 表示试件工作部分标距,d 表示试件直径,则拉伸试件有短试件(L =5d )和长试件(L =10d )两种。
本试验采用长试件。
图2-1 圆形拉伸试件 图2-2 低碳钢的拉伸曲线三、实验原理及方法将试件安装于试验机的夹头内,之后匀速缓慢加载(加载速度对力学性能是有影响的,速度越快,所测的强度值就越高),直至将试件拉断。
低碳钢试件在静拉伸试验中,通常可直接得到拉伸曲线,即F -△L 曲线,如实2-2图所示。
用准确的拉伸曲线可直接换算出应力应变σε-曲线。
观察拉伸曲线可见试件依次经过弹性阶段、屈服阶段、强化阶段和缩颈阶段等四个阶段,其中前三个阶段是均匀变形的。
①弹性阶段 是指拉伸图上的OA ′段。
在弹性阶段,存在一比例极限点A ,对应的应力为比例极限p σ,此部分载荷与变形是成比例的,材料的弹性模量E应在此范围内测定。
②屈服阶段 对应拉伸图上的BC 段。
在低碳钢的拉伸曲线上,当载荷增加到一定数值时出现的锯齿现象。
屈服阶段中一个重要的力学性能就是屈服点。
低碳钢材料存在上屈服点和下屈服点,不加说明,一般都是指下屈服点。
机械系统控制基础实验指导书完整版
![机械系统控制基础实验指导书完整版](https://img.taocdn.com/s3/m/4a9f4badafaad1f34693daef5ef7ba0d4a736dde.png)
机械系统控制基础实验指导书完整版1. 实验目的本实验旨在通过机械系统控制基础实验的设计与实施,帮助学生深入理解机械系统的控制原理与方法,提高其工程实践能力。
2. 实验原理2.1 机械系统的基本组成和工作原理2.2 机械系统的数学建模2.3 机械系统的控制方法与策略3. 实验器材3.1 电脑3.2 控制器3.3 传感器3.4 电动机3.5 运动平台4. 实验内容4.1 实验一:机械系统的建模与控制4.1.1 步骤一:搭建机械系统的物理模型4.1.2 步骤二:进行系统辨识并获取系统参数4.1.3 步骤三:设计控制器,实现对机械系统的控制4.2 实验二:机械系统的位置控制实验4.2.1 步骤一:确定位置控制的目标和性能指标4.2.2 步骤二:设计位置控制器,实现机械系统的位置控制4.3 实验三:机械系统的速度控制实验4.3.1 步骤一:确定速度控制的目标和性能指标4.3.2 步骤二:设计速度控制器,实现机械系统的速度控制5. 实验步骤5.1 实验一:5.1.1 搭建机械系统的物理模型,将传感器和电动机连接至运动平台,连接控制器至电脑。
5.1.2 进行系统辨识实验,获取机械系统的相关参数。
5.1.3 根据系统参数设计控制器,并对机械系统进行控制实验。
5.2 实验二:5.2.1 根据位置控制目标和性能指标,设计位置控制器。
5.2.2 将设计的控制器连接至电脑和电动机,实施位置控制实验。
5.3 实验三:5.3.1 根据速度控制目标和性能指标,设计速度控制器。
5.3.2 将设计的控制器连接至电脑和电动机,实施速度控制实验。
6. 实验报告每个实验完成后,学生需撰写实验报告,内容包括实验目的、理论基础、实验步骤、实验结果与分析等。
7. 实验安全7.1 在实验过程中,注意安全操作,避免发生意外伤害。
7.2 未经指导老师允许,不得擅自改动实验器材或调整实验参数。
8. 参考资料[1] 《机械系统控制原理与应用》[2] 《机械系统建模与控制技术》以上为机械系统控制基础实验指导书的完整版,希望能对实验教学提供有力的支持和指导。
《机械控制工程基础》实验指导书
![《机械控制工程基础》实验指导书](https://img.taocdn.com/s3/m/7a68bc13aa00b52acec7ca7e.png)
《机械控制工程基础》实验指导书华东交通大学机电学院实验一 典型环节模拟一、实验目的①了解、掌握计算机模拟典型环节的基本方法。
②熟悉各种典型环节的阶跃响应曲线。
③了解各种参数变化对典型环节动态特性的影响。
④了解计算机辅助分析和设计的特点与优点二、实验要求①通过计算机的仿真图形观测各种典型环节时域响应曲线。
②改变参数,观测参数变化时对典型环节时域响应的影响。
④对实验程序加上注释,写出实验报告。
三、实验内容一般来讲,线性连续控制系统通常都是由一些典型环节构成的,这些典型环节有比例环节、积分环节、一阶微分环节、惯性环节、振荡环节、延迟环节等。
下面分别对其性能进行仿真(建议实验程序在M 文件中用单步执行的方式执行程序,以便于分析):1)比例环节比例环节的传递函数为:k s G =)(编程分析当k=1~10时,比例环节在时域的情况:①当输人信号是单位阶跃信号时,比例环节的输出曲线(单位阶跃响应曲线)是什么形状呢?实验程序如下:for k=1:1:10num=k;den=1;G=tf(num,den);step(G);hold on;end在M 文件的窗口中,输入程序,录入程序完成后,保存该M 文件,在弹出的“保存为”窗工中输人M 文件名bl.m (也可以自己取文件名),选择存放该M 文件的路径,就可以完成保存工作,然后单击“Tools ”菜单中的“Run ”,将在step 图形窗口中显示出响应图形。
试分析系统的输出信号的特点。
2)积分环节积分环节的传递函数为: Ts G 1)(= ① 当输人信号是单位阶跃信号时,积分环节的仿真程序如下:num=1;den=[1,0];G=tf(num,den);step(G)执行程序,试分析系统的输出信号的特点。
若G(s)=k/s ,编程分析当K=1~10时,在单位阶跃信号激励下,积分环节时域响应的情况。
3)一阶微分环节一阶微分环节的传递函数为: 1)(+=Ts s G①当输入信号是单位阶跃信号时,一阶微分环节的输出在MA TLAB 的函数step ()中是无法绘制的。
机械工程控制基础实验
![机械工程控制基础实验](https://img.taocdn.com/s3/m/c699a0376bd97f192279e9b8.png)
验曲线通过ω=1(rad/s)时的y坐标值,频率
实验曲线从0dB/dec线到-20dB/dec线的转折点,则(本系统转折频 率在数值上与截止频率相等,截止频率是实验曲线通过水平段下降 -3dB线时对应的x坐标值)。分别从0.5V和1V实验曲线估计传递函 数,比较二者的异同。
表2-1 开环频率特性测试数据记录表(1V正弦输入信号)
测速电机
幅值(=
幅值(=
频率(Hz) 频率(1/s) 输出电压
20logUo/Ui)) 相位差
Uo/Ui)
峰峰值(V)
(dB)
2.5
5
10
15
20
25
30
35 40 45 50 55 60
65 70 75
五、实验报告 1) 对实验内容与实验过程进行描述; 2) 记录实验数据,对实验结果进行分析; 3) 回答任意两道思考题; 4) 实验总结,包括实验中遇到的问题及思考、对本实验的意见 与建议。
议。
六、思考题 1)如何利用数字示波器观察阶跃响应曲线和测量一阶系统的时间
常数?如何测量稳态增益?
2)除了测速电机外,测量转速还有哪些方法?试画出系统方框 图。
3)为什么作为阶跃输入信号的方波信号,其周期要大于系统过渡 过程时间的两倍?
实验二 频率特性测试实验
一、实验目的 1)熟悉典型系统的频域特性。2)掌握机电系统频域特性和传递函数的测试方法。
本实验指导书由陈永亮老师编写
实验一 时域特性测试实验
一、实验目的 1)熟悉典型输入信号; 2)了解典型系统的时间响应。 3)掌握典型机电系统时域特性的测试方法。
《控制工程基础》实验指导书(8学时)
![《控制工程基础》实验指导书(8学时)](https://img.taocdn.com/s3/m/103f0557a45177232f60a257.png)
《控制工程基础》实验指导书机械与车辆学院2013实验一matlab软件使用一、实验目的1.掌握MATLAB软件使用的基本方法;2.熟悉MATLAB的数据表示、基本运算和程序控制语句;3.熟悉MATLAB程序设计的基本方法。
4.学习用MATLAB创建控制系统模型。
二、实验原理1.MATLAB的基本知识MATLAB是矩阵实验室(Matrix Laboratory)之意。
MATLAB具有卓越的数值计算能力,具有专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学,与工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完相同的事情简捷得多。
当MATLAB 程序启动时,一个叫做MATLAB 桌面的窗口出现了。
默认的MATLAB 桌面结构如下图所示。
在MATLAB 集成开发环境下,它集成了管理文件、变量和用程序的许多编程工具。
在MATLAB 桌面上可以得到和访问的窗口主要有:命令窗口(The Command Window):在命令窗口中,用户可以在命令行提示符(>>)后输入一系列的命令,回车之后执行这些命令,执行的命令也是在这个窗口中实现的。
命令历史窗口(The Command History Window):用于记录用户在命令窗口(The Command Windows),其顺序是按逆序排列的。
即最早的命令在排在最下面,最后的命令排在最上面。
这些命令会一直存在下去,直到它被人为删除。
双击这些命令可使它再次执行。
要在历史命令窗口删除一个或多个命令,可以先选择,然后单击右键,这时就有一个弹出菜单出现,选择Delete Section。
任务就完成了。
工作台窗口(Workspace):工作空间是MATLAB用于存储各种变量和结果的内存空间。
在该窗口中显示工作空间中所有变量的名称、大小、字节数和变量类型说明,可对变量进行观察、编辑、保存和删除。
机械系统控制基础实验指导书
![机械系统控制基础实验指导书](https://img.taocdn.com/s3/m/55eb41933086bceb19e8b8f67c1cfad6195fe925.png)
机械系统控制基础实验指导书1. 实验目的本实验旨在帮助学生理解机械系统控制的基本原理,并通过实际操作加深对相关知识的理解和掌握。
2. 实验器材- 电脑- 控制器- 电动机- 传感器- 连接线等3. 实验步骤步骤一:系统控制概述1. 介绍机械系统控制的基本概念和目的。
2. 讲解控制系统的组成和相关术语。
步骤二:控制器的配置1. 演示如何配置控制器,包括连接电源和输入输出设备。
2. 介绍控制器的相关设置和参数调整。
步骤三:传感器的应用1. 分析不同类型的传感器及其在机械系统控制中的应用。
2. 演示如何连接和使用传感器,获取实时数据。
步骤四:控制算法的设计1. 介绍几种常见的控制算法,如比例控制、积分控制和微分控制。
2. 演示如何设计和实现控制算法,包括参数设置和代码编写。
步骤五:系统调试和优化1. 指导学生进行系统调试,包括输入输出信号的监测和调整。
2. 引导学生思考如何通过优化控制策略提高系统性能。
4. 实验注意事项- 在进行实验操作时,务必注意安全,避免发生意外事故。
- 确保所有器材和设备的正常运作,避免出现故障。
- 严格按照指导书的步骤进行实验,不得随意更改。
- 如遇到问题或困惑,请及时向实验指导人员寻求帮助。
5. 实验成果整理1. 学生需撰写实验报告,详细记录实验过程、结果和分析。
2. 实验报告包括实验目的、所用器材、实验步骤、实验结果、实验分析等部分。
3. 实验报告撰写完毕后,需按时提交给实验指导人员。
以上为《机械系统控制基础实验指导书完整版》的内容概要。
实验指导书的具体内容和步骤可能因实验设置和教学需求而有所调整。
机械控制理论基础实验指导书.
![机械控制理论基础实验指导书.](https://img.taocdn.com/s3/m/a12d7403ff00bed5b8f31d0a.png)
《机械控制理论基础》——实验指导书机械工程学院教学实验中心2007年改编前言本套实验系统是配合《机械控制理论基础》与《现代控制理论基础》课程而开设的实验,可进行11项实验,实验内容有:典型环节的阶跃响应、二阶系统阶跃响应实验、零点对二阶系统瞬态响应的影响、系统频率特性实验、控制系统的稳定性分析、连续系统串联校正、数字PID控制、状态反馈及状态观测器实验、解耦控制实验、非线性实验、相轨迹观测实验,均配有相应的实验软件。
该实验为模拟性实验,既抛弃物理属性,采用运算放大器等电子电路模拟机械系统,构成各种典型环节与相应的模拟系统,可抽象出相同形式的传递函数或数学模型。
再将阶跃信号加到模拟系统的输入端,便可得到系统的动态响应曲线及性能指标。
改变系统的参数,可进一步分析研究参数对系统性能的影响。
目录第一章实验介绍第二章实验内容实验一典型环节的瞬态响应和动态分析1、一阶环节的阶跃响应及时间参数的影响2、二阶环节的阶跃响应及时间参数的影响3、零点、极点分布对二阶系统瞬态响应的影响实验二典型环节的频率特性实验实验三机电控制系统的校正实验四控制系统的稳定性分析第一章实验介绍一、实验装置本实验采用EL-AT-III型自动控制实验系统,它可以处理时变、非线性以及多输入多输出等复杂的控制理论问题。
本系统通过对单元电路的灵巧组合,可以构造出各种型式和阶次的模拟环节和控制系统,采用DA/AD卡通过USB口和计算机连接实现信号源信号的输出和系统响应信号的采集,采集后的信息通过计算机显示,省去了外接示波器的麻烦。
本实验提供相配套的数据显示软件,能够对各种实验的输出信号进行处理显示,界面友好,使用方便。
二、实验系统框图图1 实验系统框图三、实验软件及操作过程简介软件启动界面:在Windows桌面上双击“Cybernation_A.exe”图标,浏览软件使用指南。
软件使用说明:软件具体操作和功能(一)工具栏按钮:1.点击〖或按F1〗可以选择实验项目作为当前实验项目。
控制工程基础实验指导书(答案)
![控制工程基础实验指导书(答案)](https://img.taocdn.com/s3/m/fc9591ca011ca300a7c3904f.png)
控制工程基础实验指导书自控原理实验室编印(内部教材)实验项目名称:(所属课程:)院 系: 专业班级: 姓 名: 学 号:实验日期: 实验地点: 合作者: 指导教师:本实验项目成绩: 教师签字: 日期:(以下为实验报告正文)一、实验目的简述本实验要达到的目的。
目的要明确,要注明属哪一类实验(验证型、设计型、综合型、创新型)。
二、实验仪器设备列出本实验要用到的主要仪器、仪表、实验材料等。
三、实验内容简述要本实验主要内容,包括实验的方案、依据的原理、采用的方法等。
四、实验步骤简述实验操作的步骤以及操作中特别注意事项。
五、实验结果给出实验过程中得到的原始实验数据或结果,并根据需要对原始实验数据或结果进行必要的分析、整理或计算,从而得出本实验最后的结论。
六、讨论分析实验中出现误差、偏差、异常现象甚至实验失败的原因,实验中自己发现了什么问题,产生了哪些疑问或想法,有什么心得或建议等等。
七、参考文献列举自己在本次准备实验、进行实验和撰写实验报告过程中用到的参考文献资料。
格式如下作者,书名(篇名),出版社(期刊名),出版日期(刊期),页码实验一 控制系统典型环节的模拟一、实验目的、掌握比例、积分、实际微分及惯性环节的模拟方法; 、通过实验熟悉各种典型环节的传递函数和动态特性; 、了解典型环节中参数的变化对输出动态特性的影响。
二、实验仪器、控制理论电子模拟实验箱一台;、超低频慢扫描数字存储示波器一台;、数字万用表一只;、各种长度联接导线。
三、实验原理以运算放大器为核心元件,由其不同的 输入网络和反馈网络组成的各种典型环节,如图 所示。
图中 和 为复数阻抗,它们都是 、 构成。
图 运放反馈连接基于图中 点为电位虚地,略去流入运放的电流,则由图 得:21()o i u ZG s u Z ==-( ) 由上式可以求得下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。
、比例环节实验模拟电路见图 所示图 比例环节传递函数:21()R G s K R =-=- 阶跃输入信号: 实验参数:( ) 1 2 ( ) 1 2 、 惯性环节实验模拟电路见图 所示图 惯性环节传递函数:2212211211()11R CS R Z R K CS G s Z R R R CS TS +=-=-=-=-++阶跃输入: 实验参数:( )12( )2、积分环节实验模拟电路见图 所示图 积分环节传递函数:21111()Z CSG sZ R RCS TS=-=-=-=阶跃输入信号:实验参数:( )( )、比例微分环节实验模拟电路见图 所示图 比例微分环节传递函数:22211111()(1)(1)1D Z R R G S R CS K T S R Z R CS R CS =-=-=-+=-++ 其中 D 112R R 阶跃输入信号: 实验参数:( ) 1 2 ( ) 1 2 四、实验内容与步骤、分别画出比例、惯性、积分、比例微分环节的电子电路; 、熟悉实验设备并在实验设备上分别联接各种典型环节;、按照给定的实验参数,利用实验设备完成各种典型环节的阶跃特性测试,观察并记录其单位阶跃响应波形。
控制工程基础实验指导书(答案)
![控制工程基础实验指导书(答案)](https://img.taocdn.com/s3/m/05b4f41a915f804d2b16c1ac.png)
控制工程基础实验指导书自控原理实验室编印(内部教材)实验项目名称:(所属课程:)院系:专业班级:姓名:学号:实验日期:实验地点:合作者:指导教师:本实验项目成绩:教师签字:日期:(以下为实验报告正文)一、实验目的简述本实验要达到的目的。
目的要明确,要注明属哪一类实验(验证型、设计型、综合型、创新型)。
二、实验仪器设备列出本实验要用到的主要仪器、仪表、实验材料等。
三、实验内容简述要本实验主要内容,包括实验的方案、依据的原理、采用的方法等。
四、实验步骤简述实验操作的步骤以及操作中特别注意事项。
五、实验结果给出实验过程中得到的原始实验数据或结果,并根据需要对原始实验数据或结果进行必要的分析、整理或计算,从而得出本实验最后的结论。
六、讨论分析实验中出现误差、偏差、异常现象甚至实验失败的原因,实验中自己发现了什么问题,产生了哪些疑问或想法,有什么心得或建议等等。
七、参考文献列举自己在本次准备实验、进行实验和撰写实验报告过程中用到的参考文献资料。
格式如下:作者,书名(篇名),出版社(期刊名),出版日期(刊期),页码实验一 控制系统典型环节的模拟一、实验目的1、掌握比例、积分、实际微分及惯性环节的模拟方法;2、通过实验熟悉各种典型环节的传递函数和动态特性;3、了解典型环节中参数的变化对输出动态特性的影响。
二、实验仪器1、控制理论电子模拟实验箱一台;2、超低频慢扫描数字存储示波器一台;3、数字万用表一只;4、各种长度联接导线。
三、实验原理以运算放大器为核心元件,由其不同的R-C 输入网络和反馈网络组成的各种典型环节,如图1-1所示。
图中Z1和Z2为复数阻抗,它们都是R 、C 构成。
图1-1 运放反馈连接基于图中A 点为电位虚地,略去流入运放的电流,则由图1-1得:21()o i u ZG s u Z ==-(1-1) 由上式可以求得下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。
1、比例环节实验模拟电路见图1-2所示图1-2 比例环节传递函数:21()R G s K R =-=- 阶跃输入信号:-2V 实验参数:(1) R 1=100K R 2=100K (2) R 1=100K R 2=200K 2、 惯性环节实验模拟电路见图1-3所示图1-3 惯性环节传递函数:2212211211()11R CS R Z R K CS G s Z R R R CS TS +=-=-=-=-++阶跃输入:-2V 实验参数:(1) R 1=100K R 2=100K C=1µf (2) R=100K R 2=100K C=2µf 3、积分环节实验模拟电路见图1-4所示图1-4 积分环节传递函数:21111()Z CS G s Z R RCS TS=-=-=-= 阶跃输入信号:-2V 实验参数:(1) R=100K C=1µf (2) R=100K C=2µf 4、比例微分环节实验模拟电路见图1-5所示图1-5 比例微分环节传递函数:22211111()(1)(1)1D Z R R G S R CS K T S R Z R CS R CS =-=-=-+=-++其中TD =R1C K=12RR阶跃输入信号:-2V 实验参数:(1)R1=100K R2=100K C=1µf(2)R1=100K R2=200K C=1µf四、实验内容与步骤1、分别画出比例、惯性、积分、比例微分环节的电子电路;2、熟悉实验设备并在实验设备上分别联接各种典型环节;3、按照给定的实验参数,利用实验设备完成各种典型环节的阶跃特性测试,观察并记录其单位阶跃响应波形。
机械控制工程基础实验指导书(07年)
![机械控制工程基础实验指导书(07年)](https://img.taocdn.com/s3/m/c9aa080d844769eae009ed7e.png)
中北大学机械工程与自动化学院实验指导书课程名称:《机械工程控制基础》课程代号:02020102适用专业:机械设计制造及其自动化实验时数:4学时实验室:数字化实验室实验内容:1.系统时间响应分析2.系统频率特性分析机械工程系2010.12实验一 系统时间响应分析实验课时数:2学时 实验性质:设计性实验 实验室名称:数字化实验室一、实验项目设计内容及要求1.试验目的本实验的内容牵涉到教材的第3、4、5章的内容。
本实验的主要目的是通过试验,能够使学生进一步理解和掌握系统时间响应分析的相关知识,同时也了解频率响应的特点及系统稳定性的充要条件。
2.试验内容完成一阶、二阶和三阶系统在单位脉冲和单位阶跃输入信号以及正弦信号作用下的响应,求取二阶系统的性能指标,记录试验结果并对此进行分析。
3.试验要求学习教材《机械工程控制基础(第5版)》第2、3章有关MA TLAB 的相关内容,要求学生用MA TLAB 软件的相应功能,编程实现一阶、二阶和三阶系统在几种典型输入信号(包括单位脉冲信号、单位阶跃信号、单位斜坡信号和正弦信号)作用下的响应,记录结果并进行分析处理:对一阶和二阶系统,要求用试验结果来分析系统特征参数对系统时间响应的影响;对二阶系统和三阶系统的相同输入信号对应的响应进行比较,得出结论。
4.试验条件利用机械工程与自动化学院数字化试验室的计算机,根据MA TLAB 软件的功能进行简单的编程来进行试验。
二、具体要求及实验过程1.系统的传递函数及其MA TLAB 表达 (1)一阶系统 传递函数为:1)(+=Ts K s G传递函数的MA TLAB 表达: num=[k];den=[T,1];G(s)=tf(num,den) (2)二阶系统 传递函数为:2222)(nn nw s w sw s G ++=ξ传递函数的MA TLAB 表达: num=[2n w ];den=[1,ξ2wn ,wn^2];G(s)=tf(num,den) (3)任意的高阶系统 传递函数为:nn n nm m m m a s a sa sa b s b s b sb s G ++++++++=----11101110)(传递函数的MA TLAB 表达:num=[m m b b b b ,,,110- ];den=[n n a a a a ,,,110- ];G(s)=tf(num,den)若传递函数表示为:)())(()())(()(1010n m p s p s p s z s z s z s Ks G ------=则传递函数的MA TLAB 表达:z=[m z z z ,,,10 ];p=[n p p p ,,,10 ];K=[K];G(s)=zpk(z,p,k) 2.各种时间输入信号响应的表达(1)单位脉冲信号响应:[y,x]=impulse[sys,t] (2)单位阶跃信号响应:[y,x]=step[sys,t] (3)任意输入信号响应:[y,x]=lsim[sys,u,t]其中,y 为输出响应,x 为状态响应(可选);sys 为建立的模型;t 为仿真时间区段(可选) 试验方案设计可参考教材相关内容,相应的M 程序可参考(杨叔子主编的《机械工程控制基础》第五版)提供的程序,在试验指导教师的辅导下掌握M 程序的内容和格式要求,并了解M 程序在MA TLAB 软件中的加载和执行过程。
控制工程基础实验指导书(答案)
![控制工程基础实验指导书(答案)](https://img.taocdn.com/s3/m/11e9b633ad02de80d5d84003.png)
控制工程基础实验指导书自控原理实验室编印(内部教材)实验项目名称:(所属课程:)院系:专业班级:姓名:学号:实验日期:实验地点:合作者:指导教师:本实验项目成绩:教师签字:日期:(以下为实验报告正文)一、实验目的简述本实验要达到的目的。
目的要明确,要注明属哪一类实验(验证型、设计型、综合型、创新型)。
二、实验仪器设备列出本实验要用到的主要仪器、仪表、实验材料等。
三、实验内容简述要本实验主要内容,包括实验的方案、依据的原理、采用的方法等。
四、实验步骤简述实验操作的步骤以及操作中特别注意事项。
五、实验结果给出实验过程中得到的原始实验数据或结果,并根据需要对原始实验数据或结果进行必要的分析、整理或计算,从而得出本实验最后的结论。
六、讨论分析实验中出现误差、偏差、异常现象甚至实验失败的原因,实验中自己发现了什么问题,产生了哪些疑问或想法,有什么心得或建议等等。
七、参考文献列举自己在本次准备实验、进行实验和撰写实验报告过程中用到的参考文献资料。
格式如下:作者,书名(篇名),出版社(期刊名),出版日期(刊期),页码实验一 控制系统典型环节的模拟一、实验目的1、掌握比例、积分、实际微分及惯性环节的模拟方法;2、通过实验熟悉各种典型环节的传递函数和动态特性;3、了解典型环节中参数的变化对输出动态特性的影响。
二、实验仪器1、控制理论电子模拟实验箱一台;2、超低频慢扫描数字存储示波器一台;3、数字万用表一只;4、各种长度联接导线。
三、实验原理以运算放大器为核心元件,由其不同的R-C 输入网络和反馈网络组成的各种典型环节,如图1-1所示。
图中Z1和Z2为复数阻抗,它们都是R 、C 构成。
图1-1 运放反馈连接基于图中A 点为电位虚地,略去流入运放的电流,则由图1-1得:21()o i u ZG s u Z ==-(1-1) 由上式可以求得下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。
1、比例环节实验模拟电路见图1-2所示图1-2 比例环节传递函数:21()R G s K R =-=- 阶跃输入信号:-2V 实验参数:(1) R 1=100K R 2=100K (2) R 1=100K R 2=200K 2、 惯性环节实验模拟电路见图1-3所示图1-3 惯性环节传递函数:2212211211()11R CS R Z R K CS G s Z R R R CS TS +=-=-=-=-++阶跃输入:-2V实验参数:(1) R 1=100K R 2=100K C=1µf(2) R=100K R 2=100K C=2µf 3、积分环节实验模拟电路见图1-4所示图1-4 积分环节传递函数:21111()Z CS G s Z R RCS TS=-=-=-= 阶跃输入信号:-2V 实验参数:(1) R=100K C=1µf (2) R=100K C=2µf 4、比例微分环节实验模拟电路见图1-5所示图1-5 比例微分环节传递函数:22211111()(1)(1)1D Z R R G S R CS K T S R Z R CS R CS =-=-=-+=-++ 其中 T D =R 1C K=12R R 阶跃输入信号:-2V实验参数:(1)R1=100K R2=100K C=1µf(2)R1=100K R2=200K C=1µf四、实验内容与步骤1、分别画出比例、惯性、积分、比例微分环节的电子电路;2、熟悉实验设备并在实验设备上分别联接各种典型环节;3、按照给定的实验参数,利用实验设备完成各种典型环节的阶跃特性测试,观察并记录其单位阶跃响应波形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中北大学机械工程与自动化学院实验指导书课程名称:《机械工程控制基础》课程代号:02020102适用专业:机械设计制造及其自动化实验时数:4学时实验室:数字化实验室实验内容:1.系统时间响应分析2.系统频率特性分析机械工程系2008.9实验一 系统时间响应分析实验课时数:2学时 实验性质:设计性实验 实验室名称:数字化实验室一、实验项目设计内容及要求1.试验目的本实验的内容覆盖了教材第3、4、5章的内容。
本实验的主要目的是:通过实验使学生能够进一步理解和掌握系统时间响应的相关知识,同时也了解频率响应的特点及系统稳定性的充要条件。
2.试验内容完成一阶、二阶和三阶系统在单位脉冲和单位阶跃输入信号以及正弦信号作用下的响应,求取二阶系统的性能指标,记录试验结果并对此进行分析。
3.试验要求系统时间响应分析试验要求学生用MATLAB 软件的相应功能,编程实现一阶、二阶和三阶系统在几种典型输入信号(包括单位脉冲信号、单位阶跃信号、单位斜坡信号和正弦信号)作用下的响应,记录实验结果并对结果进行分析处理:对一阶和二阶系统,要求用实验结果来分析系统特征参数对系统时间响应的影响;对二阶系统和三阶系统的相同输入信号对应的响应进行比较,得出结论。
4.试验条件利用机械工程与自动化学院数字化试验室的计算机,根据MA TLAB 软件的功能进行简单的编程来进行试验。
二、具体要求及实验过程1.系统的传递函数及其MA TLAB 表达 (1)一阶系统 传递函数为:1)(+=Ts Ks G 传递函数的MA TLAB 表达: num=[k];den=[T,1];G(s)=tf(num,den) (2)二阶系统 传递函数为:2222)(nn n w s w s w s G ++=ξ传递函数的MA TLAB 表达: num=[wn^2];den=[1,2*s* wn ,wn^2];G(s)=tf(num,den) (3)任意的高阶系统 传递函数为:nn n nm m m m a s a sa s ab s b s b s b s G ++++++++=----11101110)(传递函数的MA TLAB 表达:num=[m m b b b b ,,,110- ];den=[n n a a a a ,,,110- ];G(s)=tf(num,den)若传递函数表示为:)())(()())(()(1010n m p s p s p s z s z s z s Ks G ------=则传递函数的MATLAB 表达:z=[m z z z ,,,10 ];p=[n p p p ,,,10 ];K=[K];G(s)=zpk(z,p,k) 2.各种时间输入信号响应的表达(1)单位脉冲信号响应:[y,x]=impulse(sys,t) (2)单位阶跃信号响应:[y,x]=step(sys,t) (3)任意输入信号响应:[y,x]=lsim(sys,u,t)其中,y 为输出响应,x 为状态响应(可选);sys 为建立的模型;t 为仿真时间区段(可选) 试验方案设计可参考教材相关内容,相应的M 程序可参考(杨叔子主编的《机械工程控制基础》第五版)提供的程序,在试验指导教师的辅导下掌握M 程序的内容和格式要求,并了解M 程序在MATLAB 软件中的加载和执行过程。
3.实验的具体内容(1)完成一阶(选用不同的时间常数T )、二阶系统(选择不同的阻尼比ξ和无阻尼固有频率n w ,而且阻尼比ξ要有欠阻、临界阻尼和过阻尼三种情况)在典型输入信号(单位脉冲、单位阶跃、正弦信号)作用下所对应的时间响应实验;(2)完成二阶系统性能指标的求取(设计的二阶系统必须是欠阻尼的二阶系统)。
(3)完成一个稳定的三阶系统和一个不稳定的三阶系统的单位脉冲响应和单位阶跃响应,比较两响应曲线的差别并说明原因。
4.实验分析内容(1)分析时间常数对一阶系统时间响应的影响; (2)分析参数对二阶系统的时间响应的性能指标的影响; (3)分析系统稳定性与系统特征值的关系; (4)了解系统频率响应的特点。
三、实验参考程序程序1: 求取二阶系统单位脉冲和单位阶跃响应的响应曲线t=[0:0.01:0.8]; wn=k,nG=[wn^2];s=0.2;dG=[1 2*s*wn wn^2];G1=tf(nG ,dG); s=0.5;dG=[1 2*s*wn wn^2];G2=tf(nG ,dG); s=0.8;dG=[1 2*s*wn wn^2];G3=tf(nG ,dG) %定义了三个不同阻尼比的二阶系统 [y1,T]=impulse(G1,t);[y1a,T]=step(G1,t); [y2,T]=impulse(G2,t);[y2a,T]=step(G2,t); [y3,T]=impulse(G3,t);[y3a,T]=step(G3,t); %时间响应subplot(121),plot(T,y1,'--',T,y2,'-.',T,y3,'-') legend('tao=0','tao=0.0125','tao=0.025') xlabel('t(sec)'),ylabel('x(t)');grid on;subplot(122),plot(T,y1a,'--',T,y2a,'-.',T,y3a,'-') legend('tao=0','tao=0.0125','tao=0.025') grid on;xlabel('t(sec)'),ylabel('x(t)'); %图形输出及图形规划程序2:求二阶系统正弦响应及响应曲线t=[0:0.01:1];u=sin(2*pi.*t);wn=k,nG=[wn^2];s=0.2;dG=[1 2*s*wn wn^2];G=tf(nG,dG);y=lsim(G,u,t);plot(t,u,'-.',t,y,'-',t,u'-y,'-.','linewidth',1)legend('u(t)','xo(t)','e(t)')grid;xlabel('t(sec)'),ylabel('x(t)');程序3:求二阶系统单位阶跃响应的性能指标t=0:0.001:1;yss=1;dta=0.02;wn=k,nG=[wn^2];s=0.2;dG=[1 2*s*wn wn^2];G1=tf(nG,dG);s=0.5;dG=[1 2*s*wn wn^2];G2=tf(nG,dG);s=0.8;dG=[1 2*s*wn wn^2];G3=tf(nG,dG)y1=step(G1,t);y2=step(G2,t);y3=step(G3,t);r=1;while y1(r)<yss;r=r+1;endtr1=(r-1)*0.001;[ymax,tp]=max(y1);tp1=(tp-1)*0.001;mp1=(ymax-yss)/yss;s=1001;while y1(s)>1-dta & y1(s)<1+dta;s=s-1;end ts1=(s-1)*0.001;r=1;while y2(r)<yss;r=r+1;endtr2=(r-1)*0.001;[ymax,tp]=max(y2);tp2=(tp-1)*0.001;mp2=(ymax-yss)/yss;s=1001;while y2(s)>1-dta &y3(s)<1+dta;s=s-1;end ts2=(s-1)*0.001;r=1;while y3(r)<yss;r=r+1;endtr3=(r-1)*0.001;[ymax,tp]=max(y3);tp3=(tp-1)*0.001; mp3=(ymax-yss)/yss;s=1001;while y3(s)>1-dta & y3(s)<1+dta;s=s-1;end ts3=(s-1)*0.001[tr1 tp1 mp1 ts1; tr2 tp2 mp2 ts2; tr3 tp3 mp3 ts3]实验二系统频率特性分析实验课时数:2学时实验性质:验证性实验实验室名称:数字化实验室(机械工程系)一、实验项目设计内容及要求1.实验目的本试验的内容对应于教材的频率特性分析和系统稳定性分析相应章节的重点知识点,要求学生在熟练掌握课程相关内容的基础上,完成本实验,以加强学生对频率特性分析、几何判据及相对稳定性的学习效果。
2.实验内容(1)要求学生能够运用Matlab软件的相应功能,编程实现典型环节以及指定高阶系统的Nyquist图、Bode图的计算机自动绘制;(2)完成系统频域特征量和特征根的求取;(3)分析系统的相对稳定性等内容;(4)记录实验结果,并对实验结果进行相应的分析。
3. 实验要求系统频率特性分析试验要求学生运用MATLAB软件的相关功能,编程实现几种典型环节(要求改变环节的特征参数)的奈奎斯特图和波德图的绘制;完成教材第4章和第5章所示例题的奈奎斯特图和波德图的绘制并与教材所示图形进行比较;用Bode函数求取系统的频域特征量;用Matlab求取一高阶系统的特征根并由此来判断系统的稳定性和求取该系统的相对稳定性。
4. 实验条件利用机械工程与自动化学院数字化试验室的计算机,根据MATLAB软件的功能进行简单的编程来进行试验。
二、具体要求及实验过程1.参考Matlab程序,绘制比例环节、积分环节、微分环节、惯性环节、导前环节和振荡环节等六种典型环节的奈奎斯特曲线和波德曲线;2.绘制教材第四章四个例题的奈奎斯特曲线或波德曲线;3.求取教材第四章四个例题系统的贫与性能指标;4.求取控制系统的开环传递函数为)5)(1()()(++=s s s Ks H s G 的系统的幅值裕度和相位裕度,(其中K=10,100,40,50,60,80)。
三、参考程序参考程序1:奈奎斯图和波德图的绘制程序k=24;nunG1=k*[0.25 0.5]; denG1=conv([5 2],[0.05 2]); [re,im]=nyquist(nunG1,denG1); plot(re,im);grid pausew=logspace(-2,3 ,100); bode(nunG1,denG1,w);参考程序2:频域性能指标的求取程序nunG1=200;denG1=[1 8 100]; w=logspace(-1,3 ,100);[Gm,Pm,w]=bode(nunG1,denG1,w); [Mr,k]=max(Gm);Mr=20*log10(Mr);Wr=w(k); M0=20*log10(Gm(1));n=1;while 20* log10(Gm(n))>=-3;n=n+1;end Wb=w(n);[M0 Wb Mr Wr]参考程序3:系统相对稳定性性能指标的求取程序den=conv([1 5],[1 1 0]); K=10;num1=[K];[Gm1 Pm1 Wg1 Wc1]=margin(num1,den); K=100;num2=[K];[mag, phase,w]=bode(num2,den);[Gm2 Pm2 Wg2 Wc2]=margin(mag, phase,w);[20*log10(Gm1) Pm1 Wg1 Wc1;20*log10(Gm2) Pm2 Wg2 Wc2]附:环节系统定义方式%比例环节 nunG1=[10]; denG1=[1]; %G1(s)=10%积分环节 nunG1=[1]; denG1=[1 0]; %G1(s)=1/s%微分环节nunG1=[1 0];denG1=[1];%G1(s)=s%导前环节nunG1=[4 1];denG1=[1];%G1(s)=4s+1%惯性环节nunG1=[1];denG1=[4 1];%G1(s)=1/(4s+1)%振荡环节nunG1=[4];denG1=[1 2 4];%s=0.5;wn=2;G1(s)=4/(s^2+2wn*s+4)%第四章例1k=10,nunG1=[K];T=2,denG1=[T 1 0];%G1(s)=K/s*(Ts+1)%第四章例2k=10,nunG1=[K];T1=2,T2=4,denG1=[T1*T2 T1+T2 0 0];%G1(s)=K/s^2*(T1s+1)*(T2s+1)%第四章例3k=10,T1=2,nunG1=K*[T1 1];T2=4,denG1=[T2 1 0];%G1(s)=K*(T1s+1)/s*(T2s+1)%第四章例4k=24,nunG1=24*[0.25 0.5];denG1=[0.25 10.1 4];%G1(s)=24*(0.25s+0.5)/(5s+2)*(0.05s+2)附:实验报告格式《机械工程控制基础》实验报告班级学号姓名时间实验一:系统时间响应分析实验时间:实验室名称:数字化实验室内容:1、实验结果与相应的MATLAB程序2、实验分析内容:(1)分析时间常数对一阶系统时间响应的影响;(2)分析参数对二阶系统的时间响应的性能指标的影响;(3)分析系统稳定性与系统特征值的关系;(4)了解系统频率响应的特点。