韦达定理例题
韦达定理全面练习题及答案
韦达定理全面练习题及答案1、韦达定理(根与系数的关系)韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么1212,b c x x x x a a+=-= 说明:定理成立的条件0?≥练习题一、填空:1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = , 1x 2x = .2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = .5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = .6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 .7、以13+,13-为根的一元二次方程是 .8、若两数和为3,两数积为-4,则这两数分别为 .9、以23+和23-为根的一元二次方程是 .10、若两数和为4,两数积为3,则这两数分别为 .11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += .12、若方程062=+-m x x 的一个根是23-,则另一根是,m 的值是 .13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = .14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么nmx x ++2在实数范围内可分解为 .二、已知方程0232=--x x 的两根为1x 、2x ,且1x >2x ,求下列各式的值:(1)2212x x += ;(2)2111x x += ;(3)=-221)(x x = ;(4))1)(1(21++x x = .三、选择题:1、关于x 的方程p x x --822=0有一个正根,一个负根,则p 的值是()(A )0 (B )正数(C )-8 (D )-42、已知方程122-+x x =0的两根是1x ,2x ,那么=++1221221x x x x ()(A )-7 (B) 3 (C ) 7 (D) -33、已知方程0322=--x x 的两根为1x ,2x ,那么2111x x +=()(A )-31 (B) 31(C )3 (D) -34、下列方程中,两个实数根之和为2的一元二次方程是()(A )0322=-+x x (B ) 0322=+-x x(C )0322=--x x (D )0322=++x x5、若方程04)103(422=+--+a x a a x 的两根互为相反数,则a 的值是() (A )5或-2 (B) 5 (C ) -2 (D) -5或26、若方程04322=--x x 的两根是1x ,2x ,那么)1)(1(21++x x 的值是()(A )-21(B) -6 (C ) 21 (D) -257、分别以方程122--x x =0两根的平方为根的方程是()(A )0162=++y y (B ) 0162=+-y y(C )0162=--y y (D )0162=-+y y四、解答题:1、若关于x 的方程02352=++m x x 的一个根是-5,求另一个根及m 的值.2、关于x 的方程04)2(222=++-+m x m x 有两个实数根,且这两根平方和比两根积大21. 求m 的值.3、若关于x 的方程03)2(2=---+m x m x 两根的平方和是9. 求m 的值.4、已知方程032=--m x x 的两根之差的平方是7,求m 的值.5、已知方程0)54(22=+--+m x m m x 的两根互为相反数,求m 的值.6、关于x 的方程0)2()14(322=++--m m x m x 的两实数根之和等于两实数根的倒数和,求m 的值.7、已知方程m x x 322+-=0,若两根之差为-4,求m 的值.8、已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值.答案:。
韦达定理练习题初三
韦达定理练习题初三韦达定理是初中数学中的重要定理之一,它为我们解决三角形中的问题提供了有效的工具。
在初三学习阶段,我们需要通过练习题的形式,巩固和应用韦达定理的知识。
下面是一些韦达定理练习题,帮助同学们更好地掌握这一知识点。
【题目一】已知△ABC中,AB = 6,AC = 8,BC = 10,求△ABC的高。
【解题思路】根据韦达定理,对于三角形ABC,有公式:a² = b² + c² - 2bc * cosA其中,a、b、c分别表示三角形的边长,A表示夹角。
根据已知条件,代入公式中可得:8² = 6² + 10² - 2 * 6 * 10 * cosA进一步计算可得:64 = 36 + 100 - 120cosA28 = -120cosAcosA ≈ -0.233由于A为锐角,cosA不可能为负数,因此此题无解。
【题目二】已知△ABC中,AB = 12,BC = 18,AC = 24,求△ABC的面积。
【解题思路】根据韦达定理,我们可以先通过余弦定理求得角BAC的值。
cosA = (b² + c² - a²) / 2bccosA = (18² + 24² - 12²) / 2 * 18 * 24cosA ≈ 0.5由于韦达定理中的角A为夹角,无法直接计算面积,我们需要进一步计算角B、角C。
角B = arcsin(b * sinA / a)角B = arcsin(18 * sin(0.5) / 12)角B ≈ 0.573 rad角C = π - A - B角C = π - 0.5 - 0.573角C ≈ 2.068 rad根据三角形面积公式S = 0.5 * a * b * sinC,代入已知条件可得:S = 0.5 * 12 * 18 * sin(2.068)S ≈ 110.4所以,△ABC的面积约为110.4平方单位。
专题12 韦达定理及其应用(解析版)
专题12 韦达定理及其应用1.一元二次方程根与系数的关系(韦达定理)如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,acx x =21。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
2.根与系数的关系的应用,主要有如下方面: (1)验根;(2)已知方程的一根,求另一根; (3)求某些代数式的值; (4)求作一个新方程。
【例题1】(2020•泸州)已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 . 【答案】2【分析】根据根与系数的关系求解. 【解析】根据题意得则x 1+x 2=4,x 1x 2=﹣7 所以,x 12+4x 1x 2+x 22=(x 1+x 2)2+2x 1x 2=16﹣14=2【对点练习】(2019湖北仙桃)若方程x 2﹣2x ﹣4=0的两个实数根为α,β,则α2+β2的值为( ) A .12 B .10 C .4 D .﹣4【答案】A【解析】∵方程x 2﹣2x ﹣4=0的两个实数根为α,β,∴α+β=2,αβ=﹣4,∴α2+β2=(α+β)2﹣2αβ=4+8=12【例题2】(2020•江西)若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为.【答案】-2【分析】利用根与系数的关系可得出方程的两根之积为﹣2,结合方程的一个根为1,可求出方程的另一个根,此题得解.【解析】∵a=1,b=﹣k,c=﹣2,=−2.∴x1•x2=ca∵关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,∴另一个根为﹣2÷1=﹣2.【对点练习】已知方程的一个根是-1/2,求它的另一个根及b的值。
【答案】x1=3 b=-5【解析】设方程的另一根为x1,则由方程的根与系数关系得:解得:【点拨】含字母系数的一元二次方程中,若已知它的一个根,往往由韦达定理可求另一根,并确定字母系数的值。
韦达定理经典例题及解题过程
韦达定理经典例题及解题过程摘要:一、韦达定理简介二、韦达定理经典例题1.例题一2.例题二3.例题三三、韦达定理解题过程1.确定韦达定理的应用条件2.分析题目中给出的方程3.应用韦达定理求解方程4.总结解题过程并得出答案正文:一、韦达定理简介韦达定理,又称Vieta 定理,是一元二次方程根与系数关系的定理。
它指出,对于一元二次方程ax+bx+c=0(a≠0),其两个根x1 和x2 的和与积分别等于方程中一次项系数和常数项系数的相反数和倒数。
具体来说,韦达定理有以下两个公式:x1 + x2 = -b/ax1 * x2 = c/a二、韦达定理经典例题1.例题一题目:已知一元二次方程x-3x-4=0,求该方程的两个根。
2.例题二题目:已知一元二次方程2x-5x+3=0,求该方程的两个根。
3.例题三题目:已知一元二次方程x+2x-3=0,求该方程的两个根。
三、韦达定理解题过程假设我们有一个一元二次方程ax+bx+c=0(a≠0),我们想要求出它的两个根x1 和x2。
1.确定韦达定理的应用条件首先,我们需要确保方程有两个实数根,即b-4ac≥0。
如果b-4ac<0,则方程没有实数根。
2.分析题目中给出的方程对于每一个例题,我们首先需要将方程写成标准形式ax+bx+c=0。
然后,我们可以根据韦达定理的公式x1 + x2 = -b/a和x1 * x2 = c/a来求解。
3.应用韦达定理求解方程对于每一个例题,我们分别代入方程的系数,计算出x1 和x2 的值。
4.总结解题过程并得出答案最后,我们将求得的x1 和x2 的值代入原方程,验证它们是否是方程的根。
如果是,我们便成功求解了该方程。
综上所述,韦达定理是一种非常有用的解一元二次方程的方法。
韦达定理 经典习题
韦达定理经典习题一.选择题(共16小题)1.若方程x2﹣(m2﹣4)x+m=0的两个根互为相反数,则m等于()A.﹣2B.2C.±2D.42.若关于x的方程x2+3x+a=0有一个根为1,则另一个根为()A.﹣4B.2C.4D.﹣33.设a,b是方程x2+x﹣2017=0的两个实数根,则a2+2a+b的值为()A.2014B.2015C.2016D.20174.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根B.有两个负根C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大5.已知m、n是方程x2+3x﹣2=0的两个实数根,则m2+4m+n+2mn的值为()A.1B.3C.﹣5D.﹣96.已知关于x的一元二次方程x2+mx﹣8=0的一个实数根为2,则另一实数根及m的值分别为()A.4,﹣2B.﹣4,﹣2C.4,2D.﹣4,27.一元二次方程x2+x﹣1=0的两根分别为x1,x2,则+=()A.B.1C.D.8.关于x的方程x2+2(k+2)x+k2=0的两实根之和大于﹣4,则k的取值范围是()A.k>﹣1B.k<0C.﹣1<k<0D.﹣1≤k<9.已知a、b是一元二次方程x2﹣3x﹣2=0的两根,那么+的值为()A.B.C.﹣D.﹣10.已知实数x1,x2满足x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程是()A.x2﹣7x+12=0B.x2+7x+12=0C.x2+7x﹣12=0D.x2﹣7x﹣12=011.设a、b是方程x2+x﹣2014=0的两个实数根,则a2+2a+b的值为()A.2014B.2015C.2012D.2013二.填空题(共30小题)12.已知:一元二次方程x2﹣6x+c=0有一个根为2,则另一根为.13.一元二次方程x2+x﹣2=0的两根之积是.14.若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=.15.一元二次方程x2+mx+2m=0的两个实根分别为x1,x2,若x1+x2=1,则x1x2=.16.已知m、n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为.17.已知a,b是方程x2﹣x﹣3=0的两个根,则代数式a2+b+3的值为.18.已知关于x的方程x2﹣2ax+a2﹣2a+2=0的两个实数根x1,x2,满足x12+x22=2,则a的值是.19.方程x2﹣3x+1=0中的两根分别为a、b,则代数式a2﹣4a﹣b的值为.20已知a+b=3,ab=﹣7,则代数式2a2+b2+3b的值为.21.已知x1,x2是关于x的方程x2+nx+n﹣3=0的两个实数根,且x1+x2=﹣2,则x1x2=.22.已知实数a≠b,且满足(a+1)2=3﹣3(a+1),3(b+1)=3﹣(b+1)2.则的值为.23.已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=..24.已知关于x的方程x2﹣(a+b)x+ab﹣1=0,x1、x2是此方程的两个实数根,现25.若两个不等实数m、n满足条件:m2﹣2m﹣1=0,n2﹣2n﹣1=0,则m2+n2的值是.26.设x1,x2是方程x2﹣x﹣2013=0的两实数根,则=.27..设x1,x2是方程2x2﹣3x﹣3=0的两个实数根,则的值为.28..若α,β是方程x2﹣3x+1=0的两个根,则α2+αβ﹣3α=.三.解答题(共4小题)29.已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且,求m的值.30.已知一元二次方程2x2﹣6x﹣1=0的两实数根为x1、x2,不解方程,求代数式的值.31.已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.方程两根x1,x2x1+x2=x1x2=x2+2x+1=0x2﹣3x﹣4=0x2+4x﹣7=01212=,x1x2=利用你的猜想解下列问题:若x1,x2是方程x2﹣2x﹣3=0的两根求,x12+x22和(x1+2)(x2+2)的值.。
韦达定理练习
韦达走理练习1、已知关于X的一元二次方程x+x+1二0有两个不相等的实数根,则k的取值范围是5、已知x1、x2是方程x+6x+3二0的两个实数根,则6、如果关于x的一元二次方程x - 6x+c=0没有实根,那么c 的取值范围是_________ 、7、已知关于x的一元二次方程x+2x-m二0有两个相等的实数根,则m的值是8、方程x - 2x - 1=0的两个实数根分别为xl, x2,则二9、已知a, 0是一元二次方程x-4x-3二0的两实数根,则代数式二________ 、10、已知x二2是方程x+mx-2二0的一个解,则方程的另一个解为11、用指定的方法解方程22 - 25=0 x+4x - 5=0[1 **********]的值等于-10+25=04) 2x - 7x+3=012、+3+2=013、已知关于x的一元二次方程x+2x+m二0、当m二3时,判断方程的根的情况;当m=- 3时,求方程的根、14、当实数k为何值时,关于x的方程x-4x+3-k二0有两个相等的实数根?并求出这两个相等的实数根、15、阅读材料:如果xl, x2是一元二次方程ax+bx+c=O的两根,那么有xl+x2= - , xlx2二、这是一元二次方程根与系数的关系,我们利用它可以用来解题,例xl, x2是方程x+6x-3二0的两根,求222222xl+x2的值、解法可以这样:Vxl+x2=6, xlx2=-3 则xl+x2=-2xlx2-2X =42、请你根据以上解法解答下题:已知xl, x2是方程x - 4x+2=0 的两根,求:的值;222222222 的值、16、已知xl, x2是方程3x+2x - 1=0的两根,求xl+x2的值、17、已知关于x的一元二次方程x+kx - 1=0,求证:方程有两个不相等的实数根;设方程的两根分别为xl, x2,且满足xl+x2二xl・x2,求k的值、18、已知x1、x2是一元二次方程2x - 2x+l - 3m=0的两个实数根,且x1、x2满足不等式xl・x2+2>0,求实数m的取值范围、19、已知xl, x2是方程x-2x-2二0的两实数根,不解方程求下列各式的值:20、已知一元二次方程X - 2x+m二0、若方程有两个实数根,求m的范围;若方程的两个实数根为xl, x2,且xl+3x2=3,求m的值、2222222;、21、阅读材料:如果x1、x2是一元二次方程ax+bx+c二0的两根,那么,名的韦达定理、现在我们利用韦达定理解决问题:2已知m与n是方程2x - 6x+3二0的两根填空:m+n= ________ , m* n= _________ ;计算22、已知关于x的一元二次方程x-2x-0二0、如果此方程有两个不相等的实数根,求a的取值范围;如果此方程的两个实数根为xl, x2,且满足23、已知关于x的一元二次方程kx- 2x+k - 1=0有两个不相等的实数根xl, X2、求k的取值范围;是否存在实数k,使+二1成立?若存在,请求出k的值;若不存在,请说明理由、222,、这就是著的值、,求a的值、。
关于韦达定理经典例题及解题过程的文章
关于韦达定理经典例题及解题过程的文章韦达定理(Vieta's formulas)是代数学中的一个重要定理,它描述了多项式的根与系数之间的关系。
这个定理由法国数学家弗朗索瓦·韦达(François Viète)在16世纪提出,被广泛应用于代数方程的研究和解题过程中。
韦达定理的经典例题之一是求解二次方程的根。
我们先来看一个具体的例子:已知二次方程x^2 - 5x + 6 = 0,求解该方程的根。
解题过程如下:首先,我们可以通过观察系数得到一些信息。
根据韦达定理,二次方程的两个根之和等于系数b(即-5),两个根之积等于常数项c(即6)。
因此,我们可以得到以下两个等式:根1 + 根2 = -5\n根1 × 根2 = 6接下来,我们需要找到满足这两个等式的两个数。
通过试探法,我们可以发现满足条件的两个数是2和3。
因此,方程的两个根分别为2和3。
这里需要注意的是,在实际解题过程中,并不需要通过试探法来找到满足条件的两个数。
我们可以直接使用韦达定理的公式来求解。
对于一般的二次方程ax^2 + bx + c = 0,根据韦达定理,我们可以得到以下两个等式:根1 + 根2 = -b/a\n根1 × 根2 = c/a通过这两个等式,我们可以直接求解出方程的两个根。
回到我们的例子中,二次方程x^2 - 5x + 6 = 0的系数分别为a=1,b=-5,c=6。
代入韦达定理的公式中,我们可以得到以下结果:根1 + 根2 = -(-5)/1 = 5\n根1 × 根2 = 6/1 = 6因此,方程的两个根分别为2和3,与我们通过试探法得到的结果一致。
通过这个例题,我们可以看到韦达定理在解决二次方程问题中的重要性。
它不仅能够帮助我们找到方程的根,还能够提供关于根与系数之间的关系。
在实际应用中,韦达定理也被广泛用于高阶多项式方程以及其他代数方程的求解过程中。
总结起来,韦达定理是代数学中一个重要且实用的工具。
韦达定理应用的典型例题
韦达定理应用的典型例题韦达定理(Viviani's theorem)是解析几何中的一条定理,它是由意大利数学家韦达(Vincenzo Viviani)在17世纪提出的。
该定理描述了一个正四面体内部的特殊关系,也可以被看作是勾股定理在空间中的推广。
韦达定理可以用以下方式表述:如果在一个正四面体的每个面上都选择一个点,连接这些点所得到的三条线段的长度之和等于这个正四面体的高,则这三条线段的长度是相等的。
现在,让我们来看几个典型的例题,应用韦达定理来解决。
例题1:一个正四面体的高为6 cm,求连接每个顶点与相对面的中点所得到的三条线段的长度。
解析:根据韦达定理,我们知道连接每个顶点与相对面的中点所得到的三条线段的长度之和等于正四面体的高。
由于正四面体的高为6 cm,所以这三条线段的长度之和也为6 cm。
由于这三条线段的长度相等,所以每条线段的长度为2 cm。
例题2:一个正四面体的一条棱长为8 cm,求连接每个顶点与相对面的中点所得到的三条线段的长度。
解析:首先,我们需要确定正四面体的高。
一个正四面体的高是连接底面的一个顶点与相对面的中点所得到的线段。
根据勾股定理,这个高的长度等于底面棱长的一半,即4 cm。
根据韦达定理,连接每个顶点与相对面的中点所得到的三条线段的长度之和等于正四面体的高。
所以,这三条线段的长度之和也为4cm。
由于这三条线段的长度相等,所以每条线段的长度为4/3 cm。
这两个例题展示了如何应用韦达定理来解决正四面体中连接顶点和相对面中点的线段长度问题。
通过理解韦达定理的几何意义,我们能更好地理解空间几何中的关系,并能更灵活地应用于解决其他几何问题。
韦达定理应用
韦达定理应用(总7页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除韦达定理的应用一、典型例题例1:已知关于x的方程2x-(m+1)x+1-m=0的一个根为4,求另一个根。
解:设另一个根为x1,则相加,得x例2:已知方程x-5x+8=0的两根为x1,x2,求作一个新的一元二次方程,使它的两根分别为和.解:∵又∴代入得,∴新方程为例3:判断是不是方程9x-10x-2=0的一个实数根?解:∵二次实数方程实根共轭,∴若是,则另一根为∴,。
∴以为根的一元二次方程即为.例4:解方程组解:设∴.∴A=5. ∴x-y=5 又xy=-6.∴解方程组∴可解得例5:已知Rt ABC中,两直角边长为方程x-(2m+7)x+4m(m-2)=0的两根,且斜边长为13,求S的值解:不妨设斜边为C=13,两条直角边为a,b,则2。
又a,b为方程两根。
∴ab=4m(m-2)∴S但a,b为实数且∴∴∴m=5或6 当m=6时,∴m=5 ∴S.例6:M为何值时,方程8x-(m-1)x+m-7=0的两根①均为正数②均为负数③一个正数,一个负数④一根为零⑤互为倒数解:①∵∴m>7②∵∴不存在这样的情况。
③∴m<7④∴m=7⑤∴m=15.但使∴不存在这种情况【模拟试题】(答题时间:30分钟)1. 设n为方程x+mx+n=0(n≠0)的一个根,则m+n等于2. 已知方程x+px-q=0的一个根为-2+,可求得p= ,q=3. 若方程x+mx+4=0的两根之差的平方为48,则m的值为()A.±8 B.8 C.-8 D.±44. 已知两个数的和比a少5,这两个数的积比a多3,则a为何值时,这两个数相等?5. 已知方程(a+3)x+1=ax有负数根,求a的取值范围。
6. 已知方程组的两组解分别为,,求代数式a1b2+a2b1的值。
7. ABC中,AB=AC, A,B,C的对边分别为a,b,c,已知a=3,b和c是关于x 的方程x+mx+2-m=0的两个实数根,求ABC的周长。
韦达定理例题
解:设方程的两整数根为x1、x2,不妨设x1≤x2.由韦达定理,得
x1+x2=-p,x1x2=q.
于是x1·x2-(x1+x2)=p+q=198,
即x1·x2-x1-x2+1=199.
例4已知二次函数y=-x²+px+q的图像与x轴交于(α,0)、(β,0)两点,且α>1>β,求证:p+q>1. (97四川省初中数学竞赛试题)
证明:由题意,可知方程-x²+px+q=0的两根为α、β.
由韦达定理得 α+β=p,αβ=-q.
于是p+q=α+β-αβ,
x1+x2=12-m,x1x2=m-1.
于是x1x2+x1+x2=11,
即(x1+1)( x2+1)=12.
∵x1、x2为正整数,
解得x1=1,x2=5;x1=2,x2=3.
故有m=6或7.
例3求实数k,使得方程kx^2+(k+1)x+(k-1)=0的根都是整数.
∴运用提取公因式法(x1-1)·(x2-1)=199.
注意到(x1-1)、(x2-1)均为整数,
解得x1=2,x2=200;x1=-198,x2=0.
例2已知关于x的方程x^2-(12-m)x+m-1=0的两个根都是正整数,求m的值.
解:设方程的两个正整数根为x1、x2,且不妨设x1≤x2.由韦达定理得
=-(αβ-α-β+1)+1
韦达定理公式介绍及典型例题-
韦达定理公式介绍及典型例题<韦达定理公式介绍及典型例题韦达定理说明了一元n次方程中根和系数之间的关系。
法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。
这里讲一元二次方程两根之间的关系。
一元二次方程aX²+bX+C=0﹙a≠0﹚中,两根X1,X2有如下关系:X1+X2=-b/a,X1▪X2=c/a【定理内容】一元二次方程ax +bx+c=0 (a≠0 且△=b -4ac>0)中,设两个根为x1,x2 则X1+X2= -b/aX1▪X2=c/a1/X1+1/X2=X1+X2/X1▪X2用韦达定理判断方程的根一元二次方程ax²+bx+c=0 (a≠0)中,若b²-4ac<0 则方程没有实数根若b²-4ac=0 则方程有两个相等的实数根若b²-4ac>0 则方程有两个不相等的实数根【定理拓展】(1)若两根互为相反数,则b=0(2)若两根互为倒数,则a=c(3)若一根为0,则c=0(4)若一根为1,则a+b+c=0(5)若一根为-1,则a-b+c=0(6)若a、c异号,方程一定有两个实数根【例题】已知p+q=198,求方程x +px+q=0的整数根. (94祖冲之杯数学邀请赛试题)解:设方程的两整数根为x1、x2,不妨设x1≤x2.由韦达定理,得x1+x2=-p,x1x2=q.于是x1▪x2-(x1+x2)=p+q=198,即x1▪x2-x1-x2+1=199.∴运用提取公因式法(x1-1)▪(x2-1)=199. 注意到(x1-1)、(x2-1)均为整数,解得x1=2,x2=200;x1=-198,x2=0.。
韦达定理全面练习题及答案
韦达定理全面练习题及答案
下面是几道关于韦达定理的练题及答案,供大家练和参考。
问题一
已知两边长为18cm和24cm的直角三角形的斜边是多少?
答案:
根据韦达定理,直角三角形的斜边的平方等于其他两边的平方和。
因此,斜边长为:
√(18^2 + 24^2) = √(324 + 576) = √900 = 30cm
问题二
已知一个平行四边形的两边长分别为10cm和15cm,以及对角线之间的夹角为60度,求另外两边长。
答案:
根据韦达定理,平行四边形的两对角线长度的平方和等于平行四边形的两边长度的平方和的两倍。
因此,另外两边长分别为:
√(10^2 + 15^2 - 2 * 10 * 15 * cos(60°)) = √(100 + 225 - 300 * 0.5) = √(100 + 225 - 150) = √175 = 5√7 cm
问题三
已知一个三角形的边长分别为7cm、8cm和9cm,求其面积。
答案:
根据海伦公式,已知三角形的三条边长可以计算出其面积。
公式如下:
面积= √(s * (s - a) * (s - b) * (s - c))
其中,s = (a + b + c) / 2 是三角形的半周长,而a、b和c分别是三角形的三条边长。
带入已知边长,可以计算出面积:
面积= √(12 * (12 - 7) * (12 - 8) * (12 - 9)) = √(12 * 5 * 4 * 3) = √720 = 12√5 cm²。
韦达定理练习题
一个伟大的发现—韦达定理【知识要点】1.若一元二次方程ax 2+bx+c=0(a ≠0)的两根分别为1x , 2x ,则:1x +2x =-b/a ;1x .2x =c/a2.若1x , 2x 是某一元二次方程的两根,则该方程可以写成:x 2-(1x +2x )x+1x 2x =0.【经典例题】【例1】已知1x ,x2为方程x 2+px+q=0的两根,且1x +x 2=6, 1x 2+2x 2=20,求p 和q 的值.【例2】 已知:方程12212+=x x 的两根为1x ,2x ,不解方程求下列各式的值:(1)(x1-x2)2;(2) 321231x x x x +【例3】 已知:关于x 的方程x 2-3x+2k-1=0的两个实数根的平方和不小于这两个根的积,且1+2k>0,求满足上述条件的k 的整数值.【例4】 已知方程组⎪⎩⎪⎨⎧-==+--)12(0212x k y y x kx (x,y 为未知数),有两个不同的实数解 ⎩⎨⎧==⎩⎨⎧==2211,y y x x y y x x (1)求实数k 的取值范围; (2)若,3112121=++x x y y 求实数k 的值.【例5】已知,关于x的方程(n-1)x2+mx+1=0①有两个相等的实数根.(1)求证:关于y的方程m2y2-2my-m2-2n2+3=0②必有两个不相等的实数根;(2)若方程①的一根的相反数恰好是方程②的一个根,求代数式m2n+12n的值.【方法总结】1.利用韦达定理求一元二次方程的两根之和与两根之积.(1)容易忘记除以二次项系数;(2)求两根之和时易弄错符号.2.已知两根,求作一元二次方程时,也容易弄错一次项系数的符号.3.应用韦达定理时,注意不要忽略题中的隐含条件,比如隐含的二次方程必有实数根的条件. 【经典练习】一、选择题1.下列说法中不正确的是 ( )A.方程x2+2x-7=0的两实数根之和为2B.方程x2-3x-5=0的两实数根之积为-5C.方程x2-2x-7=0的两实数根的平方和为18D.方程x2-3x-5=0的两实数根的倒数和为3/52.若x1,x2是一元二次方程2x2-3x+1=0的两个根,则x12+x22的值是( )A.5/4B.9/4C.11/4D.73.已知关于x的一元二次方程X2-mx+2m-1=0的两个实数根的平方和为7,那么m的值是( )A.5B.-1C.5或-1D.-5或14.方程x2-3x-6=0与方程x2-6x+3=0的所有根的乘积为 ( )A.-18B.18C.-3D.35.若一元二次方程ax2+bx+c=0的两根为-3和-1,则抛物线y=ax2+bx+c的顶点横坐标为( )A.-2B.2C.3D.-16.已知:a 、b 、c 是△ABC 的三条边长,那么方程cx 2+(a+b)x+c/4=0的根的情况是 ( )A.无实数根B.有两个不相等的正实根C.有两个不等的负实根D.有两个异号的实根二、填空题1.请写出一个二次项系数为1,两实根之和为3的一元二次方程: 。
韦达定理例题初三练习题
韦达定理例题初三练习题韦达定理是高中数学中的重要理论之一,通过韦达定理,我们可以解决一些复杂的几何和代数问题。
今天我们来看几个关于韦达定理的初三练习题,帮助大家更好地理解和掌握这一定理。
1. 三角形ABC的边长分别为a,b和c,其内角A的对边为a,角B的对边为b,请用韦达定理计算角C的对边c。
解析:根据韦达定理,我们知道a/c = b/a,可以通过交叉相乘得到a^2 = bc,从而可以得到c的表达式为c = sqrt(a^2b)。
因此,角C的对边为sqrt(a^2b)。
2. 在平面直角坐标系中,正方形ABCD的顶点坐标分别为A(0, 0),B(4, 0),C(4, 4)和D(0, 4)。
现在我们要求正方形ABCD的对角线的长度。
解析:对于正方形ABCD,其对角线AC和BD互相垂直且相等。
首先计算AC的长度,根据两点坐标之间的距离公式,我们可以得到AC = sqrt((4-0)^2 + (4-0)^2) = 4*sqrt(2)。
同理,BD的长度也为4*sqrt(2)。
因此,正方形ABCD的对角线的长度为4*sqrt(2)。
3. 在三角形ABC中,AB = AC,角BAC = 80°,BC = 5,请计算三角形ABC中角ABC的度数。
解析:根据韦达定理,我们知道AB/AC = sin(ABC)/sin(ACB),且AB/AC = 1。
由于AB = AC,所以sin(ABC) = sin(ACB),即角ABC和角ACB的正弦值相等,从而角ABC的度数与角ACB的度数相等。
又因为角BAC = 80°,所以角ACB = (180° - 80°)/2 = 50°。
因此,角ABC的度数也为50°。
4. 在平行四边形ABCD中,AB = 6,BC = 8,角BAD = 120°,请计算平行四边形ABCD的对角线AC的长度。
解析:平行四边形ABCD中,两对立边相等且对角线互相平分。
初中物理竞赛:韦达定理(附练习题及答案)
初中物理竞赛:韦达定理(附练习题及答案)韦达定理是物理学中的一个重要定理,用于求解力学问题。
它是基于能量守恒和功的定义推导出来的。
韦达定理的表达式为:\[W = \Delta KE \]其中,W表示外力做的功,\(\Delta KE\)表示物体动能的变化。
韦达定理可以应用于各种力学问题,帮助我们分析和计算物体的运动情况和动能的变化。
下面是一些韦达定理的练题及答案,供参考:1. 一个质量为2kg的物体在力为10N的作用下沿着力的方向移动了5m,求外力所做的功。
解答:根据韦达定理,外力做的功等于物体动能的变化。
由于力与物体的位移方向相同,所以力做正功。
根据韦达定理的表达式,可以得到:\[W = \Delta KE\]由于物体的质量和加速度未知,无法直接计算动能的变化。
但我们可以利用力和位移的关系求出力所做的功。
根据功的定义,可以得到:\[W = F \cdot s\]代入已知的数值可以计算出外力所做的功:\[W = 10N \cdot 5m = 50J\]所以外力所做的功为50焦耳。
2. 一个质量为1kg的物体从静止开始,受到一个恒力为5N的作用力,沿着力的方向移动了10m,求外力所做的功和物体的末速度。
解答:根据韦达定理,外力做的功等于物体动能的变化。
由于力与物体的位移方向相同,所以力做正功。
根据韦达定理的表达式,可以得到:\[W = \Delta KE\]由于物体的初始速度为零,加速度未知,无法直接计算动能的变化。
但我们可以利用力和位移的关系求出力所做的功。
根据功的定义,可以得到:\[W = F \cdot s\]代入已知的数值可以计算出外力所做的功:\[W = 5N \cdot 10m = 50J\]所以外力所做的功为50焦耳。
根据动能定理,可以得到:\[W = \Delta KE = \frac{1}{2} mv^2 - 0\]由此可以求解出物体的末速度:\[50 = \frac{1}{2} \cdot 1kg \cdot v^2\]\[v^2 = 100\]\[v = 10m/s\]所以物体的末速度为10米每秒。
韦达定理练习题(含答案)
韦达定理练习题一.填空题(共16小题)1.方程x2+x﹣1=0的两根为x1、x2,则x1+x2的值为.2.已知实数x1,x2是方程x2+x﹣1=0的两根,则x1x2=.3.已知a,b是方程x2+x﹣3=0的两个不相等的实数根,则ab﹣2022a﹣2022b的值是.4.设x1、x2是方程x2﹣mx=0的两个根,且x1+x2=﹣3,则m的值是.5.若m,n是方程x2+2021x﹣2022=0的两个实数根,则m+n﹣mn的值为.6.一元二次方程x2﹣3x+1=0的两个实数根为α、β,则αβ﹣α﹣β的值为.7.已知α,β是一元二次方程x2﹣x﹣9=0的两个实数根,则代数式α2﹣2α﹣β+3的值为.8.设a、b为x2+x﹣2021=0的两个实数根,则a3+a2+3a+2024b=.9.已知x1,x2是方程x2﹣x﹣1=0的根,则的值是.10.α、β是关于x的方程x2﹣x+k﹣1=0的两个实数根,且α2﹣2α﹣β=4,则k的值为.11.关于x的一元二次方程3x2﹣10x﹣17=0的两个根分别为x1和x2,则=.12.已知a,b是关于x的一元二次方程x2+(m+3)x﹣2=0的两个不相等的实数根,且满足=﹣1,则m的值是.13.已知m,n是方程x2+2x﹣5=0的两个实数根,则mn+m+n=.14.已知m,n是方程x2﹣3x=2的两个根,则式子的值是.15.已知方程x2﹣2x﹣2=0的两根分别为x1,x2,则x12﹣x22+4x2的值为.16.关于x的一元二次方程x2﹣kx+4=0的两个实数根分别是x1、x2,且满足x12+x22﹣2x1﹣2x2﹣7=0,则k的值为.二.解答题(共4小题)17.已知关于x的方程2x2+2kx+k﹣1=0.(1)求证:无论k为何值,方程总有两个不相等实数根;(2)若x=﹣1是该方程的一个根,求方程的另一个根.18.已知:关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0.(1)证明无论k取何值时方程总有两个实数根.(2)△ABC中,BC=5,AB、AC的长是这个方程的两个实数根,求k为何值时,△ABC 是等腰三角形?19.已知关于x的方程x2﹣4mx+4m2﹣4=0.(1)求证:此方程有两个不相等的实数根;(2)若此方程的两个根分别为x1,x2,其中x1>x2,且x1=3x2,求m的值.20.阅读材料并解决下列问题:材料1 若一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则x1+x2=﹣,x1x2=.材料2 已知实数m,n满足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求+的值.解:由题知m,n是方程x2﹣x﹣1=0的两个不相等的实数根,根据材料1,得m+n=1,mn=﹣1,∴+====﹣3.根据上述材料解决下面的问题:(1)一元二次方程5x2+10x﹣1=0的两根为x1,x2,则x1+x2=,x1x2=.(2)已知实数m,n满足3m2﹣3m﹣1=0,3n2﹣3n﹣1=0,且m≠n,求m2n+mn2的值.(3)已知实数p,q满足p2=7p﹣2,2q2=7q﹣1,且p≠2q,求p2+4q2的值.参考答案与试题解析一.填空题(共16小题)1.方程x2+x﹣1=0的两根为x1、x2,则x1+x2的值为﹣1.【分析】根据一元二次方程根与系数的关系直接可得答案.【解答】解:∵方程x2+x﹣1=0的两根为x1、x2,∴x1+x2=﹣1,故答案为:﹣1.【点评】本题考查一元二次方程根与系数的关系,解题的关键是掌握一元二次方程根与系数的关系.2.已知实数x1,x2是方程x2+x﹣1=0的两根,则x1x2=﹣1.【分析】根据根与系数的关系解答.【解答】解:∵方程x2+x﹣1=0中的a=b=1,c=﹣1,∴x1x2==﹣1.故答案是:﹣1.【点评】此题主要考查了根与系数的关系,一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣,x1•x2=.3.已知a,b是方程x2+x﹣3=0的两个不相等的实数根,则ab﹣2022a﹣2022b的值是2019.【分析】由a,b是方程x2+x﹣3=0的两个不相等的实数根,利用根与系数的关系即可求出两根之和和两根之积,代入代数式即可求解.【解答】解:∵a,b是方程x2+x﹣3=0的两个不相等的实数根,∴a+b=﹣1,ab=﹣3.∴ab﹣2022a﹣2022b=ab﹣2022(a+b)=﹣3﹣2022×(﹣1)=2019,故答案为:2019.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.4.设x1、x2是方程x2﹣mx=0的两个根,且x1+x2=﹣3,则m的值是﹣3.【分析】直接利用根与系数的关系求解.【解答】解:根据根与系数的关系得x1+x2=m,而x1+x2=﹣3,所以m=﹣3.故答案为:﹣3.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.5.若m,n是方程x2+2021x﹣2022=0的两个实数根,则m+n﹣mn的值为1.【分析】利用根与系数的关系可得出m+n=﹣2021,mn=﹣2022,再将其代入m+n﹣mn 中即可求出结论.【解答】解:∵m,n是方程x2+2021x﹣2022=0的两个实数根,∴m+n=﹣2021,mn=﹣2022,∴m+n﹣mn=﹣2021﹣(﹣2022)=1.故答案为:1.【点评】本题考查了根与系数的关系,牢记“两根之和等于﹣,两根之积等于”是解题的关键.6.一元二次方程x2﹣3x+1=0的两个实数根为α、β,则αβ﹣α﹣β的值为﹣2.【分析】根据根与系数的关系得到α+β=3,αβ=1,然后利用整体代入的方法计算.【解答】解:根据根与系数的关系得到α+β=3,αβ=1,所以αβ﹣α﹣β=αβ﹣(α+β)=1﹣3=﹣2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,则x1+x2=﹣,x1x2=.7.已知α,β是一元二次方程x2﹣x﹣9=0的两个实数根,则代数式α2﹣2α﹣β+3的值为11.【分析】利用一元二次方程的根及根与系数的关系可得出α2﹣α=9,α+β=1,再将其代入α2﹣2α﹣β+3=α2﹣α﹣(α+β)+3中即可求出结论.【解答】解:∵α,β是一元二次方程x2﹣x﹣9=0的两个实数根,∴α2﹣α﹣9=0,α+β=1,∴α2﹣α=9,所以α2﹣2α﹣β+3=α2﹣α﹣(α+β)+3=9﹣1+3故答案为:11.【点评】本题考查了一元二次方程的根以及根与系数的关系,利用一元二次方程的根及根与系数的关系,找出α2﹣α=9,α+β=1是解题的关键.8.设a、b为x2+x﹣2021=0的两个实数根,则a3+a2+3a+2024b=﹣2024.【分析】先根据一元二次方程根的定义得到a2=﹣a+2021,再用a表示a3得到a3=2022a ﹣2021,所以原式变形为2024(a+b),接着根据根与现实的关系得到a+b=﹣1,然后利用整体代入的方法计算.【解答】解:∵a为x2+x﹣2021=0的根,∴a2+a﹣2021=0,即a2=﹣a+2021,∴a3=a(﹣a+2021)=﹣a2+2021a=a﹣2021+2021a=2022a﹣2021,∴a3+a2+3a+2024b=2022a﹣2021﹣a+2021+3a+2024b=2024(a+b),∵a、b为x2+x﹣2021=0的两个实数根,∴a+b=﹣1,∴a3+a2+3a+2024b=2024×(﹣1)=﹣2024.故答案为:﹣2024.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则x1+x2=﹣,x1x2=.9.已知x1,x2是方程x2﹣x﹣1=0的根,则的值是﹣1.【分析】利用根与系数的关系求出两根之和与两根之积,将所求式子通分并利用同分母分式的加法法则计算,把求出的两根之和与两根之积代入计算,即可求出值.【解答】解:∵x1,x2是方程x2﹣x﹣1=0的根,∴x1+x2=1,x1x2=﹣1,∴===﹣1.故答案为:﹣1.【点评】此题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解本题10.α、β是关于x的方程x2﹣x+k﹣1=0的两个实数根,且α2﹣2α﹣β=4,则k的值为﹣4.【分析】α2﹣2α﹣β=α2﹣α﹣(α+β)=4,然后根据方程的解的定义以及一元二次方程根与系数的关系,得到关于k的一元一次方程,即可解得答案.【解答】解:∵α、β是方程x2﹣x+k﹣1=0的根,∴α2﹣α+k﹣1=0,α+β=1,∴α2﹣2α﹣β=α2﹣α﹣(α+β)=﹣k+1﹣1=﹣k=4,∴k=﹣4,故答案是:﹣4.【点评】本题考查了一元二次方程的解以及根与系数的关系,掌握根与系数的关系是解题的关键.11.关于x的一元二次方程3x2﹣10x﹣17=0的两个根分别为x1和x2,则=.【分析】根据一元二次方程根与系数的关系可得,,再由进行求解即可.【解答】解:∵一元二次方程3x2﹣10x﹣17=0的两根是x1,x2,∴,,∴.故答案是:.【点评】本题主要考查了一元二次方程根与系数的关系,解题的关键在于能够熟练掌握一元二次方程根与系数的关系.12.已知a,b是关于x的一元二次方程x2+(m+3)x﹣2=0的两个不相等的实数根,且满足=﹣1,则m的值是﹣5.【分析】根据根与系数的关系结合=﹣1,即可得出关于m的方程,解之即可得出m的值,再由根的判别式Δ>0,即可确定m的值.【解答】解:∵a,b是关于x的一元二次方程x2+(m+3)x﹣2=0的两个不相等的实数根,∴a+b=﹣(m+3),ab=﹣2,∵=﹣1,即==﹣1,解得:m=﹣5.∵原方程有两个不相等的实数根,∴Δ=(m+3)2﹣4×(﹣2)=(m+3)2+8>0,∴m=﹣5.故答案为:﹣5.【点评】本题考查了根与系数的关系以及根的判别式,根据根与系数的关系结合=﹣1,找出关于m的方程是解题的关键.13.已知m,n是方程x2+2x﹣5=0的两个实数根,则mn+m+n=﹣7.【分析】根据根与系数的关系得到m+n=﹣2,mn=﹣5,然后利用整体代入的方法计算即可.【解答】解:根据题意得:m+n=﹣2,mn=﹣5,所以mn+m+n=﹣5+(﹣2)=﹣7.故答案为:﹣7.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1•x2=.14.已知m,n是方程x2﹣3x=2的两个根,则式子的值是27.【分析】利用一元二次方程解的定义和根与系数的关系,采用整体代入求解.【解答】解:∵m,n是方程x2﹣3x=2的两个根,∴m2=3m+2,n2﹣2=3n,m+n=3,∴m3﹣10m+n=m(3m+2)﹣10m+n=3m2﹣8m+n=3(3m+2)﹣8m+n=m+n+6=3+6=9,n﹣===3,原式=9×3=27.故答案为:27.【点评】本题考查了一元二次方程解的定义和根与系数的关系,利用整体思想代入求值是解题的关键.15.已知方程x2﹣2x﹣2=0的两根分别为x1,x2,则x12﹣x22+4x2的值为4.【分析】利用一元二次方程解的定义得到x12=2x1+2,x22=2x2+2;然后由根与系数的关系求得x1+x2=2;最后代入所求的代数式求值即可.【解答】解:∵方程x2﹣2x﹣2=0的两根分别为x1,x2,∴x12=2x1+2,x22=2x2+2,x1+x2=2.∴x12﹣x22+4x2=(2x1+2)﹣(2x2+2)+4x2=2(x1+x2)=2×2=4.故答案是:4.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.16.关于x的一元二次方程x2﹣kx+4=0的两个实数根分别是x1、x2,且满足x12+x22﹣2x1﹣2x2﹣7=0,则k的值为5.【分析】由根与系数的关系可得:x1+x2=k,x1x2=4,再把已知的条件进行整理,整体代入运算即可求解.【解答】解:∵一元二次方程x2﹣kx+4=0的两个实数根分别是x1、x2,∴x1+x2=k,x1x2=4,∵x12+x22﹣2x1﹣2x2﹣7=0,∴(x1+x2)2﹣2x1x2﹣2(x1+x2)﹣7=0,∴k2﹣2×4﹣2k﹣7=0,整理得:k2﹣2k﹣15=0,解得:k=5或k=﹣3,当k=﹣3时,Δ=32﹣4×1×4=9﹣16=﹣7<0,则原方程无实数解,故k=5.故答案为:5.【点评】本题主要考查根与系数的关系,解答的关键是熟记根与系数的关系并灵活运用.二.解答题(共4小题)17.已知关于x的方程2x2+2kx+k﹣1=0.(1)求证:无论k为何值,方程总有两个不相等实数根;(2)若x=﹣1是该方程的一个根,求方程的另一个根.【分析】(1)根据方程的系数结合根的判别式Δ=b2﹣4ac,可得出Δ4(k﹣1)2+4>0,由此可证出方程有两个不相等的实数根;(2)把x=﹣1代入方程,求得k=1,即可得出2x2+2x=0,然后解方程即可求出方程的另一个根.【解答】(1)证明:Δ=b2﹣4ac=(2k)2﹣4×2×(k﹣1)=4k2﹣8k+8=4(k﹣1)2+4>0,∴方程有两个不相等的实数根.(2)解:∵x=﹣1是该方程的一个根,∴2﹣2k+k﹣1=0,解得k=1,∴方程为2x2+2x=0,解得:x1=﹣1,x2=0,∴方程的另一个根为x=0.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:牢记“当Δ>0时,方程有两个不相等的实数根”.18.已知:关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0.(1)证明无论k取何值时方程总有两个实数根.(2)△ABC中,BC=5,AB、AC的长是这个方程的两个实数根,求k为何值时,△ABC 是等腰三角形?【分析】(1)表示出方程根的判别式,根据根的判别式的正负即可确定出方程根的情况;(2)由(1)得到AB≠AC,分AC=BC与AB=BC两种情况求出k的值即可.【解答】(1)证明:∵Δ=[﹣(2k+3)]2﹣4×1×(k2+3k+2)=1>0,∴无论k取何值时方程总有两个实数根.(2)解:∵方程x2﹣(2k+3)x+k2+3k+2=0的解为:x==,即x1=k+2,x2=k+1,∵AB、AC是方程的两个实数根,∴AB≠AC,∵BC=5,∴当k+2=5,或k+1=5时,△ABC是等腰三角形,∴k=3或4,故当k为3或4时,△ABC是等腰三角形.【点评】此题考查了根与系数的关系,涉及的知识有:一元二次方程根与系数的关系,根的情况判断,以及等腰三角形的性质,熟练掌握运算法则是解本题的关键.19.已知关于x的方程x2﹣4mx+4m2﹣4=0.(1)求证:此方程有两个不相等的实数根;(2)若此方程的两个根分别为x1,x2,其中x1>x2,且x1=3x2,求m的值.【分析】(1)求出一元二次方程根的判别式,判断Δ与0的关系.(2)利用一元二次方程根与系数的关系求出x1+x2与x1x2,再利用x1=3x2形成关于m 的方程,然后求解即可.【解答】(1)证明:关于x的方程x2﹣4mx+4m2﹣4=0,∵a=1,b=﹣4m,c=4m2﹣4.∴Δ=(﹣4m)2﹣4×1×(4m2﹣4)=16>0.∴此方程有两个不相等的实数根;(2)解:若此方程的两个根分别为x1,x2,由题意得,x1+x2=4m,x1x2=4m2﹣4.∵x1=3x2,∴3x2+x2=4m,即x2=m,∴x1=3m,∴3m•m=4m2﹣4,即m2=4,解得m=±2.当m=﹣2时,x1=﹣6,x2=﹣2.此时x1<x2,不符合题意.∴m=﹣2舍去故m的值为2.【点评】本题考查了一元二次方程根的判别式,及根与系数的关系,根据根与系数的关系及两个根的关系得到方程中有关参数的方程是解题的关键.20.阅读材料并解决下列问题:材料1 若一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则x1+x2=﹣,x1x2=.材料2 已知实数m,n满足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求+的值.解:由题知m,n是方程x2﹣x﹣1=0的两个不相等的实数根,根据材料1,得m+n=1,mn=﹣1,∴+====﹣3.根据上述材料解决下面的问题:(1)一元二次方程5x2+10x﹣1=0的两根为x1,x2,则x1+x2=﹣2,x1x2=﹣.(2)已知实数m,n满足3m2﹣3m﹣1=0,3n2﹣3n﹣1=0,且m≠n,求m2n+mn2的值.(3)已知实数p,q满足p2=7p﹣2,2q2=7q﹣1,且p≠2q,求p2+4q2的值.【分析】(1)5x2+10x﹣1=0中,a=5,b=10,c=﹣1,则x1+x2=﹣=﹣2,x1x2==﹣.(2)由题意m,n可以看作3x2﹣3x﹣1=0的两个不等的实数根,由此可得结论;(3)由题意知p与2q即为方程x2﹣7x+2=0的两个不等的实数根,由此可得结论.【解答】解:(1)在5x2+10x﹣1=0中,a=5,b=10,c=﹣1,∴x1+x2=﹣=﹣2,x1x2==﹣.故答案为:﹣2,﹣;(2)∵m,n满足3m2﹣3m﹣1=0,3n2﹣3n﹣1=0,m≠n,∴m,n可以看作3x2﹣3x﹣1=0的两个不等的实数根,∴m+n=1,mn=﹣,∴m2n+mn2=mn(m+n)=﹣×1=﹣;(3)由题意知p与2q即为方程x2﹣7x+2=0的两个不等的实数根,∴p+2q=7,2pq=2,∴p2+4q2=(p+2q)2﹣4pq=72﹣2×2=45.【点评】本题考查根与系数的关系,解题的关键是掌握根与系数的关系,灵活运用所学知识解决问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程根与系数的关系培优训练
例1.已知1x 、2x 是关于x 的一元二次方程0)1(4422=+-+m x m x 的两个非零实数根,问:1x 与2x 能否同号?若能同号请求出相应的m 的取值范围;若不能同号,请说明理由。
例2.已知1x 、2x 是一元二次方程01442=++-k kx kx 的两个实数根。
(1)是否存在实数k ,使2
3)2)(2(2121-
=--x x x x 成立?若存在,求出k 的值;若不存在,请说明理由。
(2)求使21221-+x x x x 的值为整数的实数k 的整数值。
例3.已知关于x 的一元二次方程有两个相等的实数根。
求证:(1)方程有两个不相等的实数根;
(2)设方程的两个实数根为
,若,则.
例4.在等腰三角形ABC中,∠A、∠B、∠C的对边分别为a、b、c,已知a=3,b和c是关
于x的方程的两个实数根,求△ABC的周长.
例5.在解方程x2+px+q=0时,小张看错了p,解得方程的根为1与-3;小王看错了q,解得方程的根为4与-2。
这个方程的根应该是什么
例6.已知x1,x2是关于x的方程x2+px+q=0的两根,x1+1、x2+1是关于x的方程x2+qx+p=0的
两根,求常数p、q的值。
练习:1.先阅读下列第(1)题的解法,再解答第(2)题.
(1)若α、β是方程x2-3x-5=0的两个实数根,求α2+2β2-3β的值;
解:∵α、β是方程x2-3x-5=0的两个实根,
∴α2-3α-5=0,β2-3β-5=0,且α+β=3.
∴α2=3α+5,β2=3β+5
∴α2+2β2-3β=3α+5+2(3β+5)-3β=3α+3β+15=3(α+β)+15=24.
(2)已知x
1、x
2
是方程x2+x-7=0的两个实数根,不解方程求
的值.
2.已知关于X的一元二次方程m2x2+2(3-m)x+1=0的两实数根为α,β,若s=+,求s的取值范围。
3.如果关于x的实系数一元二次方程x2+2(m+3)x+m2+3=0有两个实数根α、β,那么(α-
1)2+(β-1)2的最小值是多少
4.已知关于x的方程x2-(2a-1)x+4(a-1)=0的两个根是斜边长为5的直角三角形的两条直角边的长,求这个直角三角形的面积。
5.已知x1、x2是关于x的方程x2+m2x+n=0的两个实数根;y1、y2是关于y的方程y2+5my+7=0的两个实数根,且x1-y1=2,x2-y2=2,求m、n的值。
6.已知关于x的一元二次方程ax2+bx+c=0的两根为α、β,且两个关于x的方程x2+(α+1)x+β2=0与x2+(β+1)x+α2=0有唯一的公共根,求a、b、c的关系式。