STM32 波形采集、存储与回放
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波形采集、存储与回放系统设计
摘要
本设计是基于数字示波器的原理,以STM32-cortex-m3作为控制芯片,把波形采集分为A、B两个通道,对A通道的输入信号进行衰减,对B通道的输入信号进行放大,然后采用内部集成的高速AD对信号进行实时采样,方式为上升沿内触发,可以实现波形的单次和多次触发存储和回放显示,以及频率、周期、峰-峰值的测量和显示,并具有掉电存储功能。由信号采集、数据处理、波形显示,控制面板等功能模块组成,整个系统分成A/D转换部分、D/A转换部分、波形存储部分、键盘输入控制四大部分,系统操作简便,输出波形可以在示波器输出显示,此存储示波器即具有一般示波器实时采样实时显示的功能,又可以对某段波形进行即时存储和连续回放显示,且界面友好,达到了较好的性能指标。具体设计原理以及过程在下面章节中详细说明。
关键字:STM32、波形采集、波形存储、波形回放
Abstract
The design is based on the principle of digital oscilloscope, with
STM32-cortex-m3 as the control chip, the waveform acquisition is divided into A, B two channel, the A channel input signal attenuation on B channel, the input signal is amplified, then using the internal integration of high-speed AD on real time data sampling, as rising edge trigger, can achieve waveform of single and multiple triggers the storage and playback and display, frequency, cycle, peak to peak value measurement and display, and power failure memory function. The signal acquisition, data processing, waveform display, the control panel and other functional modules, the system is divided into A/D transformation, D/A converting part, waveform storage, keyboard input control system four parts, simple operation, the output waveform can be output in the oscilloscope display, this storage oscilloscope namely has the common oscilloscope real-time sampling real time display function, can be a real-time storage and continuous playback waveform display, and friendly interface, has achieved good performance. The design principle and process are described in detail in the following sections.
Keywords: STM32, waveform acquisition, storage, waveform waveform playback
模拟路灯控制系统设计
目录
一、总体方案思路及其设计 (4)
1.1、采样方式 (4)
1.2、双踪示波器显示方式 (5)
1.3、控制部分方案的设计 (5)
1.4、显示方式 (5)
二、系统理论分析与功能模块设计 (5)
2.1 、最小系统及A/D,D/A电路 (5)
2. 2、单元电路 (6)
三、软件设计....................................................................................................错误!未定义书签。
3.1、软件流程...................................................................................................错误!未定义书签。
3.2:软件子程序.......................................................................................错误!未定义书签。
四、测试方案与测试结果................................................................................错误!未定义书签。
五、结束语 (10)
附件1:系统程序 (10)
一、总体方案思路及其设计
1、根据题目要求进行相关指标分析
根据题目要求A通道只是对单极性(高电平为4V,低电平为0V,频率为1KHZ)的信号进行采集、存储和连续回放;B通道需要对双极性(电压峰峰值为 100mV、频率为 10Hz~10kHz)的信号进行处理。
对信号的采集要通过前置电路接到AD转换器,把方波、正弦波和三角波的大小和周期转化成数字量让STM32-cortex-m3单片机进行处理。对数据的存储和连续回放由单片机的内部程序来实现。
2、方案比较与分析
1.1、采样方式
方案一:实时采样。实时采样是在信号存在期间对其采样。根据采样定理,采用速率必须高于信号最高频率分量的两倍。对于周期的正弦信号,一个周期内应该大于两个采样点。为了不失真的恢复原被测信号,通常一个周期内就需要采样八个点以上。由于实时采样对波形逐点进行采集,可以实时显示输入信号的波形因此适合任何形式的信号波形,重复或者不重复的,单次的或者连续的。由于所采集的信息是按时间顺序的,因而易于实现波形的显示功能。
方案二:等效时间采样法。采用中高速模数转换器,对于频率较高的周期性信号采用等效时间采样的方法,即对每个周期仅采样一个点,经过若干个周期后就可对信号各个部分采样一遍。而这些点可以借助步进延迟方法均匀地分布于信号波形的不同位置。其中步进延迟是每一次采样比上一次样点的位置延迟△t时间。只要精确控制从触发获得采样的时间延迟,就能够准确地恢复出原始信号。等效采样可以实现很高的数字化转换速率。其基本原理就是通过多次触发,多次采样而获得并重建信号波形。前提是信号必须是重复的。等效采样通过多次采样,把在信号的不同周期中采样得到的数据进行重组,从而能够重建原始的信号波形。