第一章 金属材料的强度与塑性.
金属材料的力学性能
![金属材料的力学性能](https://img.taocdn.com/s3/m/ec829413e418964bcf84b9d528ea81c758f52eee.png)
(1)测量值较精确,反复性好,可测组织不均匀材料(铸铁)(2) 可测旳硬度值不高(3)不测试成品与薄件(4)测量费时,效率低
4、测量范围
用于测量调质钢、铸铁、非金属材料及有色金属材料等.
6
第一章 金属旳力学性能
引言:
第二节 硬度
1、定义:指材料局部体积内抵抗弹性、塑性变形、压 痕和划痕旳能力。它是衡量材料软硬程度旳指标,其物 理含义与试验措施有关。
2、硬度旳测试措施 (1)布氏硬度 (2)洛氏硬度 (3)维氏硬度
7
§1-2 硬度
一、布氏硬度
1、布氏硬度试验(布氏硬度计)
原理:用一定直径旳球体(淬火钢球或硬质合金球)以相应旳试验力 压入待测材料表面,保持要求时间并到达稳定状态后卸除试验力,测量 材料表面压痕直径,以计算硬度旳一种压痕硬度试验措施。
布氏硬度计
返回
16
洛氏硬度计
返回
17
维氏硬度计
返回
18
布洛维氏硬度计
19
8
§1-2 硬度
二、洛氏硬度
1、洛氏硬度试验(洛氏硬度计)
原理: 用金刚石圆锥或淬火钢球,在试验力旳作用下压入试样表面, 经要求时间后卸除试验力,用测量旳残余压痕深度增量来计算硬度旳一
种压痕硬度试验。
2、洛氏硬度值 出。如:50HRC 3、优缺陷
用测量旳残余压痕深度表达。可从表盘上直接读
(1)试验简朴、以便、迅速(2)压痕小,可测成品、薄件(3)数据 不够精确,应测三点取平均值(4)不能测组织不均匀材料,如铸铁。
4、测量范围
第一节 强度与塑性
![第一节 强度与塑性](https://img.taocdn.com/s3/m/0b852506cc17552707220878.png)
第一节 强度与塑性
在万能材料实验机上做荷作用下抵抗塑性变形和断 裂的能力称为强度。 • 按外力作用的性质不同,分为: 屈服强度σs 、抗拉强度σb 、抗压强度σb c、 抗剪强度τb等。 1、屈服点与屈服强度 金属材料开始产生屈服现象时的最低应力 值称为屈服点,用符号σs 表示。 σs=Fs/Ao
工业上使用的某些金属材料,如高碳钢、铸铁等, 工业上使用的某些金属材料,如高碳钢、铸铁等,在拉 伸过程中,没有明显的屈服现象,无法确定其屈服点σ 伸过程中,没有明显的屈服现象,无法确定其屈服点σs , 屈服强度σ GB/T2228规定,可用屈服强度 2228规定 按GB/T2228规定,可用屈服强度σ0.2来表示该材料开始产生 塑性变形时的最低 应力值。 应力值。屈服强度为试样标 距部分产生0 距部分产生0.2%残余伸长时 的应力值, 的应力值,即 σ0.2=F0.2/Ao 式中
试样标距产生的0 F0.2—试样标距产生的0.2%残 试样标距产生的 余伸长时载荷( 余伸长时载荷(N); 试样的原始横截面积( Ao—试样的原始横截面积(mm2)。 试样的原始横截面积 屈服强度的测定
2、抗拉强度
• 金属材料在断裂前所能承受的最大应力值 称为抗拉强度,用符号σ b表示。 σ b=Fb/Ao 式中 Fb—试样在断裂前所承受的载荷(N); 三、塑性 Ao—试样原始横截面积(mm2)。 • 金属材料的载荷作用下,断裂前材料发生 不可逆久变形的能力称为塑性。 • 通过拉伸试验可测定材料的塑性。 • 常用的塑性指标有断后伸长率δ和断面收缩 率ψ。
金属材料的强度和塑性研究
![金属材料的强度和塑性研究](https://img.taocdn.com/s3/m/fdb8c8b6a1116c175f0e7cd184254b35eefd1acc.png)
金属材料的强度和塑性研究随着工业的快速发展和科学技术的不断进步,金属材料已经成为了现代社会中不可或缺的一部分。
在各种领域中,金属材料被广泛应用于生产、建设、科研等方面。
而人们对于金属材料的强度和塑性越来越重视,这也成为了研究的热点之一。
金属材料的强度和塑性是两个非常重要的物理指标,在金属材料的生产和应用过程中,这两个指标经常被用来衡量材料的质量和性能。
首先,强度是金属材料的另一种重要性能。
它通常是指金属材料能够承受外部力量而不发生破坏的能力。
因此,强度越高的金属材料,它的承受力就会更强,而不易发生破坏和变形。
不同的金属材料具有不同的强度,这取决于材料的成分、微观结构和热处理工艺等因素。
一般来说,强度越高的金属材料,它的成本也相对较高。
因此,在实际生产和应用中,需要根据具体的需求来选择适当的材料。
其次,塑性是金属材料的另一个重要性能。
它通常指金属材料在受到外部压力或外力作用后会发生变形的能力。
不同的金属材料具有不同的塑性,这取决于材料的结构、成分和热处理工艺等因素。
与强度相比,塑性是一种更为复杂的性能。
在一些需要进行弯曲、拉伸、挤压等形变加工的应用中,塑性是至关重要的。
同时,在金属材料的生产和应用中,还需要根据具体情况来选择适当的材料。
当然,金属材料的强度和塑性不是简单的两个方面,它们之间还存在着密切的关系。
为了更好地理解这种关系,我们需要深入研究金属材料的结构和性能。
在研究金属材料的强度和塑性时,需要考虑到多种因素。
例如,材料的晶粒尺寸、数量和分布等因素,这些因素会对金属材料的强度和塑性产生影响。
此外,材料的形貌和测试方法等也会影响对其强度和塑性的测量结果。
因此,在研究金属材料的强度和塑性时,需要采用多种方法和手段。
例如,可以利用电子显微镜和X射线衍射等手段对金属材料中的晶粒结构进行分析和研究。
此外,为了更好地衡量金属材料的强度和塑性,也可以采用拉伸试验、压缩试验和扭曲试验等不同的测试方法。
总的来说,金属材料的强度和塑性是不可分割的两个方面。
第一章 金属材料的力学性能
![第一章 金属材料的力学性能](https://img.taocdn.com/s3/m/9844158126fff705cc170ab3.png)
度
A、C标尺为100
B标尺为130
机 械 制
造
基
础
§1.2 硬度
第一章 金属材料的力学性能
二、洛氏硬度
标注——用符号HR表示, A标尺HRA B标尺HRB C标尺HRC
如: 42 HRA
机
械
硬度值 A标尺
制
造
基
础
§1.2 硬度
第一章 金属材料的力学性能
三、维氏硬度 测定原理——基本上和布氏硬度相同,只是所用 压头为金刚石正四棱锥体
冲击韧度高
机
•冲击能量高时, --材料的冲击韧度主要取决于材料的塑性,塑性高则
韧度高
械 制
造
基
础
第一章 金属材料的力学性能
第一章 金属材料的力学性能
§1.1 强度和塑性
§1.2 硬度
§1.3 冲击韧度
§1.4 疲劳强度
本章小结
机
械
制
造
基
础
§1.4 疲劳强度
第一章 金属材料的力学性能
疲劳强度
Sl110000%%Sl10lS0 110100%0%
Sl 二者的值越大塑性越好 00
lS0 0
机 械 制
原始原横始截标面距积
试样拉试断样后断的裂标处距截面积
造 基
础
第一章 金属材料的力学性能
第一章 金属材料的力学性能
§1.1 强度和塑性
§1.2 硬度
§1.3 冲击韧度
§1.4 疲劳强度
本章小结
第一章 金属材料的力学性能
由主金要属内材容料:制成的零、部件,在工作过
程中金都属要材承料受的外力力学性(或能称指载标荷和) 测作试用方而法产,
《金属工艺学》课程笔记 (2)
![《金属工艺学》课程笔记 (2)](https://img.taocdn.com/s3/m/25dd63da8662caaedd3383c4bb4cf7ec4afeb6e3.png)
《金属工艺学》课程笔记第一章绪论一、金属工艺学概述1. 定义与重要性金属工艺学是研究金属材料的制备、加工、性能、组织与应用的科学。
它对于工程技术的进步和工业发展至关重要,因为金属材料在建筑、机械、交通、电子、航空航天等几乎所有工业领域都有广泛应用。
2. 研究内容(1)金属材料的制备:包括金属的提取、精炼、合金化等过程,以及铸造、粉末冶金等成型技术。
(2)金属材料的加工:涉及金属的冷加工(如轧制、拉伸、切削)、热加工(如锻造、热处理)、特种加工(如激光加工、电化学加工)等。
(3)金属材料的性能:研究金属的物理性能(如导电性、热导性)、化学性能(如耐腐蚀性)、力学性能(如强度、韧性)等。
(4)金属材料的组织与结构:分析金属的晶体结构、相变、微观缺陷、界面行为等。
(5)金属材料的应用:研究金属材料在不同环境下的适用性、可靠性及寿命评估。
3. 学科交叉金属工艺学是一门多学科交叉的领域,它与物理学、化学、材料学、力学、热力学、电化学等学科有着紧密的联系。
二、金属工艺学发展简史1. 古代金属工艺(1)铜器时代:人类最早使用的金属是铜,掌握了简单的铸造技术。
(2)青铜器时代:铜与锡的合金,青铜,使得工具和武器的性能得到提升。
(3)铁器时代:铁的发现和使用,推动了农业和手工业的发展。
2. 中世纪至工业革命(1)炼铁技术的发展:如鼓风炉、熔铁炉的发明,提高了铁的产量。
(2)炼钢技术的进步:如贝塞麦转炉、西门子-马丁炉的出现,实现了钢铁的大规模生产。
3. 近现代金属工艺(1)20世纪初:金属物理和金属学的建立,为金属工艺学提供了理论基础。
(2)第二次世界大战后:金属材料的快速发展,如钛合金、高温合金的出现。
4. 当代金属工艺(1)新材料的开发:如形状记忆合金、超导材料、金属基复合材料等。
(2)新技术的应用:如计算机模拟、3D打印、纳米技术等。
三、金属工艺学在我国的应用与发展1. 古代金属工艺的辉煌(1)商周时期的青铜器:技术水平高超,工艺精美。
中职金工实训第一章金属材料的力学性能剖析
![中职金工实训第一章金属材料的力学性能剖析](https://img.taocdn.com/s3/m/8dceed55783e0912a3162a1d.png)
教案二【教学组织】1.提问5分钟2.讲解75分钟3.小结5分钟4.布置作业5分钟【教学内容】第一章金属材料的力学性能金属材料的性能包括使用性能和工艺性能。
●使用性能是指金属材料为保证机械零件或工具正常工作应具备的性能,即在使用过程中所表现出的特性。
使用性能包括力学性能(或机械性能)、物理性能和化学性能等。
●工艺性能是指金属材料在制造机械零件或工具的过程中,适应各种冷、热加工的性能,也就是金属材料采用某种成形加工方法制成成品的难易程度。
工艺性能包括铸造性能、锻压性能、焊接性能、热处理性能及切削加工性能等。
第一节金属材料的强度与塑性一、力学性能的概念●金属材料的力学性能是指金属材料在力作用下所显示的与弹性和非弹性反应相关或涉及应力—应变关系的性能,又称机械性能,主要包括强度、硬度、塑性、韧性、疲劳强度等。
●物体受外力作用后导致物体内部之间相互作用的力称为内力。
●单位面积上的内力称为应力σ(N/mm2或Mpa)。
●应变є是指由外力所引起的物体原始尺寸或形状的相对变化(%)。
二、拉伸试验过程分析●拉伸试验是指用静(缓慢)拉伸力对试样进行轴向拉伸,通过测量拉伸力和伸长量,测定试样强度、塑性等力学性能的试验。
圆柱形拉伸试样分为短圆柱形试样和长圆柱形试样两种。
长圆柱形拉伸试样L0=10d0;短圆柱形拉伸试样L0=5d0。
●在进行拉伸试验时,拉伸力F和试样伸长量△L之间的关系曲线,称为力-伸长曲线。
a)拉伸前 b)拉断后图1-1 圆柱形拉伸试样图1-2 退火低碳钢的力—伸长曲线完整的拉伸试验和力一伸长曲线包括弹性变形阶段、屈服阶段、变形强化阶段、颈缩与断裂四个阶段。
三、强度●强度是金属材料抵抗永久变形和断裂的能力。
金属材料的强度指标主要有屈服强度(或规定残余伸长强度)、抗拉强度等。
1.屈服强度和规定残余伸长应力●屈服强度是指拉伸试样在拉伸试验过程中拉力(或载荷)不增加(保持恒定)仍然能继续伸长(变形)时的应力。
第一章工程材料的力学性能
![第一章工程材料的力学性能](https://img.taocdn.com/s3/m/0284c7646529647d26285278.png)
第二节 材料的硬度 一、布氏硬度HBW 补充说明: (1)硬度超过HB650的材料,不能做布氏硬度试验,这是因为
所采用的压头,会产生过大的弹性变形,甚至永久变形,影 响实验结果的准确性,这时应改用洛氏和维氏硬度试验。 (2)每个试样至少试验3次。试验时应保证两相邻压痕中心的 距离不小于压痕平均直径的4倍,对于较软的金属则不得小于 6倍。压痕中心距试样边缘的距离不得小于压痕直径的2.5倍, 对于软金属则不得小于3倍
可用硬度试验机测定,常用的硬度指标有布氏硬度 HBW、 洛氏硬度(HRA、HRB、HRC等)和维氏硬度HV
第二节 材料的硬度 一、布氏硬度HBW (一)试验原理
布氏硬度试验规范
3 8
第二节 材料的硬度 一、布氏硬度HBW (二)应用范围
布氏硬度主要用于组织不均匀的锻钢和铸铁的硬度 测试,锻钢和灰铸铁的布氏硬度与拉伸试验有着较好的对 应关系。布氏硬度试验还可用于有色金属和软钢,采用小 直径球压头可以测量小尺寸和较薄材料。布氏硬度计多用 于原材料和半成品的检测,由于压痕较大,一般不用于成 品检测。
最大力伸长率(Agt):最大 力时原始标距的伸长与原 始标距之比的百分率。
最大力非比例伸长率(Ag)
二、拉伸曲线所确定的力学性能指标及意义
断后收缩率(Z):断裂后试样横截面积的最大缩减量与原始横截面 各之比的百分率。
第二节 材料的硬度
材料抵抗其他硬物压入其表面的能力称为硬度,它 是衡 量材料软硬程序的力学性能指标。
洛氏硬度计
第二节 材料的硬度 二、洛氏硬度HR (一)实验原理
第二节 材料的硬度 二、洛氏硬度HR (二)应用范围(共15个标尺) 示例:60HRBW
金属材料及热处理
![金属材料及热处理](https://img.taocdn.com/s3/m/b092238fbceb19e8b8f6ba48.png)
• 钢和铁的区别在于含碳量的多少: • 含碳量﹤0.02%为工业纯铁; • 含碳量在 0.02~2.06%为钢(共析 钢0.77%); • 含碳量>2.06%为生铁(铸铁) • 钢加热到高于723 ℃时出现A组织,则塑 性好的抗变形能力强。
1-3 钢的热处理
• • • • • • 一、概述 1.热处理的基本概念: 1)改善钢的性质,通常可以通过两种途径来实现: ①调整钢的化学成分; ②对钢进行热处理。 2)钢的热处理是指对钢在固态下加热,保温和冷 却,以改变其内部组织结构,从而改变钢的性能 的一种工艺法; • 3)目的在于充分发挥材料潜力、节约钢材、提高 产品质量、延长使用寿命;
临界
• 图中:V1— 相当于缓冷(退火)与“C”相交位置可以判断转变为P; • V2— 相当于空冷(正火)可判断转变为 氏体(细P) • V3— 相当于油冷(油淬)与“C”开始相交故一部分转变为T;另 一部分来不及转变,为过冷A最后转为Ms; • V4— 相当于水冷(水淬)不与“C”线相交,冷却时A来不及发生 分解,象马氏体转变。
例: 共析钢在冷却时的转变
• A等温转变曲线
过冷奥氏体 珠光体开始形成 珠光体形成中间 珠光体形成结束
珠光体形 马氏体形 贝氏体形
珠光体10~20 转 变
2 1 1
索氏体25~30
转 变 终 始
3
屈氏体30~40
开
温度/
上贝氏体40~45 了
≈240℃Ms
下贝氏体 50~60
时间/ 图1-21 共析碳钢的奥氏体等温转变曲线
三、钢的热处理工艺 • 1.退火— 将钢件加热到AC1或AC3以上 某一温度,保温一定时间后随炉冷却,从 而得到近似平衡组织的热处理方法。 • 目的:降低硬度,细化晶粒,提高强度, 塑性和韧性,消除内应力等 • ① 完全退火(重结晶退火):将钢加热到 AC3以上20~40 ℃使钢组织完全重结晶, 可细化晶粒、均匀组织、降低强度。
机械工程材料学
![机械工程材料学](https://img.taocdn.com/s3/m/a1f8fe7d02768e9950e73806.png)
第?4?页?共?54?页?
于材料的脆性转变温度。?二、小能量多次冲击?
实践表明:承受冲击载荷的机械零件,很少因一次大能量冲击作用下而破坏。他们是由于多次动能损伤的积累,导致裂纹的产生与扩展直到断裂。?
小能量多次冲击条件下,其冲击抗力主要取决于()??1)、小能量多次冲击的抗冲击能力,主要决定于材料的?2)较大能量较少次冲击抗冲击能力,主要取决于材料的?1-4、疲劳强度?一、疲劳现象:?
塑性——式样产生永久变形而又不被破坏的能力。?1.?断后伸长率:(延伸率)?
????S=(L1-L0/L0)*100%?????????????L1——式样拉断后的长度。L0—式样的原始长度。???长式样L0=10d——S10?短式样L0=5d——S5??一般S5>S10,(S5=1.2~1.5?S10)所以在比较断后伸长率时,应采用同样尺寸规格的式样,数据才准确。?
1.?HB测试原理:用一定直径为D的淬火钢球/硬质合金球,以相应的式验
力F压入试样表面,经规的保荷质量后,去除外力F,测量试样表面的压痕直径D,然后根据HB计算HB值。但实际应用中,HB一般不用计算,而是用专用的测量放大镜量出D,根据直径的大小,在从硬度对照表中查出相应的HB值。?
??????一般规定:HB<450时用淬火钢球压头——HBS?????????????HB450~650时选硬质合金压头——HBW?
5页?
1-2?硬度?
硬度是衡量金属材料软硬程度的一种性能指标。通常,材料的硬度超高,耐
第?3?页?共?54?页?
磨性越好,故常将硬度值作为横量材料耐磨性的一种性能指标之一。还有,硬度与强度有一定的关联,可彼此参考。而且必需设备简单,操作方便,迅速,对零件损伤小,所以硬度校验在产品的设计、制造及维修中应用十分广泛。?一.?布氏硬度HB:?
金属材料的强度与塑性
![金属材料的强度与塑性](https://img.taocdn.com/s3/m/04c66a1ea216147916112801.png)
变形、断裂(脆性断裂、韧性断裂、疲劳断裂等)以及金属
抵抗变形和断裂能力的衡量指标。
金属材料的力学性能是指在承受各种外加载荷(拉伸、压缩、 弯曲、扭转、冲击、交变应力等)时,对变形与断裂的抵抗 能力及发生变形的能力。
常用的力学性能有:强度、塑性、硬度、冲击韧性及疲劳极
限等。
材料在外力的作用下将发生形状和尺寸变化,称为变形。
×100%
S0——试样原始横截面积(mm2) S1——颈缩处的横截面积(mm2 )
3、塑性的意义
任何零件都要求材料具有一定的塑性。很显然,断后伸长率
A和断面收缩率Z越大,说明材料在断裂前发生的塑性变形量
越大,也就是材料的塑性越好。
意义: a)安全,防止产生突然破坏; b)缓和应力集中; c)轧制、挤压等冷热加工易变形。
F
F0.2 Rp0.2 =
F0.2 S0
0 0.2%L0 ΔL
工程上各种构件或机器零件工作时均不允许发生过量塑性变 形,因此屈服强度ReL和条件屈服强度Rp0.2是工程技术上重
要的力学性能指标之一,也是大多数机械零件选材和设计的
依据。
传统的强度设计方法,对韧性材料,以屈服强度为标准,
规定许用应力[σ ]= ReL /n,安全系数n一般取2或更大。
2、什么是强度?强度有哪些衡量指标?这些指标用什么符号 表示?
3、什么是塑性?塑性有哪些衡量指标?各用什么符号表示?
4、强度和塑性在生产设计中有什么指导意义?
谢 谢
三、塑性
1、 定义 金属材料断裂前发生永久变形的能力。 2、衡量指标 ①断后伸长率: 试样拉断后,标距的伸长量与原始标距的百分比。
材料的强度与塑性
![材料的强度与塑性](https://img.taocdn.com/s3/m/48d7cc568e9951e79b8927c1.png)
一、静载单向静拉伸应力――应变曲线
1.拉伸试样:
长试样:L0=10d0 短试样:L0=5d0
2.拉伸机上,低碳钢缓慢加载单向静拉伸曲线:
F
0
ΔLLeabharlann 低碳钢拉伸曲线脆性材料拉伸曲线
纵坐标为应力σ 单位 MPa(MN/mm ), 横坐标为应变ε 其中:σ=F/S 表示材料抵抗变形和断裂的能力 ε=(L1-L0)/L0
3.曲线分为四阶段: 1)阶段I(ope)――弹性变形阶段 p: Fp ,e: Fe (不产生永久变形的最大抗力) op段:△L∝ P 直线阶段 pe段:极微量塑性变形(0.001--0.005%) 2)阶段II(ess’)段――屈服变形 S: 屈服点 Fs 3)阶段III(s’b)段――均匀塑性变形阶段 b: Fb 材料所能承受的最大载荷
0.2
3.塑性:材料受力破坏前可承受最大塑性变形的能力。 延伸率
延伸率与试样尺寸有关;δ5、δ10 (L0=5d,10d) 断面收缩率 ψ=△A/Ao=(Ao-Ak)/Ao x 100%
> 时,无颈缩,为脆性材料表征; < 时,有颈缩,为塑性材料表征。
断裂后
拉 伸 试 样 的 颈 缩 现 象
布氏硬度的优点:测量误差小,数据稳定。 缺点:压痕大,不能用于太薄件、成品件及比压头 还硬的材料。 适于测量退火、正火、调质钢,铸铁及有色金属的硬度。 材料的b与HB之间的经验关系: 对于低碳钢: b(MPa)≈3.6HB 对于高碳钢:b(MPa)≈3.4HB 对于铸铁: b(MPa)≈1HB或0.6(HB-40)
4)阶段IV(bK) 段――局部集中塑性变形--颈缩 铸铁、陶瓷:只有第I阶段 中、高碳钢:没有第II阶段
第一章4金属材料的强度与塑性
![第一章4金属材料的强度与塑性](https://img.taocdn.com/s3/m/6178a230de80d4d8d15a4f5f.png)
A 或A
11.3=(LU-L0)/L0×100%
使用短拉伸试样测定的断后伸长率用符号A表示;使用长
拉伸试样测定的断后伸长率用符号A
11.3表示。
A>5%(塑性材料)A<5%(脆性材料) 一般短拉伸试样的A值大于长拉伸试样的A
11.3
2.断面收缩率
断面收缩率是指拉伸试样拉断后颈缩处横截面积的最
大缩减量与原始横截面积的百分比。断面收缩率用符 号Z表示。
Z=(S0-SU)/S0×100%
塑性好的金属材料容易进行锻压、轧制等成形加工,所 以,大多数机械零件除要求具有较高的强度外,还须有
一定的塑性。
A Z 越大,材料的塑性越好
新标准与旧标准在强度与塑性方面的名词和符号对照
GB/T228-2002新标准 名词 断面收缩率 符号 Z GB/T228-1987旧标准 名词 断面收缩率
金属材料的强度与塑性
作者:周学文
1、金属材料的力学性能是指金属材料在力作用下所显
示的与弹性和非弹性反应相关或涉及应力—应变关系
的性能,又称机械性能,主要包括强度、硬度、塑性、
韧性、疲劳强度等。
2、物体受外力作用后导致物体内部之间相互作用的力
称为内力。
3、单位面积上的内力称为应力σ (N/mm2或Mpa)。 4、应变是指由外力所引起的物体原始尺寸或形状的相 对变化(%)。 5、载荷:静载荷:指大小、方向不变或变化缓慢的载 荷;冲击载荷:突然增加的载荷;交变载荷(循环载 荷):大小、方向周期性变化的载荷
a)拉伸前
b)拉断后
退火低碳钢的力—伸长曲线
圆柱形拉伸试样
完整的拉伸试验和力一伸长曲线包括弹性变形阶段、 屈服阶段、变形强化阶段、颈缩与断裂四个阶段。
材料加工成型理论第一章-金属塑性变形的物理本质
![材料加工成型理论第一章-金属塑性变形的物理本质](https://img.taocdn.com/s3/m/d1777129cfc789eb172dc87e.png)
5. 割阶运动所引起的阻力
• 割阶运动所引起的阻力也就是形成点缺陷 引起的阻力。当带有割阶的位错滑移时, 如果割阶做的是非保守运动,则运动过程 中其后形成一连串的点缺陷。形成这些点 缺陷需要能量,这就相当于有反向的力阻 碍位错前进。形成这些点缺陷引起的阻力 为:
• 位错要运动,虽然很容易,但也必须至少克服点 阵阻力(派-纳力)对它的阻碍才能运动。
1.点阵阻力
• 位错向前运动,必须越过一个能量最大值的位置, 才能从一个低能的稳定位置过渡到另一个低能的 稳定位置。为此,就需要对位错施加足够的力以 供克服这一能垒所需要的能量,这个能垒就称为 派尔斯垒,克服这个能垒所需要的力就是派-纳力。
4. 位错切割穿过其滑移面的位错林所引起的阻力
• 位错林是指那些穿过运动位错所在滑移面的
位错。切割林位错所引起的阻力用
' s
表示,
是一种短程力。
• 热激活对于克服这个阻力是有很大作用的。
• 由于位错林的存在,必然存在应力场,林位
错的应力场对运动位错的阻力用
" s
表示,
该力是一种长程力,它对温度不敏感。
• 根据该理论可以估计出纯金属的理论屈服强度
m G / 2
• 一般金属晶体的理论屈服强度为103~104MPa 数量级。而实测纯金属单晶体大致为1MPa, 理论值是实际值的1000倍以上,说明把滑移 过程看成是整体刚性的移动与实际相差较远。
二、实际晶体屈服强度的构成
• 金属的理论屈服强度来源于金属的原子间的结合 力,它是金属原子间结合力大小的反映。而实际 晶体中存在各种晶体缺陷,如位错的存在,位错 易运动,因而不能充分发挥出原子间结合力的作 用,所以金属实际屈服强度远低于理论值。
金属材料的力学性能
![金属材料的力学性能](https://img.taocdn.com/s3/m/82676387d0d233d4b04e6906.png)
• •
ae =1/2×ζ e× ε e 弹簧是典型的弹性零件,要求有较大 的弹性比功。弹簧在实际工作中起缓冲和 存储能量作用。 • 实际设计时通过提高弹性极限ζ e ,提 高弹簧的弹性比功。
• 三、强度 • 强度是金属材料在外力的作用下,抵
抗变形和断裂的能力。根据零件的工作状 态不同分为:抗拉强度、抗压强度、抗弯强 度和抗剪强度等。 • 1、屈服强度和条件屈服强度 • 拉伸试样产生屈服现象(塑变)时的 应力。 ζ s=Fs/A0 • 对于许多没有明显屈服现象的金属材 料,工程中常以产生0.2%塑性变形时的应 力,作为该材料的条件屈服强度,用ζ 表示。
• §1—4 断裂韧度 • 机械零件的传统设计一般为强度设计、
刚度校核。强度设计标准为屈服强度。 • 零件在许用应力的条件下工作,不会发 生塑性变形和断裂。 • 实际工作情况往往不同。某些零件在远 远低于屈服强度条件下工作时会发生脆性 断裂,这种情况非常危险,称为低应力脆 断。 • 研究表明低应力脆断是由宏观裂纹扩展 引起的。
• 一、裂纹扩展的基本形式 • 裂纹扩展一般分为张开型、滑开型、撕
开性三种。其中以张开型最为危险。 • 二、应力场强度因子KI • 零件表面是凹凸不平的,在凸点和凹点 最容易引起应力集中,形成应力场。裂纹 的扩展与应力场有直接的关系。衡量应力 场的大小用应力场强度因子KI。
• 三、断裂韧度KIC及其应用 • KI随着和a的增大而增大。达到一定值
• §1—1 强度、刚度、弹性及塑性 • 金属材料的强度、刚度、弹性及塑性用
拉伸试验来测量。 • 一、拉伸曲线与 应力-应变曲线 • 1、拉伸曲线 • 拉伸过程分为 弹性变形、塑性变形和 断裂三个阶段。
• 几点说明:(书中图1-2) • 试件总伸长of,其中gf为弹性变形,og
金属材料的力学性能
![金属材料的力学性能](https://img.taocdn.com/s3/m/cd16fe1d2cc58bd63086bd5d.png)
金属材料的力学性能(总6页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除复习旧课1、材料的发展历史2、工程材料的分类讲授新课第一章金属材料的力学性能材料的性能有使用性能和工艺性能两类使用性能是保证工件的正常工作应具备的性能,主要包括力学性能、物理性能、化学性能等。
工艺性能是材料在被加工过程中适应各种冷热加工的性能,包括铸造性能、锻压性能、焊接性能、热处理性能、切削加工性能等。
力学性能是指金属在外力作用下所显示的性能能。
金属力学性能指标有:强度、刚度、塑性、硬度、韧性和疲劳强度等。
第一节刚度、强度与塑性一、拉伸试验及力—伸长曲线L 0——原始标距长度;L1——拉断后试样标距长度d 0——原始直径。
d1——拉断后试样断口直径国际上常用的是L0=5 d0(短试样),L0=10 d0(长试样)[拉伸曲线]:拉伸试验中记录的拉伸力F与伸长量ΔL(某一拉伸力时试样的长度与原始长度的差ΔL=Lu-L0)的F—ΔL曲线称为拉伸曲线图。
Oe段:为纯弹性变形阶段,卸去载荷时,试样能恢复原状Es段:屈服阶段Sb段:强化阶段,试样产生均匀的塑性变形,并出现了强化Bk段:局部塑性变形阶段二、刚度刚度:金属材料抵抗弹变的能力指标:弹性模量 E E= σ / ε (Gpa )弹性范围内. 应力与应变的比值(或线形关系,正比)E↑刚度↑一定应力作用下弹性变形↓三、强度指标σ= F/S o强度:强度是指材料抵抗塑性变形和断裂的能力。
强度表示:强度一般用拉伸曲线上所对应某点的应力来表示。
单位采用N/mm2(或MPa 兆帕)σ= F/Aoσ——应力(MPa);F——拉力(N);S o——截面积(mm2)。
常用的强度判据主要有屈服点、条件屈服强度(也称为规定残余伸长应力)和抗拉强度等。
1、屈服点与条件屈服强度[屈服强度]σs 产生屈服时的应力(屈服点),亦表示材料发生明显塑性变形时的最低应力值。
金属工艺学知识点总结
![金属工艺学知识点总结](https://img.taocdn.com/s3/m/858e3a8503d276a20029bd64783e0912a2167c90.png)
第一篇金属材料的基本知识第一章金属材料的主要性能金属材料的力学性能又称机械性能,是金属材料在力的作用所表现出来的性能.零件的受力情况有静载荷,动载荷和交变载荷之分。
用于衡量在静载荷作用下的力学性能指标有强度,塑性和硬度等;在动载荷和作用下的力学性能指标有冲击韧度等;在交变载荷作用下的力学性能指标有疲劳强度等。
金属材料的强度和塑性是通过拉伸试验测定的。
P6低碳钢的拉伸曲线图1,强度强度是金属材料在力的作用下,抵抗塑性变形和断裂的能力.强度有多种指标,工程上以屈服点和强度最为常用。
屈服点:δs是拉伸产生屈服时的应力。
产生屈服时的应力=屈服时所承受的最大载荷/原始截面积对于没有明显屈服现象的金属材料,工程上规定以席位产生0.2%变形时的应力,作为该材料的屈服点。
抗拉强度:δb是指金属材料在拉断前所能承受的最大应力。
拉断前所能承受的最大应力=拉断前所承受的最大载荷/原始截面积2,塑性塑性是金属材料在力的作用下,产生不可逆永久变形的能力。
常用的塑性指标是伸长率和断面收缩率。
伸长率:δ试样拉断后,其标距的伸长与原始标距的百分比称为伸长率。
伸长率=(原始标距长度-拉断后的标距长度)÷拉断后的标距长度×100%伸长率的数值与试样尺寸有关,因而试验时应对所选定的试样尺寸作出规定,以便进行比较。
同一种材料的δ5 比δ10要大一些.断面收缩率:试样拉断后,缩颈处截面积的最大缩减量与原始横截面积的百分比称为断面收缩率,以ψ表示。
收缩率=(原始横截面积-断口处横截面积)÷原始横截面积×100%伸长率和断面收缩率的数值愈大,表示材料的塑性愈好.3,硬度金属材料表面抵抗局部变形(特别是塑性变形、压痕、划痕)的能力称为硬度.金属材料的硬度是在硬度计上测出的。
常用的有布氏硬度法和洛氏硬度法。
1,布氏硬度(HB)是以直径为D的淬火钢球HBS或硬质合金球HBW为压头,在载荷的静压力下,将压头压入被测材料的表面,停留若干秒后卸去载荷,然后采用带刻度的专用放大镜测出压痕直径d,并依据d的数值从专门的表格中查出相应的HB值.布氏硬度法测试值较稳定,准确度较洛氏法高。
各种力学性能指标(强度,塑性;冲击韧性;硬度HB,HRC,HV;疲劳强度
![各种力学性能指标(强度,塑性;冲击韧性;硬度HB,HRC,HV;疲劳强度](https://img.taocdn.com/s3/m/421ad3e176eeaeaad0f3301c.png)
弹性极限:σe=Fe/Ao 的最大抗力。
不产永久变形 s
2.强度:材料在外力作用下抵抗 变形和破坏的能力。 屈服强度s:材料发生微量塑性变形 时的应力值。即在拉伸试验过程中,载 荷不增加,试样仍能继续伸长时的应力。 条件屈服强度0.2:高碳钢等无屈服点, 国家标准规定以残余变形量为0.2%时的 应力值作为它的条件屈服强度,以σ0.2 来表示 抗拉强度b:材料断裂前所承受的最 大应力值。(材料抵抗外力而不致断裂 的极限应力值)。
第一章 材料的力学性能
[本章内容] 1.1 材料的强度与塑性 1.2 材料的硬度 1.3 材料的冲击韧性 1.4 材料的疲劳强度 1.5 材料的断裂韧度 [重点掌握] 各种力学性能指标(强度, 塑性;冲击韧性;硬度 HB,HRC,HV;疲劳强度,断裂韧性。)的物理意 义和单位。
§1.1 材料的强度与塑性
当KI >KIC时,裂纹失稳扩展,发生脆断。 KI =KIC时,裂纹处于临界状态 K I <KIC时,裂纹扩展很慢或不扩展,不发生脆断。 KIC可通过实验测得,它是评价阻止裂纹失稳扩展能力的力学性能 指标。是材料的一种固有特性,与裂纹本身的大小、形状、外加应 力等无关,而与材料本身的成分、热处理及加工工艺有关。
周次
疲劳断口
轴的疲劳断口
疲劳辉纹(扫描电镜照片)
通过改善材料的形状结构,减少表面缺陷,提高表面 光洁度,进行表面强化等方法可提高材料疲劳抗力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脆性材料:在断裂前未发生明显的塑性变形,
为脆性断裂,断口是平整的。如铸铁、玻璃等。
不同类型的材料,其σ-ε曲线有很大差 异。反映出其所具有不同的抗拉性能特点。
2. 强度指标
(1) 屈服点是指拉伸试样在拉伸试 验过程中力不增加(保持恒定)仍 然能继续伸长(变形)时的应力。
ss =
FS S0
σs
——屈服点,MPa ——试样屈服时的载荷( N ) ——试样原始横截面积( mm2)
短试样:L0=5d0
2)拉伸试验机
拉伸试验机
3)拉伸过程
当拉伸力达到Fb时, 试样的局部截面开 始收缩,产生颈缩 现象。
拉 伸 试 样 的 颈 缩 现 象
不同材料的拉伸曲线
塑性材料 退火低碳钢 中碳调质钢
脆性材料 铸铁 高碳钢
(一)材料的拉压试验
塑性材料:断裂前有明显的塑性变形,称为
塑性断裂,塑性断裂的断口呈“杯锥”状。如低碳钢。
FS
S0
2,材料的强度指标
(1)屈服点σs :表示材料产生屈服时对应的应力。 屈服点也称为屈服强度。 σs= Fs/Ao (MPa) 式中,Fs为试样发生屈服变形时的载荷(N),A0 为试样原始横截面积(mm2)。 (2)抗拉强度σb 指试样在拉伸过程中所能承受的最 大应力值。 σb=Fb/Ao (MPa) 式中,Fb是试样断裂前所承受的最大载荷(N),Ao是 试样的原始横截面积(㎜2)。
三.材料的化学性能
化学性能:是指材料抵抗周围介质侵蚀的能力。
对于金属材料来说,指耐蚀性和抗氧化性。
对于非金属材料,还存在着化学稳定性、抗老化能力和耐热 性等问题。
材料的化学性能
四. 材料的工艺性能
是指材料在被制成各种零部件的过程中适应加工 的性能。包括: 铸造性能:流动性、收缩性、偏析 锻造性能:塑性、变形抗力 焊接性能:焊接性、碳当量 切削性能:表面粗糙度、刀具寿命 热处理性能:淬透性
2.拉伸试验 拉伸试验是指用静载荷对试样进行轴向拉伸,测 量拉伸力和相应的伸长,并测其力学性能的试验。 拉伸时一般将拉伸试样拉至断裂。
静载荷—是指大小、方向不变或变动很慢的载荷。
拉伸力F和试样伸长量△L之间的关系曲线称为力 -伸长曲线。
3.测量方法
1)拉伸试样 常用标准圆柱形试样。 长试样:L0=10d0;
强度、塑性 强度
金属材料在载荷作用下抵抗塑性变形和断裂的能力称为强度 常用强度指标是屈服强度、抗拉强度
塑性
金属材料产生塑性变形而不被破坏的最大能力 常用塑性值的指标是伸长率和断面收缩率。
1. 载荷
根据外加载荷的性质,载荷分为: 1、静载荷 2、冲击载荷 3、交变载荷。 金属材料 (受载)-变形,分: 弹性变形:载荷卸除后恢复原状 塑性变形:载荷卸除后不能恢复,也叫永 久变形。
乐都职业技术学校
第二节 材料的性能
祝增美
一.:是指材料在外加载荷作用 出来的性能。
下所表现
包括强度、塑性、硬度、韧度、疲劳强度及断裂韧度等;
力学性能指标:用来表征材料力学性能的各种临界值或规 定值.可通过试验测定.
二.材料的理化性能 1.材料的物理性能
指材料的固有属性, 如密度、熔点、导热性、导电性、热膨胀性、磁性和色泽等。
l1-l0 l0
×100%
l1——试样拉断后的标距,mm; l0——试样的原始标距,mm。
长试样:δ10 短试样:δ5
断面收缩率:试样拉断后,颈缩处的横截面积的缩减量
与原始横截面积的百分比。 Ψ= S0-S1 ×100% S0 S0——试样原始横截面积,mm2;
S1——颈缩处的横截面积,mm2 。
塑性好坏的意义:
1)塑性好的金属可以发生大量塑性变形而不破坏,便于通 过塑性变形加工成复杂的零件。
2)塑性好的材料,在过载时,由于首先产生塑性变形而 不致发生突然断裂,因此比较安全。
塑性材料与脆性材料的区分:
δ﹥5%时为塑性材料,如低碳钢
δ﹤5%时为脆性材料,如灰铸铁 塑性指标不直接用于计算,但任何零件都需要一定塑性。 防止过载断裂;塑性变形可以缓解应力集中、削减应力峰值。
塑性
1)定义: 是指金属材料在断裂前发生不可逆永久变
形的能力。
塑性变形:是物体在力作用下产生的形状和尺寸的改变, 外力去除后塑性变形不能恢复到原来的形状和 尺寸。
2) 测量方法 3)强度指标
拉伸试验
断后伸长率 δ 塑性指标 断面收缩率 Ψ
断后伸长率:试样拉断后,标距的伸长与原始标距的百分比。
δ=