fluent 动网格

合集下载

Fluent动网格的经典21个问题

Fluent动网格的经典21个问题

Fluent动网格的经典21个问题弹簧近似光滑模型(spring-based smoothing)、动态分层模型(dynamiclayering)和局部重划模型(local remeshing)。

6.在Fluent中,弹簧近似光滑模型的使用范围是什么?原则上弹簧光顺模型可以用于任何一种网格体系,但是在非四面体网格区域(二维非三角形),最好在满足下列条件时使用弹簧光顺方法:(1)移动为单方向。

(2)移动方向垂直于边界。

如果两个条件不满足,可能使网格畸变率增大。

另外,在系统缺省设置中,只有四面体网格(三维)和三角形网格(二维)可以使用弹簧光顺法,如果想在其他网格类型中激活该模型,需要在dynamic-mesh-menu下使用文字命令spring-on-all-shapes?,然后激活该选项即可。

7.在Fluent中,动态分层模型的应用有什么限制?(1)与运动边界相邻的网格必须为楔形或者六面体(二维四边形)网格。

(2)在滑动网格交界面以外的区域,网格必须被单面网格区域包围。

(3)如果网格周围区域中有双侧壁面区域,则必须首先将壁面和阴影区分割开,再用滑动交界面将二者耦合起来。

(4)如果动态网格附近包含周期性区域,则只能用FLUENT的串行版求解,但是如果周期性区域被设置为周期性非正则交界面,则可以用FLUENT的并行版求解。

8.在Fluent中,应用局部网格重划模型应注意什么事项?局部网格重划模型仅能用于四面体网格和三角形网格。

在定义了动边界面以后,如果在动边界面附近同时定义了局部重划模型,则动边界上的表面网格必须满足下列条件:(1)需要进行局部调整的表面网格是三角形(三维)或直线(二维)。

(2)将被重新划分的面网格单元必须紧邻动网格节点。

(3)表面网格单元必须处于同一个面上并构成一个循环。

(4)被调整单元不能是对称面(线)或正则周期性边界的一部分。

9.在Fluent中,动网格更新方法应该根据什么来选择?通常来讲,在一个case中,我们使用的更新方法都是根据网格类型以及和要实现的运动来选择的,很多时候都是几种更新方法搭配起来使用的。

Fluent 动网格实例具体操作步骤

Fluent 动网格实例具体操作步骤

目录实例:Profile定义运动 (2)I、参数说明 (2)II、操作步骤 (3)一、将计算域离散为网格 (3)二、Fluent操作步骤 (4)1.启动Fluent 14.5求解器 (4)2.初始设置 (4)3.选择湍流模型 (5)4.设置流体物性 (6)5.设置边界条件 (7)6.动网格设置 (8)7.设置其它选项 (12)在Fluent中,动网格模型可以用来模拟由于流域边界运动引起流域形状随时间变化的流动情况,动网格在求解过程中计算网格要重构,例如汽车发动机中的气缸运动、阀门的开启与关闭、机翼的运动、飞机投弹等等。

CFD中的动网格大体分为两类:(1)显式规定的网格节点速度。

配合瞬态时间,即可很方便的得出位移。

当然一些求解器(如FLUENT)也支持稳态动网格,这时候可以直接指定节点位移。

(2)网格节点速度是通过求解得到的。

如6DOF模型基本上都属于此类。

用户将力换算成加速度,然后将其积分成速度。

在Fluent中,动网格涉及的内容包括:(1)运动的定义。

主要是PROFILE文件与UDF中的动网格宏。

(2)网格更新。

FLUENT中关于网格更新方法有三种:网格光顺、动态层、网格重构。

需要详细了解这些网格更新方法的运作机理,每个参数所代表的具体含义及设置方法,每种方法的适用范围。

动网格的最在挑战来自于网格更新后的质量,避免负体积是动网格调试的主要目标。

在避免负网格的同时,努力提高运动更新后的网格质量。

拉格朗日网格(固体有限元计算)网格欧拉网格(流体计算)实例:Profile定义运动I、参数说明本次实例采用的场景来自于流体中高速飞行的物体。

如子弹、火箭、导弹等。

这里只是为了说明profile在动网格运动定义中的应用,因此为了计算方便不考虑高速问题。

问题描述如下图所示:图 1 (1为运动刚体,2为计算域)图2计算说明:由于不考虑也没办法考虑刚体的变形,因此在构建面域的时候,将1中的部分通过布尔运算去除。

计算域总长度300mm,其中固体运动最大位移为:300-40-30-6mm=224mm。

Fluent动网格系列篇

Fluent动网格系列篇

不一样那就要另外计算了。 3)这里首先,你已经会怎么会使用fluent计算颗粒在流场中 的运动轨迹了,然后,你跟踪某一个颗粒,观察这个颗粒是 否到达壁面,然后用plot看是否能输出这个颗粒的运动轨迹 ,最后可以根据运动轨迹,确定你需要的坐标位置的速度分
布。
4)关于碰撞角度,这个就困难了,再思考,能否借用fluent 里面现有的参数进行计算。 个人的看法,仅供交流,如有不妥,请多包涵。
7.Fluent软件知多少 Fluent软件经典问题汇总
8.FLUENT动网格专题讨论
9.FLUENT News—Dynamic Mesh.pdf
பைடு நூலகம்10.包含运动边界的多体非定常流场数值模拟方法研究
气温度么?希望大家帮忙解惑,这个问题困扰我好久了
A:这个是不是只设好壁面初始温度,选好壁面材料参数,模 型里都有默认的导热系数吧。如果考虑室外空气对流的影响 ,我觉得就把壁面做出来,把室外的壁面作为模型边界。输
入温度和传热系数属于传热学的第三类边界条件,这样应该
就清楚了不是,温度就是室外空气的温度,或者说是自由流 体的温度对流换热系数指的是壁面和外面的自由流体发生对 流换热时,那个对流换热系数,用这个条件的时候,要输入 壁面的厚度,其实就是间接地算了一次热传导。
A:不同初始化条件下,每次迭代的截断误差可能不同,致使
最终的结果存在不一致性,但一般的话,只要误差没有超过
5%,都还是可以接受的。迭代了多少次?如果迭代次数过少 会进入伪收敛。收敛的标准不仅仅是残差,还要看迭代次数 以及守恒量守恒等指标。
8.急求fluent第二类边界条件的UDF:边界条件如下 u为x方向速度分量,我用的是速度入口,和压力出口,上述 边界条件应该如何UDF?

Fluent_动网格总结

Fluent_动网格总结

0.3
Maximum Length Scale
1.4
Maximum Cell Skewness
0.7
Size Remeshing Interval
5
结论:(2)(3)中 Minimum Length Scale 和 Maximum Length Scale 差距过大,导致新生成 网格的长细比大,看上去质量应不高。(4)(5)(6)中的网格同差,但比(2)(3)强一点。 由于尺度差距较大,很难设置的好,除非全局网格都画小。否则 Max/Min 大了后,网格质 量不会好的哪里去。sizing function 应该可以解决这个问题。以(4)的参数作为基本参数,进 行 sizing function 参数设置的分析。
Value 0.3 1.4 0.7 5 3 1 0.3
网格质量明显变好,但无关网格也发生了变化,物体周围的局部网格也令人满意。
江之上制作
7
(8)
Parameter Minimum Length Scale Maximum Length Scale Maximum Cell Skewness Size Remeshing Interval
Resolution Variation(a) Rate(beta)
Value 0.3 1.4 0.7 5 10 1 0.3
不知道怎么回事,远处的网格不变了。附近的网格(全局图中)密了一些。
(9)
Parameter
Value
Minimum Length Scale
0.3
Maximum Length Scale
江之上制作
8
Parameter Minimum Length Scale Maximum Length Scale Maximum Cell Skewness Size Remeshing Interval

Fluent的动网格

Fluent的动网格

3、绘制速度矢量图 默认情况下,速度向量被绘制在每个单元的 中心(或在每个选中表面的中心),用长度和 箭头的颜色代表其梯度。在绘制速度向量时应 采用单元节点中心值而非采用节点的平均值。 • 速度向量的生成: • (1)菜单:Display Velocity Vectors • •

速度向量对话框
三、构建场景
当视图生成后,可以通过调整相关参数来增 强图像效果。这些调整可以在视图描述面板中 完成。 • 菜单:display scene •
• •
视图描述面板
• 1、选择操作对象 • 为了使图中的对象进行操作,必须首先选择对象,使 其成为当前的工作对象。通过在名称列表中选择一个或 多个对象进行操作。 • 2、改变对象显示方式 • 为了增强图形的显示效果,可以改变对象的颜色、可 视性以及其他对象的参数来达到目的。例如想显示一个 复杂问题的全部网格,可以选择隐藏部分网格而达到突 出边界等部分网格的目的,这些可以在显示属性面板中 完成。

网格显示对话框

(2)在表面列表中选取表面。点击表面列表下 的Outline按钮来选择所有外表面。如果所有的 外表面都已经处于选中状态,单击该按钮将使 所有外表面处于未选中的状态。点击表面列表 下的Interior按钮来选择所有内表面,操作方法 相同。 (3)根据需要显示 的内容,可以选择进行一 下步骤: 1)显示所选表面的轮廓线,进行以下设置: 在Options Edges ,Edge Type Outline 2)显示网格线,Options Edges ,Edge TypeAll 3)绘制网格填充图形,Options Faces, 显示选中面的网格节点,Options Nodes。 4)单击Display按钮,可以在激活的图形 窗口中绘制选定的网格和轮廓线。

FLUENT_6_动网格技巧

FLUENT_6_动网格技巧

FLUENT 6 动网格技巧一、动网格简介CFD动网格大致分为两类:第一类为显式规定网格节点速度,配合瞬态时间,即可很方便的得出位移,当然一些求解器(如FLUENT)也支持稳态动网格,这时候可以直接指定网格节点的位移。

第二类为网格节点速度是通过求解得到的,如6DOF模型基本上都属于此类,用户将力换算成加速度,然后将其积分成速度。

对于第一类动网格问题,在FLUENT中通常可以使用Profile与UDF进行网格设置,通过规定节点或区域的速度、角速度或位移等方式来显式确定网格的运动,通常大部分的动网格问题都归于此类。

而对于第二类问题,通常涉及到力的计算,力在流体中通常是对压力进行积分而来。

将力转换为速度或位移,一般涉及到加速度、转动惯量等物理量的计算。

在FLUENT中,可以使用6DOF模型进行处理,在CFX中,可以使用刚体模型(13.0以上版本才有)。

在FLUENT中,动网格涉及的内容包括:1)运动的定义。

主要是PROFILE文件与UDF中的动网格宏。

2)网格更新。

FLUENT中关于网格更新方法有三种:网格光顺、动态层、网格重构。

需要详细了解这些网格更新方法的运作机理,每个参数所代表的具体含义及设置方法,每种方法的适用范围。

动网格的最在挑战来自于网格更新后的质量,避免负体积是动网格调试的主要目标。

在避免负网格的同时,努力提高运动更新后的网格质量。

二、第一类动网格操作0打开FLUENT双击桌面快捷方式→ 选择2D或3D模式(FLUENT和GAMBIT默认单位为米)1导入网格文件File → Read → Case → 选择mesh文件2检查网格文件Grid > Check(可以查看网格的大致情况,如有无负体积等)3定义求解器Define → Models → Solver → 在Time项里点选Unsteady(非稳态求解器)4编译UDF文件Define → User-Defined → Functions → Compiled → 单击Add添加UDF文件(*.C)→点击Build按钮→ 点击Load按钮→ 点击Close按钮(如果不关闭编译对话框,在调试程序时可随时对程序进行编译)5设定动网格参数Define → Dynamic Mesh → Parameters→ 勾选Dynamic Mesh> Models(模型)Dynamic Mesh(动网格,默认勾选)In-Cylinder(气缸)2.5DSix DOF Solver(六自由度)> Mesh Methods(网格方法)Smoothing(网格光顺,默认勾选)Layering(动态分层)Remeshing(网格重构)> Smoothing(网格方法)Spring Constant Factor(弹簧常数因子,默认为1)Boundary Node Relaxation(边界节点松弛,默认为1)Convergence Tolerance(收敛容差,默认为0.001)Number of Iterations(迭代次数,默认为20)> Layering(网格方法)Constant Height(固定高度)Constant Ratio(固定比例)Split Factor(分割因子)Collapse Factor(收缩因子)> Remeshing(网格方法)Size Function(尺寸函数)Must Improve Skewness(必须提高扭曲度)Face Remeshing(面网格重构)Minimum Length Scale(最小长度缩放,默认为0)Maximum Length Scale(最大长度缩放,默认为1000)Maximum Cell Skewness(最大单元扭曲度,默认为0.6)Maximum Face Skewness(最大面扭曲度,默认为0.7)Size Remeshing Interval(尺寸重构间隔,默认为10)Size Function Resolution(尺寸函数分辨率,默认为3)Size Function V ariation(尺寸函数变异,默认为1.581787)Size Function Rate(尺寸函数比率,默认为0.3)6设定动网格区域Define → Dynamic Mesh → Zones> Zone Names(在下拉列表里选择要运动的区域或边界)> Type(点选区域或移动边界的类型)Stationary(静止的)Rigid Body(刚体,默认勾选)Deforming(变形)User-Defined(用户自定义)> Motion Attributes(运动属性)Motion UDF/Profile(运动自定义文件,一般UDF文件编译后,会在下拉列表中显示)Center of Gravity Location(全部设置为0)Center of Gravity Orientation(全部设置为0)> Geometry Definition(几何定义,一般不设置)> Meshing Options(网格划分选项)Adjacent Zone(毗邻区域,默认为fluid)Cell Height(单元高度,一般设定为网格单元最小尺寸)→ 单击Create按钮→ 单击Draw按钮→ 单击Update按钮→ 单击Close按钮(这一步非常关键,否则无法预览动态网格)7显示网格Display → Grid(弹出网格显示窗口)8预览动网格Solve → Mesh Motion> Time(时间设置)Current Mesh Times(当前时间,即瞬态运动的时间)Time Step Sizes(时间步长,每个子步的时间)Number of Time Steps(时间步,即总的时间步数)> Display Options(显示选项)Display Grid(显示网格,默认勾选)Save Hardcopy(保存硬拷贝)Enable Autosave(启动自动保存)Display Frequency(显示频率,默认为1)三、第二类动网格操作Number of Iterations(最大迭代步数,在每个时间子步内迭代的次数,即在一个时间步内计算稳态的过程)。

Fluent 动网格实例具体操作步骤

Fluent 动网格实例具体操作步骤

目录实例:Profile定义运动 (2)I、参数说明 (2)II、操作步骤 (3)一、将计算域离散为网格 (3)二、Fluent操作步骤 (4)1.启动Fluent 14.5求解器 (4)2.初始设置 (4)3.选择湍流模型 (5)4.设置流体物性 (6)5.设置边界条件 (7)6.动网格设置 (8)7.设置其它选项 (12)在Fluent中,动网格模型可以用来模拟由于流域边界运动引起流域形状随时间变化的流动情况,动网格在求解过程中计算网格要重构,例如汽车发动机中的气缸运动、阀门的开启与关闭、机翼的运动、飞机投弹等等。

CFD中的动网格大体分为两类:(1)显式规定的网格节点速度。

配合瞬态时间,即可很方便的得出位移。

当然一些求解器(如FLUENT)也支持稳态动网格,这时候可以直接指定节点位移。

(2)网格节点速度是通过求解得到的。

如6DOF模型基本上都属于此类。

用户将力换算成加速度,然后将其积分成速度。

在Fluent中,动网格涉及的内容包括:(1)运动的定义。

主要是PROFILE文件与UDF中的动网格宏。

(2)网格更新。

FLUENT中关于网格更新方法有三种:网格光顺、动态层、网格重构。

需要详细了解这些网格更新方法的运作机理,每个参数所代表的具体含义及设置方法,每种方法的适用范围。

动网格的最在挑战来自于网格更新后的质量,避免负体积是动网格调试的主要目标。

在避免负网格的同时,努力提高运动更新后的网格质量。

拉格朗日网格(固体有限元计算)网格欧拉网格(流体计算)实例:Profile定义运动I、参数说明本次实例采用的场景来自于流体中高速飞行的物体。

如子弹、火箭、导弹等。

这里只是为了说明profile在动网格运动定义中的应用,因此为了计算方便不考虑高速问题。

问题描述如下图所示:图 1 (1为运动刚体,2为计算域)图2计算说明:由于不考虑也没办法考虑刚体的变形,因此在构建面域的时候,将1中的部分通过布尔运算去除。

计算域总长度300mm,其中固体运动最大位移为:300-40-30-6mm=224mm。

FLUENT动网格需要的常用宏

FLUENT动网格需要的常用宏

FLUENT动网格需要的常用宏虽然瞬态PROFILE文件可以在一定程度上定义网格运动,然而其存在着一些缺陷。

最主要的一些缺陷存在于以下一些方面:(1)PROFILE无法精确的定义连续的运动。

其使用离散的点值进行插值。

如果想获得较为精确的运动定义,势必要定义很多点。

(2)一些情况下无法使用profile。

比如稳态动网格。

在FLUENT中定义网格运动,更多的是采用UDF宏。

fluent中与动网格有关的UDF 宏一共有5个,其中四个用于常规的网格运动定义,一个用于6DOF模型。

这些宏分别为:DEFINE_CG_MOTION、DEFINE_DYNAMIC_ZONE_PROPERTY、DEFINE_GEOM、DEFINE_GRID_MOTION、DEFINE_SDOF_PROPERTIES注意:动网格宏只能为编译型UDF。

1、DEFINE_CG_MOTION最常用的运动网格宏。

用户可以使用该宏定义每一时间步上的线速度或角速度来指定fluent中某一特定区域的运动。

DEFINE_CG_MOTION(name,de,vel,omega,time,dtime)参数说明:name:UDF的名字。

体现在fluent中表现为可选择的函数列表。

Dynamic_Thread *dt:存储了用户所指定的动网格属性和结构指针。

real vel[]:线速度。

vel[0]为x方向速度,vel[1]为y方向速度,vel[2]为z 方向速度real omega[]:角速度。

与线速度定义相同。

real time:当前时间。

real dtime:时间步长。

函数返回值为:void从函数的参数类型,配合c语言的参数调用方式可知,vel,omega为数值类型,属于传入类型。

因此只需在函数体中显式定义vel与omega即可将速度传入fluent求解器。

time与dtime是用于定义速度的。

详细实例可参看fluent udf 文档p182。

2、DEFINE_DYNAMIC_ZONE_PROPERTY该宏能用于以下一些场合:(1)在in-cylinder应用中定义旋转中心。

Fluent理论手册3—滑移网格及动网格理论

Fluent理论手册3—滑移网格及动网格理论
,
(3.3.4)
35
式中 + 1及 分别表示下一层时间步及当前时间步。 3.3.1.2 拉普拉斯光顺模型 拉普拉斯光顺是最常用而且最简单的网格光顺方法。 此方法调整每一网格顶 点至相邻网格顶点的几何中心。这种方法比较节省计算开销,但无法保证网格质 量。使用拉普拉斯光顺重新布置网格顶点时可能会导致非常差的单元质量。为克 服这个问题,ANSYS FLUENT 通过重新定位节点到相邻节点的几何中心上,当 且仅当存在提高网格质量时(例如扭曲度被提高了) 。 改良的拉普拉斯光顺仅能够用于边界变形 (例如 3D 区域中的三角单元及 2D 中的线性单元) 。节点位移通过下面方式进行计算: = 式中 (3.3.5) 在第 次迭代
3 滑 滑移网格 格及动网 网格
3.1 1 简介
在滑移网格中,静止 止和转动部分 分间的相对 对运动引发瞬态交互效 效应。这些交 交互 作用 用如图 3.1.1 1 所示,通 通常分成以下 下几类: 潜在作 作用:由于 于上游及下游 游压力波的 的传播导致流 流动不稳定 定 尾迹作 作用:由于 于上游叶片组 组的尾流传 传递至下游引起流动不 不稳定 冲击作 作用:在跨 跨音速或超音 音速流动中 中,由于激波 波冲击下游 游叶片组导致 致不 稳定。 。
湍流流动通过速度场波动进行表征。这些脉动混合诸于动量、能量及组分浓 度等标量方程, 引起传输量的脉动。 由于这些脉动存在于小尺度, 且频率非常高, 因此对其进行直接模拟非常消耗计算资源。
37
29
动网格模型同样可以用于边界变形或偏转,如: 气球的膨胀 人造壁面对心脏压力脉冲的响应
3.1.1 守恒方程
对于边界运动的动网格,任意控制体 上通用标量 的积分形式守恒方程可 以写成以下形式: d + ( − )⋅d = ⋅ + d (3.1.1)

【ANSYS Fluent培训】15-动网格分析

【ANSYS Fluent培训】15-动网格分析
什么是动网格 (DM) 模型? FLUENT 要求将运动的描述定义在网格面或网格区域上。 如果流场中包含运动与不运动两种区域,则需要将它们组合在 初始网格中以对它们进行识别。 那些由于周围区域运动而发生变形的区域必须被组合到各自的 初始网格区域中。 不同区域之间的网格不必是正则的,可以在模型设置中用 FLUENT软件提供的非正则或者滑动界面功能将各区域连接起 来。
性 表面运动表现出CFD计算中的压力和反作用力 重力和其它力可以加入力的平衡
3.动网格更新方法
Smoothing (弹性光顺) Local Remeshing (几何重构) Layering (铺层法) 混合使用
3.动网格更新方法
Smoothing (弹性光顺)
网格的移动就像相连的弹簧,或者是海绵 连通性并没有改变 当使用独立网格形式时,受相关最小变形的限
Split Factor(分割因子)
Collapse Factor(合并因子)
式中 h min为单元的最小高度,h0 为理想单元高度, a s 为层的 分割因子,在满足上述条件的情况下,就可以对网格单元进行分 割。 式中 a c 为合并因子,在紧邻动边界的网格层高度满足这个条件 时,则将这一层网格与外面一层网格相合并。
弹性系数等于1 时
3.动网格更新方法
Boundary Node Relaxation(边界点松弛因子) 边界点松弛因子用于控制动边界上网格点的移动。当这个值为零时,边界节
点不发生移动;在这个值为1 时,则边界节点的移动计算中不采用松弛格式。在 大多数情况下,这个值应该取为0 到1 之间的一个值,以保证边界节点以合适的 移动量发生移动 Convergence Tolerance(收敛判据) 收敛判据就是网格节点移动计算中,迭代计算的判据 Number of Iterations(迭代次数) 迭代次数是指网格节点移动计算的最大迭代次数

fluent动网格

fluent动网格

题记:在学习使用Fluent的时候,有不少朋友需要使用动网格模型(Dynamic Mesh Model),因此,本版推出这个专题,进行大讨论,使大家在使用动网格时尽量少走弯路,更快更好地掌握;也欢迎使用过的版友积极参与讨论指导,谢谢!该专题主要包括以下的主要内容:##1.动网格的相关知识介绍;##2.以NACA0012翼型俯仰振荡实例进行讲解动网格的应用过程;##3. 与动网格应用有关的参考文献;##4. 使用动网格进行计算的一些例子。

##1.动网格的相关知识介绍有关动网格基础方面的东西,请具体参考FLUENT User’s Guide或FLUENT全攻略的相关章节,这里只给出一些提要性的知识要点。

1、简介动网格模型可以用来模拟流场形状由于边界运动而随时间改变的问题。

边界的运动形式可以是预先定义的运动,即可以在计算前指定其速度或角速度;也可以是预先未做定义的运动,即边界的运动要由前一步的计算结果决定。

网格的更新过程由FLUENT 根据每个迭代步中边界的变化情况自动完成。

在使用动网格模型时,必须首先定义初始网格、边界运动的方式并指定参予运动的区域。

可以用边界型函数或者UDF 定义边界的运动方式。

FLUENT 要求将运动的描述定义在网格面或网格区域上。

如果流场中包含运动与不运动两种区域,则需要将它们组合在初始网格中以对它们进行识别。

那些由于周围区域运动而发生变形的区域必须被组合到各自的初始网格区域中。

不同区域之间的网格不必是正则的,可以在模型设置中用FLUENT软件提供的非正则或者滑动界面功能将各区域连接起来。

注:一般来讲,在Fluent中使用动网格,基本上都要使用到UDF,所以你最好具备一定的C 语言编程基础。

2、动网格更新方法动网格计算中网格的动态变化过程可以用三种模型进行计算,即弹簧近似光滑模型(spring-based smoothing)、动态分层模型(dynamic layering)和局部重划模型(local remeshing)。

Fluent中的动网格

Fluent中的动网格

Fluent中的动网格动网格是目前求解计算域变化问题的常用方法。

参考Fluent帮助,可以知道动网格技术与一般流动计算设置的主要区别在于网格更新方法和更新域设置。

这里就这两方面问题的一点体会作一简单记录。

一、网格更新方法弹簧近似光滑法将任意两网格节点之间的连线理想地看成一条弹簧,并通过近似弹簧的压缩或拉伸实现网格和计算域的改变。

该方法网格拓扑不变,无需网格的插值处理,对结构化(四边形、六面体)和非结构化(三角形、四面体)网格同样适用。

但不适合于大变形情况,当计算区域变形较大时,变形后的网格质量变差,严重影响计算精度。

动态分层法在运动边界相邻处根据运动规律动态增加或减少网格层数,以此来更新变形区域的网格。

该方法适用于结构化网格,通过设置适当的分层和缩减系数,更新后的网格依然为较为均匀的结构化网格,对计算精度影响较小。

对于运动域具有多自由度和任意变形情况,该方法处理起来非常困难。

网格重生方法在整个网格更新区域内依据设定的最大和最小网格尺寸判断需要进行网格重生的网格,并依据设置的更新频率进行网格重生处理。

该方法适用于非结构化网格,能够较好的应用于任意变形的计算区域处理。

二、更新域设置更新域设置是动网格设置中的一项重要工作,最常用的设置是刚体运动域和变形域,这里针对这两种域的设置注意事项和技巧作一简单介绍。

1、域动网格一般来讲,设置为刚体运动域的区域一般为壁面类边界,通过设置固壁的运动,模拟计算域内物体的运动。

由于固壁边界有时形状较为复杂,壁面附近网格尺度与周围网格尺度存在较大差别,网格更新时变形较大。

在这种情况下,可以设置一个包含固壁运动边界的计算域,通过该计算域的整体运动模拟域内物体的运动,在有的地方将这种方法称为域动网格法。

在域动网格法中,需要设置包含运动物体的内部计算域、内部计算域界面均为刚体运动域。

如下图所示。

2、动态分层法中的分界面在应用动态分层网格更新方法时,当分层界面在计算域内部时,需要采用Split interface(这里称分界面)将运动域运动范围与固定计算域区分开来,以保证动态分层网格处理(如果运动域网格与固定域网格没有分界面,动态分层无法执行)。

fluent三种动网格的实现

fluent三种动网格的实现

FLUENT三种动边界控制实现方法PostBy:2008-6-3018:34:001)voidDEFINE_CG_MOTION(UDFname,Dynamic_Thread*dt,realvel[],realomega[ ],realtime,realdtime)。

此函数接口用于控制刚体的运动,用户把刚体质心运动速度和角速度分别赋值给vel和omega,FLUENT根据它们的值来自动计算出边界下一步的位置,从而实现动边界的控制;刚体质心的位置可以在函数接口界面对话框中定义。

DynamicZones中的dwall就是要控制的动边界,MotionUDF/Profile中的stc1sta010a0ph0就是UDFname,从中可看出它已被制定成用于控制dwall,理论上FLUENT可以通过这种方式实现无穷多个动边界的控制;C.G.Location用于设定初始位置的质心,C.G.Orientation用于设定刚体的初始角度。

一般适用于刚体本身不变形的运动。

2)voidDEFINE_GEOM(charname,Domain*d,Dynamic_Thread*dt,real*position)。

此函数接口用于控制变形体的边界运动,position就是运动边界上某网格节点的位置值,用户可以通过对其赋值达到控制效果,position[0]对应边界节点的x坐标,position[1]对应y坐标,position[2]对应z坐标;FLUENT自动遍历所有的边界节点,因此适用于有规律的可以用函数描述的运动边界。

3)voidDEFINE_GRID_MOTION(name,d,dt,time,dtime)。

此函数接口也用于控制形体的边界运动。

主要用于更加复杂的控制,用户需要自己利用FLUENT提供的其他函数来遍历运动边界上的节点,并对其位置进行控制,因此UDF编程比前面两种复杂得多。

它甚至可以事先生成好边界数据,在计算中把数据读入,完成复杂形体控制。

4-1Fluent流体模拟培训教程-动网格详解

4-1Fluent流体模拟培训教程-动网格详解
计算流体力学软件Fluent培训 动态网格理论根底
1
本次沟通学习的目的
对动态网格理论根底有初步了解。 能够使用商用流体力学计算软件Fluent进
展简洁地计算—实行铺层更新方法。 为后续承受Fluent解决工业中实际边界运
动或变形的问题打下根底。
2
• 动态网格模型
– 边界刚性运动 – 边界变形
• 初始网格可以使用任意的前处理器来生成 • Fluent动网格模型完全支持并行计算,既可以单机多
核并行,也可多机多核并行 • 动态网格技术与网格自适应技术相兼容
6
Fluent中动态网格模型算法概要
动网格使用面临两大问题
• 体网格的再生 • 边界运动或变形的指定
体网格再生方法
• 铺层〔Layering〕 • 弹性光顺〔Spring Smoothing〕 • 局部重构〔Local Remeshing〕
10
弹性光顺〔Spring Smoothing〕
四个特点
〔1〕节点之间类似弹簧的连接,或者被压缩或
者被拉伸
〔2〕节点之间的连接属性不变,没有节点的生 成和消退,节点的数量和连接关系保持不变
〔3〕单独使用时,仅限于边界变形或运动幅度 较小的状况,幅度过大会导致网格高度扭曲甚至 奇异
〔4〕适用于三角形、四周体网格,也可用于六
实例
34
弹性光顺
根本特点: 〔1〕节点之间的连接属性不变 〔2〕单独使用,仅限于变形特别小的状况 〔3〕适用于三角形和四周体网格
23
弹性光顺
动网格掌握参数:
24
弹性光顺
运动区域:
25
弹性光顺
变形区域:
26
弹性光顺
变形区域:
27

在FLUENT中进行公转与自转的动网格

在FLUENT中进行公转与自转的动网格

在FLUENT中进行公转与自转的动网格设定,若运动情况较简单且运动规律比较特殊时,可以应用滑移网格解决。

在FLUENT13.0之后的版本中,支持在动网格中同时包容MRF模型,这也为复杂运动建模提供了条件。

1、模型准备本例中的模型需要利用ICEM CFD创建分界面的技术,前面已有介绍,这里不再累述。

建立的网格模型如不图所示。

整个模型共包含三个域,从外到内我们依次命名为:outer_domain,mid_domain,inner_domain。

其中区域3(inner_domain)中包含一个搅拌器。

区域3以速度1rad/s绕圆心旋转,搅拌器以角速度10rad/s旋转。

三个计算域以两对interface进行连接。

区域1的外部为wall边界类型(即整个区域是密闭的)。

图1 图22、模型设置将网格文件导入至FLUENT中,进行sacle,将模型尺度调整至满足我们需求的尺度。

设置求解类型为瞬态,使用RNG K-epsilon模型,采用增强壁面函数。

从材料数据库中添加材料水。

3、inner_domain区域设置本例的重点在于区域设置。

需要进行设置的区域为inner_domain与mid_domain。

进入Cell Zone Conditioons面板,选择inner_domain区域,设置区域类型为fluid,点击按钮edit…进入区域设置。

如图2所示。

在弹出的设置框中进行图3高亮部分的设置。

需要注意的是:设置相对区域为mid_domain,再设置旋转中心后,则设置的旋转中心为局部坐标。

4、mid_domain区域设置采用与inner_domain类似的设置,如下图所示。

设置mid_domain的旋转中心为(0,0),旋转速度1rad/s。

5、outer_domain设置outer_domain没有运动方面的设置,只需设置材料为水即可。

6、边界条件设置只有两个wall边界,一个是搅拌器壁面,一个是out_domain的外壁面。

Fluent学习资料教程集锦15-Fluent_动网格

Fluent学习资料教程集锦15-Fluent_动网格
– 试着降低混合平面的欠松弛因子到0.1-0.5 之间,可能对解的稳定性有所帮助。
• 处理策略: – 确定网格质量足够好 (最大网格偏斜 < 0.9 – 0.95)。 – 为难以开始(hard-to-start)的问题使用 FMG初始化。
• FMG初始化适合混合平面模型。
大纲
• 介绍和模型建立方法概览 • 单参考系 (SRF)模型 • 多重域和多参考系(MRF)模型 • 混合面模型 (MPM) • 滑移网格模型 (SMM) • 动网格 (DM) 模型 • 概要 • 附录
• 为每个旋转流域 (流体边界条件), 在 Motion
Type 选项中选择 Moving
Reference Frame ,输入旋转 速度。
– SRF中除了多重域 ,其它都一样 – 静止域选上静止选项(Stationary) • 设置其它边界条件,求解器设置
MRF问题的计算方法
• 和SRF问题相同,因为一个或者多个流域的流 动梯度比较大,MRF问题也比较难解。
– 绝对速度公式 (AVF)
• 由相对速度方程得到
• 绝对速度和绝对总内
能为依赖变量
z
– 动量方程中的旋转源项
stationary frame
ro
z
r
R
rotating frame
x
CFD domain
x

axis of rotation
公式比较
• 相对速度方程:x方向上动量方程
wx t
– 定子和转子之间,不考虑动力学相互作用。
MRF模型的分界面
正交分界面
– 把相邻的流域分开的内部网格面 。
– 两边的网格必须一样。
非正交分界面

Fluent UDF计算动网格区域的形心、转动惯量

Fluent UDF计算动网格区域的形心、转动惯量

Fluent UDF计算动网格区域的形心、转动惯量在使用动网格和重叠网格计算刚体的运动时,可能需要用到刚体的形心和三个轴的转动惯量。

一般来说,三维建模软件如Creo、SW、Spacecliam都可以直接计算出上述变量,但如果你拿到的只有一个fluent的case,阁下又该如何应对呢?1、形心(重心)对于密度均匀的物体,质心就是重心。

我们来看看质心的计算公式:\bar{x}_i=\iiint x_i\rm{d} v\\ 在fluent里, x_i 是网格三个方向的坐标,dv是网格体积。

用该公式,通过遍历网格可以很轻松地求出流体域的形心,但动网格区域都是没有网格的,所以无法直接应用上式。

观察到,虽然动网格区域没有网格,但它的边界我们是可以得到的,根据三维有界闭区域的高斯公式:\iiint\nabla\cdot \vec{F} \text{dv}=\oint \vec{F}\cdot \text d\vec{\text {S}}\\ 通过构造合适的向量场函数,形心公式可以转化为:\iiint\frac{\partial 0.5x_i^2}{\partialx_i}\text{dv}=\sum0.5x_i^2\cdot\text{d}\vec{\text{S}}\\ 应用上述环路积分可以通过遍历动网格区域的壁面就可以得到形心。

2. 转动惯量与上述思路相同,将转动惯量的体积分转化为环路积分,以Ixx为例:Ixx=\rho\iiint(y^2+z^2)\text{dv}=\text{fabs}\left(\fra c{1}{3}\rho\sum (y^3A[1]+z^3A[2])\right)\\ 其中 \rho 为你固体的材料密度,A为网格面的面积向量,可由以下宏得到:最后得到值是负的,因此需要加个fabs()求绝对值。

扣1送源代码。

Fluent动网格

Fluent动网格

Fluent动网格----layering个一个简单实例我这几天看了点动网格技术方面的东西,在学习过程中发现这方面的例子很少,自己也走了一些弯路。

现在还好,弄明白了一些,能够应付现在我的工作。

为了让更多学习者快速了解动网格,我打算尽量把我学习心得在这里和大家分享,这里给出一个layering的一个简单例子。

1.Gambit画网格本例很简单,在Gambit里画一个10*10的矩形,网格间隔为1,也就是有100个网格,具体见下图。

都学动网格的人了,不至于这个不会做!这里需要注意一个问题:设置边界条件的时候,一定要把要移动的边单独设定,本例中一右边界作为移动的边,设成wall就可以,这里再后面需要制定。

2.编写UDF#include "udf.h"#include "unsteady.h"#include "stdio.h"#include "stdlib.h" /************************************************************/real current_time = 0.0 ;Domain * domain ;Thread * thread ;real NV_VEC( origin ),NV_VEC( force ),NV_VEC( moment ) ;/************************************************************/DEFINE_CG_MOTION(throttle,dt,vel,omega,time,dtime){current_time = CURRENT_TIME ;vel[0] = 30;Message("time=%f omega=%f\n",current_time) ; }上面这段代码就是设置x轴方向的速度为30米每秒(UDF默认是SI单位制)。

fluent 动网格

fluent 动网格

Remeshing方法中的一些参数设定:Remeshing中的参数Minimum length scale和Maximum Length Scale,这两个参数你可以参考mesh scale info中的值,仅是参考,因为mesh scale info中的值是整个网格的评价值,设置的时候看一下动网格附近的网格和整个网格区域的大小比较,然后确定这两个参数,一般来讲,动网格附近的网格较密,这些值都比整体的小,所以在设置时通常设置为比mesh scale info中的Minimum length scale大一点,比Maximum Length Scale小一点。

以上是一般来讲的设置思路。

下面是我在NACA0012翼型动网格例子中的设置:Remeshing中的参数设定:为了得到较好的网格更新,本例在使用局部网格重新划分方法时,使用尺寸函数,也就是Remeshing+Must Improve Skewness+Size Function的策略。

将Minimum Length Scale及Maximum Length Scale均设置为0,为了使所有的区域都被标记重新划分;Maximum Cell Skewness(最大单元畸变),参考Mesh Scale Info…中的参考值0.51,将其设定为0。

4,以保证更新后的单元质量;Size Remesh Interval(依照尺寸标准重新划分的间隔),将这个值设定为1,在FLUENT,不满足最大网格畸变的网格在每个时间步都会被标记,而后重新划分,而不满足最小,最大及尺寸函数的网格,只有在Current Time=(Size Remesh Interval)*delta t的时候,才根据这些尺寸的标准标记不合格的单元进行重新划分,为了保证每步的更新质量,将其修改为1,就是每个时间都根据尺寸的标准标记及更新网格.Size Function Resolution(尺寸函数分辨率),保持默认的3;Size Function Variation(尺寸函数变量):建议使用一个小值,在0.1到0。

FLUENT中被动型动网格问题求解方案6DOF教学提纲

FLUENT中被动型动网格问题求解方案6DOF教学提纲

CAE 联盟论坛精品讲座系列FLUENT 中被动型动网格问题求解方案: 6DOF主讲人:流沙CAE 联盟论坛—总版主利用CFD软件解决动网格问题,通常可分为以下两类:(1)主动型动网格主动型动网格问题通常指的是边界运动规律及运动状态已知,通常可由软件使用者通过函数或程序进行描述。

在程序计算过程中,求解器调用边界运动轨迹描述程序实现边界运动。

这类动网格例子很多,如各类泵、风扇等。

(2)被动型动网格还有一类动网格问题,其边界运动规律往往是未知的,常常需要通过计算边界上的力或力矩,以此来求取边界的运动。

在这类动网格计算设置中,网格变化规律难以预料,导致网格参数经常需要进行多次调整才能达到目的。

这类例子在现实中其实也很多,比如风力发电机的叶轮、水轮机等。

解决主动型动网格问题比较容易,利用CFD软件提供的动网格模拟能力很容易解决。

需要关注的地方是边界运动后,网格节点如何重新布置和生成。

如在FLUENT软件中,其动网格主要包括三种网格功能:弹簧光顺、动态层及网格重构。

利用网格重构功能几乎可以解决所有主动型动网格问题。

那被动型动网格问题怎么处理呢?一般来说,这类边界的运动都是由于内部流体对其压力所造成的,那么就涉及到力和力矩计算的问题。

对于这类问题,在FLUENT软件中可以采用6DOF 模型进行计算。

需要注意的是,以上所有类型动网格计算均建立在边界为刚性的情况下。

即不会计算由于流动产生的力的作用导致的边界变形。

若要计算边界变形,则需要采用流固耦合方法,利用固体求解器计算。

被动型动网格中的力和力矩均是压力对面的积分计算而来。

1、6DOF UDF宏在FLUENT中利用6DOF是需要定义UDF 宏的。

该宏的定义形式如下:DEFINE_SDOF_PROPERTIES(name, properties, dt ,time ,dtime)函数中:精品文档Name:宏名称Real *properties :存储6DOF 属性的数组Dynamic_Thread *dt :存储制定的动网格属性Real time :当前时间Real dtime :时间步长该UDF宏没有返回值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Remeshing方法中的一些参数设定:Remeshing中的参数Minimum length scale和Maximum Length Scale,这两个参数你可以参考mesh scale info中的值,仅是参考,因为mesh scale info中的值是整个网格的评价值,设置的时候看一下动网格附近的网格和整个网格区域的大小比较,然后确定这两个参数,一般来讲,动网格附近的网格较密,这些值都比整体的小,所以在设置时通常设置为比mesh scale info中的Minimum length scale大一点,比Maximum Length Scale小一点。

以上是一般来讲的设置思路。

下面是我在NACA0012翼型动网格例子中的设置:Remeshing中的参数设定:为了得到较好的网格更新,本例在使用局部网格重新划分方法时,使用尺寸函数,也就是Remeshing+Must Improve Skewness+Size Function的策略。

将Minimum Length Scale及Maximum Length Scale均设置为0,为了使所有的区域都被标记重新划分;Maximum Cell Skewness(最大单元畸变),参考Mesh Scale Info…中的参考值0.51,将其设定为0。

4,以保证更新后的单元质量;Size Remesh Interval(依照尺寸标准重新划分的间隔),将这个值设定为1,在FLUENT,不满足最大网格畸变的网格在每个时间步都会被标记,而后重新划分,而不满足最小,最大及尺寸函数的网格,只有在Current Time=(Size Remesh Interval)*delta t的时候,才根据这些尺寸的标准标记不合格的单元进行重新划分,为了保证每步的更新质量,将其修改为1,就是每个时间都根据尺寸的标准标记及更新网格.Size Function Resolution(尺寸函数分辨率),保持默认的3;Size Function Variation(尺寸函数变量):建议使用一个小值,在0.1到0。

5之间,本例将其设置为0.3;Size Function Rate(尺寸函数变化率),保持默认的0.3。

动网格(dynamic mesh)是CFD中专有的概念。

由于当前流体计算多采用欧拉坐标系,该坐标系区别于拉格朗日坐标系的一个最直观特点是:计算过程中网格保持静止.因此,在CFD计算中应用动网格,具有其特别的难处。

1、动网格控制方式最主要的困难在于边界运动后的网格质量控制。

由于边界的运动,不可避免的导致网格变形。

我们知道,求解器对于网格质量的容忍是有限度的。

当网格扭曲过大引起网格质量的急剧下降,可能导致计算发散、形成负网格,进而终止计算。

因此,在边界运动过程中,对网格质量进行控制尤为重要。

在fluent软件中动网格主要有三种控制方式:smoothing,layering,remeshing.其中layering主要应用与四边形网格及六面体网格,remeshing主要应用于三角形网格及四面体网格等费结构网格中,至于smoothing方法则在各类网格中均可应用。

layering方法应用于结构网格也是有条件限制的:边界运动最好是沿着某单一方向。

如若是旋转,最好还是采用非结构网格配合remeshing方式。

非结构网格是最适合应用动网格模型的,但是网格质量不好控制,通常需要仔细调节。

结构网格采用layering 方法,能够很好的控制网格质量,但是几何适应性差。

具体采用何种网格类型以及何种控制方式,还是要从实际的模拟模型来考虑。

2、运动控制方式边界的运动控制方式主要有两种:PROFILE文件与UDF.采用profile的方式是最简单的,存在的限制也比较多.首先profile主要是采用线性插值的方式,如果速度是关于时间的高阶幂函数,则难以采用此种方式。

另外,采用profile定义边界的运动方式,最主要的是指定边界的运动速度,对于其他的涉及到力的转换的,比如说6DOF模型中经常用到的将受力转换为加速度再换算成速度的话,基本上无能为力。

最常见的profile文件格式如下:((vel 2 point)(time 0 0。

1)(v_x 0 1))这里定义了一个两点格式,在0s时刻速度为0,0。

1s时刻速度为1,中间时刻速度采用线性插值获得。

注意profile中统一采用国际单位制.关于速度v_x,v_y,v_z分别表示x,y,z三方向平动速度,omega_x,omega_y,omega_z表示x,y,z三方向转动速度。

至于UDF方式定义运动,最主要的还是采用DEFINE_CG_MOTION宏,注意此UDF宏只能用于编译型.解释形式的虽然不会报错,但是在使用中是无效的。

应用于动网格的宏还包括DEFINE_DYNAMIC_ZONE_PROPERTY,DEFINE_GEOM,DEFINE_GRID_MOTION,DEFINE_SDOF_PROPERTIES,各宏的详细用法,可以参阅UDF手册第二章第六小节,里面包含了宏中的参数以及各类例子。

3、应用动网格的时机动网格其实是比较复杂的技术,想要用好不是一件容易的事情。

在使用过程中经常会出现计算发散、负网格的问题,更可能出现由于网格扭曲导致网格质量差,计算精度低的问题。

因此,对于运动问题,fluent中还是提供了很多的简化模型。

最接近动网格的是滑移网格。

滑移网格是唯一一种不改变网格而能计算瞬态的模型。

滑移网格的基本思想是将运动区域与静止区域通过滑移面进行分割,通过滑移面传递流动数据。

在运动区域中采用运动参考系的方式。

另外几类运动问题都可以归结为运动参考系的问题:SRF,MRF以及MP。

SRF与MRF的区别主要在参考系的数量上。

而MRF与MP的区别在与数据传递方式。

MRF通过交界面直接传递数据,主要是通过绝对速度的方式传递,而MP则是流量或压力平均的方式进行传递。

总之,若能够应用这些简化的模型,是不推荐采用动网格的方式的。

§一、动网格的相关知识介绍有关动网格基础方面的东西,请具体参考FLUENT User’s Guide或FLUENT全攻略的相关章节,这里只给出一些提要性的知识要点。

1、简介动网格模型可以用来模拟流场形状由于边界运动而随时间改变的问题。

边界的运动形式可以是预先定义的运动,即可以在计算前指定其速度或角速度;也可以是预先未做定义的运动,即边界的运动要由前一步的计算结果决定。

网格的更新过程由FLUENT 根据每个迭代步中边界的变化情况自动完成。

在使用动网格模型时,必须首先定义初始网格、边界运动的方式并指定参予运动的区域。

可以用边界型函数或者UDF 定义边界的运动方式.FLUENT 要求将运动的描述定义在网格面或网格区域上。

如果流场中包含运动与不运动两种区域,则需要将它们组合在初始网格中以对它们进行识别。

那些由于周围区域运动而发生变形的区域必须被组合到各自的初始网格区域中。

不同区域之间的网格不必是正则的,可以在模型设置中用FLUENT软件提供的非正则或者滑动界面功能将各区域连接起来。

注:一般来讲,在Fluent中使用动网格,基本上都要使用到UDF,所以你最好具备一定的C语言编程基础。

2、动网格更新方法动网格计算中网格的动态变化过程可以用三种模型进行计算,即弹簧近似光滑模型(spring—based smoothing)、动态分层模型(dynamic layering)和局部重划模型(local remeshing)。

弹簧近似光滑模型原则上弹簧光顺模型可以用于任何一种网格体系,但是在非四面体网格区域(二维非三角形),最好在满足下列条件时使用弹簧光顺方法:(1)移动为单方向。

(2)移动方向垂直于边界.如果两个条件不满足,可能使网格畸变率增大。

另外,在系统缺省设置中,只有四面体网格(三维)和三角形网格(二维)可以使用弹簧光顺法,如果想在其他网格类型中激活该模型,需要在dynamic—mesh—menu 下使用文字命令spring—on—all-shapes?,然后激活该选项即可。

动态分层模型动态分层模型的应用有如下限制:(1)与运动边界相邻的网格必须为楔形或者六面体(二维四边形)网格。

(2)在滑动网格交界面以外的区域,网格必须被单面网格区域包围.(3)如果网格周围区域中有双侧壁面区域,则必须首先将壁面和阴影区分割开,再用滑动交界面将二者耦合起来。

(4)如果动态网格附近包含周期性区域,则只能用FLUENT 的串行版求解,但是如果周期性区域被设置为周期性非正则交界面,则可以用FLUENT 的并行版求解。

如果移动边界为内部边界,则边界两侧的网格都将作为动态层参与计算。

如果在壁面上只有一部分是运动边界,其他部分保持静止,则只需在运动边界上应用动网格技术,但是动网格区与静止网格区之间应该用滑动网格交界面进行连接。

局部网格重划模型需要注意的是,局部网格重划模型仅能用于四面体网格和三角形网格。

在定义了动边界面以后,如果在动边界面附近同时定义了局部重划模型,则动边界上的表面网格必须满足下列条件:(1)需要进行局部调整的表面网格是三角形(三维)或直线(二维)。

(2)将被重新划分的面网格单元必须紧邻动网格节点。

(3)表面网格单元必须处于同一个面上并构成一个循环。

(4)被调整单元不能是对称面(线)或正则周期性边界的一部分.动网格的实现在FLUENT 中是由系统自动完成的。

如果在计算中设置了动边界,则FLUENT 会根据动边界附近的网格类型,自动选择动网格计算模型.如果动边界附近采用的是四面体网格(三维)或三角形网格(二维),则FLUENT 会自动选择弹簧光顺模型和局部重划模型对网格进行调整。

如果是棱柱型网格,则会自动选择动态层模型进行网格调整。

在静止网格区域则不进行网格调整.动网格问题中对于固体运动的描述,是以固体相对于重心的线速度和角速度为基本参数加以定义的。

既可以用型函数定义固体的线速度和角速度,也可以用UDF 来定义这两个参数.同时需要定义的是固体在初始时刻的位置。

注:这一小节主要讲述了动网格的更新方法,最好能掌握,尤其是各种方法的适用范围,通常来讲,在一个case中,我们使用的更新方法都是根据网格类型以及和要实现的运动来选择的,很多时候都是几种更新方法搭配起来使用的。

总结一下:使用弹簧近似光滑法网格拓扑始终不变,无需插值,保证了计算精度。

但弹簧近似光滑法不适用于大变形情况,当计算区域变形较大时,变形后的网格会产生较大的倾斜变形,从而使网格质量变差,严重影响计算精度。

动态分层法在生成网格方面具有快速的优势,同时它的应用也受到了一些限制。

它要求运动边界附近的网格为六面体或楔形,这对于复杂外形的流场区域是不适合的。

相关文档
最新文档