(完整word版)最小二乘法及其应用..
最小二乘法的原理及其应用

最小二乘法的原理及其应用-CAL-FENGHAI.-(YICAI)-Company One1最小二乘法的原理及其应用一、研究背景在科学研究中,为了揭示某些相关量之间的关系,找出其规律,往往需要做数据拟合,其常用方法一般有传统的插值法、最佳一致逼近多项式、最佳平方逼近、最小二乘拟合、三角函数逼近、帕德(Pade)逼近等,以及现代的神经网络逼近、模糊逼近、支持向量机函数逼近、小波理论等。
其中,最小二乘法是一种最基本、最重要的计算技巧与方法。
它在建模中有着广泛的应用,用这一理论解决讨论问题简明、清晰,特别在大量数据分析的研究中具有十分重要的作用和地位。
随着最小二乘理论不断的完善,其基本理论与应用已经成为一个不容忽视的研究课题。
本文着重讨论最小二乘法在化学生产以及系统识别中的应用。
二、最小二乘法的原理人们对由某一变量t或多个变量t1…..tn 构成的相关变量y感兴趣。
如弹簧的形变与所用的力相关,一个企业的盈利与其营业额,投资收益和原始资本有关。
为了得到这些变量同y之间的关系,便用不相关变量去构建y,使用如下函数模型,q个相关变量或p个附加的相关变量去拟和。
通常人们将一个可能的、对不相关变量t的构成都无困难的函数类型充作函数模型(如抛物线函数或指数函数)。
参数x是为了使所选择的函数模型同观测值y相匹配。
(如在测量弹簧形变时,必须将所用的力与弹簧的膨胀系数联系起来)。
其目标是合适地选择参数,使函数模型最好的拟合观测值。
一般情况下,观测值远多于所选择的参数。
其次的问题是怎样判断不同拟合的质量。
高斯和勒让德的方法是,假设测量误差的平均值为0。
令每一个测量误差对应一个变量并与其它测量误差不相关(随机无关)。
人们假设,在测量误差中绝对不含系统误差,它们应该是纯偶然误差,围绕真值波动。
除此之外,测量误差符合正态分布,这保证了偏差值在最后的结果y上忽略不计。
确定拟合的标准应该被重视,并小心选择,较大误差的测量值应被赋予较小的权。
高中数学中的最小二乘法及其应用

高中数学中的最小二乘法及其应用在高中数学学习中,最小二乘法是一个不可避免的话题。
最小二乘法是一种最小化误差平方和的方法,常用于解决拟合问题。
虽然在高中阶段,我们只学习了最小二乘法的基本概念和简单应用,但这个方法在现代科技中有着广泛的应用,比如在统计学、物理学、金融学和计算机科学等方面均有重要作用。
定义和基本概念首先,让我们来看看最小二乘法的基本定义和概念。
在数学上,最小二乘法是指通过最小化误差平方和来拟合数据的一种方法。
这个方法的主要思想是通过多项式或其他数学函数的组合来估算实验或经验数据中的未知参数。
当测量值的数量大于未知参数的数量时,通常使用最小二乘法进行拟合。
具体来说,假设数据集中包含n个数据点,每个数据点都有一个x坐标和一个y坐标。
我们试图寻找一条曲线f(x),使得所有的数据点到曲线上的对应点的误差平方和最小。
换句话说,我们要找到最小化S的值:S = Σ(yi - f(xi))^2其中yi是第i个数据点的纵坐标,f(xi)是曲线在第i个数据点处的函数值。
应用举例在高中数学理解最小二乘法的应用时,我们通常以拟合直线为例子。
需要强调的是,在实际应用中,最小二乘法不仅可以用于拟合直线,还可以用于拟合多项式、三角函数、指数函数等。
最小二乘法的应用不仅仅局限于数学领域,它在实际生活中的应用非常广泛。
以下几个具体例子可以帮助我们更好地理解它的应用。
1.股票价格预测股票价格的变化是一个非常复杂的问题,涉及到众多因素。
投资者在预测股票价格时,通常会使用历史数据分析出一个预测模型。
这个模型可能是一个多项式、三角函数、指数函数,或者其他足以概括复杂性的表达式。
最小二乘法可以被用来确定这个模型的参数值,使得它能够最好地拟合历史数据,并预测未来的价格。
2.医学数据分析医学研究涉及到大量的数据收集和分析。
例如,在药物试验中,研究人员需要分析每个病人的生理数据,比如病人的血压、血糖、体重等。
最小二乘法可以帮助研究人员确定这些数据之间的关系,以便更好地理解病人的状况和早期预测病情。
最小二乘法的原理及其应用

最小二乘法的原理及其应用1. 最小二乘法的原理最小二乘法是一种常用的数学优化方法,其原理是通过最小化残差平方和来寻找数据的最佳拟合线或曲线。
当数据存在随机误差时,最小二乘法可以有效地估计模型参数。
最小二乘法的基本原理可以概括为以下几个步骤:1.首先,假设模型的形式,如线性模型:y=mx+b。
2.然后,定义一个衡量模型拟合程度的误差函数,通常采用残差的平方和:$E(m, b) = \\sum_{i=1}^{n} (y_i - (mx_i + b))^2$。
3.接下来,根据最小二乘法的原理,我们需要通过对误差函数求偏导数,得出使误差函数最小化的模型参数。
4.最后,通过优化算法,如梯度下降法等,迭代地调整模型参数,使误差函数达到最小值,从而获得最佳拟合模型。
最小二乘法的原理非常简单和直观,因此被广泛应用于各个领域,如统计学、经济学、工程学等。
2. 最小二乘法的应用最小二乘法在实际问题中有着广泛的应用,下面将介绍其中的几个应用场景。
2.1 线性回归线性回归是最小二乘法最常见的应用之一。
在线性回归中,最小二乘法用于估计自变量与因变量之间的线性关系。
通过最小化残差平方和,我们可以找到一条最佳拟合直线,从而对未知的因变量进行预测。
线性回归广泛应用于经济学、社会学等领域,帮助研究者探索变量之间的相互关系。
2.2 曲线拟合最小二乘法还可以用于曲线拟合。
当我们需要拟合一个非线性模型时,可以通过最小二乘法来估计参数。
通过选择适当的模型形式和误差函数,可以得到最佳拟合曲线,从而准确地描述数据的变化趋势。
曲线拟合在信号处理、图像处理等领域具有重要的应用。
2.3 数据降维数据降维是指将高维度的数据转化为低维度表示,以便于可视化和分析。
最小二乘法可以用于主成分分析(PCA)等降维方法中。
通过寻找投影方向,使得在低维度空间中的数据点到其投影点的平均距离最小化,可以实现数据的有效降维。
2.4 系统辨识在控制工程中,最小二乘法经常被用于系统辨识。
最小二乘法在机械领域的应用

最小二乘法在机械领域的应用
最小二乘法是一种数学优化技术,通过最小化误差的平方和寻找数据的最佳函数匹配。
它在许多领域中都有广泛的应用,包括机械领域。
在机械领域中,最小二乘法可以用于各种回归分析和曲线拟合问题。
例如,在机械故障诊断和预测中,可以通过最小二乘法对机械设备的运行数据进行拟合,从而预测设备的未来状态。
另外,最小二乘法还可以用于机械零件的尺寸测量和质量控制等方面,通过对测量数据的分析,可以确定零件的尺寸是否符合要求,以及如何改进生产工艺以提高产品质量。
此外,最小二乘法还可以与其他算法和技术结合使用,例如支持向量机、神经网络等,以解决更复杂的机械问题。
例如,可以使用最小二乘法对机械设备的动态特性进行建模和分析,以优化设备的性能和可靠性。
总之,最小二乘法在机械领域中具有广泛的应用价值,可以帮助工程师们更好地理解和预测设备的行为,优化设计方案,提高生产效率和质量。
(完整word版)多种最小二乘算法分析+算法特点总结

第一部分:程序设计思路、辨识结果分析和算法特点总结 (3)一:RLS遗忘因子法 (3)RLS遗忘因子法仿真思路和辨识结果 (3)遗忘因子法的特点: (4)二:RFF遗忘因子递推算法 (4)仿真思路和辨识结果 (4)遗忘因子递推算法的特点: (6)三:RFM限定记忆法 (6)仿真思路和辨识结果 (6)RFM限定记忆法的特点: (7)四:RCLS偏差补偿最小二乘法 (7)仿真思路和辨识结果 (7)RCLS偏差补偿最小二乘递推算法的特点: (9)五:增广最小二乘法 (9)仿真思路和辨识结果 (9)RELS增广最小二乘递推算法的特点: (11)六:RGLS广义最小二乘法 (11)仿真思路和辨识结果 (11)RGLS广义最小二乘法的特点: (13)七:RIV辅助变量法 (14)仿真思路和辨识结果 (14)RIV辅助变量法的特点: (15)八:Cor-ls相关最小二乘法(二步法) (15)仿真思路和辨识结果 (15)Cor—ls相关最小二乘法(二步法)特点: (17)九:MLS多级最小二乘法 (17)仿真思路和辨识结果 (17)MLS多级最小二乘法的特点: (21)十:yule_walker辨识算法 (21)仿真思路和辨识结果 (21)yule_walker辨识算法的特点: (22)第二部分:matlab程序 (23)一:RLS遗忘因子算法程序 (23)二:RFF遗忘因子递推算法 (24)三:RFM限定记忆法 (26)四:RCLS偏差补偿最小二乘递推算法 (29)五:RELS增广最小二乘的递推算法 (31)六;RGLS 广义最小二乘的递推算法 (33)七:Tally辅助变量最小二乘的递推算法 (37)八:Cor-ls相关最小二乘法(二步法) (39)九:MLS多级最小二乘法 (42)十yule_walker辨识算法 (46)第一部分:程序设计思路、辨识结果分析和算法特点总结一:RLS遗忘因子法RLS遗忘因子法仿真思路和辨识结果仿真对象如下:其中, v(k )为服从N(0,1)分布的白噪声。
非线性曲线拟合的最小二乘法及其应用

的表达形式 y =
t at + b
,通过变量变换将它转化为关于
特定参数的线性函数,可以将上式改写成 1 = a + b ,
y
t
于是,引进新变量 y(1) = 1 ,t(1) = 1 ,则上式变换成 y(1) =
y
t
a + bt(1),根据线性最小二乘法的解法,可以求得 a = 80.6621,
b = 161.6822, 代入到 y = t , 得经验公式①: y = at + b
-∞, 1 4
∪
1 ,1 4
∪(1,+∞).
3. 如 果 函 数 y =
ax2 + bx + c dx2 + ex + f
(d ≠ 0)的 定 义 域 不
是 R,且分子与分母中没有相同的因式,可以直接用 Δ
法求函数的值域. 事实上,假如 x0 使得 dx0 + ex0 + f = 0,
而 ax0 + bx0 + c ≠ 0,
t 80.6621t + 161.6822
.
b
方 案 2 设 想 y = φ(t)具 有 指 数 形 式 y = ae t ,a >
0,b < 0. 为了在求参数 a 和 b 时,避免求解一个非线性
方程组,对上式 两 边 取 对 数 得 ln y = ln a + b ,引 入 新 t
变 量 y(2) = ln y,t(2) = 1 并 记 A = ln a,B = b,则 上 式 就 t
关于 x 的二次方程,这时又可转化为学生所熟悉的根的
判别式问题,但这种方法常常存在变形上的不等价和逻
辑上的不严密而导致结果错误,现归纳整理如下:
浅谈最小二乘法的原理及其应用【开题报告】

开题报告信息与计算科学浅谈最小二乘法的原理及其应用一、综述本课题国内外研究动态, 说明选题的依据和意义最小二乘法(Least Square Method )是提供“观测组合”主要工具之一, 它依据对某事件的大量观测而获得“最佳”结果或“最可能”表现形式. 如已知两变量为线性关系y a bx =+, 对其进行(2)n n >次观测而获得n 对数据. 若将这n 对数据代入方程求解,a b 的值则无确定解, 而最小二乘法提供了一个求解方法, 其基本思想是寻找“最接近”这n 个观测点的直线.最小二乘法创立与十九世纪初, 是当时最重要的统计方法, 在长期的发展中, 人们一直处于不断的研究中, 在传统最小二乘法的基础上, 出现了许多更为科学先进的方法, 如移动最小二乘法、加权最小二乘法、偏最小二乘法、模糊最小二乘法和全最小二乘法等, 使得最小二乘法在参数估计、系统辨识以及预测、预报等纵多领域都有着广泛的应用. 相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础, 所以最小二乘法被称之为数理统计学的灵魂. 正如美国统计学家斯蒂格勒(S. M. Stigler )所说, “最小二乘法之于数理统计学犹如微积分之于数学”. 因此对最小二乘法的研究就显得意义重大.国内外的学者们一直在对传统最小二乘法做进一步的研究. 勒让德(A. M. Legender )于1805年发表了论著《计算彗星轨道的新方法》, 在书中勒让德描述了最小二乘法的思想、具体做法及其优点, 他认为: 赋予误差的平方和为极小, 则意味着在这些误差间建立了一种均衡性, 它阻止了极端情形所施加的过分影响. 1809年高斯(C. F. Gauss )在著作《天体沿圆锥截面围绕太阳运动的理论》中发表有关最小二乘法的理论, 随后在1826年的著作中阐述了最小二乘法的全部内容. 统计学者对最小二乘法做了进一步的研究探讨, 1970年, 由霍尔(A. E. Horel )和肯纳德(R. W. Kennard )提出的岭估计(Ridge Estimate ), 用()()11ˆni i i k S kI x y β-==+∑取代ˆβ, 有效的降低了原方法的病态性.在国内, 学者们也对传统最小二乘法做了非常多的改进: 孙彦清在《最小二乘法线性拟合应注意的两个问题》一文中对最小二乘法线性拟合应注意的两个问题中从理论上分析了最小二乘法原理及其在实际曲线拟合问题中的应用, 指出了最小乘法处理线性拟合应注意的两个问题: 拟合应用条件和误差比较. 在文《最小二乘法处理自变量误差实验数据的方法》中, 学者代锦辉对最小二乘法在实验数据处理和在数学研究上面的应用做了相应的介绍和研究, 使人们认识到: 在科学实验中处理数据时, 在自变量有误差的情况下, 用最小二乘法的几种方法处理实验数据, 这样可以降低在实际测量中由于测量数据无法避免的误差, 从而提高科学实验的准确性, 更加突出实验的科学性. 这也使得最小二乘法在数学研究及科学实验中有着更为广泛的运用. 程玉民等人在《移动最小二乘法研究进展与评述》一文中对移动最小二乘法做了进一步的研究探讨, 对移动最小二乘法做了改进, 同时还评述了各种移动最小二乘法的优缺点, 并概述各种移动最小二乘法形成的无网格方法的研究进展. 运用各种移动最小二乘法求解静态和动态断裂力学, 求解弹塑性等问题. 在《改进的最小二乘法在水文分析计算中的应用》一文中, 王淑英、高永胜为了达到所有实测点与拟合曲线间的相对误差尽量不超过某一百分比的原则要求, 提出了非线性的加权最小二乘法及线性相关方程的最小距离平方和法, 探讨改进了传统的最小二乘法达到优化的效果.虽然最小二乘法简单易行, 应用广泛, 但仍然存在一些问题: 计算量较大, 当观测数据较多时, 计算会显得复杂, 尤其是要进行矩阵求逆, 矩阵阶数高时更为复杂; 容易受系统误差的影响, 系统误差的存在导致了最小二乘估计不再是无偏估计, 使得估计无效; 受测量误差相关性的影响, 从理论上讲, 当观测误差相关时, 取权矩阵为协方差矩阵的逆, 便可得到线性无偏最小方差估计. 但在实际情况中, 协方差矩阵是未知的; 当观测数据含较大异常值时, 将严重影响最小二乘估计结果.本文拟在理解传统最小二乘法的原理及思想基础上,对几种改进算法进行研究分析,并深入探讨该方法在实际问题中的应用,希望进一步拓宽其应用领域.二、研究的基本内容, 拟解决的主要问题研究的基本内容: 对最小二乘法原理及其应用的研究拟解决的主要问题:1.对几种改进的最小二乘法进行分析研究;2.研究最小二乘法在实际问题中的应用.三、研究步骤、方法及措施研究步骤:1.理解并掌握最小二乘法的基本原理及其思想方法;2.分析研究对最小二乘法改进的算法;3.研究最小二乘法在实际问题中的应用.方法、措施:通过到图书馆、上网等查阅收集资料,上万方数据库查找文章, 参考相关内容. 在老师指导下, 与同组同学研究讨论, 用数据调查结合文献论证的方法来解决问题.四、参考文献[1]GU Xiangqian, KANG Hongwen, CAO Hongxing. The least-square method in complexnumber domain[J]. Progress in Natural Science.2006,1:59-63.[2]LI Guo-qing, MENG Zhao-ping, MA Feng-shan, ZHAO Hai-jun, DING De-min, LIU Qin,WANG Cheng. Calculation of stratum surface principal curvature based on moving least square method[J]. Journal of China University of Mining&Technology.2008,3:307-312.[3]陈希孺.最小二乘法的历史回顾与现状[J].中国科学院研究生院学报.1998,1:4-11.[4]程玉民.移动最小二乘法研究进展与评述[J].计算机辅助工程.2009,2:5-11.[5]王淑英,高永胜.改进的最小二乘法在水文分析计算中的应用[J].水文.2003. 5: 5-9.[6]宋殿瑞,宋文臣,刘朋振.最小二乘法应用探讨[J].青岛化工学院学报.1998,3:296-301.[7]孙彦清.最小二乘法线性拟合应注意的两个问题[J].汉中师范学院学报.2002,1: 59-61.[8]张庆海,潘华锦,齐建英.用最小二乘法测弹簧的有效质量[J].大学物理.2002,11:33-34.[9]代锦辉.最小二乘法处理自变量误差实验数据的方法[J].实验科学与技术学报,2006,4(4):21-46.[10]张红贵,宋志尧,章卫胜.潮位相关分析中的最小二乘法研究[J].水道港口.2007,3:153-155.。
(完整word版)最小二乘法拟合圆公式推导及matlab实现

2009-01-17 |最小二乘法(least squares analysis) 是一种数学优化技术,它通过最小化误差的平方和找到一组数据的最佳函数匹配。
最小二乘法是用最简的方法求得一些绝对不可知的真值,而令误差平方之和为最小。
小二乘法通常用于曲线拟合(least squares fitti ng) 。
这里有拟合圆曲线的公式推导过程和vc实现。
最小二乘法拟會圆曲线;= (x- +R2 = +- 2By4-B2令a=-2J4b = -2Bc = J^ +矿-0可得圆曲线方程的另一个册式Ix2 -\-y3十切十u = 0只要求出参数就可以求得圆心半径的参教;d)样本集(禺<并e (123…N)中点到圆心的距离为a:打=(禺・4)2+(E傢点(耳乙)到圆边嫌的距离的平方与和半径平方的差为:@=£2_衣=(圣.4)2+(込.8)2_氏2=血2+込2+込+&乙+卍令Q(a,b,c)为Q的平方和:Q(aM = Z^2=工【(*/ + §2 + 込+b 齐+C)]2求参数a f b,c使得Q(a,g的值最小值。
解・PTT •平方差Qgg大于0,因此函数存在大于或等于0的极小值,极大值为无穷大.F(a,M)对a,吐求偏导,令偏导等于0,得到极值点,比较所有极值点的函数值即可得到最小值.绘仏"疋)=工2窗 +里+込+埒+c)Xjda —=0 迤(a,bQ =匸2阳+貯+込+坷+训=0範仏上疋)=工2(禺2+乙2+込 +空+° = 0 d解这个方程组。
(2)(3)(4)di(诵先消去c(2) W ⑷*工扎得:Ng 代'+Y-+aX +bY + c)X -工莎‘ +严 +aX +bY+c)x^X = 0 N^(X 2 +Y : +bY)X -^(X : +Y : +aX +bY)x^X =0("工禺2_工兀工兀)a + (“Y*占一工禺工齐仏(*+ + M 工*必2 -工牡丁 +去2)工禺=0(3) *N_⑷*工£得:N 工(X’ + y' + oZ +bY+c)Y-^(X 2 +Y- +aX +bY + c)x^Y =Q 吧(/+护 +aX +bY)Y +Y : +aX +dK)xVy =o (N'X 必一工禺工齐归+ (“丫呼一工§工齐)3 +“Y+N 工厅一 g af +严)三齐=o C =〔NgQ -gX 二X)D = (N 工尤F -工龙三卩)E-N^X 、+N^XY -工疔+丫‘)工XG = (NM 旷-三丫工丫)H =NW X'Y 七NT H -工 2’ +K-)YK可解得:|G? + Db + 5 = 0Da+Gb + H = 0HD-EG a = r CG-D 、v HC- ED o =D' _GC 工(疔+齐2)+幺工兀+c ―― ---------------------------------------------- N得A 、B 、R 的估计拟合值:R= - Ja‘ +2?' -牡 2(6)matlab 实现:function [R,A,B]=circ(x,y,N)x1 = 0;x2 = 0;x3 = 0;y1 = 0;y2 = 0;y3 = 0;x1y1 = 0;x1y2 = 0;x2y1 = 0;for i = 1 : Nx1 = x1 + x(i);x2 = x2 + x(i)*x(i);x3 = x3 + x(i)*x(i)*x(i);y1 = y1 + y(i);y2 = y2 + y(i)*y(i);y3 = y3 + y(i)*y(i)*y(i); x1y1 = x1y1 + x(i)*y(i); x1y2 = x1y2 +x(i)*y(i)*y(i); x2y1 = x2y1 + x(i)*x(i)*y(i); endC = N * x2 - x1 * x1;D = N * x1y1 - x1 * y1;E = N * x3 + N * x1y2 - (x2 + y2) * x1;G = N * y2 - y1 * y1;H = N * x2y1 + N * y3 - (x2 + y2) * y1;a = (H * D - E * G)/(C * G - D * D);b = (H * C - E * D)/(D * D - G * C);c = -(a * x1 + b * y1 + x2 + y2)/N;A = a/(-2); %x 坐标B = b/(-2); %y 坐标R = sqrt(a * a + b * b - 4 * c)/2;void CViewActionImageTool::LeastSquaresFitting(){if (m_nNum<3){ return; } int i=0;double X1=0;double Y1=0;double X2=0;double Y2=0;double X3=0;double Y3=0;double X1Y1=0;double X1Y2=0;double X2Y1=0;for (i=0;i<m_nNum;i++){X1 = X1 + m_points[i].x;Y1 = Y1 + m_points[i].y;X2 = X2 + m_points[i].x*m_points[i].x;Y2 = Y2 + m_points[i].y*m_points[i].y;X3 = X3 + m_points[i].x*m_points[i].x*m_points[i].x;Y3 = Y3 + m_points[i].y*m_points[i].y*m_points[i].y;X1Y1 = X1Y1 + m_points[i].x*m_points[i].y;X1Y2 = X1Y2 + m_points[i].x*m_points[i].y*m_points[i].y;X2Y1 = X2Y1 + m_points[i].x*m_points[i].x*m_points[i].y; } double C,D,E,G ,H,N;double a,b,c;N = m_nNum;C = N*X2 - X1*X1;D = N*X1Y1 - X1*Y1;E = N*X3 + N*X1Y2 - (X2+Y2)*X1;G = N*Y2 - Y1*Y1;H = N*X2Y1 + N*Y3 - (X2+Y2)*Y1;a = (H*D-E*G)/(C*G-D*D);b = (H*C-E*D)/(D*D-G*C);c = -(a*X1 + b*Y1 + X2 + Y2)/N;double A,B,R;A = a/(-2);B = b/(-2);R = sqrt(a*a+b*b-4*c)/2; m_fCenterX = A; m_fCenterY = B;m_fRadius = R; return;}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最小二乘法及其应用1. 引言最小二乘法在19世纪初发明后,很快得到欧洲一些国家的天文学家和测地学家的广泛关注。
据不完全统计,自1805年至1864年的60年间,有关最小二乘法的研究论文达256篇,一些百科全书包括1837年出版的大不列颠百科全书第7版,亦收入有关方法的介绍。
同时,误差的分布是“正态”的,也立刻得到天文学家的关注及大量经验的支持。
如贝塞尔( F. W. Bessel, 1784—1846)对几百颗星球作了三组观测,并比较了按照正态规律在给定范围内的理论误差值和实际值,对比表明它们非常接近一致。
拉普拉斯在1810年也给出了正态规律的一个新的理论推导并写入其《分析概论》中。
正态分布作为一种统计模型,在19世纪极为流行,一些学者甚至把19世纪的数理统计学称为正态分布的统治时代。
在其影响下,最小二乘法也脱出测量数据意义之外而发展成为一个包罗极大,应用及其广泛的统计模型。
到20世纪正态小样本理论充分发展后,高斯研究成果的影响更加显著。
最小二乘法不仅是19世纪最重要的统计方法,而且还可以称为数理统计学之灵魂。
相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础。
正如美国统计学家斯蒂格勒( S. M. Stigler)所说,“最小二乘法之于数理统计学犹如微积分之于数学”。
最小二乘法是参数回归的最基本得方法所以研究最小二乘法原理及其应用对于统计的学习有很重要的意义。
2. 最小二乘法所谓最小二乘法就是:选择参数10,b b ,使得全部观测的残差平方和最小. 用数学公式表示为:21022)()(m ini i i i ix b b Y Y Y e--=-=∑∑∑∧为了说明这个方法,先解释一下最小二乘原理,以一元线性回归方程为例.i i i x B B Y μ++=10 (一元线性回归方程)由于总体回归方程不能进行参数估计,我们只能对样本回归函数来估计即:i i i e x b b Y ++=10)...2,1(n i =从上面的公式可以看出:残差i e 是i Y 的真实值与估计值之差,估计总体回归函数最优方法是,选择10,B B 的估计量10,b b ,使得残差i e 尽可能的小.总之,最小二乘原理就是选择样本回归函数使得所有Y 的估计值与真实值差的平方和为最小,这种确定10,b b 的方法叫做最小二乘法。
最小二乘法是回归分析中的最基本的方法。
回归方程一般分为2类,线性回归方程和非线性回归方程。
2.1 线性回归最小二乘法最小二乘法是由实验或调查的数据,建立线性型公式的一种常用方法. 在建立线性型公式中,虽然有很多种不同的方法来求样本回归函数(即真实总体回归函数的估计值),但是在回归分析中最广泛应用的方法是最小二乘法.如果变量y x 和有精确的线性关系比如说b ax y +=,那么∧=i i y y 即观测值与回归值是相等的.事实上现实世界中的诸多变量的关系未必都是如此,由于受诸多随机因数的干扰使得物与物之间没有那种很明确的对应关系.比如说人的身高和体重就是一个对应,我们都知道长的高的人不一定就重,同理长的矮的人也不一定就轻.但身高和体重的确存在着一定的关系,而这种关系并非是b ax y +=所能确定的.那么我们要寻求身高和体重之间的关系就需要通过数学的方法.首先调查统计得出数据;其次把数据描绘出来;然后拟合一条跟已有的图象最接近的曲线,这样就可以相对地将身高和体重之间的关系表示出来.在处理类似的事情中常常用到最小二乘法.2.2 非线性回归最小二乘法非线性回归的种类很多,常用的有抛物线方程(2Y a bX cX =++)、指数方程(x Y ab =)等。
设已知列表函数()(0,1,...,)i i y f x i m ==,并且我们想用一个通常的()n m <次多项式()01...n n n p x a a x a x =+++ (1)去近似它。
问题是应该如何选择01...n a a a ,,, 使()n p x 能较好地近似列表函数()f x 。
按最小二乘法,应该选择01...n a a a ,,,使得 ()()()()2010...mn inii S a a a f x p x ==-∑,,,(2)取最小。
注意到S 是非负的,且是01...n a a a ,,,的2次多项式,它必有最小值。
求S 对01...n a a a ,,, 的偏导数,并令其等于零,得到 ()010...0mn k ii n i i i y aa x a x x =----=∑ (0,1,...,)k n =进一步,可以将它们写成101...mm mmkkk k n i ii in i i oi oi oi oy xa x a x a x ++=====+++∑∑∑∑ (0,1,...,k n = 引进记号mmkk k i k i i i oi os x u y x ====∑∑和则上述方程组为001101021110112,,n n n n n n n n n s a s a s a u s a s a s a u s a s a s a u +++++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ (3)它的系数行列式是01121112.n n n nn ns s s s s s s s s X +++=由(0,1,,2)i i n s = 的定义及行列式性质,可以断言()()21011,,,.(1)!n n X W n ξξξ+=+∑ (4) 此处符号W 表Vandermonde 行列式,而∑是对所有可能的(0,1,,)i i n ξ= 求和(每个i ξ 可以取值01,,,,m x x x 并且当i j ≠时i j ξξ≠。
由(4)式及Vandermonde 行列式的性质可知,当01,,,m x x x 互异时,()012220101011110.,,,nn n nnn n W ξξξξξξξξξξξξ=≠ 从而,()100n X +≠>方程组(3)有唯一解01,,,n a a a ,且它们使(2)取极小值如此,我们应用最小二乘法找到了()f x 的近似多项式()n x p .在利用最小二乘法组成和式(2)时,所有点i x 都起到了同样的作用,但是有时依据某种理由认为∑中的某些项的作用大些,而另外一些作用小些(例如,一些i y 是由精度较高的仪器或操作上比较熟练的人员获得的,自然应该予以较大的信任),这在数学上表现为用和()()()20mi i n i i f x p x ρ=-∑ (5)替代和(2)取最小值.0i ρ>,且11ni i ρ==∑,i ρ通常称之为权;而(5)为加权和.用多项式()01n n n x a a x a x p =+++去近似一个给定的列表函数(即给出的一组观测值()i i y f x =时。
需要确定的参数是01,,,n a a a ;而()n x p 可以看成是01,,,n a a a 的线性函数.但是有时在利用观测或实验数据去确定一个经验公式时,往往要确定的函数和待定参数之间不具有线性形式的关系.这样问题就变得有些复杂.然而,常常可以通过变量替换使其线性化.最小二乘法原理是用来求解线性方程组的,非线性方程经线性化后方可应用该原理. 通常在测量中遇到的问题不一定都是线性问题, 必须先把非线性问题线性化, 然后求解. 例如:(i )有时,我们希望用如下类型的函数:q s pt = (6) 去近似一个由一组观测数据(列表)所描绘的函数,其中p 和q 是待定的两个参数.显然s 已非p 和q 的线性函数.怎样线性化呢?为此,我们在(6)式两端取对数,得到Ins Inp qInt =+记01,,,,Ins y Inp a a q x Int ====则 (6)式变成01y a a x =+ .这是一个一次多项式,它的系数0a 和1a 可以用最小二乘法求得.(ii) 我们经常希望用函数Ct S Ae = (7) 去近似一个以给定的列表函数,其中A 、C 是待定的参数.这时,我们可以(7)的两端取对数:InS InA Ct =+记011,,,InS y InA a C a x t ====,则(1.7)式变成01y a a x =+这样仍可用最小二乘法定出01,a a (从而也就定出了A ,C ),得到近似函数Ct S Ae = .下面列出几种常用的线性处理方法,利用最小二乘法的原理对直线型、抛物线型和指数曲线型的方程的参数估计方法,介绍如下: (1)直线型直线方程的一般形式为Y a bX =+令22()()Y C a bX C -=+-∑∑为最小值,分别为a 和b 求偏导数,并令导数等于0,得到联立方程组。
解方程组,即可得到参数的计算公式 。
22()a Y bX n X Y X Y b n X X ⎧=-⎪⋅-⋅⎨=⎪-⎩∑∑∑∑∑ (2)抛物线型抛物线方程的一般形式为2Y a bX cX =++令22()()Y C a bX C -=+-∑∑为最小值,分别为 a 、b 、c 求偏导数,并令导数等于0,得到联立方程组解方程组,即可得到参数的计算公式。
2223223400Y na b X c X Y X a X b X c X Y X a X b X c X ⎧---=⎪⎪⋅---=⎨⎪---=⎪⎩∑∑∑∑∑∑∑∑∑∑∑ (3)指数曲线型 指数曲线的一般形式为X Y ab =取对数,将指数曲线转化成对数直线形式lg lg lg Y a X b =+用最小二乘法估计参数a,b,可有如下方程组2lg lg lg (lg )lg lg Y n a b XX Y a X b X⎧=+⋅⎪⎨⋅=⋅+⋅⎪⎩∑∑∑∑∑ 解此方程组,可得参数的对数值,查其反对数,即可得参数值。
3.最小二乘法原理的应用3.1最小二乘法原理在线性回归中应用例1.已知2009年3月到2010年4月居民收入与物价信心的满意指数如下t=[1 2 3 4 5 6];x=[29.50 28.20 25.90 21.70 21.90 13.80]; plot(t,x,'o');polyfit(t,x,1) ans =-2.9029 33.6600则所得到的近似方程为y=-2.9029+33.6600x.3.2 最小二乘法原理在非线性回归中的应用例2 设已知函数f (x )的表列值为试按最小二乘法构造f (x )的二次近似多项式.解:下面用Matlab 程序来求参数01,a a 和2a . 程序如下: x=[0.2 0.5 0.7 0.85 1];y=[1.221 1.649 2.014 2.340 2.718];plot(x,y,'o');polyfit(x,y,2) ans =0.9248 0.7553 1.0346即所求0a =0.9248,1a =0.7553,2a =1.0346. 所求的近似多项式为2()0.92480.7553 1.0346f x x x =++.例3、在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量y 与时间t 的拟合曲线。