金属材料第一章-简

合集下载

金属材料的韧性

金属材料的韧性
6
第一章 金属的力学性能
第三节 韧性与疲劳强度
二、疲劳强度 循环应力:应力的大小和方向随时间作周期性的变化。
零件在循环应力作用下,常在远小于该材料的σb,甚 至小于σS强度的情况下发生断裂的现象称为金属的疲劳,
金属疲劳的判据是疲劳强度。
7
韧性是指金属在断裂前吸收变形能量的能力,可用来衡量金属材料抵抗冲击载荷能力。
1.摆锤式一次冲击试验 脆转变温度越低,材料的低温冲击性能越好。
1.摆锤式一次冲击试验
冲击吸收功:试样在冲击试验力一次作用下折断时所吸收的功(Ak)。
冲击吸功(Ak)。
第三节 韧性与疲劳强度
机械零件一般是在受多次小能量重复冲击后才破坏的。
第三节 韧性与疲劳强度 40Cr钢冲击吸收功测定试验
冲击吸收功:试样在冲击试验力一次作用下折断时所吸收的功(Ak)。 第三节 韧性与疲劳强度
韧性是指金属在断裂前吸收变形能量的能力,可用来衡量金属材料抵抗冲击载荷能力。
一、韧性 韧性的判据通过冲击试验来测定。
一、韧性 1.摆锤式一次冲击试验
冲击吸收功 Ak 与温度有 关。由左图可知,Ak 随温度降
低而减少,在某一温度区域,
Ak急剧变化,此温度区域称为
韧脆转变温度。脆转变温度越 低,材料的低温冲击性能越好。
5
第一章 金属的力学性能
第三节 韧性与疲劳强度
一、韧性 2.小能量多次冲击试验简介 金属材料抵抗小能量多次冲击的能力叫做多冲抗力。 机械零件一般是在受多次小能量重复冲击后才破坏的。 多冲抗力可用一定冲击能量下冲断周次N表示。 试验证明,材料的多冲抗力取决于材料强度与韧性的综 合力学性能,冲击能量高时,主要取决于材料的韧性;冲击 能量低时,主要取决于强度。

金属材料的性能 重点概括

金属材料的性能 重点概括

1、金属材料的性能包括:使用性能和工艺性能。

2、使用性能:是指金属材料在使用条件下所表现出来的性能,包括①物理性能(如密度、熔点、导热性、导电性、热膨胀性、磁性等)。

②化学性能(如抗腐蚀性、抗氧化性等)。

③力学性能(如强度、塑性、硬度、冲击韧性及疲劳强度等)。

④工艺性能。

力学性能的概念:力学性能是指金属在外力作用下所表现出来的性能。

3、力学性能包括:强度、硬度、塑性、冲击韧性a)金属在静载荷作用下,抵抗塑性变形或断裂的能力称为强度。

强度的大小用应力来表示。

b)根据载荷作用方式不同,强度可分为:抗拉强度、抗压强度、抗弯强度、抗剪强度和抗扭强度等。

一般情况下多以抗拉强度作为判别金属强度高低的指标。

4、金属材料受到载荷作用而产生的几何形式和尺寸的变化称为变形。

变形分为:弹性变形和塑性变形两种5、不能随载荷的去除而消失的变形称为塑形变形。

在载荷不增加或略有减小的情况下,试样还继续伸长的现象叫做屈服。

屈服后,材料开始出现明显的塑性变形。

Fs称为屈服载荷6、sb:强化阶段:7、随塑性变形增大,试样变形抗力也逐渐增加,这种现象称为形变强化(或称加工硬化)。

Fb:试样拉伸的最大载荷。

8、在拉伸试验过程中,载荷不增加(保持恒定),试样仍能继续伸长时的应力称为屈服点。

用符号σs表示,计算公式:σs=Fs/So对于无明显屈服现象的金属材料可用规定残余伸长应力表示,计算公式:σ0.2=F0.2/So9、(2)抗拉强度材料在拉断前所能承受的最大应力称为抗拉强度,用符号σb表示。

计算公式为:σb=Fb/So10、断裂前金属材料产生永久变形的能力称为塑性。

塑性由拉伸试验测得的。

常用伸长率和断面收率表示。

11、伸长率:试样拉断后,标距的伸长与原始标距的百分比称为伸长率。

用δ表示:计算公式:δ=(l1-l0)/l0×100%断面收缩率:试样拉断后,缩颈处横截面积的缩减量与原始横截面积的百分比称为断面收缩率。

用ψ表示12、材料抵抗局部变形特别是塑性变形压痕或划痕的能力称为硬度。

(完整版)金属材料常识简介

(完整版)金属材料常识简介

金属材料常识简介一、钢:1. 钢与铁的区别主要在含碳量上,一般含碳量在2.11%以下的铁碳合金称为钢;一般含碳量在2.11%以上的铁碳合金称为铁。

2. 钢的分类:按照化学成分分为碳素钢、中低合金钢、高合金钢。

按冶炼工艺分为平炉钢、转炉钢、电炉钢、感应炉钢、电渣炉钢等。

按脱氧程度分为镇静钢(脱氧完全的钢)、半镇静钢(脱氧较完全的钢)、沸腾钢(脱氧不完全的钢)按用途分为结构钢、工具钢、特殊性能钢。

结构钢用于制造工程结构和机械零件。

工程结构用钢一般属于低碳钢范围内,在轧制或正火状态下使用,很少进行热处理,适用于焊接。

机械零件用钢大多需要进行热处理。

二、碳素钢1.碳素钢分类按碳的质量分数又可分为低碳钢(<0.25%);中碳钢(=0.25%~0.60%);高碳钢(>0.60%)。

按钢的冶金质量和钢中有害杂质元素硫、磷的质量分数分普通质量钢;优质钢;高级优质钢。

普通质量钢又分为只保证化学成分不保证机械性能的和只保证机械性能不保证化学成分的两种。

2 、钢的编号(1)普通碳素结构钢碳素结构钢牌号表示方法由代表屈服点屈字的汉语拼音字母、屈服极限数值、质量等级符号及脱氧方法符号四个部分按顺序组成。

牌号中Q表示“屈”;A、B、C、D表示质量等级,它反映了碳素钢结构中有害杂质(S、P)质量分数的多少,(C、D)级硫、磷质量分数最低、质量好,可作重要焊接结构件。

例如Q235AF,即表示屈服点为235N/mm2、A等级质量的沸腾钢。

D级质量最好,A级最差。

普通碳素结构钢的硫、磷含量较多,但由于冶炼容易,工艺性好,价格便宜,在力学性能上一般能满足普通机械零件及工程结构件的要求,因此用量很大,约占钢材总量的70%。

(2)优质碳素结构钢其牌号用两位数字表示,两位数字表示钢中平均碳质量分数的万倍。

例如45钢,表示平均ωc =0.45%;08钢表示平均ωc =0.08%。

优质碳素结构钢按锰的质量分数不同,分为普通锰钢(ωMn=0.25%~0.80%)与较高锰的钢(ωMn=0.70%~1.20%)两组。

金属材料的主要性能

金属材料的主要性能
定义: HR=k-(h1-h0)/0.002 常用标尺有:B、C、A三种
① HRA 硬、薄试件,如硬质合金、表面淬火层和渗碳层。 ② HRB 轻金属,未淬火钢,如有色金属和退火、正火钢等 ③ HRC 较硬,淬硬钢制品;如调质钢、淬火钢等。 洛氏硬度的优点:操作简便,压痕小,适用范围广。
②弹性:材料不产生塑性变形的情况下,所能承受的最 大应力。
弹性极限:σe=Fe/So 不产永久变形的最大抗力。
2)屈服强度s:材料发生微量塑性变形时的应力值。即 在拉伸试验过程中,载荷不增加,
试样仍能继续伸长时的应力。
s = Fs/So
s
条件屈服强度0.2:高碳钢等无屈服点, 国家标准规定以残余变形量为0.2%时的 应力值作为它的条件屈服强度,以0.2 来表示。
影响因素:循环应力特征、温度、材料成分和组织、夹 杂物、表面状态、残余应力等。
二、塑性 金属材料受力破坏前可承受最大塑性变形的能力。
1.延伸率
延伸率与试样尺寸有关:δ5、δ10 (L0=5d,10d)
2.断面收缩率 ψ=△S/So=(So-Sk)/So x 100%
> 时,无颈缩,为脆性材料表征; < 时,有颈缩,为塑性材料表征。
0.2
3)抗拉强度b:材料断裂前所承受的最大 应力值。(材料抵抗外力而不致断裂的极 限应力值)。
b = Fb/So
(5)灰铸铁拉伸时的力学性能 灰口铸铁是典型的脆性材料,其σ-曲线是一段微弯曲 线,如图a)所示,没有明显的直线部分,没有屈服和颈 缩现象,拉断前的应变很小,延伸率也很小。强度极限 σb是其唯一的强度指标。 铸铁等脆性材料的抗拉强度 很低,所以不宜作为受拉零 件的材料。
无论是塑性材料还是脆性材料,断裂时都不产生明显的 塑性变形,而是突然发生,具有很大的危险性,有相当多 零件的破坏属于疲劳破坏,对此必须引起足够的重视。

金属材料概述0

金属材料概述0

⾦属材料概述0⾦属材料概述⾦属材料是⾦属元素或以⾦属元素为主构成的具有⾦属特性的材料的统称。

⾦属材料的特点是具有资源丰富、⽣产技术成熟、产品质量稳定、强度⾼、塑性和任性好、耐热、耐寒、耐磨、可锻造、铸造、冲压和焊接、导电、导热性和铁磁性优异等特点,已成为现代⼯业和现代科学技术中最重要的材料之⼀。

钢铁唯⼀的缺点是会⽣锈。

⾦属材料分类:⾦属材料⼀般可分为⿊⾊⾦属材料和有⾊⾦属材料两类。

⿊⾊⾦属是指铁和铁的合⾦,包括钢、⽣铁、铁合⾦、铸铁等。

有⾊⾦属⼜称⾮铁⾦属。

狭义的有⾊⾦属通常指铁、锰、铬三种⾦属以外的⾦属。

⼴义的有⾊⾦属还包括有⾊合⾦。

有⾊⾦属的产品只占⾦属材料产量的5%左右,但其作⽤却是钢铁材料⽆法替代的。

为便于理解,掌握,列简单分类表。

铁合⾦-炼铁原料:炼钢时作脱氧剂和合⾦元素添加剂铸造⽣铁—⽤于铸造各种⽣铁铸料⿊⾊⾦属⽣铁炼钢⽣铁—⽤于炼钢⾦属丝绳钢—钢材—钢材再制品⾦属⽀护⽤品⾦属材料有⾊轻⾦属(密度≤4.5%)有⾊重⾦属(密度>4.5%)有⾊⾦属贵⾦属(⾦、银、铂族⾦属)稀有⾦属半⾦属(硅、硼、硒、碲、砷)第⼀章⿊⾊⾦属材料⼀、基本常识⿊⾊⾦属是⽣铁和钢的总称。

钢铁材料通常是指铁碳合⾦,按照含碳量的⼤⼩进⾏分类。

含碳量(质量分数)⾼于2%的为⽣铁,低于2%的为钢,含碳量(质量分数)低于0.04%的为⼯业纯铁。

1、⽣铁的分类(按⽤途):1)铸造⽣铁:含碳⾼,具有表⾯硬度⾼、耐蚀、耐磨性较好的特点,但其塑性、韧性较差。

⼀般作为铸铁件,⽤于加⼯制造机械零部件。

2)炼钢⽣铁:主要是⽤于炼钢的原材料。

2、钢的分类:钢是以铁为主要元素,含碳量⼀般在2%以下的铁碳合⾦。

钢的分类⽅法⽐较多,过去我国主要有以下6种分类。

碳素钢:按含碳量分①⼯业纯铁②低碳钢③中碳钢④⾼碳钢;1)按化学成分分类合⾦钢:按合⾦元素分①低合⾦钢②中合⾦钢③⾼合⾦钢;2)按品质分类:①普通钢②优质钢③⾼级优质钢;3)按冶炼设备分类:①转炉钢②平炉钢③电炉钢;4)按脱氧程度:①沸腾钢②镇静钢③半镇静钢;5)按⽤途分类:①结构钢②⼯具钢③特殊钢的④专业⽤钢;6)按加⼯制造形式分类:①铸钢②锻钢③热轧钢④冷轧钢⑤冷拔钢;参照国际标准(IS04948),《钢分类》国家标准(GB/T1334-2008)实⾏新的分类⽅法,明确划分了⾮合⾦钢。

金属材料的力学性能

金属材料的力学性能

第一章金属材料的力学性能机械制造中使用的材料品种很多,为了正确使用材料,并把它加工成合格的工件,必须掌握材料的使用性能和工艺性能。

使用性能,是指为保证工件正常工作材料应具备的性能,包括力学性能、物理和化学性能等。

工艺性能,是指材料在加工过程中所表现出来的性能,包括铸造性能、锻压性能、焊接性能和切削加工性等。

所谓力学性能,是指材料在外力作用下所表现出来的性能,主要有强度、塑性、硬度、冲击韧性、疲劳强度等,是设计机械零件时选材的重要依据。

这些性能指标是通过试验测定的。

第一节刚度、强度、塑性刚度、强度和塑性是根据试验测定出来的。

将材料制成标准试样(图1-1a),然后把试样装在试验机上施加静拉力,随着拉力的增加试样逐渐变形,直到拉断为止(图1-1b)。

将试样从开始到拉断所受的力F 及所对应的伸长量ΔL绘制在F—ΔL坐标上,得出力一伸长曲线。

低碳钢的力一伸长曲线如图1—2所示。

从图1—2可知,在OE 阶段,试样的伸长量随拉力成比例增加,若去除拉力后试样恢复原状,这种变形称为弹性变形。

超过E 点后,若去除拉力试样不能完全恢复原状,尚有一部分伸长量保留下来,这部分保留下来的变形称为塑性变形。

当拉力增加到F s 时,力一伸长曲线在S 点呈现水平台阶,即表示外力不再增加而试样继续伸长,这种现象称为屈服,该水平台阶称为屈服台阶。

屈服以后,试样又随拉力增加而逐渐均匀伸长。

达到B 点,试样的某一局部开始变细,出现缩颈现象。

由于在缩颈部分试样横截面积迅速减小,因此使试样继续伸长所需的拉力也就相应减小。

当达到K 点时,试样在缩颈处断裂。

低碳钢在拉伸过程中经历了弹性变形、弹一塑性变形和断裂三个阶段。

F —ΔL 曲线与试样尺寸有关。

为了消除试样尺寸的影响,把拉力F 除以试样原始横截面积A0,得出试样横截面积上的应力,同时把伸长量ΔL 除以试样原始标距L 0,得到试样的应变LL ε∆=0F A σ=σ—ε曲线与F —ΔL 曲线形状一样,只是坐标不同。

第一章 金属材料的高温化学腐蚀

第一章 金属材料的高温化学腐蚀

绪论金属腐蚀的定义: 金属材料和环境介质发生化学或电化学作用,引起材料的退化与破坏称为金属的腐蚀.本课程研究的内容• 1. 研究金属和周围介质作用时所发生的化学或电化学的现象、机理及其一般规律。

• 2. 研究各种条件下金属材料的防止腐蚀的方法和措施。

三、金属腐蚀与防护的重要性经济损失:•直接损失:指采用防护技术的费用和发生腐蚀破坏以后的维修、更换费用和劳务费用。

•间接损失:指设备发生腐蚀破坏造成停工、停产;引起的物资跑、冒、滴、漏损失;对环境污染以至爆炸、火灾等事故的间接损失更是无法估量。

第一章金属材料的高温化学腐蚀第一节概述一、高温化学腐蚀定义:高温化学腐蚀是研究金属材料和与它接触的环境介质在高温条件下所发生的界面反应过程的科学。

金属高温腐蚀与常温腐蚀的区别:高温腐蚀:主要是以界面的化学反应为特征。

常温腐蚀:主要是电化学过程。

金属材料的高温腐蚀反应式:Me(金属)+X(介质)--MeX(腐蚀产物)二、高温腐蚀分类按环境介质状态分1)高温气态介质腐蚀(2)高温液态介质腐蚀(3)高温固态介质腐蚀(1)高温气态介质腐蚀:气态介质中包括有单质气体分子。

非金属化合物气体分子。

金属氧化物气态分子,和金属盐气态分子。

由于这种高温腐蚀是在高温,干燥的气体分子环境中进行的,所以常被称为“高温气体腐蚀”“干腐蚀”“化学腐蚀”。

(2)高温液态介质腐蚀:液态介质(包括液态金属,液态融盐及低熔点氧化物)对固态金属材料的高温腐蚀。

这种腐蚀包括界面化学反应,也包括液态物质对固态物质的溶解。

(3)高温固态介质腐蚀:金属材料在带有腐蚀性的固态颗粒状物质的冲刷下发生的高温腐蚀。

这类腐蚀包括固态燃灰与盐颗粒对金属材料的腐蚀。

又包括这些固态颗粒状物质对金属材料表面的机械磨损,所以人们又称为“磨蚀”或“冲蚀”。

高温腐蚀现象(1)在金属热处理过程中,碳氮共渗和盐浴处理易于产生增碳、氮化损失和熔融盐的腐蚀。

(2)含有燃烧的各个过程,比如柴油发动机、燃气轮机、焚烧炉等所产生的复杂气氛的高温氧化等腐蚀。

第一章 金属材料的力学性能

第一章 金属材料的力学性能

Fb σb= S0
四、塑性的衡量(塑性指标):伸长率 δ和断面收缩率 Ψ 塑性的衡量(塑性指标):伸长率 和断面收缩率 ):
1)伸长率( δ ) )伸长率( 伸长率是指试样拉断 后标距增长量与原始 标距的百分比,即: 标距的百分比,
lk-l0 δ=
×100%
l0
lk——试样拉断后的标距 试样拉断后的标距,mm; 试样拉断后的标距 l0——试样的原始标距 。 试样的原始标距,mm。 试样的原始标距
第一章 金属材料及热处理基础知识
应用于各种工程领域中的材料,如在机械工业中,建筑及桥 应用于各种工程领域中的材料,如在机械工业中,建筑及桥 于各种工程领域中的材料 等等, 统称为工程材料。 梁中,等等,——统称为工程材料。 统称为工程材料 其中用来制造各种机电产品的材料 用来制造各种机电产品的材料, 称为机械工程材料 其中用来制造各种机电产品的材料,——称为机械工程材料 称为机械工程材料. 主要包括: 主要包括: 1)金属材料:钢,铸铁,铜及铜合金,等等。 铸铁,铜及铜合金,等等。 )金属材料: 2)非金属材料:塑料,橡胶,工业陶瓷,等等。 )非金属材料:塑料,橡胶,工业陶瓷,等等。 3)复合材料:由两种或两种以上性质不同的材料复合而成的 )复合材料: 多相材料。 多相材料。 金属材料是制造机器的最主要材料。 金属材料是制造机器的最主要材料。 是制造机器的最主要材料 1、金属材料按含金属元素数量的多少分为: 、金属材料按含金属元素数量的多少分为: 1)纯金属 一种金属 一种金属). )纯金属(一种金属 2)合金(以一种金属为基 其他金属或非金属) 其他金属或非金属) )合金(以一种金属为基+其他金属或非金属
刚度、强度、 第一节 刚度、强度、塑性
刚度、强度、弹性和塑性是根据拉伸试验测定出 塑性是根据拉伸试验 刚度、强度、弹性和塑性是根据拉伸试验测定出 来的。 来的。 一、拉伸试验与拉伸曲线 1、拉伸试样 试验前在试棒上打出标距 试验前在试棒上打出标距 按国标规定标准拉伸试样可分为: 按国标规定标准拉伸试样可分为: 板形试样: 1) 板形试样:原材料为板材或带材 圆形试样:长试样L 短试样L 2) 圆形试样:长试样L0=10d0,短试样L0=5d0 其中: 为试样标距, 其中:L0为试样标距,d0为试样直径

1.1材料的力学性能

1.1材料的力学性能

洛氏硬度测试示意图
洛 氏 硬 度 计
h1-h0
(2)符号及标注 符号:HR 常用三种标度符号:HRA HRB 标注方法: 数值+符号 如:52 HRC 70 HRA (3)应用

HRC
压痕小,在批量成品或半成品质量检验中广 泛应用,并可测量较薄的工件或较薄的硬化层。

HRA用于测量高硬度材料, 如
三、硬度 含义:是指材料在外力作用下抵抗局部变形, 特别是塑性变形、压痕或 划痕的能力,通俗 说材料抵抗外力压入其表面的能力。硬度是 衡量材料软硬程度的判据。 硬度判据:布氏硬度HB 洛氏硬度HR 维氏硬度HV
测量方法:硬度实验法

1、布氏硬度HB
(1)测量方法:用直径D钢球或硬质合金球, 一定载荷p ,保持一定时间卸除,由读数显微 镜测得压痕直径d,计算得到。(单位Mpa) 注:实际应用中,不需计算,根据d查布氏硬度 表即可。
2、塑性
含义:材料受力破坏前可承受最大塑性变形的能力。 指标(两个): 伸长率: 断面收缩率:
l1 l 0 100% l0
F0 F1 100% F0
断裂后
拉 伸 试 样 的 颈 缩 现 象

说明:
① 用表示塑性比伸长率更接近真实变形。 ② 与试样尺寸 有关,d0 相同时,l0,,故5> 10。只 有l0/d0 为常数时, 才有可比性。 ③ > 时,无颈缩,为脆性材料表征

Titanic 号钢板(左图)和近代船用钢板(右图) 的冲击试验结果
Titanic
近代船用钢板
五、疲劳强度
何为疲劳?材料在低于s的循环交变应力作 用下发生断裂的现象。(举例) 疲劳强度的含义:材料抵抗疲劳破坏的能力。 指标: 疲劳极限:材料在规定次数应力循环后仍不 发生断裂时的最大应力称为疲劳极限。用N 表示(对称循环交变应力-1 。) 钢铁材料规定次数为107,有色金属合金为 108。

金属材料的力学性能

金属材料的力学性能
2、Fe-FH段:曲线、弹性变形+塑性变形
3、FL 段:水平线(略有波动)明显的 塑性变形屈服现象,作用的力基本不变, 试样连续伸长。
4、FL-FM曲线:弹性变形+均匀塑性变形
5、M点:出现缩颈现象,即试样局部截面明显缩小试样承载能力降低, 拉伸力达到最大值,试样即将断裂。 6、K点:试件在缩颈处拉断
19
§1-4 冲击韧度
一般来说,强度、塑性均好的材料,韧度值也高。在实 际工作中常见的是承受多次小能量冲击。对多次冲击 问题: •

1) 如果冲击能量低,冲击周次较多时,α KV主 要取决于材料的强度,强度高则冲击韧度较好;
2) 如果冲击能量高,则主要取决于材料的塑性, 材料塑性越高则冲击韧度较好。
1、洛氏硬度试验(洛氏硬度计)
原理: 用金刚石圆锥或淬火钢球,在试验力的作用下压入试样表面, 经规定时间后卸除试验力,用测量的残余压痕深度增量来计算硬度的一 种压痕硬度试验。
12
§1-3 硬度
2、洛氏硬度表示方法
洛氏硬度直接在符号前面写出硬度值。可从表盘上直接读出。
如:50HRC 3、优缺点
(1)试验简单、方便、迅速(2)压痕小,可测成品、薄件(3)数据 不够准确,应测三点取平均值(4)不能测组织不均匀材料,如铸铁。
20
§1-5 疲劳强度
1.5 一、概念
疲劳强度
什么是金属的疲劳? 疲劳强度:在指定寿命下使试样失效的应力水平。
交变应力:大小和方向随时间作周期性变化的应力。 通常规定钢铁材料的循环基数取107,有色金属取108。
21
§1-5 疲劳强度
金属的疲劳强度曲线
22
S0:试件原横截面积。 S1:断裂后颈缩处的横截面积,用卡尺直接量出。

金属材料的力学性能

金属材料的力学性能

• •
ae =1/2×ζ e× ε e 弹簧是典型的弹性零件,要求有较大 的弹性比功。弹簧在实际工作中起缓冲和 存储能量作用。 • 实际设计时通过提高弹性极限ζ e ,提 高弹簧的弹性比功。
• 三、强度 • 强度是金属材料在外力的作用下,抵
抗变形和断裂的能力。根据零件的工作状 态不同分为:抗拉强度、抗压强度、抗弯强 度和抗剪强度等。 • 1、屈服强度和条件屈服强度 • 拉伸试样产生屈服现象(塑变)时的 应力。 ζ s=Fs/A0 • 对于许多没有明显屈服现象的金属材 料,工程中常以产生0.2%塑性变形时的应 力,作为该材料的条件屈服强度,用ζ 表示。
• §1—4 断裂韧度 • 机械零件的传统设计一般为强度设计、
刚度校核。强度设计标准为屈服强度。 • 零件在许用应力的条件下工作,不会发 生塑性变形和断裂。 • 实际工作情况往往不同。某些零件在远 远低于屈服强度条件下工作时会发生脆性 断裂,这种情况非常危险,称为低应力脆 断。 • 研究表明低应力脆断是由宏观裂纹扩展 引起的。
• 一、裂纹扩展的基本形式 • 裂纹扩展一般分为张开型、滑开型、撕
开性三种。其中以张开型最为危险。 • 二、应力场强度因子KI • 零件表面是凹凸不平的,在凸点和凹点 最容易引起应力集中,形成应力场。裂纹 的扩展与应力场有直接的关系。衡量应力 场的大小用应力场强度因子KI。
• 三、断裂韧度KIC及其应用 • KI随着和a的增大而增大。达到一定值
• §1—1 强度、刚度、弹性及塑性 • 金属材料的强度、刚度、弹性及塑性用
拉伸试验来测量。 • 一、拉伸曲线与 应力-应变曲线 • 1、拉伸曲线 • 拉伸过程分为 弹性变形、塑性变形和 断裂三个阶段。
• 几点说明:(书中图1-2) • 试件总伸长of,其中gf为弹性变形,og

金属材料的结构与性能

金属材料的结构与性能

第一章材料的性能第一节材料的机械性能一、强度、塑性及其测定1、强度是指在静载荷作用下,材料抵抗变形和断裂的才能。

材料的强度越大,材料所能承受的外力就越大。

常见的强度指标有屈服强度和抗拉强度,它们是重要的力学性能指标,是设计,选材和评定材料的重要性能指标之一。

2、塑性是指材料在外力作用下产生塑性变形而不断裂的才能。

塑性指标用伸长率δ和断面收缩率ф表示。

二、硬度及其测定硬度是衡量材料软硬程度的指标。

目前,消费中测量硬度常用的方法是压入法,并根据压入的程度来测定硬度值。

此时硬度可定义为材料抵抗外表局部塑性变形的才能。

因此硬度是一个综合的物理量,它与强度指标和塑性指标均有一定的关系。

硬度试验简单易行,有可直接在零件上试验而不破坏零件。

此外,材料的硬度值又与其他的力学性能及工艺能有亲密联络。

三、疲劳机械零件在交变载荷作用下发生的断裂的现象称为疲劳。

疲劳强度是指被测材料抵抗交变载荷的才能。

四、冲击韧性及其测定材料在冲击载荷作用下抵抗破坏的才能被称为冲击韧性。

为评定材料的性能,需在规定条件下进展一次冲击试验。

其中应用最普遍的是一次冲击弯曲试验,或称一次摆锤冲击试验。

五、断裂韧性材料抵抗裂纹失稳扩展断裂的才能称为断裂韧性。

它是材料本身的特性。

六、磨损由于相对摩擦,摩擦外表逐渐有微小颗粒别离出来形成磨屑,使接触外表不断发生尺寸变化与重量损失,称为磨损。

引起磨损的原因既有力学作用,也有物理、化学作用,因此磨损使一个复杂的过程。

按磨损的机理和条件的不同,通常将磨损分为粘着磨损、磨料磨损、接触疲劳磨损和腐蚀磨损四大根本类型。

第二节材料的物理化学性能1、物理性能:材料的物理性能主要是密度、熔点、热膨胀性、导电性和导热性。

不同用途的机械零件对物理性能的要求也各不一样。

2、化学性能:材料的化学性能主要是指它们在室温或高温时抵抗各种介质的化学侵蚀才能。

第三节材料的工艺性能一、铸造性能:铸造性能主要是指液态金属的流动性和凝固过程中的收缩和偏析的倾向。

金属材料-1 碳钢与合金钢

金属材料-1 碳钢与合金钢
❖ 碳化物形成元素
rc/rMe<0.59 形成具有简单晶体结构的碳化物间隙相 如TiC、VC为面心立方,W2C、Mo2C为密排六方
rc/rMe>0.59 形成具有复杂晶体结构的碳化物 如Cr23C6、 Cr7C3、 Fe3C等
碳化物弥散,可提高强度、硬度和耐磨性 过量、形状、分布不当,性能恶化。但可以通过加工和热处理工艺调整
❖ 非碳化物形成元素 Si、 Ni、 Al 、Co等
合金元素的存在形式: ❖ 溶入铁的基体相(铁素体、奥氏体等) ❖ 溶入渗碳体或形成碳化物 ❖ 形成非金属夹杂物 ❖ 有些元素以游离状态存在(Pb、Cu)
2.1.2 对相区的影响
(1) 无限扩大奥氏体相区
Mn、Ni、Co、Pt、铱
——与γ-Fe无限固 溶
钢中氢能造成氢脆、白点等缺陷,是有害元素
二、碳钢分类
按含碳量:低碳(0.04-0.25%)、中(0.25-0.6%)、高(>0.6%) 按质量分:实际按硫、磷含量(国标、企标有区别)
普通碳素钢:S≤0.055%, P≤0.045% 优质碳素钢:S, P≤0.040% 高级优质碳钢:S≤0.030%, P≤0.035% 特级优质钢: S≤0.015%,P≤0.025% 按用途: 碳素结构钢:工程结构件、机械零件,综合性能好,中、低碳 碳素工具钢:量、刃、工、模具,硬度高、耐磨,高碳 按组织: 亚共析、共析、过共析
Sn、砷等 其中: Cr、V与α相无限互溶,其他部分互溶
A3降低、A4升高
缩小γ相区(扩大α相区)的元素称为铁素体形成元素
(4) 缩小奥氏体相区,但不封闭γ相区
扩大α相区、不封闭γ相区 Nb、Zr、B、钽(Ta)、锶(Sr)
A3降低、A4升高
缩小γ相区(扩大α相区)的元素称为铁素体形成元素

金属材料与热处理(全)

金属材料与热处理(全)

力-伸长曲线:
如下图,以低碳钢为例
纵坐标表示力F,单位N;横坐标表示伸长量△L,单位为mm。 (1)oe:弹性变形阶段: 试样变形完全是弹性的,这种随载荷的存在而产生,随载荷的去除而 消失的变形称为弹性变形。Fe为试样能恢复到原始形状和尺寸的最大 拉伸力。 (2)es:屈服阶段: 不能随载荷的去除而消失的变形称为。在载荷不增加或略有减小的情 况下,试样还继续伸长的现象叫做屈服。屈服后,材料开始出现明显 的塑性变形。Fs称为屈服载荷
2、具有同素异构转变的金属有:铁、钴、钛、锡、锰等。同一金属的同素 异构晶体按其稳定存在的温度,由低温到高温依次用希腊字母α,β,γ, δ等表示。 3、纯铁的同素异构转变: 1394℃ 912℃ δ-Fe → γ- Fe → α – Fe 体心 面心 体心
4、金属的同素异构转变,也称为“重结晶”。 其与液态金属结晶有许多相似处:有一定转变温度,有过冷现象; 有潜热放出和吸收 ; 也由形核、核长大来完成。 不同处:∵属固 态相变 ,∴ 转变需较大的过冷度;新晶核优先在原晶界处形核;转 变中有体积的变化,会产生较大内应力。
布氏硬度试验原理图
洛氏硬度试验原理图
练习、 170HBS10/100/30 530HBW5/750 (1)表示用直径10mm的钢球,在9807N的试验力作用下,保持30S时测得的 布氏硬度值为170。 (2)表示用直径5mm的硬质合金球,在7355N的试验力作用下,保持10~5s时 测得的布氏硬度值为530。 2、洛氏硬度 (1)测试原理: 采用金刚石圆锥体或淬火钢球压头,压入金属表面后,经规定保持时间后即 除主试验力,以测量的压痕深度来计算洛氏硬度值。 表示符号:HR (2)标尺及其适用范围: 每一标尺用一个字母在洛氏硬度符号HR后面加以注明。常用的洛氏硬度标 尺是A、B、C三种,其中C标尺应用最为广泛。 见表:P21 2-2 不同标尺的洛氏硬度值不能直接进行比较,可换算。 表示方法:符号HR前面的数字表示硬度值,HR后面的字母表示不同洛氏硬 度的标尺。 (3)优缺点: 优点:①操作简单迅速,能直接从刻度盘上读出硬度值;②压痕小,可测成 品及较薄工件;③测硬度范围大。 缺点:数值波动大

材料科学基础---简答题

材料科学基础---简答题

第二部分简答题第一章原子结构1、原子间的结合键共有几种?各自的特点如何?【11年真题】答:(1)金属键:基本特点是电子的共有化,无饱和性、无方向性,因而每个原子有可能同更多的原子结合,并趋于形成低能量的密堆结构。

当金属受力变形而改变原子之间的相互位置时不至于破坏金属键,这就使得金属具有良好的延展性,又由于自由电子的存在,金属一般都具有良好的导电性和导热性能。

(2)离子键:正负离子相互吸引,结合牢固,无方向性、无饱和性.因此,七熔点和硬度均较高。

离子晶体中很难产生自由运动的电子,因此他们都是良好的电绝缘体。

(3)共价键:有方向性和饱和性。

共价键的结合极为牢固,故共价键晶体具有结构稳定、熔点高、质硬脆等特点。

共价结合的材料一般是绝缘体,其导电能力较差.(4)范德瓦尔斯力:范德瓦尔斯力是借助微弱的、瞬时的电偶极矩的感应作用,将原来稳定的原子结构的原子或分子结合为一体的键合。

它没有方向性和饱和性,其结合不如化学键牢固。

(5)氢键:氢键是一种极性分子键,氢键具有方向性和饱和性,其键能介于化学键和范德瓦耳斯力之间.2、陶瓷材料中主要结合键是什么?从结合键的角度解释陶瓷材料所具有的特殊性能.【模拟题一】答:陶瓷材料中主要的结合键是离子键和共价键.由于离子键和共价键很强,故陶瓷的抗压强度很高、硬度很高。

因为原子以离子键和共价键结合时,外层电子处于稳定的结构状态,不能自由运动,故陶瓷材料的熔点很高,抗氧化性好、耐高温、化学稳定性高。

第二章固体结构1、为什么密排六方结构不能称为一种空间点阵?【11年真题】答:空间点阵中每个阵点应该具有完全相同的周围环境.密排六方晶体结构位于晶胞内的原子具有不同的周围环境。

如将晶胞角上的一个原子与相应的晶胞之内的一个原子共同组成一个阵点,这样得出的密排六方结构应属于简单六方点阵。

2、为什么只有置换固溶体的两个组元之间才能无限互溶,而间隙固溶体则不能?【模拟题一】答:因为形成固溶体时,溶质原子的溶入会使溶剂结构产生点阵畸变,从而使体系能量升高。

金属材料及热处理

金属材料及热处理
(4)稀有金属
一般是指在自然界中含量较少、分布稀散及研究应用较少的有 色金属。稀有金属包括稀土金属、放射性稀有金属、稀有贵金属、 稀有轻金属、难溶稀有金属及稀有分散金属等。
第一章 金属的性能
三、 特种金属
特种金属包括不同用途的结构金属和功能金属,其中有通 过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、 纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、 减振阻尼等特殊功能合金,以及金属基复合材料等。
常用金属的物理性能
第一章 金属的性能
二、有色金属
有色金属是指除了铁、铬、铬以外的所有金属及其合金,通 常又将其分为轻金属、重金属、贵金属、稀有金属等。有色 金属中除了金为黄色,铜为赤红色以外,多数呈银白色。有 色金属合金的强度和硬度一般比纯金属高,并且电阻大、电 阻温度系数小。
(1)重金属 一般是指ρ>4.5 g/cm3的有色金属,包括元
素周期表中的大多数过渡元素,如铜(Cu)、锌( Zn)、镍(Ni)、 钴(Co)、钨( W)、钼(Mo)、镉( Cd)及汞(Hg)等,此外,锑 ( Sb)、铋( Bi)、铅(Pb)及锡( Sn)等也属于重金属。重金属主 要用作各种用途的镀层及多元合金。
第一章 金属的性能
(2)轻金属
ρ<4.5 g/cm3的有色金属称为轻金属,如铝( Al)、镁( Mg)、 钙( Ca)、钾(K)、钠( Na)、铯( Cs)等。工业上常采用电化学或化 学方法对Al、Mg及其合金进行加工处理,以获得各种优异的性 能。
疲劳曲线示意图
第一章 金属的性能
3.产生疲劳的原因
许多机械零件在工作中往往受到冲击载荷 的作用,如内燃机的活塞销、冲床的冲头、锻 锰的锰杆和锻模等。制造这类零件所采用的材 料,其性能指标不能单纯用强度、塑性、硬度 来衡量,而必须考虑材料抵抗冲击载荷的能力 , 即韧性的大小。目前,工程上常用一次摆锰 冲击缺口试样来测定材料的韧性。材料韧性的 好坏是用冲击韧度来衡量的。

第01章 晶体结构

第01章 晶体结构

1、体心立方晶格
① 体心立方晶格的晶胞(见右图)是由 八个原子构成的立方体,并在其立方 体的中心还有一个原子 ② 因其晶格常数 a=b=c ,通常只用常数 a 表示。由图可见,这种晶胞在其立方 体对角线方向上的原子是彼此紧密相 接触排列着的,则立方体对角线的长 度为31/2a,由该对角线长度31/2a上所分 布的原子数目(共2个),可计算出其 原子半径的尺寸r= 31/2a /4。 ③ 在体心立方晶胞中,因每个顶点上的 原子是同时属于周围八个晶胞所共有, 实际上每个体心立方晶胞中仅包含有: 1/8×8+1=2个原子。 ④ 属于这种晶格的金属有铁(<912℃, α-Fe) 、 铬 ( Cr ) 、 钼 ( Mo ) 、 钨 (w)、钒(V)等。
4 3 2 a 3 4 体心立方致密度= =68% 3 a
3
1.晶格的致密度及配位数
配位数:指晶格中任一原子周围所紧邻的最近且等距离的原子 数。配位数越大,原子排列也就越紧密。在体心立方晶格中, 以立方体中心的原子来看,与其最近邻等距离的原子数有8个, 所以体心立方晶格的配位数为8。面心立方晶格的配位数为12。 密排六方的配位数为12。
确定晶向指数的方法2
1. 建立坐标系 结点为原点,三棱 为方向,点阵常数为单位 ; 2. 在晶向上任两点的坐标(x1,y1,z1) (x2,y2,z2)。(若平移晶向或坐标, 让在第一点在原点则下一步更简 单); 3. 计算x2-x1 : y2-y1 : z2-z1 ; 4. 化成最小、整数比u:v:w ; 5. 放在方括号[uvw]中,不加逗号, 负号记 晶格模型
(C) 体心立方晶胞原子数
2、面心立方晶格
① 面心立方晶格的晶胞见右图也是由八个原 子构成的立方体,但在立方体的每一面的 中心还各有一个原子。 ② 在面心立方晶胞中,在每个面的对角线上 各原子彼此相互接触,其原子半径的尺寸 为r=21/2a/4。 ③ 因每一面心位置上的原于是同时属于两个 晶胞所共有,故每个面心立方晶胞中包含 有:1/8×8+1/2×6=4个原子。 ④ 属于这种晶格的金属有铝(Al)、铜(Cu )、镍(Ni)、铅(Pb)等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Zr Nb Mo W
第一章
第二节 合金元素与铁和碳的相互作用 及其对奥氏体层错能的影响
一、合金元素与铁的相互作用 1 扩大奥氏体区的元素(奥氏体形成元素) 使A4点上升, A3点下降,导致奥氏体稳定区域扩大 无限扩大奥氏体区的元素:Ni, Mn, Co 有限扩大奥氏体区的元素:C, Cu, N
4.易切削结构钢 普通含锰钢 较高含锰钢 5.碳素工具钢 普通含锰钢 较高含锰钢
y12,y30 y40Mn, y45Ca
T7,T12A T8Mn
产品名称 6.合金结构钢
牌号举例 25Cr2MoVA 30CrMnSi
牌号表示方法 25Cr2MoVA 25:含碳量,万分之几 Cr2MOV:化学元素及含量,百 分之几; A:质量等级 50CrVA 50:含碳量,万分之几 CrV:化学元素符号和含量,以 百分之几表示;A:质量等级. GCr15SiMn G:代表滚动轴承钢 Cr15:含铬量,千分之几 SiMn:化学元素含量及符号, 百分之几
钢的合金化基础
第一章
第二节 合金元素与铁和碳的相互作用 及其对奥氏体层错能的影响
钢的合金化基础
无限扩大奥氏体区的元素 Mn、 Ni、 Co
有限扩大奥氏体区的元素 C、 N、Cu
第一章
第二节 合金元素与铁和碳的相互作用 及其对奥氏体层错能的影响
钢的合金化基础
一、合金元素与铁的相互作用 2. 缩小奥氏体区的元素(铁素体形成元素) 使A4点下降, A3点上升,导致奥氏体稳定区域缩小 完全封闭奥氏体区的元素: Cr, Ti, V, W, Nb, Zr
名称 碳素工具钢 滚珠轴衬钢 焊接用钢 钢轨钢 铆螺钢 船用钢 压力容器用钢 桥梁钢 锅炉钢 铸钢 沸腾钢 半真经过钢
汉字 碳 滚 焊 轨 铆螺 船 容 桥 锅 铸钢 沸 半
采用 符号 T G H U ML C R q g ZG F B
位置 牌号头 牌号头 牌号头 牌号头 牌号头 牌号尾 牌号尾 牌号尾 牌号尾 牌号头 牌号尾 牌号尾
(2)置换固溶元素 Ni提高钢基体的韧性;Mn在少量时也有效果;其他常用元素都降 低韧性,如图所示。 (3)晶粒度 由图可知,细化晶粒提高了强度,又大大降低了韧脆转变温度。
各强化机制在淬回火工艺过程中地变化 图,定量表示各机制对强度的贡献比较 困难。
除细化晶粒外,其他强化都提高韧脆转变温度Tk (图中是每提高15.4MPa强度对Tk的影响);间 隙固溶强化不是最好的强韧途径;弥散沉淀强化 降低塑性和韧性较小,对强化贡献大,所以是一 个有效而实用的强化途径。
1.5合金元素对钢相变的影响
Fe-C相图是研究钢中相变和对碳钢进行热处理时 选择加热温度的依 据,因此有必要先了解合金元素对Fe-C相图的影响。 钢中有三个基本的相变过程:加热时奥氏体的形成、冷却时过冷奥氏 体的分解以及淬火马氏体回火时的转变。
一、合金元素对Fe-C相图的影响 1.对奥氏体相区的影响
奥氏体层错能对钢的力学性能的影响
层错能越低,越有利于位错扩展和形成层错,使横滑移困难,导致钢 的加工硬化趋势增大。 虽然锰和镍都是奥氏体形成元素,单独加入相当数量的镍和锰都可以 使钢在室温下获得单相奥氏体,但镍钢的冷变形性能优异,易于变形 加工。而锰钢的冷变形性能很差,却表现有很高的加工硬化趋势与耐 磨性。这种性能差异的原因,乃是镍和锰奥氏体层错能的影响不同所 致。
50MnFA: 50:含碳量,万分之 几; Mn:元素,含 08F,45,20 40Mn,70Mn 量教高时标(0.701%); F:脱氧方法; A: 20g 质量等级
产品名称 3.低合金高强度 钢
牌号举例 Q295 Q345A
牌号表示方法 Q345A Q:钢材屈服强度 的屈,390: 屈服强 度,MPa,A:质量等 级 y40Mn: y:代表易 切削结构钢;40:含 碳量;万分之几;Mn: 易切削元素符号 T8MnA: T:代表碳 素工具钢; 8: 含碳 量,千分之几; Mn: 锰含量,含量教高 时标(0.70-1%);A 质量等级
合金元素对Wc=1.0%碳钢的点Ms的影响
合金元素对Wc=1.0%碳钢1150℃淬 火后残存奥氏体量的影响
合金钢回火时的二次硬化效应
层错界面是由于原子按最密排方式堆积时的堆积层错误而引起的, 可以有以下几种情况: (1)内层错:ABC ABC|BC ABC ABC ….. (2)外层错:ABC ABC(B)ABC ABC …… 它们形成了(BCBC)、(CBAB)的hcp晶体。如果fcc是稳定结构,则 其内部不稳定的hcp薄层就会使体系的能量升高,这就是层错能。
合金元素对共析体WC的影响
三、合金元素对过冷奥氏体分解过程的影响 合金元素可以使钢的C-曲线发生显著变化。几乎所有的合金元素 (除Co)外都使C-曲线向右移动,即减慢珠光体类型转变产物 的形成速度。除Co、Al以外,所有的合金元素都使马氏体转变温 度下降。
非碳化物形成元素
碳化物形成元素
合金元素对碳钢C-曲线的影响
9 合金工具 4CrW2Si 钢 CrWMn
10 高速工 具钢
W18Cr4V W12Cr4V5Co5
11 不锈钢 和耐热钢
1Cr13 00Cr18Ni10N 0Cr25Ni20
锰对γ相区的影响
铬对γ相区的影响
扩大γ相区的元素均使S点左移,A3下降;缩小γ相区的元素均使A3上升,S点左移。
2.对共析温度的影响 共析反应涉及到 α ↔ γ 同素异晶转变和碳化物的析出和溶解。
合金元素对共析温度的影响 扩大γ相区的元素降低S点温度, 缩小γ相区的元素提高S点温度
3.对共析点位置的影响 所有合金元素均使点S左移,降低了共析体中的WC。
第一章 钢的合金化基础
钢中的合金元素及其分类依据 合金元素与铁和碳的相互作用及其对奥氏体层错能的 影响 钢的强化机制 改善钢的塑性和韧性的基本途径 合金元素对钢相变的影响 钢的冶金质量
第一章
钢的合金化基础 第一节 钢中的合金元素及其分类依据
一、合金元素在钢中的分布 H Li Be Na Mg B C Al Si He N O F Ne P S Cl Ar
名称 高级 特级 超级
汉字 高 特 超
采用 符号 A T C
位置 牌号尾 牌号尾 牌号尾
常用钢铁产品的牌号表示方法
产品名称 1,碳素结构钢 牌号举例 Q195F Q215AF Q235Bb 牌号表示方法 Q235Bb Q:屈服强度的屈 235:屈服点(MPa) B:质量等级 b:脱氧方法
2。优质碳素结 构钢 普通含锰量 较高含锰量 锅炉用钢
7.弹簧钢
50CrVA 55Si2Mn
8 滚动轴承钢
GCr9 GCr15SiMn
产品名称
牌号举例
牌号表示方法 4CrW2Si 4:含碳量,大于1%时不标,小 于1时,千分之几; 4CrW2Si: 化学元素含量,百 分之几 W18Cr4V 不标含碳量 W18Cr4V:化学元素符号及含 量,百分之几 1Cr13 1:含碳量,千分之几, Cr13:化学元素及符号:百分 之几
第一章
第二节 合金元素与铁和碳的相互作用 及其对奥氏体层错能的影响
钢的合金化基础
完全封闭奥氏体区的元素
缩小奥氏体区,但不使之封闭的元素
第一章
钢的合金化基础
第二节 合金元素与铁和碳的相互作用 及其对奥氏体层错能的影响
(a)WCr=17%时Ni 的影响 WNi=10%
(b)WNi=18%时Cr的影响 WCr=19%
相关文档
最新文档