蔬菜大棚温湿度控制系统设计
蔬菜大棚温湿度控制系统设计
蔬菜大棚温湿度控制系统设计1. 引言蔬菜大棚是一种用于种植蔬菜的设施,其温湿度控制对于蔬菜的生长和产量具有重要影响。
为了提高蔬菜的质量和产量,设计一套高效可靠的温湿度控制系统是至关重要的。
本文将介绍一种基于现代控制理论和技术的蔬菜大棚温湿度控制系统设计。
2. 温湿度对蔬菜生长的影响温湿度是影响植物生长和发育的重要环境因素之一。
过高或过低的温湿度都会对植物生长产生负面影响。
在适宜范围内,适当调节温湿度可以促进光合作用、提高光能利用效率、增加养分吸收能力,并且有利于提高抗病虫害能力。
3. 温湿度控制系统设计原理3.1 温室环境参数测量为了实现精确可靠地温湿度控制,需要对环境参数进行实时测量。
可以使用传感器测量温度、湿度等参数,并将测量结果传输给控制系统。
3.2 控制算法设计控制算法是温湿度控制系统的核心部分。
常用的控制算法有比例-积分-微分(PID)控制、模糊逻辑控制、模型预测控制等。
根据实际情况选择合适的控制算法,并对其进行参数调整,以实现对温湿度的精确调节。
3.3 控制执行器设计根据温湿度的调节需求,选择合适的执行器进行操作。
常用的执行器有加热设备、通风设备、喷水设备等。
通过对执行器进行精确操作,可以实现对温湿度的有效调节。
4. 温湿度控制系统设计方案4.1 系统硬件设计蔬菜大棚温湿度控制系统需要包括传感器、执行器和处理单元(CPU)等硬件设备。
传感器用于测量环境参数,执行器用于实现环境参数调节,CPU负责接收传感器数据并根据预定算法进行处理和决策。
4.2 系统软件设计蔬菜大棚温湿度控制系统需要编写相应软件进行控制。
软件需要实现传感器数据的采集与处理、控制算法的实现、执行器的控制等功能。
同时,软件需要具备数据存储、报警处理、用户界面等功能,以提高系统的可靠性和易用性。
5. 系统性能评估与优化为了保证系统的稳定可靠运行,需要对系统进行性能评估与优化。
可以通过实际操作和数据采集来评估系统对温湿度变化的响应速度和稳定性,并根据评估结果对系统参数进行优化调整,以提高系统的控制精度和稳定性。
蔬菜大棚温度控制系统设计
蔬菜大棚温度控制系统设计一、概述随着人们对健康饮食的关注不断加强,蔬菜的种植需求也在不断增加。
特别是在一些家庭农场和大型农业生产基地中,蔬菜大棚的种植已经成为了常见的生产模式。
在这种大棚环境下,蔬菜的种植需要稳定的温度环境,但是不同的蔬菜对温度的要求也不同,为了达到最佳种植效果,对大棚温度进行精确控制非常重要。
因此,本文主要针对蔬菜大棚的温度控制需求,设计了一种基于单片机的控制系统。
二、系统设计1. 硬件设计控制系统的硬件主要由传感器、执行器、控制模块等部分组成。
(1)传感器传感器用于监测大棚内部的温度。
在本系统中,采用数字温度传感器DS18B20来实现温度采集。
该传感器具有精确、稳定、抗干扰等特点。
(2)执行器执行器用于对大棚内部进行温度调节。
在本系统中,采用继电器作为执行器,通过控制电路开关,实现对温度设备的开关控制。
(3)控制模块控制模块是系统的核心部件,它负责数据的采集、处理和控制信号的输出。
在本系统中,采用STM32F103C8T6单片机作为控制模块。
该单片机运行速度快,集成了丰富的模块和接口,可以满足本系统的需求。
2. 软件设计系统的软件主要由采集程序和控制程序组成。
(1)采集程序采集程序主要用于读取传感器数据,并通过串口传输到控制程序中。
在采集过程中,设置一定的采样周期,来保证数据的准确性和稳定性。
(2)控制程序控制程序主要用于对采集的数据进行处理,并根据设定的温度值,控制继电器的开关状态,达到控制温度的目的。
在控制程序中,设置一定的控制算法和控制策略,来保证控制系统的性能和稳定性。
三、系统实现在硬件和软件设计完成之后,进行系统实现。
对于本系统,可以将传感器和执行器采用模块化设计,使得系统更加灵活和易于维护。
在系统实现过程中,需要进行测试和调试,来验证系统的性能和稳定性。
在测试和调试过程中,需要注意保证系统的安全性和可靠性,避免不必要的损失。
四、本文主要介绍了一种基于单片机的蔬菜大棚温度控制系统设计。
现代设施农业温室大棚温湿度监测系统方案设计
现代设施农业温室大棚温湿度监测系统方案设计一、概述随着大棚技术的普及,温室大棚数量不断增多,对于蔬菜大棚来说,最重要的一个管理因素是温湿度控制。
温湿度太低,蔬菜就会被冻死或则停止生长,所以要将温湿度始终控制在适合蔬菜生长的范围内。
传统的温度控制是在温室大棚内部悬挂温度计,工人依据读取的温度值来调节大棚内的温度。
如果仅靠人工控制既耗人力,又容易发生差错。
温室大棚的温度控制成为一个难题。
现在,随着农业产业规模的提高,对于数量较多的大棚,传统的温度控制措施就显现出很大的局限性。
为此,在现代化的蔬菜大棚管理中通常有温湿度自动控制系统,以控制蔬菜大棚温度,适应生产需要。
它以先进的技术和现代化设施,人为控制作物生长的环境条件,使作物生长不受自然气候的影响,做到常年工厂化,进行高效率,高产值和高效益的生产。
蔬菜温室大棚温湿度监测系统是专为蔬菜种植温室研制的温湿度智能监控系统,能够自动监控室内温湿度。
本方案结合了蔬菜栽培温室的特点,采用温湿度传感器,克服了传统模拟式温湿度传感器的不稳定、误差大、容易受干扰、需要定期校准等严重缺陷,本产品测量数据准确,精度高,运行稳定,质量可靠,在蔬菜温室大棚具有广阔的应用前景。
二、组成及工作原理在蔬菜温室里安放温湿度传感电子标签及相应的读卡设备。
标签会将采集到的温湿度信息,如蔬菜大棚里的温度湿度等,通过无线方式不停地向外发送信息,这样安装在附近的读卡器就能接收到这些信息,并将接收到的的信息传到管理中心的主机。
如果温室当前的温湿度不利于蔬菜生长,主机就会按照使用人员指定的方式输出多种报警来提醒大棚管理员做出相应的操作,从而实现塑料大棚蔬菜的智能化管理。
监控系统安装后,操作人员可根据传感器实时温湿度数据对温室内部采暖、通风等设备进行操作,有效解决了现代化智能连栋温室运行费用高,耗能大等缺点。
监测系统还可根据蔬菜生长条件设置警报值,当温湿度异常时进行报警,提醒工作人员注意。
本套系统防水防尘,可以长时间运行于温室等高温高湿环境。
温室大棚温湿度监测系统设计及性能分析
温室大棚温湿度监测系统设计及性能分析温室大棚是一种用于种植蔬菜、花卉等植物的设施,通过人工调控环境条件,提供恒定的温度和湿度,增加作物的产量和品质。
为了实现对温室大棚温湿度的监测和调控,设计了一个温室大棚温湿度监测系统,并对其性能进行了分析。
温室大棚温湿度监测系统的设计目标是实时监测和记录温室内的温度和湿度,并能根据设定的阈值进行报警,实现远程监控和控制。
该系统主要由传感器模块、数据采集模块、通信模块、控制模块和人机界面组成。
传感器模块是该系统的核心部分,用于检测温室内的温度和湿度。
常用的温湿度传感器有DHT11和DHT22等,其精度和稳定性较高。
传感器将采集到的温湿度数据转化为电信号通过模拟-数字转换器(ADC)传送给数据采集模块,完成数据的采集和处理。
数据采集模块负责接收传感器模块传来的数据,并对数据进行处理和存储。
该模块通过微处理器将数据转化为数字信号,并将数据存储在存储器中,以便后续的数据分析和查询。
同时,该模块还可实现对传感器的参数设置和控制。
通信模块用于实现系统与外部设备的数据传输和远程控制。
该模块可选择无线通信方式,如Wi-Fi、蓝牙等,也可以选择有线通信方式,如以太网、RS485等。
通过与上位机或者手机APP的交互,实现对温室大棚的实时监测和控制。
控制模块是根据采集到的温湿度数据和设定的阈值进行控制操作。
当温湿度超过设定的阈值时,控制模块会触发报警装置,以提醒操作人员进行调节。
同时,控制模块还可以根据设定的控制策略,自动调节温室内的温湿度,以保持恒定的环境条件。
人机界面是操作人员与监测系统进行交互的平台。
通过人机界面,操作人员可以实时查看温室内的温湿度数据,并进行参数的设定和控制命令的下发。
界面设计应简洁直观,方便操作人员快速理解和操作。
对于温室大棚温湿度监测系统的性能分析,主要从以下几个方面进行评价:1. 精度和稳定性:传感器的精度和稳定性直接影响数据的准确性。
应选择精度高、稳定性好的传感器,减小误差和波动。
【系统】基于虚拟仪器的蔬菜大棚温湿度控制系统设计
【关键字】系统0 引言随着科学技术的不断发展,当前设施农业(又称工厂化农业)已成为一种农业新兴产业。
设施农业是借助温室及其配套装置来调节和控制作物生产环境条件的新型农业生产方式,它是一种高产、高效、优质和技术密集型的农业。
现代大型温室中,所有环境因子如室内温、光、气、湿、热、营养液养分状况与温度,植物根部环境温湿度等因子的监测、传感、调节,都由计算机进行综合管理,实行自动控制。
温室大棚就是建立一个模拟适合生物生长的气候条件,创造一个人工气象环境,来消除温度对生物生长的限制。
传统的温度控制是在温室大棚内部悬挂温度计,通过读取温度值来知道大棚内的实际温度,然后根据现有温度与预定温度进行比较,如果温度过高,就对大棚进行降温处理,如果温度过低,就对大棚进行升温。
仅仅依靠人工操作来调节,不仅浪费人力资源,而且难以达到预期的控制质量和精度,控制不当甚至会造成损失。
以黄瓜生长为例,理想的气温日变化是上午光合作用较旺盛时可维持左右,以促进同化作用,午后光合转弱应充分唤气,使温度降至25℃~,以减少呼吸消耗。
白天室温一般在20℃~左右,持续8小时长势最好,6.5小时长势减弱,少于5小时则生长不良;前半夜维持~,以促进同化,后半夜降温到13℃~,夜间低于的时间持续4小时,则收瓜量显著下降,若最低温度低于,植株会因生理损伤而转黄;在定植到收根瓜阶段,如白天温度合适,而夜间气温低于并持续8~10小时,连续3~5日则幼苗生长缓慢,若低于的时间达3~4小时连续,3~5日幼苗开始发黄,叶片边缘黄枯;若低于的时间达6小时以上,连续3~5日幼苗则停止生长,严重发黄,叶缘黄枯;如夜间地温也在适温以下,则幼苗生理损伤更为严重。
同样,在湿度控制方面,过干过湿也会造成植株的损害,这里不在说明[1]。
从上面分析可以看出,单纯依靠人工调节存在很多难以实现的技术要求。
现在,虚拟仪器技术越来越完善,通过虚拟仪器改善大棚的温度控制系统具有很多的优势和便利。
温室大棚温湿度控制系统
蔬菜大棚控制系统设计在农业生产中,蔬菜大棚的应用越来越广泛,也能为人们创造更高的经济效益。
在蔬菜大棚中,最关键的是温度、湿度、二氧化碳浓度、光照、营养液等的控制方法。
传统的控制方法完全是人工的,不仅费时费力,而且效率很低。
我的作业设计是蔬菜大棚温湿度控制系统的设计。
该系统主要由单片机、温度传感器DSl8B20、湿度传感器是HR202、二氧化碳浓度传感器、光敏传感器、液晶显示LCD1602、键盘等组成。
此设计克服了传统农业难以解决的限制因素。
因此就必须利用环境监测和控制技术。
对温度、湿度、光照、二氧化碳浓度等因素进行测控。
一、系统总体结构设计及控制系统设计环境自动化检测系统的硬件设计方案框图如图l 所示。
控制系统主要有单片机、数据采集模块、数据转换电路、报警装置、执行机构、主控计算机等组成。
其核心是单片机芯片组,作为系统各种参数的处理和控制器。
完成各种数据的处理和控制任务。
同时将处理后的数据传送给主机。
实际应用时可根据被测控参数点的个数和控制的要求来决定单片机的数目。
环境因素数据采集模块由温度传感器、湿度传感器、C02浓度传感器、光照度传感器等组成,分别实时采集各测控点的温度、湿度、C02浓度、光照度等环境因素模拟量并转换为电信号。
经前置放大后送给A/D 转换芯片。
数据转换电路包括A /D 转换和D /A 转换电路。
完成模拟量和数字量之间的相互转换。
执行机构包括各种被控制的执行设备。
在系统的控制下启动调节设备如喷雾机,吹风机,加热器,CO2发生器等进行升温降温、加湿换风、C02浓度调控、光环境调控、土壤环境调控等操作来调节大棚内的环境状态。
另外还有光电驱动隔离,其作用是有效地隔离控制部分和执行部分。
抑制大电流、大功率负载开启产生的各种电磁辐射和电压冲击等干扰,保证系统可靠稳定地工作。
整个系统的工作原理是首先在单片机内设定温度、湿度、C02浓度、光照度等环境因素的上下限值和报警值并予以保存,各种传感器实时检测到的参数值送到单片机后与其设定值进行比较,判断是否在设定的上下限值范围内。
基于单片机的蔬菜大棚的湿度控制系统设计
基于单片机的蔬菜大棚的湿度控制系统设计摘要本文介绍了一种基于单片机的蔬菜大棚湿度控制系统设计,主要包括硬件设计和软件设计两个部分。
本系统采用传感器对大棚内的湿度进行监测,并通过单片机控制器对湿度进行控制。
在本次设计中,采用了ESP8266单片机作为控制器,通过wifi连接网络,可实现远程监控和控制。
实验证明,本系统运行稳定,控制精度高,可达到预期的控制效果。
关键词:单片机,蔬菜大棚,湿度控制,传感器AbstractThis paper introduces a humidity control system for vegetable greenhouses based on single chip microcomputer. The system consists of hardware design and software design. The system adopts sensors to monitor the humidity in the greenhouse and uses single-chip microcomputer controller to control the humidity. In this design, ESP8266 single-chip microcomputer is used as controller, which can connect to the network through wifi, and realize remote monitoring and control. The experiment shows that the system runs stably, the control accuracy is high, and the expected control effect can be achieved.Keywords: Single-chip microcomputer, vegetable greenhouse, humidity control, sensor1.引言蔬菜大棚是一种通过人工制造特定环境条件进行种植的蔬菜生产方式,由于其具有节约土地资源、增加蔬菜产量等优点,已经在现代农业生产中得到广泛应用。
蔬菜大棚温湿控制器设计(毕业设计完整版)
蔬菜大棚温湿控制器设计(毕业设计完整版)河南理工大学毕业设计(论文)说明书大棚温度湿度控制器设计摘要:温室是蔬菜大棚生产中必不可少的设施之一,不同种类蔬菜对温度及湿度等生长所需条件的要求也不尽相同,本设计就是控制大棚的温湿度,为它们提供一个良好的生存环境,给我们带来巨大的经济效益。
关键词:传感器、温湿度、控制电路、温度报警电路Abstract: Greenhouse production of greenhouse vegetables are an essential facilities, different types of vegetables, such as temperature and humidity on the growth of the necessary requirements are not the same, the design is to control the greenhouse temperature and humidity, to provide them with a goodthe living environment, has brought us huge economic benefits.Key words: sensors, temperature and humidity, control circuit, temperature alarm circuit12河南理工大学毕业设计(论文)说明书1 引言随着改革开放,特别是90年代以来,我国的温室大棚产业得到迅猛的发展,以蔬菜大棚、花卉为主植物栽培设施栽培在大江南北遍地开花,随着政府对城市蔬菜产业的不断投入,在乡镇内蔬菜大棚产业被看作是21世纪最具活力的新产业之一。
温室是蔬菜等植物在栽培生产中必不可少的设施之一,不同种类的蔬菜对温度及湿度等生长所需条件的要求也不尽相同,为它们提供一个更适宜其生长的封闭的、良好的生存环境,从而可以通过提早或延迟花期,最终将会给我们带来巨大的经济效益。
毕业论文——蔬菜大棚温湿度控制系统设计
毕业论文(设计)蔬菜大棚温湿度控制系统设计院系名称信息科学与工程系姓名学号专业电子信息工程指导教师年月摘要近些年,蔬菜大棚技术发展十分迅速,相关技术日益成熟,蔬菜大棚的数量也日益增加,研究蔬菜大棚可以提高蔬菜产量和质量,从而更好的为现代人服务;本文旨在设计出一套蔬菜大棚温湿度控制系统,代替人工,更好的控制蔬菜大棚内的温湿度,满足生产的需求。
本文基于物联网技术设计了一套蔬菜大棚温湿度控制系统;在系统中引入了nRF24L01技术组网和GSM通信技术,使用本系统,我们可以很方便的采集蔬菜大棚内的空气温湿度等环境参数,并通过LCD液晶显示器显示蔬菜大棚中的温湿度等环境参数,当系统出现异常时,可以通过GSM网络将警告信息发送给用户,此外,用户还可以通过按键控制湿度控制器和温度控制器调节蔬菜大棚环境参数。
本系统由一个主节点和多个从节点构成。
主要工作内容如下所示:1.主节点控制系统选择STM32F103ZET6单片机作为主控制器,主控制器连接nRF24L01无线模块、SIM808模块等外围设备;从节点控制系统选择STC89C52单片机作为控制器,控制器连接温湿度传感器和nRF24L01;2.一个主节点可以通过nRF24L01无线模块和多个从节点进行通信。
主节点控制系统中主控制器STM32FZET6外围连接SIM808模块,当系统出现故障的时候,将通过GSM网络自动向用户发送一条报警信息,以便用户能及时发现排除故障。
关键词:nRF24L01,STM32F103ZET6,STC89C52,SIM808模块IAbstractIn recent years, the development of vegetable greenhouse technology is very rapid, related technology matures, the number of greenhouses increasing, vegetable greenhouse is conducive to open our door to wisdom, improve the yield and quality of vegetables, so as to better serve for the modern people; the purpose of this paper is to design a set of vegetable greenhouse temperature and humidity control system, instead of manual, temperature and humidity better control of vegetable greenhouse, meet the demand of the production.This paper based on IOT technology to design a set of vegetable greenhouse temperature and humidity control system; nFR24L01 network technology and GSM communication technology is introduced in the system, the use of the system, we can easily collect greenhouse air humidity and other environmental parameters, and through the LCD liquid crystal display in vegetable greenhouse temperature and humidity etc. the environmental parameters, when the system is abnormal, the warning information can be sent to the user through the GSM network, in addition, users can also through the buttons to control the humidity controller and a temperature controller of greenhouse environment parameters.The system consists of a master node and multiple slave nodes. The main work is as follows:1.Master node control system selects STM32F103ZET6 MCU as the main controller, the main controller is connected with the nFR24L01 wireless module,SIM808 module and other peripheral equipment; from the choice of the STC89C52 as the controller node control system, the controller is connected with a temperature humidity sensor and nFR24L01;2.A master node can communicate via nFR24L01 wireless module and multiple slave nodes. The main control node main controller connected to the SIM808STM32FZET6 peripheral module in the system, when the system fails, will be automatically sent to the user through the GSM network an alarm information, so that users can find out fault.Key Word:nFR24L01, STM32F103ZET6, STC89C52, SIM808 ModuleII目录1 引言 (1)1.1.课题背景 (1)1.2.国内外研究现状 (1)1.2.1.国内现状分析 (1)1.2.2. 国外现状分析 (2)1.2.3. 研究状况总结 (3)1.3.本课题的研究内容 (3)2总体设计 (4)2.3蔬菜大棚温湿度控制系统核心技术 (6)2.3.1 nRF24L01组网技术 (6)2.3.2 GSM通信技术 (6)2.4本章小结 (6)3嵌入式系统设计 (7)3.1主节点控制系统设计 (7)3.1.1主控制器选择 (8)3.1.2主从节点间通信方式 (8)3.1.3 .LCD选型及电路设计 (10)3.2从节点控制系统设计 (13)3.2.1单片机选型和设计 (13)3.2.2传感器接口电路设计 (15)3.3本章小结 (16)4 结论 (45)参考文献 (45)致谢 (45)III1 引言1.1.课题背景蔬菜大棚技术在我国很早就已经发展起来了,并且已经趋于成熟,传统的蔬菜大棚技术全部采用人工的方式,其特点是使用竹子或钢筋的骨架结构,在其上面覆上保温塑料膜,如此一来,便就形成了一个密闭的温室空间。
大棚温湿度测控系统设计
蔬菜大棚温湿度测控系统设计摘要温室大棚是设施农业的重要组成部分,大棚测控系统是实现大棚自动化、科学化的基本保证。
通过对监测数据的分析,结合作物生长规律,控制环境条件,使作物达到优质、高产、高效的栽培目的。
计算机应用技术的发展,也使得用计算机控制的方面也涉及到各个领域,其中在大棚内用单片机控制温度、湿度是应用于实践的主要方面之一。
对于蔬菜大棚来说,最重要的一个管理因素是温度和湿度等控制。
本设计是一个专门为温室大棚温湿度测量控制而设计的系统。
通过对系统的硬件部分和软件部分设计来达到监控要求。
硬件部分实现了对温湿度传感器模块、显示模块、控制模块的设计;软件部分主要根据系统的设计思想设计出了主程序和子程序流程图,并通过程序实现。
在系统设计过程中充分考虑到性价比,选用价格低、性能稳定的元器件。
通过实践证明,系统具有性能好、操作方便等优点,能实现对温湿度等的显示、调节和控制。
系统在其它领域还具有一定的推广价值。
关键词:大棚,温度,湿度,传感器目录前言 (1)第1章设计方案论证 (2)1.1 设计要求及框图 (2)1.2 元器件的选择 (2)1.2.1 单片机的选择 (2)1.2.2 温度传感器的选择 (3)1.2.3 湿度传感器的选择 (3)1.2.4 显示模块的选择 (4)1.2.5 系统设计方案的确定 (4)第2章系统的硬件设计 (6)2.1 系统硬件的简述 (6)2.2 单片机模块的设计 (6)2.2.1 单片机的功能特性描述 (6)2.2.2 单片机的最小系统 (8)2.3 温湿度采集系统的设计 (9)2.3.1 温湿度传感器的概述 (9)2.3.2 传感器的接口说明 (9)2.3.3 硬件连接 (10)2.4 显示模块的设计 (10)2.4.1 LCD12864的概述 (10)2.4.2 LCD12864引脚说明 (12)2.4.3 LCD12864的主要技术参数 (13)2.5 报警电路的设计 (14)2.6 功能键的设计 (15)2.7 控制电路的设计 (15)第3章软件系统设计 (17)3.1 软件设计的整体思想 (17)3.2 程序流程图设计 (17)3.3 DHT90软件系统设计 (18)3.3.1 DHT90测量流程图 (18)3.3.2 传感器的电气特性 (20)3.3.3 启动传感器指令 (20)3.3.4 发送命令 (21)3.3.5 测量时序 (21)3.3.6通讯复位时序 (21)3.4 DHT90的温湿度补偿及转换 (22)3.4.1 相对湿度 (22)3.4.2 温度转换 (22)3.5 LCD12864软件系统设计 (23)3.5.1 LCD12864显示流程图 (23)3.5.2 写数据到模块 (24)3.5.3 从模块读出数据 (25)3.6 按键软件系统设计 (26)第4章调试 (28)4.1 软件调试 (28)4.2 硬件调试 (28)4.3 液晶模块调试 (29)4.4 报警电路调试 (29)结论 (30)参考文献 (31)附录 (32)前言改革开放以来,我国经济的迅速增长,使得农业的研究和应用技术越来越受到重视,特别是温室大棚已经成为高效农业的一个重要组成部分。
蔬菜大棚温度控制系统设计毕业设计论文
毕业设计(论文)题目:蔬菜大棚温度控制系统设计摘要蔬菜大棚温度自动控制系统由主控制器AT89C51单片机、并行口扩展芯片8255、74LS373、A/D转换器0809、、温度传感器DS1820、固态继电器、RAM6264、掉电保护和LED显示器和报警电路等构成,实现对蔬菜大棚温度的检测与控制,从而有效提高蔬菜的产量。
文中提出了具体设计方案,讨论了蔬菜大棚温湿度巡回检测与控制的基本原理,进行了可行性论证。
给出了电路图和程序流程图并附有源程序。
由于利用了单片机及数字控制系统的优点,系统的各方面性能得到了显著的提高。
关键词:温度传感器快速检测 A/D转换器 LED显示器报警电路固态继电器;目录摘要 ....................................................................................................................................................................... I I 目录 (III)1 概述 (1)2 蔬菜大棚的系统设计 (2)2.1 控制系统整体结构 (2)2.2 系统的工作原理 (2)3.蔬菜大棚系统的硬件设计 (3)3.1 系统主控制器部分设计 (3)3.1.1 AT89C51的工作原理 (3)3.1.2 AT89C51的复位电路 (4)3.1.3 AT89C51的引脚功能 (4)3.2 数据存储器的扩展 (7)3.3 LED显示器 (10)3.4 A/D转换接口 (11)3.4.1 A/D转换器的基本工作原理及器件简介 (11)3.4.2 ADC0809与AT89C51单片机的接口设计 (13)3.5 单总线数字温度传感器DS1820 (15)3.5.1DS1820 的主要特性 (15)3.5.2DS1820的工作原理 (15)4 系统的软件设计 (16)4.1 设计方法 (16)4.2 主程序的分析与说明 (16)5 系统实验应用 (17)5.1实验蔬菜大棚简介 (17)5.1.1实验大棚结构特点 (17)5.1.2实验大棚内温度特点 (17)5.2温度传感器测试实验 (18)5.3显示及报警实验 (19)结论 (20)参考文献 (22)1 概述想要长出好的蔬菜,蔬菜大棚的温度控制是非常重要的,温室环境测控,即根据植物生长发育的需要,自动调节温室内环境条件的总称。
蔬菜大棚温湿度控制系统设计
蔬菜大棚温湿度控制系统设计摘要:本文在蔬菜大棚内设置了温湿度控制系统,以实现自动监测和调节大棚内的温度和湿度。
该系统采用传感器对大棚内的环境参数进行实时监测,并通过控制器的程序控制温湿度设备完成自动调节。
实验结果表明,该系统在实现有效控制大棚内温湿度的同时,还能够节约能源,提高农业生产效率。
关键词:蔬菜大棚、温湿度控制、自动监测、传感器、控制器、能源节约1. 研究背景随着社会发展和人口不断增加,粮食和蔬菜等农产品的需求量也越来越大。
然而,由于气候变化和人为因素的影响,农作物生长环境的变化也愈加复杂。
为了提高农产品产量和质量,减少环境污染的同时加强经济效益,研究农业温湿度控制系统已成为实现可持续发展的重要手段之一。
2. 系统设计2.1 设计目标该蔬菜大棚温湿度控制系统可分为采集模块、控制模块、执行模块和显示模块四个部分。
其设计目标如下:1) 实现大棚内温度和湿度的实时监测和自动调节。
2) 通过温湿度调节设备完成对大棚内环境的自动控制。
3) 为大棚内的蔬菜提供最适宜的生长环境条件。
2.2 系统组成2.2.1 采集模块采集模块主要包括温度传感器和湿度传感器。
温度传感器通过对大棚内温度进行实时检测,将检测到的数据传输给控制器。
同样的,湿度传感器也可以实时监测大棚内的相对湿度。
2.2.2 控制模块控制器主要负责处理传感器采集的数据,并根据预设的程序计算出所需的温湿度参数。
最后,将数据发送给温湿度调节设备。
2.2.3 执行模块执行模块包括将温湿度调节设备与控制器整合在一起,实现自动调节大棚内的环境参数。
2.2.4 显示模块日志和显示模块显示大棚内当前的温湿度数据,以及系统是否正常工作。
3. 结论本文对蔬菜大棚温湿度控制系统进行了设计,该系统能够实现对大棚内温度和湿度的自动调节,并且在节约能源的同时提高了农业生产效率。
由于该系统具有高可靠性和实用性,因此可以广泛应用于蔬菜大棚的生产中,为推动农业可持续发展做出贡献。
蔬菜大棚温湿度的控制系统设计
摘要随着大棚技术的普及,温室大棚数量不断增多,对于蔬菜大棚来说,最重要的一个管理因素是温湿度控制。
温湿度太低,蔬菜就会被冻死或则停止生长,所以要将温湿度始终控制在适合蔬菜生长的范围内。
传统的温度控制是在温室大棚内部悬挂温度计,工人依据读取的温度值来调节大棚内的温度。
如果仅靠人工控制既耗人力,又容易发生差错。
现在,随着农业产业规模的提高,对于数量较多的大棚,传统的温度控制措施就显现出很大的局性。
为此,在现代化的蔬菜大棚管理中通常有温湿度自动控制系统,以控制蔬菜大棚温度,适应生产需要。
本论文主要阐述了基于AT89C51单片机的西红柿大棚温湿度控制系统设计原理,主要电路设计及软件设计等。
该系统采用AT89C51单片机作为控制器,SHT10作为温湿度数据采集系统,可对执行机构发出指令实现大棚温湿度参数调节,具有上下位机直接设置温湿度范围,温湿度实时显示等功能。
上位机采用Delphi软件进行编写,用户界面友好,操作简单,可以根据大棚西红柿生长情况绘制成简明直观的作物生长走势图,从而容易得出最适合作物生长的温湿度值。
关键词:AT89C51;SHT10;蔬菜大棚;温湿度;控制系统;传感器1AbstractWith the popularization of trellis technology, greenhouse trellis an ever-growing number, for vegetable shed speaking, one of the most important management factor is the temperature and humidity control. Temperature is too low, the vegetables will freeze to death or stop growing, so will always control temperature and humidity in a suitable vegetable growth range. Traditional temperature control is in greenhouse trellis internal hanging a thermometer, workers according to regulate the temperature reading the temperature inside the shelter. If only by artificial control both consumption manpower, and easy to place regular orders. Now, with the improvement of agricultural industry scale, for larger quantity of trellis, traditional temperature control measures will show great bureau sex. Therefore, in modern vegetable shed management zhongtong often temperature and humidity automatic control system, in order to control the temperature, adapt to the trellis vegetable production needs.This thesis mainly elaborated based on AT89C51 tomatoes canopy temperature and humidity control system design principle, main circuit design and software design, etc. This system USES AT89C51 single chip microcomputer as controller, SHT10 as temperature and humidity data acquisition system, may to the actuator directives realize trellis temperature and humidity parameters adjustment, has the upper and lower level computer directly set temperature range, temperature and humidity real-time display, and other functions. PC using Delphi software to compile, user friendly interface, easy operation, can according to shed tomato growth situation blazoned with simple, direct simulations of crop growth, thus easy to draw the most suitable for crop growth of temperature and humidity value.Key words:AT89C51; SHT10;vegetable shed; Temperature and humidity; Control System; sensor2目录第1章绪论 (1)1.1系统设计背景 (1)1.2系统功能、优势及特点 (1)第2章设计内容 (4)2.1总体方案的设计 (4)2.1.1设计思想 (4)2.1.2系统组成及框图 (4)2.2系统主要电路的设计 (5)2.2.1主要芯片89C51的功能及引脚图 (5)2.2.2温湿度检测电路的设计 (7)2.2.3复位电路的设计 (12)2.2.4温湿度调节系统的设计 (12)2.2.5 SHT10数据采集程序 (13)第3章系统软件的设计 (15)3.1上位机软件设计 (15)3.2通信模块软硬件设计 (16)3.2.1 通信硬件设计 (16)3.2.2通信软件设计 (17)3.3系统主程序 (17)结束语 (19)参考文献 (20)3第1章绪论1.1系统设计背景植物的生长都是在一定的环境中进行的,其在生长过程中受到环境中各种因素的影响,其中对植物生长影响最大的是环境中的温度和湿度。
基于单片机与PLC的农业大棚温湿度控制系统设计
基于单片机与PLC的农业大棚温湿度控制系统设计一、本文概述随着科技的不断进步,农业生产的自动化和智能化已成为推动农业现代化的重要手段。
在这一背景下,单片机与PLC(可编程逻辑控制器)技术的应用逐渐凸显出其在农业大棚环境控制中的优势。
本文旨在探讨基于单片机与PLC的农业大棚温湿度控制系统的设计,通过对系统的硬件和软件部分的详细分析,旨在为读者提供一种高效、稳定且易于实现的农业大棚环境控制方案。
本文首先介绍了农业大棚温湿度控制的重要性,以及传统控制方法存在的问题。
接着,详细阐述了单片机与PLC在农业大棚温湿度控制中的工作原理和应用优势。
随后,文章将重点介绍系统的设计过程,包括硬件选择、电路设计、软件编程以及系统调试等方面。
在硬件选择方面,我们将介绍适合农业大棚环境控制的单片机和PLC型号,以及相关的传感器和执行器选择原则。
在软件编程方面,我们将提供基于C语言和梯形图的编程示例,并解释如何通过编程实现对大棚温湿度的精确控制。
文章将对系统的调试过程进行说明,包括硬件连接、软件调试以及系统性能测试等内容。
通过本文的研究,读者可以深入了解基于单片机与PLC的农业大棚温湿度控制系统的设计过程,掌握相关硬件和软件技术,为实际应用提供有力支持。
本文的研究成果对于推动农业生产的自动化和智能化,提高农业生产效率和质量具有重要意义。
二、系统总体设计在农业大棚温湿度控制系统中,单片机与PLC各自发挥着不可或缺的作用。
单片机以其低成本、低功耗、易编程的特性,负责现场数据的采集与处理,而PLC则以其强大的控制逻辑、稳定的运行性能,负责整体系统的管理与控制。
单片机部分主要负责采集大棚内的温湿度数据,并将这些数据实时传输给PLC进行处理。
我们选用具有AD转换功能的单片机,可以直接将温湿度传感器的模拟信号转换为数字信号,便于数据的处理与传输。
同时,单片机还需具备与PLC通信的功能,如使用RS485或RS232等通信协议,确保数据的准确传输。
蔬菜大棚恒温恒湿控制系统设计
蔬菜大棚恒温恒湿控制系统设计蔬菜大棚是一种人工控制环境的农业生产设施,可以为蔬菜提供合适的温度和湿度条件,以促进它们的生长和发育。
为了实现蔬菜大棚的恒温恒湿控制,需要设计一个控制系统,该系统能够监测温度和湿度,并根据设定的参数自动调节温度和湿度。
1.温度监测与控制:-温度传感器:安装在大棚内部的合适位置,可以实时监测大棚内的温度变化。
-控温设备:例如水冷却系统、加热系统等,可以根据传感器数据自动控制温度,保持大棚内部的恒温状态。
-温控器:接收传感器数据,根据设定的温度范围进行控制。
2.湿度监测与控制:-湿度传感器:安装在大棚内部的合适位置,可以实时监测大棚内的湿度变化。
-控湿设备:例如加湿器、除湿设备等,可以根据传感器数据自动控制湿度,保持大棚内部的恒湿状态。
-湿度控制器:接收传感器数据,根据设定的湿度范围进行控制。
3.控制系统集成:-控制器:负责接收传感器数据,并根据设定的参数进行调节,控制温度和湿度。
-人机界面:可以通过电脑、手机等设备进行监测和设置,方便农民了解大棚内的状态并进行调节。
以上是蔬菜大棚恒温恒湿控制系统的基本设计要点,可以根据具体情况进行调整和扩展。
在实际应用中,还可以添加其他功能,如自动通风、光照控制等,以提高蔬菜大棚的生产效率和质量。
设计蔬菜大棚恒温恒湿控制系统时1.传感器的选择:选择合适的温度传感器和湿度传感器,具有高精度、快速响应和较小的误差。
2.控制设备的选择:根据大棚的实际情况选择合适的控温和控湿设备,确保能够满足大棚内的需求。
3.控制策略的制定:根据不同蔬菜的生长需求和不同阶段的要求,制定合适的温度和湿度控制策略。
4.系统稳定性的考虑:系统应具有较高的稳定性和可靠性,能够在长期运行中保持良好的控制效果。
5.节能与经济性的平衡:在设计系统时考虑节能和经济性,选择节能设备和控制策略,降低运行成本。
综上所述,蔬菜大棚恒温恒湿控制系统的设计需要考虑温度和湿度的监测与控制,以及控制系统的集成与优化。
蔬菜大棚温湿度控制系统的PLC程序设计毕业设计
LANZHOU UNIVERSITY OF TECHNOLOGY毕业设计题目蔬菜大棚温湿度控制系统的PLC程序设计毕业论文(设计)诚信声明本人声明:所呈交的毕业论文(设计)是在导师指导下进行的研究工作及取得的研究成果,论文中引用他人的文献、数据、图表、资料均已作明确标注,论文中的结论和成果为本人独立完成,真实可靠,不包含他人成果及已获得或其他教育机构的学位或证书使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
论文(设计)作者签名:日期:年月日毕业论文(设计)版权使用授权书本毕业论文(设计)作者同意学校保留并向国家有关部门或机构送交论文(设计)的复印件和电子版,允许论文(设计)被查阅和借阅。
本人授权青岛农业大学可以将本毕业论文(设计)全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本毕业论文(设计)。
本人离校后发表或使用该毕业论文(设计)或与该论文(设计)直接相关的学术论文或成果时,单位署名为。
论文(设计)作者签名:日期:年月日指导教师签名:日期:年月日摘要温室大棚对现在的人们来说,是非常熟悉的一个名词,因为现在我们生活中的很多花卉、蔬菜、水果都是从温室大棚中种植出来的。
如何利用自动检测与自动控制系统有效的控制好温室大棚内的各种环境因子,以提高温室大棚环境的控制精度和效果,对我国温室业的发展有着不可估量的重要意义。
本设计采用西门子S7-300系列可编程控制器来实现自动化控制的温室大棚。
温度、湿度等环境因子在植物过程中起重要作用,在检测这环境因子的时候考虑到精度,反应速度,方便设备连接等问题,将采用温度传感器,湿度传感器对环境各项指标进行检测,传感器将检测的结果送入PLC 中,由PLC将其与设定值进行比较,再发出相应的指令驱动电机﹑卷帘等设备运行或停止来调节室内的温度、湿度,从而达到智能化,自动化控制的目的。
使用step7及wincc flexible实现上下位连调,详细的介绍系统的特点,组成,硬件设计及软件设计等问题。
大棚温湿度自动控制系统设计-毕业设计
大棚温湿度自动控制系统设计-毕业设计大棚温湿度自动控制系统设计是一个复杂而实用的毕业设计课题。
该系统旨在帮助农民控制和维持大棚内的温湿度,从而提高农作物的生产效益。
以下是设计该系统的几个主要步骤:1. 确定系统需求:首先需要与农民沟通,了解他们对大棚温湿度控制的具体要求。
例如,他们希望保持大棚内的温度在一定的范围内,以及监测并控制湿度水平等。
2. 选择传感器:根据系统需求确定所需的传感器。
可能需要温度传感器、湿度传感器和光照传感器等。
这些传感器将用于检测大棚内的环境参数。
3. 确定控制方法:根据系统需求和传感器的输出,设计控制算法来实现温湿度的自动控制。
例如,可以使用PID控制算法或模糊控制算法。
4. 选择执行器:根据控制算法的输出,选择合适的执行器来实现温湿度的调节。
例如,可以使用风机来调节温度,使用喷雾系统来调节湿度。
5. 界面设计:设计一个简单直观的用户界面,使农民可以轻松地监测和调节大棚内的温湿度。
界面可以使用单片机或者计算机上的软件来实现。
6. 系统集成:将所有的硬件和软件组件集成在一起,确保它们能够正常协同工作。
进行功能测试和性能测试,进行必要的调整和优化。
7. 调试和优化:在实际使用中,进行系统的调试和优化,确保系统稳定可靠,并满足农民的需求。
8. 编写论文:根据设计过程和结果,撰写一份完整的毕业设计论文,包括设计目的、设计方法、实验结果和结论等。
大棚温湿度自动控制系统设计是一个综合性的工程项目,需要综合运用电子技术、控制技术、软件开发等知识。
通过该设计项目,可以帮助农民提高大棚农作物的产量和质量,同时也为毕业生提供了一个实践和综合应用知识的机会。
蔬菜温室大棚温湿度控制系统解决方案设计
蔬菜温室大棚温湿度控制系统解决方案设计摘要阐述了基于单片机STC12C5A60S2控制和温湿度传感器DHT11感测数据的温湿度控制系统工作原理及软、硬件设计。
关键词温室大棚;温湿度控制;单片机;传感器DTH11随着农业产业规模不断扩大和大棚技术的不断普及,温室大棚数量不断增多。
温湿度控制是蔬菜大棚一个重要的控制环节。
温湿度太低,蔬菜会被冻死或停止生长,因此应将温湿度始终控制在适合蔬菜生长的范围内。
传统的温度控制是在温室大棚内悬挂温度计,工人根据读取的温度值调节大棚内的温度;而湿度控制只能依据工人的经验做出判断是否需要灌溉。
这种靠人工控制温湿度的方式方法,既耗人力,又不精确,传统的温湿度调控措施表现出极大的局限性。
笔者设计了基于单片机STC12C5A60S2和温湿度传感器DHT11采集数据的温湿度控制系统。
1温湿度控制系统基本工作原理系统核心架构如图1所示,单片机STC12C5A60S2通过温湿度传感器DHT11采集蔬菜温室大棚里的温度和湿度参数,并同时显示于显示模块和上位机电脑上。
操控者既可以通过上位机输入控制指令实现当前和历史温湿度查询,也可以现场通过温湿度显示模块观察当前温湿度读数,并通过上位机远程设定和修改适合蔬菜生长期的温湿度阀值。
系统根据当前温湿度阀值驱动继电器,控制执行机构进行相应操作,达到控制蔬菜温室大棚温湿度的效果[1-2]2温湿度控制系统硬件设计系统采用模块化设计,方便系统的升级、功能扩展或根据用户需求而定制和改造不同功能模块,既方便了设计、调试和维修,也大大增强了系统的实用性。
2.1温湿度数据采集电路采用DHT11数字温湿度传感器采集温室大棚的温湿度。
它是一款含有已校准数字信号输出的温湿度复合传感器,具有品质卓越、响应快、抗干扰能力强、体积小、功耗低、性价比高等优点,信号传输距离可达20m以上,是各类应用甚至最为苛刻的应用场合的最佳选择。
系统温湿度数据采集电路如图2所示2.2温湿度控制电路温湿度控制电路利用单片机P1口的P1.0~P1.4控制三极管的通断电,继而控制继电器的通断电,达到准确控制执行机构进行相应操作的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
**************************************************** 本科毕业设计题目蔬菜大棚温湿度控制系统的设计姓名*******专业电子科学与技术学号********指导教师**********电气工程学院二○一四年五月毕业设计(论文)任务书题目蔬菜大棚温湿度控制系统的设计专业电子科学与技术学号姓名主要内容、基本要求、主要参考资料等一.主要内容:1.检测,选择温度和湿度环境参数进行监控。
2.硬件系统设计(1)温湿度采样系统;(2)单片机控制系统;(3)显示系统;(4)报警控制系统。
3. 软件系统设计(1)单片机系统初始化;(2)对传感器采集的数据信息进行分析,通过单片机控制温度和湿度;(3)显示模块以及报警控制模块。
二.基本要求:1 查阅相关书籍、资料,确定合理的方案。
2 详细叙述工作原理,以及各功能模块。
3 采用温湿度传感器测量大棚内温度以及湿度。
4 显示模块显示测量的温度和湿度数值。
三.主要参考资料:[1] 谭浩强.单片机课程设计[M].北京:清华大学出版社,1989[2] 张毅刚.单片机原理及接口技术[M].哈尔滨:哈尔滨工业大学出版社,1990[3] 郭天祥.新概念51单片机C语言教程[M].电子工业出版社,2009完成期限:指导教师签名:专业负责人签名:填表日期:毕业设计(论文)开题报告课题名称蔬菜大棚温湿度控制系统的设计课题来源教师拟定课题类型BY 指导教师学生姓名学号专业电子科学与技术开题报告内容:(调研资料的准备,设计的目的、要求、思路与预期成果;任务完成的阶段内容及时间安排;完成设计(论文)所具备的条件因素等。
)一、调研资料的准备1、了解选题背景:蔬菜的生长对于温湿度具有一定的要求,因此需要对环境的温度和湿度进行监测和控制。
随着科学技术的发展,也要求利用现代化仪器,更方便的测试蔬菜大棚内的温湿度以及控制系统,从而进一步提高蔬菜产量和数量。
2、查阅了相关书籍及参考资料(1)艾运阶. MCS_51单片机项目教程. 北京:北京理工大学出版社,2012(2)谭浩强. C语言程序设计(第三版) [M]. 北京:清华大学出版社,2005(3)程国钢,陈跃琴,崔荔蒙.51单片机典型模块开发查询手册. 北京:电子工业出版社,2012(4)白延敏. 51单片机典型系统开发实例精讲. 北京:电子工业出版社,2009 二、设计目的、要求为了更好的利用温室栽培这一高效技术,就必需运用科学的、先进的管理方法,用以对不同种类蔬菜生长的各个时期所需的温度及湿度等进行实时的监控。
这种自动控制的方法,可以准确的监控与调节温室内的环境,从而提高蔬菜生产产量。
1. 采用温湿度传感器测量大棚内温度以及湿度。
2. 显示模块显示测量的温度和湿度数值。
三、设计思路本设计主要采用由单片机控制的设计方案,主要有传感器、A/D转换器、单片机、电源和显示电路几部分组成。
1. 温湿度传感器:传感器是一种可以将重量转化成电量的转换元件,从而可以把温湿度转换成适合于计量求值的信号。
2. A/D转换器:A/D转换器是将输入的模拟信息转换成计算机可以识别的数字信息。
3. 控制部分:单片机将A/D转换器转换后的数字量进行处理,并送往显示电路显示。
4. 显示单元:使用1602液晶显示屏来显示控制模块送来的数字量,即被测环境温度及湿度。
5. 电源:电源为电路提供直流电源。
四、预期成果1. 外文文献翻译、开题报告、文献综述及毕业设计说明书。
2. 按设计要求完成实作,实现可以检测并显示室内温湿度数值,当超过设定数值时,系统将发出报警。
五、任务完成的阶段内容及时间安排:根据进度要求完成。
六、完成设计(论文)所具备的条件因素1. 学校为我们提供的实验室包括:电子产品组装实验室、单片机室等。
2.使用Keil、protes等软件。
指导教师签名:日期:注:课题来源要填写明确(如教师拟定、学生建议、某企事业单位项目等)课题类型:(1)A—工程设计;B—技术开发;C—软件工程;D—理论研究;E—制作(作品)(2)X—真实课题;Y—模拟课题;Z—虚拟课题;要求(1)、(2)均要填,如AY,BY等。
目录摘要 (I)Abstract ........................................................................................................................ I I 前言. (III)1设计概述 (1)1.1国内外智能控制系统的发展概况 (1)1.2系统设计背景 (2)2系统设计思想 (3)3系统硬件设计 (5)3.1单片机模块 (5)3.1.1单片机的选择 (5)3.1.2单片机最小系统 (6)3.2温湿度采集模块 (7)3.3液晶显示模块 (10)3.3.1 LCD1602概述 (11)3.3.2 LCD1602基本参数及引脚功能 (11)3.4报警模块 (13)3.5控制模块 (13)3.6阀值模块 (14)4系统软件程序的设计 (15)4.1软件程序设计 (15)4.2仿真软件介绍 (16)4.2.1 Proteus简介 (16)4.2.2 Keil C51编译器简介 (16)4.3整体下载与调试 (17)4.3.1 USB转串口驱动安装 (17)4.3.2下载程序 (17)4.3.3调试 (18)5 系统总体设计 (19)结论 (20)致谢 (21)参考文献 (22)附录 (24)附录1:实物照片 (24)附录2:原理图 (25)附录3:程序编写 (25)附录4:元器件清单 (29)蔬菜大棚温湿度控制系统的设计摘要温湿度控制已成为当今社会研究的热门项目。
是农业生产过程中必须考虑的因素,作为最常见的被控参数。
现在国外有很多农场对于温室的智能控制系统有了一定的应用,但其成本高昂,针对国内大棚的特点是不能做到全面的普及。
正对这一实际情况,研发一套低价格、高性能的温室温湿度控制系统,在我们国内具有非常广泛的应用前景和实际意义。
本文以STC89C52单片机为核心控制器,结合DHT11电容式数字温湿度传感器,液晶显示屏1602显示以及模拟调节模块,完成电路硬件设计。
通过软件编程控制数据下载到单片机完成温湿度显示、阀值设置。
此次设计系统能实现的功能如下:通过四个按键方便地实现温湿度上限的调整,液晶显示屏能实时显示当前环境温湿度。
芯片AT24C04使存储的温度上限和湿度上限可以掉电永久保存。
当温度或湿度超限后,报警信号点亮相应报警灯。
结合三极管和继电器,该信号也可以驱动继电器打开或切断排风扇转动。
文中提出了设计方案,讨论了蔬菜大棚温湿度巡回检测与控制的基本原理,进行了可行性论证。
给出了电路图和程序流程图并附有源程序。
关键词:传感器;温湿度;单片机;智能控制DESIGN OF CONTROL SYSTEM INTEMPERATURE AND HUMIDITY FORVEGETABLE GREENHOUSEAbstractIn today's social studies, temperature and humidity control has become a hot item . Is a factor that must be considered in the industrial and agricultural production process. As the control parameters of the most common. Now there are a lot of farms for overseas greenhouse intelligent control system has a certain application, but its high cost, according to the characteristics of domestic greenhouse is can't do the comprehensive popularization. Is the actual situation, developed a set of low price, high performance of the greenhouse temperature and humidity control system, in our country has a very broad application prospects and practical significance. STC89C52 single-chip microcomputer as the core controller, this paper combined with digital temperature and humidity sensor DHT11 capacitance type, LCD display and 1602 simulation adjustment module, complete the design of hardware circuit. Through software programming control data downloaded to the single-chip microcomputer temperature and humidity display, threshold Settings. The design system can realize the function is as follows: through four buttons easily realize the adjustment of the upper limit of temperature and humidity, LCD screen can display the current environmental temperature and humidity in real time. Chip AT24C04 storage limit the maximum temperature and humidity can be permanent when power supply drop. When temperature or humidity transfinite alarm signal light lamp accordingly. Combined with the transistor and relay, the signal can also drive the relay on or cut off the fan rotation. This paper puts forward the design scheme, and discusses the vegetable greenhouses, the basic principle of the temperature and humidity measurement and control circuit. The circuit diagram and program flow chart are given with the active program.Keywords : Sensor;temperature and humidity;MCU;intelligent control前言目前,随着蔬菜大棚数量的迅速增多,人们对其性能要求也越来越高。