高一必修1函数图象变换知识点总结经典

合集下载

高一数学必修一中的函数图像与性质总结

高一数学必修一中的函数图像与性质总结

高一数学必修一中的函数图像与性质总结在高一数学必修一中,函数是一个非常重要的概念,而函数的图像与性质则是理解和掌握函数的关键。

通过对函数图像的观察和分析,我们能够更直观地了解函数的特点和变化规律,从而更好地解决与函数相关的问题。

接下来,让我们一起对高一数学必修一中常见的函数图像与性质进行总结。

一、一次函数一次函数的表达式为 y = kx + b(k、b 为常数,k ≠ 0)。

其图像是一条直线。

当 k > 0 时,函数图像从左到右上升,y 随 x 的增大而增大;当 k < 0 时,函数图像从左到右下降,y 随 x 的增大而减小。

b 的值决定了直线与 y 轴的交点坐标。

当 b > 0 时,直线与 y 轴交于正半轴;当 b < 0 时,直线与 y 轴交于负半轴;当 b = 0 时,直线经过原点。

例如,函数 y = 2x + 1,k = 2 > 0,图像从左到右上升,b = 1 > 0,与 y 轴交于点(0,1)。

二、二次函数二次函数的一般式为 y = ax²+ bx + c(a ≠ 0)。

其图像是一条抛物线。

当 a > 0 时,抛物线开口向上,函数有最小值;当 a < 0 时,抛物线开口向下,函数有最大值。

抛物线的对称轴为 x = b /(2a)。

顶点坐标为(b /(2a),(4ac b²)/(4a))。

例如,函数 y = x² 2x 3,其中 a = 1 > 0,抛物线开口向上。

对称轴为 x =(-2) /(2×1)= 1,顶点坐标为(1,-4)。

三、幂函数幂函数的一般形式为 y =x^α(α 为常数)。

常见的幂函数有 y = x,y = x²,y = x³,y = x^(1/2) 等等。

当α > 0 时,函数在第一象限内单调递增;当α < 0 时,函数在第一象限内单调递减。

例如,y = x²在(0,+∞)上单调递增,y = x^(-1) 在(0,+∞)上单调递减。

高一必修1-函数图象的变换ppt课件.ppt

高一必修1-函数图象的变换ppt课件.ppt
如:y=f(x)±h的图象可由y=f(x)的图象 _向__上__(__下__)__平__移__h_个__单__位__而得到.
练习: 将直线y=2x+1向左平移5个单位,
得到的函数为__y_=_2_x+_1_1_______
左右平移时,发生变化的仅是x本身,如果x的系 数不是1时,需要把系数提出来,再进行变换.
(6)y=f(|x|)的图象:可先作出y=f(x)当x≥0 时的图象,再利用_偶__函__数__的__图__象__关__于__y_轴__对__称, 作出y=f(x)(x≤0)的图象.
函数y=|log2x|的图象是( A )
解析
f
(x)
|
lo g2
x
|
lo g2
lo
g1
2
x, x x,0
1, x
课前练习:
当a>2时,函数 y ax和y (a 1)x2 的图 象只可能是( )
y
y
y
y
0
x
A
0
x
B
0x
C
0x
D
知识回顾:基本初等函数及图象(大致图象)
函数 一次函数 y=kx+b
图象
二次函数
y=ax2+bx+ c
指数函数 y=ax
对数函数 y=logax
知识回顾:
下列二次函数的图象,是由 抛物线y=x2通过怎样的平移变换得 到的?
y f 1(x) 与y=f(x)的图象关于直线y=x对称.
设奇函数 f(x) 的定义域为[-5, 5], 若当x∈[0, 5]时, f(x)的图象如右图所
示. 则不等式 f(x)<0 的解集
是 (-2, 0)∪(2, 5]

《最新整理总结》高一数学必修一函数图像知识点总结

《最新整理总结》高一数学必修一函数图像知识点总结

参考范本
《最新整理总结》高一数学必修一函数图像知识点总结
撰写人:__________________
部门:__________________
时间:__________________
高一数学必修一函数图像知识点
知识点
本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。

函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。

所以理解了前面的几个知识点,函数的图象就迎刃而解了。

一、函数的单调性
1、函数单调性的定义
2、函数单调性的判断和证明:(1)定义法(2)复合函数分析法(3)导数证明法(4)图象法
二、函数的奇偶性和周期性
1、函数的奇偶性和周期性的定义
2、函数的奇偶性的判定和证明方法
3、函数的周期性的判定方法
三、函数的图象
1、函数图象的作法(1)描点法(2)图象变换法
2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。

常见考法
本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。

选择题、填空题和解答题都有,并且题目难度较大。

在解答。

高一数学必修一函数图像知识点总结

高一数学必修一函数图像知识点总结

03
通过大量的练习和实践,提高对复杂函数图像的识别能力和分
析水平。
观看
REPORTING
复合函数性质
复合函数具有“同增异减”的性质,即内外函数的单调性相同时,复合函数为增函数;内外函数的单 调性不同时,复合函数为减函数。
分段函数表达式及性质
分段函数定义
在自变量的不同取值范围内,用不同的解析式来表示一个函 数,这样的函数叫做分段函数。
分段函数性质
分段函数的定义域是各段定义域的并集;分段函数的值域是 各段值域的并集;分段函数在定义域的不同子集上,具有不 同的对应关系。
坐标平面
由x轴和y轴组成的平面称为坐标 平面,其中x轴和y轴的交点称为 原点,坐标为(0,0)。
函数图像绘制方法
01
02
03
列表法
列出函数自变量与函数值 的对应表,然后在坐标系 中描出各点,最后用平滑 的曲线连接各点。
解析法
根据函数解析式,直接利 用函数的性质绘制出函数 的图像。
图象变换法
通过对基本初等函数的图 像进行平移、伸缩、对称 等变换,得到所求函数的 图像。
PART 02
一次函数图像知识点
一次函数表达式及性质
一次函数表达式
y = kx + b (k ≠ 0)
性质
当 k > 0 时,函数图像为增函数;当 k < 0 时,函数图像为减函数。
一次函数图像特征
直线性
一次函数的图像是一条直 线。
斜率
直线的斜率等于一次函数 表达式中的 k 值。
截距
直线在 y 轴上的截距等于 一次函数表达式中的 b 值 。
PART 05
三角函数图像知识点
三角函数基本概念及性质

高一数学函数图像知识点总结

高一数学函数图像知识点总结

高一数学函数图像知识点总结文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)高一数学函数图像知识点总结一、函数图像知识点汇总1.函数图象的变换(1)平移变换(2)对称变换由对称变换可利用y=f(x)的图象得到y=|f(x)|与y=f(|x|)的图象.①作出y=f(x)的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|f(x)|的图象;②作出y=f(x)在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f(|x|)的图象.(3)伸缩变换①y=af(x)(a>0)的图象,可将y=f(x)图象上每点的纵坐标伸(a>1时)或缩(a<1时)到原来的a倍,横坐标不变.②y=f(ax)(a>0)的图象,可将y=f(x)的图象上每点的横坐标伸(a<1时)或缩(a>1时)到原来的倍,纵坐标不变.(4)翻折变换①作为y=f(x)的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|f(x)|的图象;②作为y=f(x)在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f(|x|)的图象.2.等价变换可看出函数的图象为半圆.此过程可归纳为:(1)写出函数解析式的等价组;(2)化简等价组;(3)作图.3.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象.注意:一条主线数形结合的思想方法是学习函数内容的一条主线,也是考查的热点.作函数图象首先要明确函数图象的形状和位置,而取值、列表、描点、连线只是作函数图象的辅助手段,不可本末倒置.两个区别(1)一个函数的图象关于原点对称与两个函数的图象关于原点对称不同,前者是自身对称,且为奇函数,后者是两个不同的函数对称.(2)一个函数的图象关于y轴对称与两个函数的图象关于y轴对称也不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系.三种途径明确函数图象形状和位置的方法大致有以下三种途径.(1)图象变换:平移变换、伸缩变换、对称变换.(2)函数解析式的等价变换.(3)研究函数的性质.二、例题解析三、复习指导函数图象是研究函数性质、方程、不等式的重要工具,是数形结合的基础,是高考考查的热点,复习时,应重点掌握几种基本初等函数的图象,并在审题、识图上多下功夫,学会分析“数”与“形”的结合点,把几种常见题型的解法技巧理解透彻。

高一数学 函数图像的变换

高一数学  函数图像的变换

函数图像的变换一、知识梳理1.水平平移:函数)(a x f y +=的图像是将函数)(x f y =的图像沿x 轴方向向左(a >0)或向右(a <0)平移a个单位得到.称之为函数图象的左、右平移变换. 2.竖直平移:函数a x f y +=)(的图像是将函数)(x f y =的图像沿y 轴方向向上(a >0)或向下(a <0)平移a个单位得到.称之为函数图象的上、下平移变换. 3.要作函数)(x f y =的图象,只需将函数)(x f y =的图象y 轴右侧的部分对称到y 轴左侧去,而y 轴左侧的原来图象消失.称之为关于y 轴的右到左对称变换(简称去左翻右). 4.要作函数)(x f y =的图象,只需将函数)(x f y =的图象x 轴下方的部分对折到x 轴上方即可.叫做关于x 轴的下部折上变换(简称去下翻上).5.要作)(x f y -=的图象,只需将函数)(x f y =的图象以y 轴为对折线,把y轴右侧的部分折到y 轴左侧去.同时,将y 轴左侧的部分折到y 轴右侧去.叫做关于y 轴的翻转变换.6.要作函数)(x f y -=的图象,只需将函数)(x f y =的图象以x 轴为对折线,把x 轴上方的图形折到x 轴下方去,同时又把x 轴下方的图象折到x 轴上方去即可.叫做关于x 轴的翻转变换.7.要作函数)(ax f y =(a >0)的图象,只需将函数)(x f y =图象上所有点的横坐标缩短(a >1)或伸长(0<a <1)到原来的a1倍(纵坐标不变)即可(若a <0,还得同时进行关于y 轴的翻转变换.这种变换叫做函数图象的横向伸缩变换.8.要作函数)(x Af y =(A>0)的图象,只需将函数)(x f y =图象上所有点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A倍(横坐标不变)即可.这种变换叫做函数图象的纵向伸缩变换(若A<0,还要再进行关于x 轴的翻转变换).9.要作函数)(x a f y -=的图象,只需将函数)(x f y =的图象发生关于直线x =2a的翻转变换即可. 实质上,这种变换是函数图象左右平移变换与关于y 轴翻转变换的复合,即先把)(x f y =图象发生左右平移得到函数)(a x f y +=的图象,再关于y 轴翻转便得到)(x a f y -=的图象. 10.要作函数)(x f h y -=的图象,只需将函数)(x f y =的图象发生关于直线y =2h的翻转变换即可.实质上,这种变换是函数图象的关于x 轴的翻转变换与上下平移变换的复合,即先把函数)(x f y =的图象发生关于x 轴的翻转变换得到)(x f y -=的图象,再把)(x f y -=的图象向上(h >0)或向下(h <0)平移|h |个单位便得到函数)(x f h y -=的图象.综合第9、第10变换,要作函数)(x a f h y --=的图象,只需做出函数)(x f y =图象的关于点(2a ,2h)的中心对称图形即可. 二、方法归纳1.作图象:以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法.作函数图象的步骤:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质(即单调性、奇偶性、周期性、有界性及变化趋势(渐进性质);④描点连线,画出函数的图象.用图象变换法作函数图象,①要确定以哪一种函数的图象为基础进行变换;②是确定实施怎样的变换.2.识图象:对于给定的函数图象,能从图象的左右、上下分布范围,变化趋势、对称性等方面的观察,获取有关函数的定义域、值域、单调性、奇偶性、周期性等方面的信息.3.关注函数图像的变换对函数的性质的影响.三、典型例题精讲【例1】函数)10(1||log )(<<+=a x x f a 的图象大致为( )错解分析:错解一:由||log x a ≥0,得1||log +x a ≥1,即)(x f ≥1,故选B.错误在于误将||log x a 等同于|log |x a ,做出误判||log x a ≥0.错解二:没注意10<<a ,而默认为1>a ,故选C.解析:考虑10<<a ,当0>x 时,1log )(+=x x f a 为减函数,淘汰B 、C.当1=x 时,1)(=x f ,故选A. 又例:函数xy 3log 3=的图象大致是( )解析: 由x 3log ≥0,得x y 3log 3=≥1,故选A.【例2】函数2()1log f x x =+与1()2x g x -+=在同一直角坐标系下的图象大致是( )解析:因函数x x f 2log 1)(+=的图象是由x y 2log =的图象向上平移1个单位得到,故B 、C 、D 满足; 又函数11)21(2)(-+-==x x x g ,其图象为x y )21(=的图象向右平移1个单位得到, 故A 、C 满足.由此选C.技巧提示:本题中的错误答案均为对函数进行错误变换而得,因此只要变换正确,就能做出正确的选择.本题亦可用特殊值法得到正确的选项.由1)1(=f ,可知B 、C 、D 满足;又2)0(=g ,可知A 、C 满足.故选C.又例:函数)32(-x f 的图象,可由函数)32(+x f 的图象经过下述哪个变换得到( )A.向左平移6个单位B.向右平移6个单位C.向左平移3个单位D.向右平移3个单位解析:将函数)32(+x f 中的x 用3-x 代之,即可得到函数)32(-x f ,所以将函数)32(+x f 的图象向右平移3个单位即可得到函数)32(-x f 的图象, 故选D.【例3】函数xy 3=的图象与函数2)31(-=x y 的图象关于( )A.点(-1,0)对称B.直线x =1对称C.点(1,0)对称D.直线x =-1对称解析:若记xx f y 3)(==,则)2(3)31(22x f x x -==--, 由于)(x f y =与)2(x f y -=的图象关于直线x =1对称,∴ 选B.技巧提示:若)(x f 自身满足)2()(x a f x f -=,则)(x f y =的图象关于直线x =a 对称;若)(x f 自身满足)2()(x a f x f --=,则)(x f y =的图象关于点(a ,0)对称. 两个函数)(x f y =与)2(x a f y -=的图象关于直线x =a 对称; 两个函数)(x f y =与)2(x a f y --=的图象关于点(a ,0)对称.【例4】设22)(x x f -=,若0<<b a ,且)()(b f a f =,则ab 的取值范围是( )A.(0,2)B.(0,2]C.(0,4]D.(0,解析:保留函数22x y -=在x 轴上方的图象,将其在x 轴下方的图像翻折到x 轴上方区即可得到函数22)(x x f -=的图象.通过观察图像,可知)(x f 在区间]2,(--∞上是减函数,在区间]0,2[-上是增函数, 由0<<b a ,且)()(b f a f =.可知02<<-<b a , 所以2)(2-=a a f ,22)(b b f -=, 从而2222b a -=-,即422=+b a ,又ab ab b a b a 242)(222-=-+=->0,所以20<<ab .故选A.技巧提示:本题考查函数图象的翻折变换,体现了数学由简到繁的原则,通过研究函数22x y -=的图象和性质,进而得到22)(x x f -=的图像和性质.由0<<b a ,且)()(b f a f =,得到422=+b a 才使得问题变得容易.又例:直线1=y 与曲线a x x y +-=2有四个交点,则a 的取值范围是 .解析:因为函数a x xy +-=2是偶函数,所以曲线a x x y +-=2关于y 轴对称.当x ≥0时,a x x y +-=2=41)21(2-+-a x , 其图象如下:由直线1=y 与曲线有四个交点,得⎪⎩⎪⎨⎧<->1411a a ,解得451<<a .故a 的取值范围是)45,1(.再例:已知定义在R 上的奇函数)(x f ,满足)()4(x f x f -=-,且在区间[0,2]上是增函数,若方程m x f =)( (m >0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,1234_________.x x x x +++=解析:因为定义在R 上的奇函数,满足)()4(x f x f -=-,所以)()4(x f x f =-,函数图象关于直线2x =对称,且(0)0f =,再由(4)()f x f x -=-知(8)()f x f x -=,所以函数是以8为周期的周期函数, 又因为)(x f 在区间[0,2]上是增函数,所以)(x f 在区间[-2,0]上也是增函数. 如图所示,那么方程m x f =)( (m >0)在区间[]8,8-上有四个不同的根1234,,,x x x x , 不妨设1234x x x x <<<,由对称性知1212x x +=-344x x +=所以12341248x x x x +++=-+=-.【例5】定义在R 函数)(x f =mx xm +-2)2(的图象如下图所示,则m 的取值范围是( ) A.(-∞,-1) B.(-1,2) C.(0,2) D.(1,2)解析:方法一(排除法):若m ≤0,则函数mx xm x f +-=2)2()(的定义域不为R ,与图象信息定义域为R 不符,故排除掉A 、B. 取m =1,)(x f =12+x x,此函数当x =±1时,)(x f 取得极值, 与所给图形不符,排除C.选D.方法二:显然)(x f 为奇函数,又)1(f >0,)1(-f <0,即mm +-12<0,解得-1<m <2. 又)(x f 取得最大值时,x =m >1, ∴ m >1,∴ 1<m <2.故选D.技巧提示:根据已给图形确定解析式,需要全面扑捉图象信息.m 对奇偶性影响不大,但对定义域、极值点影响明显.又例:当参数21,λλ=λ时,连续函数xx y λ+=1)0(≥x 的图像分别对应曲线1C 和2C ,则( ) A.210λ<λ< B.120λ<λ< C.021<λ<λ D.012<λ<λ 解析:由条件中的函数是分式无理型函数,先由函数在(0,)+∞是连续的,可知参数0,021>λ>λ,即排除C ,D 项, 又取1x =,知对应函数值1111λ+=y ,2211λ+=y ,由图可知12,y y <所以12λλ>,即选B 项.【例6】定义区间)](,[2121x x x x <的长度为12x x -,已知函数|log |)(21x x f =的定义域为],[b a ,值域为]2,0[,则区间],[b a 的长度的最大值与最小值的差为 .错解分析:函数|log |)(21x x f =的图象如图.令2|log |)(21==x x f ,得41=x 或4=x . ∴2)4()41(==f f ,又0)1(=f ,∴],[b a 长度的最大值为314=-;最小值为43411=-. 故所求最大值与最小值的差为49433=-. 解析:函数|log |)(21x x f =的图象如上图.令2|log |)(21==x x f ,得41=x 或4=x . ∴],[b a 长度的最大值为415414=-;最小值为43411=-. 故所求最大值与最小值的差为343415=-. 技巧提示:准确作出函数的图象,正确理解区间长度的意义是解决此类问题的关键.又例:已知函数)12(log )(-+=b x f xa )1,0(≠>a a 的图象如图所示,则ab ,满足的关系是( )A.101a b -<<< B.101b a -<<< C.101ba -<<<-D.1101ab --<<<解析:由图易得1>a ,∴101<<-a取特殊点0=x ,0log )0(1<=<-b f a . 即1log log 1log 1a a ab a<<=-, x∴101<<<-b a .故选A.【例7】若不等式2)2(92-+≤-x k x 的解集为区间[]b a ,,且b -a =2,则k = .分析:本题主要考查解不等式、直线过定点问题,我们可以在同一坐标系下作出219x y -=,2)2(2-+=x k y 的图像,根据图像确定k 的值。

高中数学函数图象的4种简单变换知识点总结(平移、对称、翻折、伸缩)

高中数学函数图象的4种简单变换知识点总结(平移、对称、翻折、伸缩)

高中数学函数图象的简单变换知识点总结 高中阶段,函数图象的简单变换有:平移变换、对称变换、翻折变换、伸缩变换。

一、函数图象的平移变换①左右平移变换:()y f x =与()y f x a =+()()00a a a a y f x y f x a ><=−−−−−−−−−−−→=+时,向左平移个单位时,向右平移个单位 如:1y x =+的图象可由y x =的图象向右平移一个单位得到; 1y x =-的图象可由y x =的图象向下平移一个单位得到。

②上下平移变换()()00a a a a y f x y f x a ><=−−−−−−−−−−−→=+时,向上平移个单位时,向下平移个单位 如:1y x =+的图象可由y x =的图象向上平移一个单位得到。

1y x =-的图象可由y x =的图象向下平移一个单位得到。

【注】变换的口诀为:“上加下减,左加右减”。

二、函数图象的对称变换①()()y y f x y f x =−−−−−−−−−→=-作关于轴对称的图象②()()x y f x y f x =−−−−−−−−−→=-作关于轴对称的图象 ③()()y f x y f x =−−−−−−−−−→=--作关于原点对称的图象 如:(i )()sin sin y x y x ϕ=→=+①0ϕ>时,把sin y x =的图象向左平移ϕ个单位得到; ②0ϕ<时,把sin y x =的图象向右平移ϕ个单位得到;(ii )已知()2f x x x =-,则()()2g x f x x x =-=+的图象可由()2f x x x =- 的图象做关于y 轴对称的图象得到;函数()h x ()2f x x x =-=-+的图象可由 ()2f x x x =-的图象作关于x 轴对称后的图象得到;函数()()u x f x =--= 2x x --的图象可由()2f x x x =-的图象做关于坐标系原点对称的图象得到。

高一数学函数图像知识点总结

高一数学函数图像知识点总结

高一数学函数图像知识点总结一、函数图像知识点汇总1.函数图象的变换1平移变换①水平平移:y=fx±aa>0的图象,可由y=fx的图象向左+或向右-平移a个单位而得到.②竖直平移:y=fx±bb>0的图象,可由y=fx的图象向上+或向下-平移b个单位而得到.2对称变换①y=f-x与y=fx的图象关于y轴对称.②y=-fx与y=fx的图象关于x轴对称.③y=-f-x与y=fx的图象关于原点对称.由对称变换可利用y=fx的图象得到y=|fx|与y=f|x|的图象.①作出y=fx的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|fx|的图象;②作出y=fx在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f|x|的图象.3伸缩变换①y=afxa>0的图象,可将y=fx图象上每点的纵坐标伸a>1时或缩a<1时到原来的a倍,横坐标不变.②y=faxa>0的图象,可将y=fx的图象上每点的横坐标伸a<1时或缩a>1时到原来的倍,纵坐标不变.4翻折变换①作为y=fx的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|fx|的图象;②作为y=fx在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f|x|的图象.2.等价变换可看出函数的图象为半圆.此过程可归纳为:1写出函数解析式的等价组;2化简等价组;3作图.3.描点法作图方法步骤:1确定函数的定义域;2化简函数的解析式;3讨论函数的性质即奇偶性、周期性、单调性、最值甚至变化趋势;4描点连线,画出函数的图象.注意:一条主线数形结合的思想方法是学习函数内容的一条主线,也是高考考查的热点.作函数图象首先要明确函数图象的形状和位置,而取值、列表、描点、连线只是作函数图象的辅助手段,不可本末倒置.两个区别1一个函数的图象关于原点对称与两个函数的图象关于原点对称不同,前者是自身对称,且为奇函数,后者是两个不同的函数对称.2一个函数的图象关于y轴对称与两个函数的图象关于y轴对称也不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系.三种途径明确函数图象形状和位置的方法大致有以下三种途径.1图象变换:平移变换、伸缩变换、对称变换.2函数解析式的等价变换.3研究函数的性质.二、例题解析三、复习指导函数图象是研究函数性质、方程、不等式的重要工具,是数形结合的基础,是高考考查的热点,复习时,应重点掌握几种基本初等函数的图象,并在审题、识图上多下功夫,学会分析“数”与“形”的结合点,把几种常见题型的解法技巧理解透彻。

@高一学生,高一数学函数图像知识点,太实用了

@高一学生,高一数学函数图像知识点,太实用了

@高一学生,高一数学函数图像知识点,太实用了一、基本初等函数的图像1.一次函数性质:一次函数图像是直线,当k>0时,函数单调递增;当k<0时,函数单调递减2.二次函数性质:二次函数图像是抛物线,a决定函数图像的开口方向,判别式b^2-4ac决定了函数图像与x轴的交点,对称轴两边函数的单调性不同。

3.反比例函数性质:反比例函数图像是双曲线,当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。

要注意表述函数单调性时,不能说在定义域上单调,而应该说在(-∞,0),(0,∞)上单调。

4.指数函数当0<a<b<1<c<d时,指数函数的图像如下图不同底的指数函数图像在同一个坐标系中时,一般可以做直线x=1,与各函数的交点,根据交点纵坐标的大小,即可比较底数的大小。

5.对数函数当底数不同时,对数函数的图像是这样变换的6.对勾函数对于函数y=x+k/x,当k>0时,才是对勾函数,可以利用均值定理找到函数的最值。

二、函数图像的变换注意:对于函数图像的变换,有的时候,看到解析式,可能会有两种以上的变换,尤其是针对x轴上的,那么此时,一定要根据上面的规则,判断好顺序,否则顺序错了,可能就没办法经过变换得到了!例如:画出函数y=ln|2-x|的图像通过研究这个函数解析式,我们知道此函数是由基本初等函数y=lnx通过变换而来,那么这个函数经过了几步变换呢?变换的顺序又是如何?下面我们一起来看一看:通过解析式x上附加的东西,我们会发现,会有对称变换,x前面加了负号,还有翻折变换,x上面还有绝对值,还有平移变换,前面加了一个2,既然有3种变换,那么顺序如何呢?牢记住一点:针对x轴上的变换,那就一定要看x这个符号有啥变化。

所以,我们可以得出:第一步,翻折变换;第二步,对称变换;第三步,平移变换。

有的同学说,第一步是对称变换,也就是先在x上加负号,但是接下来的话,再进行翻折变换,就相当于在-x上加绝对值了,而这个并不是我们学过的规律,所以后面就无法进行变换了,这样也就错了。

函数图像的变换技巧例题和知识点总结

函数图像的变换技巧例题和知识点总结

函数图像的变换技巧例题和知识点总结函数图像是研究函数性质的重要工具,通过对函数图像进行变换,可以更直观地理解函数的特点和规律。

下面我们将介绍一些常见的函数图像变换技巧,并通过例题来加深理解。

一、平移变换1、水平平移对于函数\(y = f(x)\),将其图像向左平移\(h\)个单位,得到\(y = f(x + h)\);向右平移\(h\)个单位,得到\(y = f(x h)\)。

例如,函数\(y = x^2\)的图像向左平移\(2\)个单位,得到\(y=(x + 2)^2\)的图像;向右平移\(3\)个单位,得到\(y =(x 3)^2\)的图像。

例题:将函数\(y = 2x + 1\)的图像向左平移\(3\)个单位,求平移后的函数表达式。

解:将\(x\)替换为\(x + 3\),得到平移后的函数为\(y = 2(x+ 3) + 1 = 2x + 7\)2、竖直平移函数\(y = f(x)\)的图像向上平移\(k\)个单位,得到\(y = f(x) + k\);向下平移\(k\)个单位,得到\(y = f(x) k\)。

例如,函数\(y =\sin x\)的图像向上平移\(1\)个单位,得到\(y =\sin x + 1\)的图像;向下平移\(2\)个单位,得到\(y =\sin x 2\)的图像。

例题:将函数\(y =\log_2 x\)的图像向下平移\(2\)个单位,求平移后的函数表达式。

解:平移后的函数为\(y =\log_2 x 2\)二、伸缩变换1、水平伸缩对于函数\(y = f(x)\),将其图像上所有点的横坐标伸长(或缩短)到原来的\(\omega\)倍(\(\omega >0\)),纵坐标不变,得到\(y = f(\frac{1}{\omega}x)\)。

当\(\omega > 1\)时,图像沿\(x\)轴缩短;当\(0 <\omega < 1\)时,图像沿\(x\)轴伸长。

例如,函数\(y =\sin x\)的图像横坐标缩短到原来的\(\frac{1}{2}\),得到\(y =\sin 2x\)的图像;横坐标伸长到原来的\(2\)倍,得到\(y =\sin \frac{1}{2}x\)的图像。

高一必修1函数图象变换知识点总结经典

高一必修1函数图象变换知识点总结经典

.. 函数的图象变换一:函数的图像基本函数图象 :一次,二次,反比例函数,指数,对数,幂函数二.图象变换函数图象的基本变换:(1)平移;(2)对称;(3)伸缩。

关键:提取系数1. 平移变换:“左+右-” “上+下-”(1)y = f (x + m) (m>0):把函数y =f (x)的图象向左平移m 的单位(如m<0则向右平移-m 个单位)。

(2)y = f (x) + m (m>0):把函数y =f (x)的图象向上平移m 的单位(如m<0则向下平移-m 个单位)。

向下平移个单位向上平移b 个单位向左平移a 个单位向右a 平移个单位y=f x ()y=f x+a ())-by=f x ()+by=f x-a ().. 2. 对称变换:(1)函数y = f (-x)与y = f (x)的图象关于y 轴对称。

(2)函数y = -f (x)与y = f (x)的图象关于x 轴对称。

(3)函数y = f (2a -x)与y = f (x)的图象关于直线x = a 对称。

(4)函数y = 2b -f (x)与y = f (x)的图象关于直线y = b 对称。

(5)函数)x (f y 1-=与y = f (x)的图象关于直线y = x 对称。

(6)函数)x (f y 1--=-与y = f (x)的图象关于直线y = -x 对称。

(7)函数y = f (|x|)的图象则是将y = f (x)的y 轴右侧的图象保留,并将y =f (x)右侧的图象沿y 轴翻折至左侧。

(实际上y = f (|x|)是偶函数)(8)函数y = |f (x)|的图象则是将y = f (x)在x 轴上侧的图象保留,并将y = f (x)在x 轴下侧的图象沿x 轴翻折至上侧。

一般地:如函数y = f (x)对定义域中的任意x 的值,都满足 f (a+mx) = f (b -mx), 则函数y = f (x)的图象关于直线2b a x +=对称。

高一数学 函数的图像及其变换

高一数学 函数的图像及其变换

【知识要点归纳】一.初等函数图像二.函数图像的四种变换规律1.平移变换:利用平移变换,可以由函数y=f(x)的图象演变出以下三种函数图象:)(a x f y ±=,b x f y ±=)(,b a x f y ±±=)(的图象。

平移变换是位置变换,这三种图象与y=f(x)图象的位置关系列表如下:函数解析式 与f(x)图象位置关系口诀)(a x f y ±=b x f y ±=)(b a x f y ±±=)(2.翻折变换:利用翻折变换,可以由函数y=f(x)的图象变换出以下2种函数图象,y=f(|x|)和y=|f(x)|的图象。

这2种函数图象与图象y=f(x)的关系如下:解析式与)(x f y =图象的关系口诀|)(|x f y =|)(|x f y =综合专题5函数的图像及其变换3.对称变换:利用对称变换,可以由函数y=f(x)的图象变换出以下3种函数图象y=-f(x),y=f(-x),y=-f(-x)的图象。

这3种函数图象与图象y=f(x)的对称关系列表如下:解析式与)(x f y =图象的关系对称点坐标)(x f y −= )(x f y −= )(x f y −−=4.伸缩变换:利用伸缩变换,由y=f(x)图象可演变出以下三种函数图象:y=f(kx)、y=af(x)、y=af(kx)(a 、k 为正常数)。

函数解析式 与f(x)图象点的坐标关系y=f(kx)y=af(x)y=af(kx)【经典例题】例1:画出132−+=x x y 的图象;例2:求函数)1lg(2+=x y 沿向量)2,1(−=a G平移后的解析式例3:为了得到函数3lg10x y +=的图像,只需把函数lg y x =的图像上所有的点 ( ) A .向左平移3个单位长度,再向上平移1个单位长度 B .向右平移3个单位长度,再向上平移1个单位长度 C .向左平移3个单位长度,再向下平移1个单位长度 D .向右平移3个单位长度,再向下平移1个单位长度例3:设偶函数f(x)满足f(x)=2x-4 (x ≥0),则(){}20x f x −>= ( ) (A ){}24x x x <−>或(B ){}04 x x x <>或 (C ){}06 x x x <>或(D ){}22 x x x <−>或例4:在同一坐标系下作出下列函数的图象,并指出它们的关系. ⑴f (x )=x 2-2x -1 ; ⑵g (x )= x 2+2x -1 ; ⑶h (x )=-x 2+2x +1; ⑷s (x )= -x 2-2x +1;例5:函数22log 2xy x−=+的图像 (A ) 关于原点对称 (B )关于主线y x =−对称 (C ) 关于y 轴对称 (D )关于直线y x =对称例6:函数()412x xf x +=的图象A. 关于原点对称B. 关于直线y=x 对称C. 关于x 轴对称D.关于y 轴对称例7:作出函数图像:(1)1||22−−=x x y (2)|12|2−−=x x y例8:作出下列函数的图象并写出其单调区间: (1)3||22++−=x x y(2)|65|2−−=x x y(3)y=1-|1-x|(4)xy ⎟⎠⎞⎜⎝⎛=21例9:直线1y =与曲线2y x x a =−+有四个交点,则a 的取值范围是 .例10:已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞(C) (2,)+∞(D) [2,)+∞例11:定义域和值域均为[]a a ,−(常数0>a )的函数()x f y =和()x g y =的图像如图所示,给出下列四个命题: (1)方程()[]0=x g f 有且仅有三个解; (2)方程()[]0=x f g 有且仅有三个解; (3)方程()[]0=x f f 有且仅有九个解; (4)方程()[]0=x g g 有且仅有一个解。

函数图像变换知识点总结

函数图像变换知识点总结

函数图像变换知识点总结一、基本概念1. 函数图像的平移函数图像的平移是指将原函数图像沿横轴或纵轴方向平移一定的距离。

平移的方向和距离可以是正数也可以是负数。

- 沿横轴方向平移:对于函数y=f(x),如果在横轴方向上平移了a个单位,新函数表示为y=f(x-a)。

- 沿纵轴方向平移:对于函数y=f(x),如果在纵轴方向上平移了b个单位,新函数表示为y=f(x)+b。

2. 函数图像的伸缩函数图像的伸缩是指将原函数图像沿横轴或纵轴方向进行拉伸或压缩。

伸缩的方向和比例可以是正数也可以是负数。

- 沿横轴方向伸缩:对于函数y=f(x),如果在横轴方向上进行了伸缩,新函数表示为y=f(kx)。

- 沿纵轴方向伸缩:对于函数y=f(x),如果在纵轴方向上进行了伸缩,新函数表示为y=kf(x)。

3. 函数图像的翻转函数图像的翻转是指对原函数图像进行镜像操作,可以分为关于横轴翻转和关于纵轴翻转两种情况。

- 关于横轴翻转:对于函数y=f(x),进行横轴翻转后,新函数表示为y=-f(x)。

- 关于纵轴翻转:对于函数y=f(x),进行纵轴翻转后,新函数表示为y=f(-x)。

二、函数图像变换的特点1. 平移:平移不改变函数的基本形状,只是改变了函数的位置;2. 伸缩:伸缩可以改变函数的斜率和幅度,但不改变函数的形状;3. 翻转:翻转改变了函数的整体形状,使得原函数变为其镜像;4. 组合变换:可以将多种变换进行组合,得到更复杂的函数图像变换。

三、函数图像变换的应用函数图像变换不仅仅是数学中的一种抽象概念,还可以应用到具体的问题中,如物理、经济等领域。

1. 物理问题:在物理学中,函数图像变换可以用来描述物体的运动、变形等。

例如,对于速度-时间图像,进行平移可表示物体的起始位置不同;进行伸缩则可以描述加速度的变化;进行翻转可以描述反向运动等情况。

2. 经济问题:在经济学中,函数图像变换可以用来描述经济模型的变化。

例如,对于需求-价格图像,进行平移可以表示需求量或价格的变化;进行伸缩可以描述需求的弹性;进行翻转可以描述替代品或补充品的关系等情况。

高一数学上册函数必背知识点

高一数学上册函数必背知识点

高一数学上册函数必背知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、合同协议、策划方案、规章制度、演讲致辞、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as workplace documents, contract agreements, planning plans, rules and regulations, speeches, emergency plans, experiences, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!高一数学上册函数必背知识点高一数学上册函数必背知识点数学是研究数量、结构、变化、空间以及信息等概念的一门学科,下面是本店铺整理的高一数学上册函数必背知识点,希望对大家有帮助!高一数学上册函数必背知识点 1公式一、设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二、设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三、任意角α与 -α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四、利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五、利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六、π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα(以上k∈Z)高一数学上册函数必背知识点 2高一数学函数知识点归纳1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数X,在集合B中都有唯一确定的数f(X)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,写作y=f(X),X∈A,其中,X叫做自变量,X的取值范围A叫做函数的定义域,与X相对应的y的值叫做函数值,函数值的集合B={f(X)∣X∈A }叫做函数的值域。

高一数学 函数图像的变换

高一数学  函数图像的变换

函数图像的变换一、知识梳理1.水平平移:函数)(a x f y +=的图像是将函数)(x f y =的图像沿x 轴方向向左(a >0)或向右(a <0)平移a个单位得到.称之为函数图象的左、右平移变换. 2.竖直平移:函数a x f y +=)(的图像是将函数)(x f y =的图像沿y 轴方向向上(a >0)或向下(a <0)平移a个单位得到.称之为函数图象的上、下平移变换. 3.要作函数)(x f y =的图象,只需将函数)(x f y =的图象y 轴右侧的部分对称到y 轴左侧去,而y 轴左侧的原来图象消失.称之为关于y 轴的右到左对称变换(简称去左翻右). 4.要作函数)(x f y =的图象,只需将函数)(x f y =的图象x 轴下方的部分对折到x 轴上方即可.叫做关于x 轴的下部折上变换(简称去下翻上).5.要作)(x f y -=的图象,只需将函数)(x f y =的图象以y 轴为对折线,把y轴右侧的部分折到y 轴左侧去.同时,将y 轴左侧的部分折到y 轴右侧去.叫做关于y 轴的翻转变换.6.要作函数)(x f y -=的图象,只需将函数)(x f y =的图象以x 轴为对折线,把x 轴上方的图形折到x 轴下方去,同时又把x 轴下方的图象折到x 轴上方去即可.叫做关于x 轴的翻转变换.7.要作函数)(ax f y =(a >0)的图象,只需将函数)(x f y =图象上所有点的横坐标缩短(a >1)或伸长(0<a <1)到原来的a1倍(纵坐标不变)即可(若a <0,还得同时进行关于y 轴的翻转变换.这种变换叫做函数图象的横向伸缩变换.8.要作函数)(x Af y =(A>0)的图象,只需将函数)(x f y =图象上所有点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A倍(横坐标不变)即可.这种变换叫做函数图象的纵向伸缩变换(若A<0,还要再进行关于x 轴的翻转变换).9.要作函数)(x a f y -=的图象,只需将函数)(x f y =的图象发生关于直线x =2a的翻转变换即可. 实质上,这种变换是函数图象左右平移变换与关于y 轴翻转变换的复合,即先把)(x f y =图象发生左右平移得到函数)(a x f y +=的图象,再关于y 轴翻转便得到)(x a f y -=的图象. 10.要作函数)(x f h y -=的图象,只需将函数)(x f y =的图象发生关于直线y =2h的翻转变换即可.实质上,这种变换是函数图象的关于x 轴的翻转变换与上下平移变换的复合,即先把函数)(x f y =的图象发生关于x 轴的翻转变换得到)(x f y -=的图象,再把)(x f y -=的图象向上(h >0)或向下(h <0)平移|h |个单位便得到函数)(x f h y -=的图象.综合第9、第10变换,要作函数)(x a f h y --=的图象,只需做出函数)(x f y =图象的关于点(2a ,2h)的中心对称图形即可. 二、方法归纳1.作图象:以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法.作函数图象的步骤:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质(即单调性、奇偶性、周期性、有界性及变化趋势(渐进性质);④描点连线,画出函数的图象.用图象变换法作函数图象,①要确定以哪一种函数的图象为基础进行变换;②是确定实施怎样的变换.2.识图象:对于给定的函数图象,能从图象的左右、上下分布范围,变化趋势、对称性等方面的观察,获取有关函数的定义域、值域、单调性、奇偶性、周期性等方面的信息.3.关注函数图像的变换对函数的性质的影响.三、典型例题精讲【例1】函数)10(1||log )(<<+=a x x f a 的图象大致为( )错解分析:错解一:由||log x a ≥0,得1||log +x a ≥1,即)(x f ≥1,故选B.错误在于误将||log x a 等同于|log |x a ,做出误判||log x a ≥0.错解二:没注意10<<a ,而默认为1>a ,故选C.解析:考虑10<<a ,当0>x 时,1log )(+=x x f a 为减函数,淘汰B 、C.当1=x 时,1)(=x f ,故选A. 又例:函数xy 3log 3=的图象大致是( )解析: 由x 3log ≥0,得x y 3log 3=≥1,故选A.【例2】函数2()1log f x x =+与1()2x g x -+=在同一直角坐标系下的图象大致是( )解析:因函数x x f 2log 1)(+=的图象是由x y 2log =的图象向上平移1个单位得到,故B 、C 、D 满足; 又函数11)21(2)(-+-==x x x g ,其图象为x y )21(=的图象向右平移1个单位得到, 故A 、C 满足.由此选C.技巧提示:本题中的错误答案均为对函数进行错误变换而得,因此只要变换正确,就能做出正确的选择.本题亦可用特殊值法得到正确的选项.由1)1(=f ,可知B 、C 、D 满足;又2)0(=g ,可知A 、C 满足.故选C.又例:函数)32(-x f 的图象,可由函数)32(+x f 的图象经过下述哪个变换得到( )A.向左平移6个单位B.向右平移6个单位C.向左平移3个单位D.向右平移3个单位解析:将函数)32(+x f 中的x 用3-x 代之,即可得到函数)32(-x f ,所以将函数)32(+x f 的图象向右平移3个单位即可得到函数)32(-x f 的图象, 故选D.【例3】函数xy 3=的图象与函数2)31(-=x y 的图象关于( )A.点(-1,0)对称B.直线x =1对称C.点(1,0)对称D.直线x =-1对称解析:若记xx f y 3)(==,则)2(3)31(22x f x x -==--, 由于)(x f y =与)2(x f y -=的图象关于直线x =1对称,∴ 选B.技巧提示:若)(x f 自身满足)2()(x a f x f -=,则)(x f y =的图象关于直线x =a 对称;若)(x f 自身满足)2()(x a f x f --=,则)(x f y =的图象关于点(a ,0)对称. 两个函数)(x f y =与)2(x a f y -=的图象关于直线x =a 对称; 两个函数)(x f y =与)2(x a f y --=的图象关于点(a ,0)对称.【例4】设22)(x x f -=,若0<<b a ,且)()(b f a f =,则ab 的取值范围是( )A.(0,2)B.(0,2]C.(0,4]D.(0,解析:保留函数22x y -=在x 轴上方的图象,将其在x 轴下方的图像翻折到x 轴上方区即可得到函数22)(x x f -=的图象.通过观察图像,可知)(x f 在区间]2,(--∞上是减函数,在区间]0,2[-上是增函数, 由0<<b a ,且)()(b f a f =.可知02<<-<b a , 所以2)(2-=a a f ,22)(b b f -=, 从而2222b a -=-,即422=+b a ,又ab ab b a b a 242)(222-=-+=->0,所以20<<ab .故选A.技巧提示:本题考查函数图象的翻折变换,体现了数学由简到繁的原则,通过研究函数22x y -=的图象和性质,进而得到22)(x x f -=的图像和性质.由0<<b a ,且)()(b f a f =,得到422=+b a 才使得问题变得容易.又例:直线1=y 与曲线a x x y +-=2有四个交点,则a 的取值范围是 .解析:因为函数a x xy +-=2是偶函数,所以曲线a x x y +-=2关于y 轴对称.当x ≥0时,a x x y +-=2=41)21(2-+-a x , 其图象如下:由直线1=y 与曲线有四个交点,得⎪⎩⎪⎨⎧<->1411a a ,解得451<<a .故a 的取值范围是)45,1(.再例:已知定义在R 上的奇函数)(x f ,满足)()4(x f x f -=-,且在区间[0,2]上是增函数,若方程m x f =)( (m >0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,1234_________.x x x x +++=解析:因为定义在R 上的奇函数,满足)()4(x f x f -=-,所以)()4(x f x f =-,函数图象关于直线2x =对称,且(0)0f =,再由(4)()f x f x -=-知(8)()f x f x -=,所以函数是以8为周期的周期函数, 又因为)(x f 在区间[0,2]上是增函数,所以)(x f 在区间[-2,0]上也是增函数. 如图所示,那么方程m x f =)( (m >0)在区间[]8,8-上有四个不同的根1234,,,x x x x , 不妨设1234x x x x <<<,由对称性知1212x x +=-344x x +=所以12341248x x x x +++=-+=-.【例5】定义在R 函数)(x f =mx xm +-2)2(的图象如下图所示,则m 的取值范围是( ) A.(-∞,-1) B.(-1,2) C.(0,2) D.(1,2)解析:方法一(排除法):若m ≤0,则函数mx xm x f +-=2)2()(的定义域不为R ,与图象信息定义域为R 不符,故排除掉A 、B. 取m =1,)(x f =12+x x,此函数当x =±1时,)(x f 取得极值, 与所给图形不符,排除C.选D.方法二:显然)(x f 为奇函数,又)1(f >0,)1(-f <0,即mm +-12<0,解得-1<m <2. 又)(x f 取得最大值时,x =m >1, ∴ m >1,∴ 1<m <2.故选D.技巧提示:根据已给图形确定解析式,需要全面扑捉图象信息.m 对奇偶性影响不大,但对定义域、极值点影响明显.又例:当参数21,λλ=λ时,连续函数xx y λ+=1)0(≥x 的图像分别对应曲线1C 和2C ,则( ) A.210λ<λ< B.120λ<λ< C.021<λ<λ D.012<λ<λ 解析:由条件中的函数是分式无理型函数,先由函数在(0,)+∞是连续的,可知参数0,021>λ>λ,即排除C ,D 项, 又取1x =,知对应函数值1111λ+=y ,2211λ+=y ,由图可知12,y y <所以12λλ>,即选B 项.【例6】定义区间)](,[2121x x x x <的长度为12x x -,已知函数|log |)(21x x f =的定义域为],[b a ,值域为]2,0[,则区间],[b a 的长度的最大值与最小值的差为 .OxyCC错解分析:函数|log |)(21x x f =的图象如图.令2|log |)(21==x x f ,得41=x 或4=x . ∴2)4()41(==f f ,又0)1(=f ,∴],[b a 长度的最大值为314=-;最小值为43411=-. 故所求最大值与最小值的差为49433=-. 解析:函数|log |)(21x x f =的图象如上图.令2|log |)(21==x x f ,得41=x 或4=x . ∴],[b a 长度的最大值为415414=-;最小值为43411=-. 故所求最大值与最小值的差为343415=-. 技巧提示:准确作出函数的图象,正确理解区间长度的意义是解决此类问题的关键.又例:已知函数)12(log )(-+=b x f xa )1,0(≠>a a 的图象如图所示,则ab ,满足的关系是( )A.101a b -<<< B.101b a -<<< C.101ba -<<<-D.1101ab --<<<解析:由图易得1>a ,∴101<<-a取特殊点0=x ,0log )0(1<=<-b f a . 即1log log 1log 1a a ab a<<=-, x∴101<<<-b a .故选A.【例7】若不等式2)2(92-+≤-x k x 的解集为区间[]b a ,,且b -a =2,则k = .分析:本题主要考查解不等式、直线过定点问题,我们可以在同一坐标系下作出219x y -=,2)2(2-+=x k y 的图像,根据图像确定k 的值。

高一数学必修一 - 函数图像知识点总结

高一数学必修一 - 函数图像知识点总结

高一数学必修一 - 函数图像知识点总结函数图像是数学中的重要概念,它能帮助我们更直观地理解数学函数的特点和行为。

以下是高一数学必修一中与函数图像相关的知识点总结。

1. 函数的定义函数是一种特殊的数学关系,它将一个集合的元素映射到另一个集合的元素上。

函数通常用符号表示为“y = f(x)”,其中x是自变量,y是因变量。

函数图像是函数在平面直角坐标系上的图形表示。

2. 函数图像的基本性质函数图像的基本性质包括定义域、值域、奇偶性和周期性。

- 定义域:函数的自变量取值范围。

- 值域:函数的因变量取值范围。

- 奇偶性:函数关于y轴对称或关于原点对称。

- 周期性:函数图像在横轴方向上的重复性。

3. 常见函数图像高一数学必修一中常见的函数图像有直线、二次函数、指数函数和对数函数。

- 直线:线性函数图像为一条直线,表达式一般为“y = kx + b”,其中k为斜率,b为截距。

- 二次函数:二次函数图像为抛物线,表达式一般为“y = ax^2+ bx + c”,其中a、b、c为常数。

- 指数函数:指数函数图像是以底数大于1的指数为自变量的函数图像。

- 对数函数:对数函数图像是指数函数的反函数,用于解指数方程和指数不等式。

4. 函数图像的变换函数图像可以通过平移、伸缩和翻转等变换得到新的函数图像。

- 平移:将函数图像沿着横轴或纵轴平行地移动。

- 伸缩:将函数图像在横轴或纵轴上进行拉伸或压缩。

- 翻转:将函数图像关于横轴或纵轴进行翻转。

5. 函数图像的应用函数图像在实际应用中有广泛的应用,例如经济学中的需求曲线、物理学中的运动曲线等。

以上是高一数学必修一中与函数图像相关的知识点总结。

希望这份总结能够帮助你更好地理解和应用函数图像。

高中函数图像变换总结

高中函数图像变换总结

高中函数图像变换总结高中数学是高中阶段的一门重要学科,其中函数图像变换是数学中非常基础和重要的内容之一。

函数图像变换是指通过一系列变换操作来改变函数的图像的位置、形状、方向等特征。

在高中教学中,函数图像变换是一个重要的考察内容,也是学生需要掌握的重要技能之一。

下面我们来总结一下高中函数图像变换的相关知识。

首先,高中函数图像变换主要涉及到平移、伸缩、翻转和对称等变换操作。

其中,平移是函数图像在平面上沿着 x 轴和 y 轴方向移动的变换操作。

通过平移操作,可以改变函数图像的位置。

平移操作可以用公式 y=f(x-a)+b 来表示,其中 (a, b) 为平移的向量。

当 a>0 时,函数图像向右平移,反之向左平移;当 b>0 时,函数图像向上平移,反之向下平移。

其次,伸缩是函数图像在 x 轴和 y 轴方向上进行拉伸或收缩的变换操作。

通过伸缩操作,可以改变函数图像的形状。

伸缩操作可以用公式 y=a*f(kx) 来表示,其中 a 表示纵向伸缩因子,k 表示横向伸缩因子。

当 a>1 时,函数图像纵向拉伸;当 0<a<1 时,函数图像纵向收缩;当 k>1 时,函数图像横向收缩;当0<k<1 时,函数图像横向拉伸。

再次,翻转是函数图像沿着 x 轴和 y 轴进行翻转的变换操作。

通过翻转操作,可以改变函数图像的方向。

翻转操作可以用公式 y=f(-x) 来表示。

当 x 取正值时,函数图像在 y 轴左侧;当x 取负值时,函数图像在 y 轴右侧;当 x 取正值时,函数图像在 x 轴下方;当 x 取负值时,函数图像在 x 轴上方。

最后,对称是函数图像关于某个轴或某个点对称的变换操作。

通过对称操作,可以改变函数图像的形状和位置。

常见的对称操作有关于 x 轴、y 轴和原点的对称。

关于 x 轴的对称操作可以用公式 y=-f(x) 来表示;关于 y 轴的对称操作可以用公式y=f(-x) 来表示;关于原点的对称操作可以用公式 y=-f(-x) 来表示。

必修一数学函数图像总结(精选6篇)

必修一数学函数图像总结(精选6篇)

必修一数学函数图像总结(精选6篇)必修一数学函数图像总结第1篇奇函数和偶函数的定义:奇函数:如果函数f(x)的定义域中任意x有f(—x)=—f(x),则函数f(x)称为奇函数。

偶数函数:如果函数f(x)的定义域中任意x有f(—x)=f(x),则函数f(x)称为偶数函数。

性质:奇函数性质:1、图象关于原点对称2、满足f(—x)= — f(x)3、关于原点对称的区间上单调性一致4、如果奇函数在x=0上有定义,那么有f(0)=05、定义域关于原点对称(奇偶函数共有的)偶函数性质:1、图象关于y轴对称2、满足f(—x)= f(x)3、关于原点对称的区间上单调性相反4、如果一个函数既是奇函数有是偶函数,那么有f(x)=05、定义域关于原点对称(奇偶函数共有的)常用运算方法:奇函数±奇函数=奇函数;偶函数±偶函数=偶函数;奇函数×奇函数=偶函数;偶函数×偶函数=偶函数;奇函数×偶函数=奇函数。

证明方法:设f(x),g(x)为奇函数,t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=—f(x)+(—g(x))=—t(x),所以奇函数加奇函数还是奇函数;若f(x),g(x)为偶函数,t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=f(x)+g(x)=t(x),所以偶函数加偶函数还是偶函数。

必修一数学函数图像总结第2篇(一)、映射、函数、反函数1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。

2、对于函数的概念,应注意如下几点:(1)掌握构成函数的三要素,会判断两个函数是否为同一函数。

(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。

(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数、3、求函数y=f(x)的反函数的一般步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=f(x)的解析式求出x=f—1(y);(3)将x,y对换,得反函数的习惯表达式y=f—1(x),并注明定义域、注意:①对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起、②熟悉的应用,求f—1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算、(二)、函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的图象变换
一:函数的图像
基本函数图象 :一次,二次,反比例函数,指数,对数,幂函数
二.图象变换
函数图象的基本变换:(1)平移;(2)对称;(3)伸缩。

关键:提取系数
1. 平移变换:“左+右-” “上+下-”
(1)y = f (x + m) (m>0):把函数y =f (x)的图象向左平移m 的单位(如m<0则向右平移-m 个单位)。

(2)y = f (x) + m (m>0):把函数y =f (x)的图象向上平移m 的单位(如m<0则向下平移-m 个单位)。

个单位
b 个单位
向左平移a 个单位向右a 平移个单位y=f x ()y=f x+a ()y=f x ()-b y=f x ()+b
y=f x-a ()
2. 对称变换:
(1)函数y = f (-x)与y = f (x)的图象关于y 轴对称。

(2)函数y = -f (x)与y = f (x)的图象关于x 轴对称。

(3)函数y = f (2a -x)与y = f (x)的图象关于直线x = a 对称。

(4)函数y = 2b -f (x)与y = f (x)的图象关于直线y = b 对称。

(5)函数)x (f y 1-=与y = f (x)的图象关于直线y = x 对称。

(6)函数)x (f y 1--=-与y = f (x)的图象关于直线y = -x 对称。

(7)函数y = f (|x|)的图象则是将y = f (x)的y 轴右侧的图象保留,并将y =f (x)
右侧的图象沿y 轴翻折至左侧。

(实际上y = f (|x|)是偶函数)
(8)函数y = |f (x)|的图象则是将y = f (x)在x 轴上侧的图象保留,并将y = f (x)
在x 轴下侧的图象沿x 轴翻折至上侧。

一般地:如函数y = f (x)对定义域中的任意x 的值,都满足 f (a+mx) = f (b -mx), 则函数
y = f (x)的图象关于直线2
b a x +=对称。

3. 伸缩变换:
(1) 函数y = f (mx) (m>0)的图象可将y = f (x)图象上各点的纵坐标不变,横坐标缩小到原来的m
1倍得到。

(如果0<m<1,实际上是将f (x)的图象伸展) (2) 函数y = mf (x) (m>0)的图象可将y = f (x)图象上各点的横坐标不变,纵坐标缩小到原来的m 1倍得到。

(如果0<m<1,实际上是将f (x)的图象伸展)。

相关文档
最新文档