2018年普通高等学校招生全国统一考试理科数学全国1卷试题及答案

合集下载

【新课标Ⅰ卷】2018年全国统一高考理科综合试题(含答案)

【新课标Ⅰ卷】2018年全国统一高考理科综合试题(含答案)

绝密★启用前2018年普通高等学校招生全国统一考试理科综合能力测试注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

可能用到的相对原子质量:H 1 Li 7 C 12 N 14 O 16 Na 23 S 32 Cl 35.5Ar 40 Fe 56 I 127一、选择题:本题共13小题,每小题6分,共78分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.生物膜的结构与功能存在密切的联系。

下列有关叙述错误的是A.叶绿体的类囊体膜上存在催化ATP合成的酶B.溶酶体膜破裂后释放出的酶会造成细胞结构的破坏C.细胞的核膜是双层膜结构,核孔是物质进出细胞核的通道D.线粒体DNA位于线粒体外膜上,编码参与呼吸作用的酶2.生物体内的DNA常与蛋白质结合,以DNA-蛋白质复合物的形式存在。

下列相关叙述错误的是A.真核细胞染色体和染色质中都存在DNA-蛋白质复合物B.真核细胞的核中有DNA-蛋白质复合物,而原核细胞的拟核中没有C.若复合物中的某蛋白参与DNA复制,则该蛋白可能是DNA聚合酶D.若复合物中正在进行RNA的合成,则该复合物中含有RNA聚合酶3.下列有关植物根系吸收利用营养元素的叙述,错误的是NOA.在酸性土壤中,小麦可吸收利用土壤中的N2和3B.农田适时松土有利于农作物根细胞对矿质元素的吸收C.土壤微生物降解植物秸秆产生的无机离子可被根系吸收D.给玉米施肥过多时,会因根系水分外流引起“烧苗”现象4.已知药物X对细胞增殖有促进作用,药物D可抑制药物X的作用。

某同学将同一瓶小鼠皮肤细胞平均分为甲、乙、丙三组,分别置于培养液中培养,培养过程中进行不同的处理(其中甲组未加药物),每隔一段时间测定各组细胞数,结果如图所示。

2018年普通高等学校招生全国统一考试数学试题理(全国卷1,解析版)

2018年普通高等学校招生全国统一考试数学试题理(全国卷1,解析版)

所以所求的最短路径的长度为
,故选 B.
点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两 个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平 面图形的相关特征求得结果.
8. 设抛物线 C:y2=4x 的焦点为 F,过点(–2,0)且斜率为 的直线与 C 交于 M,N 两点,则
而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、
距离型;根据不同的形式,应用相应的方法求解.
14. 记 为数列 的前 项和,若
之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关
系,从而得出正确的选项.
详解:设新农村建设前的收入为 M,而新农村建设后的收入为 2M,
则新农村建设前种植收入为 0.6M,而新农村建设后的种植收入为 0.74M,所以种植收入增加了,所以 A 项
不正确;
新农村建设前其他收入我 0.04M,新农村建设后其他收入为 0.1M,故增加了一倍以上,所以 B 项正确;
则下面结论中不正确的是
A. 新农村建设后,种植收入减少
B. 新农村建设后,其他收入增加了一倍以上
C. 新农村建设后,养殖收入增加了一倍
D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
【答案】A
【解析】分析:首先设出新农村建设前的经济收入为 M,根据题意,得到新农村建设后的经济收入为 2M,
13. 若 , 满足约束条件
,则
的最大值为_____________.
【答案】6
【解析】分析:首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式

2018年高考全国卷1试卷含答案

2018年高考全国卷1试卷含答案

2018年普通高等学校招生全国统一考试(全国Ⅰ卷)文综历史试题(晋冀鲁豫湘鄂赣徽闽粤10省使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分。

第Ⅰ卷(选择题共48分)本卷共12小题,每小题4分,共48分。

在每小题给出的四个选项中,只有一个项是最符合题目要求的。

24.《墨子》中有关于“圆”“直线”“正方形”“倍”的定义,对杠杆原理、声音传播、小孔成像等也有论述,还有机械制造方面的记载。

这反映出,《墨子》A.汇集了诸子百家的思想精华B.形成了完整的科学体系C.包含了劳动人民智慧的结晶D.体现了贵族阶层的旨趣25.据学者研究,唐朝“安史之乱”后百余年间的藩镇基本情况如表2所示。

表2 “安史之乱”后百余年间唐朝藩镇基本情况表藩镇类型数量(个)官员任免赋税供纳兵额与功能河朔型7 藩镇自擅不上供拥重兵以自立中原型8 朝廷任命少上供驻重兵防骄藩边疆型17 朝廷任命少上供驻重兵守边疆东南型9 朝廷任命上供驻兵少防盗贼由此可知,这一时期的藩镇A.控制了朝廷财政收入B.彼此之间攻伐不已C.注重维护中央的权威D.延续了唐朝的统治26.北宋前中期,在今四川井研县一带山谷中,密布着成百上千个采用新制盐技术的竹篱井,井主所雇工匠大多来自“他州别县”,以“佣身赁力”为主,受雇期间,若对工作条件或待遇不满意,辄另谋高就。

这反映出当时A.民营手工业得到发展B.手工业者社会地位高C.雇佣劳动已经普及D.盐业专卖制度解体27.图6中的动物是郑和下西洋时外国使臣随船向明政府贡献的奇珍异兽,明朝君臣认为,这就是中国传说的“麒麟”,明成祖遂赐外国使臣。

这表明当时A.对外交流促使中国传统绘画出现新的类型B.朝廷用中国文化对朝贡贸易贡品加以解读C.海禁政策的解除促进了对外文化交流D.外来物品的传入推动了传统观念更新28.甲午战争期间,日本制定舆论宣传策略,把中国和日本分别包装成野蛮与文明的代表,并运用公关手段让欧美舆论倒向日方。

2018高考全国1卷理科数学试卷及答案

2018高考全国1卷理科数学试卷及答案

2018高考全国1卷理科数学试卷及答案2018年普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题,本题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设 $z=\frac{1-i+2i}{1+i}$,则 $z=$A.0B.1C.1/2D.22.已知集合 $A=\{x|x-x-2>0\}$,则 $C_R A=$A。

$\{x|-1<x<2\}$B。

$\{x|-1\leq x\leq 2\}$C。

$\{x|x2\}$D。

$\{x|x\leq -1\}\cup\{x|x\geq 2\}$3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。

为更好地了解该地区农村的经济收入变化情况,统计和该地图新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记 $S_n$ 为等差数列 $\{a_n\}$ 的前 $n$ 项和,若$3S_3=S_2+S_4$,$a_1=2$,则 $a_5=$A。

$-12$B。

$-10$C。

10D。

125.设函数 $f(x)=x+(a-1)x+ax$,若 $f(-x)$ 为奇函数,则曲线 $y=f(x)$ 在点 $(3,32)$ 处的切线方程为A。

$y=-2x$B。

$y=-x$XXXD。

$y=x$6.在 $\triangle ABC$ 中,$AD$ 为 $BC$ 边上的中线,$E$ 为 $AD$ 的中点,则 $EB=\frac{1}{3}AB-\frac{1}{4}AC$A。

$\frac{3}{11}AB-\frac{8}{11}AC$B。

$\frac{4}{11}AB-\frac{7}{11}AC$C。

$\frac{7}{11}AB-\frac{4}{11}AC$D。

(完整版)2018年北京高考数学及答案

(完整版)2018年北京高考数学及答案

2018年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.1. 已知集合,,则 ( ){}2|<=x x A {}2,1,0,2-=B =⋂B A .A {}1,0.B {}1,0,1-.C {}2,1,0,2-.D {}2,1,0,1-2. 在复平面内,复数的共轭复数对应的点位于( )i-11第一象限第二象限 第三象限第四象限.A .B .C .D 3. 执行如图所示的程序框图,输出的值为()s.A 21.B 65.C 67.D 127s4.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为,则第八个单音的频率122f 为( ).A f 32.B f 322.C f 1252.D f12725. 某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()12 34.A .B .C .D 6. 设a ,b 均为单位向量,则“”是“a ⊥b ”的()33-=+a b a b充分而不必要条件 必要而不充分条件 充分必要条件既不充分也不必要条件.A .B .C .D 7. 在平面直角坐标系中,记为点到直线的距离,当变化时,的最d ()θθsin ,cos P 02=--my x m ,θd 大值为()1234.A .B .C .D 8. 设集合,则( )(){}2,4,1|,≤->+≥-=ay x y ax y x y x A 对任意实数,对任意实数,.A a ()A∈1,2.B a ()A∉1,2当且仅当时,当且仅当时,.C 0<a ()A∉1,2.D 23≤a ()A ∉1,2第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.9. 设是等差数列,且,,则的通项公式为__________.{}n a 31=a 3652=+a a {}n a 10.在极坐标系中,直线与圆相切,则_________.()0sin cos >=+a a θρθρθρcos 2==a 11. 设函数,若对任意的实数都成立,则的最小值为()()06cos >⎪⎭⎫⎝⎛-=ωπωx x f ()⎪⎭⎫⎝⎛≤4πf x f x ω__________.12.若,满足,则的最小值是__________.x y x y x 21≤≤+x y -213.能说明“若对任意的都成立,则在上是增函数”为假命题的一个函数()()0f x f >]2,0(∈x ()x f []2,0是__________.14. 已知椭圆,双曲线,若双曲线的两条渐近线与椭圆()01:2222>>=+b a b y a x M 1:2222=-ny m x N N 的四个交点及椭圆的两个焦点恰为一个正六边形的顶点,则椭圆的离心率为__________;双曲M M M 线的离心率为__________.N 3、解答题共6小题,共80分。

2018年高考全国一卷理科数学答案及解析

2018年高考全国一卷理科数学答案及解析
2018年普通高等学招生全国统一考试题,每小题5分,共60分。
1、设z= ,则|z|=
A、0
B、
C、1
D、
【答案】C
【解析】由题可得 ,所以|z|=1
【考点定位】复数
2、已知集合A={x|x2-x-2>0},则 A=
A、{x|-1<x<2}
B、{x|-1 x 2}
D.[1,+∞)
【答案】C
【解析】
根据题意:f(x)+x+a=0有两个解。令M(x)=-a,
N(x)=f(x)+x =
分段求导:N‘(x)=f(x)+x = 说明分段是增函数。考虑极限位置,图形如下:
M(x)=-a在区间(-∞,+1]上有2个交点。
∴a的取值范围是C.[-1,+∞)
【考点定位】分段函数、函数的导数、分离参数法
【解析】
S1=2a1+1=a1∴a1=-1
n>1时,Sn=2an+1,Sn-1=2an-1+1 两式相减:Sn-Sn-1= an=2an-2an-1∴an=2an-1
an=a1×2n-1= (-1)×2n-1
则下面结论中不正确的是:
A、新农村建设后,种植收入减少。
B、新农村建设后,其他收入增加了一倍以上。
C、新农村建设后,养殖收入增加了一倍。
D、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A
【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,
【考点定位】简单统计
M、N的坐标(1,2),(4,4)
则 · =(0,2)·(3,4)=0*3+2*4=8

2018年高考全国1卷理科数学试题与答案解析

2018年高考全国1卷理科数学试题与答案解析

WORD格式整理绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

x1.已知集合A={x|x<1},B={x|3 1},则A.A B{x|x0}B.A B RC.A B{x|x1}D.A B2.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是1πA.B.48C.12D.π43.设有下面四个命题p:若复数z满足11zR,则z R;p:若复数z满足22z R,则z R;p:若复数z1,z2满足z1z2R,则z1z2;3专业技术参考资料WORD 格式整理p :若复数z R,则z R.4其中的真命题为A.p1, p3 B.p1, p4 C.p2 , p3 D.p2, p44.记S为等差数列{ a n} 的前n项和.若a4 a5 24 ,S6 48 ,则{ a n} 的公差为nA.1 B.2 C.4 D. 85.函数 f (x) 在( , ) 单调递减,且为奇函数.若 f (1) 1,则满足 1 f (x2) 1的x 的取值范围是A.[ 2,2] B.[ 1,1] C.[0,4] D.[1,3]6.16(1 )(1 x)2x展开式中 2x 的系数为A.15 B.20 C.30 D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形. 该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.168.右面程序框图是为了求出满足 3n- 2n>1000 的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000 和n=n+1B.A>1 000 和n=n+2C.A 1 000 和n=n+1D.A 1 000 和n=n+29.已知曲线C1:y=cos x,C2:y=sin (2 x+ 2π) ,则下面结论正确的是3专业技术参考资料WORD 格式整理A.把C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移π个单位长度,得6到曲线C2B.把C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移π个单位长度,得12到曲线C2C.把C1 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π个单位长度,得6到曲线C2D.把C1 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π个单位长度,得12到曲线C210.已知 F 为抛物线C:y2=4x 的焦点,过F作两条互相垂直的直线l2=4x 的焦点,过F作两条互相垂直的直线l 1,l 2,直线l 1 与C交于A、B两点,直线l 2 与C交于D、E两点,则|AB|+| DE| 的最小值为A.16 B.14 C.12 D.10x y z11.设x yz 为正数,且 2 3 5 ,则A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z12.几位大学生响应国家的创业号召,开发了一款应用软件. 为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋯,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100 且该数列的前N项和为 2 的整数幂.那么该款软件的激活码是A.440 B.330 C.220 D.110二、填空题:本题共 4 小题,每小题 5 分,共20 分。

【解析版】2018年普通高等学校招生全国统一考试理科综合(全国I卷)

【解析版】2018年普通高等学校招生全国统一考试理科综合(全国I卷)

2018年普通高等学校招生全国统一考试理科综合全国I卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

可能用到的相对原子质量:H 1 Li 7 C12 N14 O16 Na 23 S 32 Cl 35.5Ar 40 Fe 56 I 127一、选择题:本题共13个小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.生物膜的结构与功能存在密切的联系。

下列有关叙述错误的是A.叶绿体的类囊体膜上存在催化ATP合成的酶B.溶酶体膜破裂后释放出的酶会造成细胞结构的破坏C.细胞的核膜是双层膜结构,核孔是物质进出细胞核的通道D.线粒体DNA位于线粒体外膜上,编码参与呼吸作用的酶【答案】 D【知识点】生物膜的功能特性;线粒体、叶绿体的结构和功能;细胞器中其他器官的主要功能;细胞核的功能【考查能力】理解能力【解析】本题考查细胞结构与功能的基础知识,题目简单,容易得分。

A.叶绿体的类囊体膜是光合作用光反应的场所,有合成ATP的酶。

B.溶酶体膜破裂后释放出的水解酶会将细胞结构水解。

C.细胞的核膜是双层膜结构,核孔是物质进出细胞核和核质信息交流的通道。

D.线粒体DNA位于线粒体的基质中,所以D项错误。

【难度】易【题分】6分2.生物体内的DNA常与蛋白质结合,以DNA—蛋白质复合物的形式存在。

下列相关叙述错误的是A.真核细胞染色体和染色质中都存在DNA—蛋白质复合物B.真核细胞的核中有DNA—蛋白质复合物,而原核细胞的拟核中没有C.若复合物中的某蛋白参与DNA复制,则该蛋白可能是DNA聚合酶D.若复合物中正在进行RNA的合成,则该复合物中含有RNA聚合酶【答案】 B【知识点】DNA分子的复制;遗传信息的转录和翻译;细胞核的结构和功能【考查能力】理解能力【解析】此题中DNA—蛋白质复合物包括染色体或染色质,以及酶和底物的复合物。

2018年普通高等学校招生全国统一考试 (新课标Ⅰ卷)含答案

2018年普通高等学校招生全国统一考试 (新课标Ⅰ卷)含答案
封 座位号

考场号

2018 年普通高等学校招生全国统一考试 (新课标
Ⅰ卷)
语文
注意事项:
1 .答 题 前 ,先 将 自 己 的 姓 名 、准 考 证 号 填 写 在 试 题 卷 和 答 题 卡 上 ,并 将 准 考 证
号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案
标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3 .非 选 择 题 的 作 答 :用 签 字 笔 直 接 答 在 答 题 卡 上 对 应 的 答 题 区 域 内 。写 在 试 题
卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、现代文阅读(35 ห้องสมุดไป่ตู้)
一九三六年八月二日 (有删改)
4.下列对小说相关内容和艺术特色的分析鉴赏,不正确的一项是(3 分) A.小说以“赵一曼女士”为题,不同于以往烈士、同志、英雄等惯常用法,称谓的陌生化既 表达了对主人公的尊敬之意,又引起了读者的注意。 B.“通过对此人的严厉审讯,有可能澄清与苏联的关系”,这既是大野泰治向上级提出的建议,
也暗示他已从赵一曼那里得到有价值的回答。 C.“他指着石碑说,赵一曼?我说,对,赵一曼。”两个陌生人之间有意无意的搭讪,看似闲笔, 实则很有用心,说明赵一曼仍活在人们的记忆里。 D.医院是“我”与赵一曼的连接点,小说由此切入主人公监禁期间鲜为人知的特殊生活经历, 在跨越时空的精神对话中再现了赵一曼的英雄本色。 5.小说中说赵一曼“身上弥漫着拔俗的文人气质和职业军人的冷峻”,请结合作品简要分析。 (6 分) 6.小说中历史与现实交织穿插,这种叙述方式有哪些好处?请结合作品简要分析。(6 分) (三)实用类文本阅读(本题共 3 小题。12 分) 阅读下面的文字,完成 7-9 题。 材料一: 目前,中国科学院在京召开新闻发布会对外宣布,“墨子号”量子科学实验卫星提前并圆满实 现全部既定科学目标,为我国在未来继续引领世界量子通信研究奠定了坚实基础。 通信安全是国家信息安全和人类经济社会生活的基本要求。千百年来,人们对于通信安全的 追求从未停止。然而,基于计算复杂性的传统加密技术,在原理上存在着被破译的可能性。 随着数学和计算能力的不断提升,经典密码被破译的可能性与日俱增。中国科学技术大学潘 建伟说:“通过量子通信可以解决这个问题。也就是说,把量子物理与信息技术相结合,利 用量子调控技术,用一种革命性的方式对信息进行编码、存储、传输和操纵,从而在确保信 息安全、提高运算速度、提升测量精度等方面突破经典信息技术的瓶颈。” 量子通信主要研究内容包括量子密钥分发(量子保密通信)和量子隐形传态。量子密钥分发 通过量子态的传输,使遥远两地用户可以共享无条件安全的密钥.利用该密钥对信息进行一 次一密的严格加密。这是目前人类唯一已知的不可窃听。不可破译的无条件安全的通信方式。 量子通信的另一重要内容量子隐形传态。是利用量子纠缠特性可以将物质的未知量子态精确 传送到遥远地点,而不用传送物质本身,通过隐形传输实现信息传递。(摘编自吴月辉《“墨 子号”,抢占量子科技创新制高点》,《人民日报》2017 年 8 月 10 日) 材料二 潘建伟的导师安东·蔡格林,潘伟健的团队在量子互联网的发展方面冲到了领先地位,量子 互联网是由卫星和地面设备构成的能够在全球范围分享量子信息的网络。这将使不可的全球 加密通信成为可能,同时也使我们可以开展一些新的控制远距离量子联系的实验,目前,潘 建伟的团队计划发射第二颗卫星,他们还在中国的天宫二号空间站上进行着一项太空量子实 验,潘伟健说未来五年“还会去的很多精彩的成果,一个新时代已经到来“。 潘伟健是一个有无穷热情的乐观主义者。他低调了表达了自己的信心,称中国政府将会支持 下一个宏伟计划------一项投资 20 亿美元的量子通信、量子计量和量子计算的五年计划,与 此形成对照的是欧洲 2016 年宣布的旗舰项目,投资额为 12 亿美元。 (摘编自伊丽莎白·吉布尼《一位把量子通信带到太空又带回地球的物理学家》,《自然》2017 年 12 月)

2018年高考(四川省)真题数学(理)试题及答案解析

2018年高考(四川省)真题数学(理)试题及答案解析

2018年普通高等学校招生全国统一考试理科(四川卷)参考答案第I 卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}-【答案】A2.在6(1)x x +的展开式中,含3x 项的系数为A .30B .20C .15D .10【答案】C3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动12个单位长度B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度【答案】A4.若0a b >>,0c d <<,则一定有A .a b c d > B .a b c d < C .a b d c > D .a b d c< 【答案】D5.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为A .0B .1C .2D .3【答案】C6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有A .192种B .216种C .240种D .288种【答案】B7.平面向量a=(1,2), b=(4,2), c=ma+b (m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =A .2-B .1-C .1D .2【答案】D8.如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。

设点P 在线段。

2018年普通高等学校招生全国统一考试(课标全国卷Ⅰ卷)(含答案)

2018年普通高等学校招生全国统一考试(课标全国卷Ⅰ卷)(含答案)

2018年普通高等学校招生全国统一考试(课标全国卷Ⅰ)文数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=()A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}2.设z=1-i1+i+2i,则|z|=( )A.0B.12C.1D.√23.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C:x 2a2+y24=1的一个焦点为(2,0),则C的离心率为( )A.13B.12C.√22D.2√235.已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A.12√2πB.12πC.8√2πD.10π6.设函数f(x)=x3+(a-1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( )A.y=-2xB.y=-xC.y=2xD.y=x7.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB⃗⃗⃗⃗⃗ =( ) A.34AB ⃗⃗⃗⃗⃗ -14AC ⃗⃗⃗⃗⃗ B.14AB ⃗⃗⃗⃗⃗ -34AC ⃗⃗⃗⃗⃗ C.34AB ⃗⃗⃗⃗⃗ +14AC ⃗⃗⃗⃗⃗ D.14AB ⃗⃗⃗⃗⃗ +34AC ⃗⃗⃗⃗⃗ 8.已知函数f(x)=2cos 2x-sin 2x+2,则( ) A. f(x)的最小正周期为π,最大值为3 B. f(x)的最小正周期为π,最大值为4 C. f(x)的最小正周期为2π,最大值为3 D. f(x)的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N 在左视图上的对应点为B,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A.2√17B.2√5C.3D.210.在长方体ABCD-A 1B 1C 1D 1中,AB=BC=2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( ) A.8B.6√2C.8√2D.8√311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos 2α=23,则|a-b|=( ) A.15B.√55C.2√55D.112.设函数f(x)={2-x ,x ≤0,1,x >0,则满足f(x+1)<f(2x)的x 的取值范围是( )A.(-∞,-1]B.(0,+∞)C.(-1,0)D.(-∞,0)第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)=log 2(x 2+a).若f(3)=1,则a= .14.若x,y 满足约束条件{x -2y -2≤0,x -y +1≥0,y ≤0,则z=3x+2y 的最大值为 .15.直线y=x+1与圆x 2+y 2+2y-3=0交于A,B 两点,则|AB|= .16.△ABC 的内角A,B,C 的对边分别为a,b,c,已知bsin C+csin B=4asin Bsin C,b 2+c 2-a 2=8,则△ABC 的面积为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分..17.(12分)已知数列{a n}满足a1=1,na n+1=2(n+1)a n.设b n=a nn(1)求b1,b2,b3;(2)判断数列{b n}是否为等比数列,并说明理由;(3)求{a n}的通项公式.18.(12分)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°.以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;DA,求三棱锥Q-ABP的体积.(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=2319.(12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量[0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7)频数 1 3 2 4 9 26 5使用了节水龙头50天的日用水量频数分布表日用水量[0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6)频数 1 5 13 10 16 5(1)作出使用了节水龙头50天的日用水量数据的频率分布直方图;(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水.(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)20.(12分)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与C交于M,N两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN.21.(12分)已知函数f(x)=ae x-ln x-1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;时, f(x)≥0.(2)证明:当a≥1e(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcos θ-3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.23.[选修4—5:不等式选讲](10分) 已知f(x)=|x+1|-|ax-1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x 成立,求a 的取值范围.2018年普通高等学校招生全国统一考试(课标全国卷Ⅰ)一、选择题 答案速查ACACBDABBCBD1.A 本题主要考查集合的基本运算.∵A={0,2},B={-2,-1,0,1,2},∴A∩B={0,2},故选A. 2.C ∵z=1-i1+i +2i=(1-i )2(1+i )(1-i )+2i=1-2i -12+2i=i,∴|z|=|i|=1,故选C. 3.A 本题主要考查统计图.设建设前经济收入为a,则建设后经济收入为2a,由题图可得下表:种植收入第三产业收入其他收入养殖收入建设前经济收入0.6a 0.06a 0.04a 0.3a 建设后经济收入0.74a 0.56a 0.1a 0.6a根据上表可知B、C、D均正确,A不正确,故选A.4.C 本题主要考查椭圆的方程及其几何性质.由题意可知c=2,b2=4,∴a2=b2+c2=4+22=8,则a=2√2,∴e=ca =2√2=√22,故选C.5.B 本题主要考查圆柱的表面积及圆柱的轴截面.设圆柱的底面半径为r,高为h,由题意可知2r=h=2√2,∴圆柱的表面积S=2πr2+2πr·h=4π+8π=12π.故选B.6.D 本题主要考查函数的奇偶性及导数的几何意义.∵f(x)=x3+(a-1)x2+ax为奇函数,∴a-1=0,得a=1,∴f(x)=x3+x,∴f '(x)=3x2+1,∴f '(0)=1,则曲线y=f(x)在点(0,0)处的切线方程为y=x,故选D.7.A 本题主要考查平面向量的线性运算及几何意义.∵E 是AD 的中点,∴EA ⃗⃗⃗⃗⃗ =-12AD ⃗⃗⃗⃗⃗ ,∴EB ⃗⃗⃗⃗⃗ =EA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ =-12AD ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ ,又知D 为BC 的中点,∴AD ⃗⃗⃗⃗⃗ =12(AB⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),因此EB ⃗⃗⃗⃗⃗ =-14(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )+AB ⃗⃗⃗⃗⃗ =34AB ⃗⃗⃗⃗⃗ -14AC ⃗⃗⃗⃗⃗ ,故选A.8.B 本题主要考查三角恒等变换及三角函数的性质. f(x)=2cos 2x-sin 2x+2=2(1-sin 2x)-sin 2x+2=4-3sin 2x=4-3×1-cos2x 2=52+3cos2x2,∴f(x)的最小正周期T=π,当cos 2x=1时,f(x)取最大值,为4.故选B.9.B 本题主要考查空间几何体的三视图、直观图以及最短路径.由圆柱的三视图及已知条件可知点M 与点N 的位置如图1所示,设ME 与FN 为圆柱的两条母线,沿FN 将圆柱侧面展开,如图2所示,MN 即为从M 到N 的最短路径,由题知,ME=2,EN=4,∴MN=√42+22=2√5.故选B.图1图210.C 本题主要考查长方体的体积及直线与平面所成的角.如图,由长方体的性质可得AB⊥平面BCC 1B 1, ∴BC 1为直线AC 1在平面BCC 1B 1内的射影, ∴∠AC 1B 为直线AC 1与平面BCC 1B 1所成的角, 即∠AC 1B=30°,在Rt△ABC 1中,AB=2,∠AC 1B=30°,∴BC 1=2√3,在Rt△BCC 1中,CC 1=√BC 12-BC 2=√(2√3)2-22=2√2,∴该长方体的体积V=2×2×2√2=8√2,故选C.11.B 本题主要考查三角函数的定义及三角恒等变换. 由题可知tan α=b -a 2-1=b-a,又cos 2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=1-(b -a )21+(b -a )2=23,∴5(b -a)2=1,得(b-a)2=15,即|b-a|=√55,故选B.12.D 本题主要考查分段函数及不等式的解法. 函数f(x)={2-x ,x ≤0,1,x >0的图象如图所示:由f(x+1)<f(2x)得{2x <0,2x <x +1,得{x <0,x <1.∴x<0,故选D.二、填空题 13.答案 -7解析 本题主要考查函数的解析式及对数的运算. ∵f(x)=log 2(x 2+a)且f(3)=1, ∴f(3)=log 2(9+a)=1, ∴a+9=2,∴a=-7. 14.答案 6解析 本题主要考查线性规划.由x,y 满足的约束条件画出对应的可行域(如图中阴影部分所示).由图知当直线3x+2y-z=0经过点A(2,0)时,z 取得最大值,z max =2×3=6.15.答案 2√2解析 将圆x 2+y 2+2y-3=0化为标准方程为x 2+(y+1)2=4,则圆心坐标为(0,-1),半径r=2, ∴圆心到直线x-y+1=0的距离d=√2=√2,∴|AB|=2√r 2-d 2=2√22-(√2)2=2√2.16.答案2√33解析 本题主要考查正弦定理、余弦定理在解三角形中的应用以及三角形面积的求解.由已知条件及正弦定理可得2sin Bsin C=4sin A·sin Bsin C,易知sin Bsin C≠0,∴sin A=12,又b 2+c 2-a 2=8,∴cos A=b 2+c 2-a 22bc=4bc ,∴cos A>0,∴cos A=√32,即4bc =√32,∴bc=8√33, ∴△ABC 的面积S=12bcsin A=12×8√33×12=2√33.三、解答题17.解析 (1)由条件可得a n+1=2(n+1)na n .将n=1代入得,a 2=4a 1,而a 1=1,所以a 2=4. 将n=2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列. 由条件可得a n+1n+1=2a n n,即b n+1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列.(3)由(2)可得ann =2n-1,所以a n =n·2n-1.18.解析 (1)证明:由已知可得,∠BAC=90°,BA⊥AC. 又BA⊥AD,所以AB⊥平面ACD. 又AB ⊂平面ABC, 所以平面ACD⊥平面ABC.(2)由已知可得,DC=CM=AB=3,DA=3√2. 又BP=DQ=23DA,所以BP=2√2.作QE⊥AC,垂足为E,则QE 13DC.由已知及(1)可得DC⊥平面ABC, 所以QE⊥平面ABC,QE=1. 因此,三棱锥Q-ABP 的体积为V Q-ABP =13·QE·S △ABP =13×1×12×3×2√2sin 45°=1.19.解析(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35 m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35 m3的概率的估计值为0.48.(3)该家庭未使用节水龙头50天日用水量的平均数为x1=1×(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48.50该家庭使用了节水龙头后50天日用水量的平均数为x2=1×(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35.50估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m3).20.解析(1)当l与x轴垂直时,l的方程为x=2,可得M的坐标为(2,2)或(2,-2).所以直线BM 的方程为y=12x+1或y=-12x-1.(2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM=∠ABN.当l 与x 轴不垂直时,设l 的方程为y=k(x-2)(k≠0),M(x 1,y 1),N(x 2,y 2),则x 1>0,x 2>0. 由{y =k (x -2),y 2=2x 得ky 2-2y-4k=0,可知y 1+y 2=2k ,y 1y 2=-4.直线BM,BN 的斜率之和为 k BM +k BN =y 1x 1+2+y 2x 2+2=x 2y 1+x 1y 2+2(y 1+y 2)(x 1+2)(x 2+2).①将x 1=y 1k +2,x 2=y2k +2及y 1+y 2,y 1y 2的表达式代入①式分子,可得 x 2y 1+x 1y 2+2(y 1+y 2)=2y 1y 2+4k (y 1+y 2)k=-8+8k=0.所以k BM +k BN =0,可知BM,BN 的倾斜角互补,所以∠ABM=∠ABN. 综上,∠ABM=∠ABN.21.解析 (1)f(x)的定义域为(0,+∞), f '(x)=ae x-1x .由题设知, f '(2)=0,所以a=12e 2.从而f(x)=12e 2e x-ln x-1, f '(x)=12e 2e x-1x . 当0<x<2时, f '(x)<0;当x>2时, f '(x)>0. 所以f(x)在(0,2)单调递减,在(2,+∞)单调递增. (2)当a≥1e 时, f(x)≥e xe -ln x-1. 设g(x)=e x e -ln x-1,则g'(x)=e x e -1x . 当0<x<1时,g'(x)<0;当x>1时,g'(x)>0. 所以x=1是g(x)的最小值点. 故当x>0时,g(x)≥g(1)=0. 因此,当a≥1e 时, f(x)≥0.22.解析 (1)由x=ρcos θ,y=ρsin θ得C 2的直角坐标方程为(x+1)2+y 2=4. (2)由(1)知C 2是圆心为A(-1,0),半径为2的圆. 由题设知,C 1是过点B(0,2)且关于y 轴对称的两条射线. 记y 轴右边的射线为l 1,y 轴左边的射线为l 2.由于B 在圆C 2的外面,故C 1与C 2有且仅有三个公共点等价于l 1与C 2只有一个公共点且l 2与C 2有两个公共点,或l 2与C 2只有一个公共点且l 1与C 2有两个公共点. 当l 1与C 2只有一个公共点时,A 到l 1所在直线的距离为2,所以√2=2,故k=-43或k=0.经检验,当k=0时,l 1与C 2没有公共点;当k=-43时,l 1与C 2只有一个公共点,l 2与C 2有两个公共点. 当l 2与C 2只有一个公共点时,A 到l 2所在直线的距离为2,所以√=2,故k=0或k=43.经检验,当k=0时,l 1与C 2没有公共点;当k=43时,l2与C2没有公共点.综上,所求C1的方程为y=-43|x|+2.23.解析(1)当a=1时, f(x)=|x+1|-|x-1|,即f(x)={-2, ≤-1,2 ,-1< <1, 2, ≥1.故不等式f(x)>1的解集为{ | >12}.(2)当x∈(0,1)时|x+1|-|ax-1|>x成立等价于当x∈(0,1)时|ax-1|<1成立. 若a≤0,则当x∈(0,1)时|ax-1|≥1;若a>0,|ax-1|<1的解集为{ |0< <2},所以2≥1,故0<a≤2.综上,a的取值范围为(0,2].。

2018年高考全国一卷理科数学答案及解析

2018年高考全国一卷理科数学答案及解析

2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。

1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。

B 、新农村建设后,其他收入增加了一倍以上。

C 、新农村建设后,养殖收入增加了一倍。

D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。

【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。

2018年普通高等学校招生全国统一考试理科数学试题(1、2、3卷)参考答案

2018年普通高等学校招生全国统一考试理科数学试题(1、2、3卷)参考答案

2502018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 CBABD ABDCA BA第Ⅱ卷(非选择题 90分)二、填空题(共20分)13.6 14.63- 15.16 16.2-三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分) 解:(1)在ABD ∆中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52sin 45sin ADB=︒∠,∴sin =5ADB ∠.由题设知,90ADB ∠<︒,∴cos ADB ∠==.(2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=. 在BCD ∆中,由余弦定理得2222cos BC BD DC BD DC BDC=+-⋅∠25825255=+-⨯⨯=.∴5BC =.18.(本小题满分12分) 解:(1)由已知可得,BF ⊥PF ,BF ⊥EF ,∴BF ⊥平面PEF .又BF ⊂平面ABFD , ∴平面PEF ⊥平面ABFD . (2)作PH ⊥EF ,垂足为H . 由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,BF 为单位长,建立如图所示的空间直角坐标系H −xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,∴PE.又PF =1,EF =2,∴PE ⊥PF .可得3,22PH EH ==,且3(0,0,0),(0,0,1,,0)22H P D -,3(1,22DP =.3(0,0,)2HP =为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则3sin 4HP DP HP DPθ⋅==⋅. ∴DP 与平面ABFD所成角的正弦值为4. 19.(本小题满分12分) 解:(1)由已知得(1,0)F ,l 的方程为x =1. 由已知可得,点A的坐标为(1,)2或(1,2-. ∴AM 的方程为20x -=或20x --=.(2)当l 与x 轴重合时, 0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴OMA OMB ∠=∠.251当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,且11(,)A x y ,22(,)B x y,则12x x MA ,MB 的斜率之和为121222MA MB y yk k x x +=+--. 由1122,y kx k y kx k =-=-得 []()()12121223()422MA MB k x x x x k k x x -+++=--.将(1)(0)y k x k =-≠代入2212x y +=得 2222(21)4220k x k x k +-+-=. ∴22121222422=,2121k k x x x x k k -+=++,∴[]121223()4k x x x x -++3332441284021k k k k k k --++==+. 从而0MA MB k k +=,∴MA ,MB 的倾斜角互补, ∴OMA OMB ∠=∠. 综上,OMA OMB ∠=∠. 20.(本小题满分12分) 解:(1)20件产品中恰有2件不合格品的概率为221820()(1)f p C p p =-,且 21821720()[2(1)18(1)]f p C p p p p '=---217202(110)(1)C p p p =--.令()0f p '=,得0.1p =. 当(0,0.1)p ∈时,()0f p '>; 当(0.1,1)p ∈时,()0f p '<. ∴()f p 的最大值点为0.1p =. (2)由(1)知,0.1p =.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知(180,0.1)Y B ,202254025X Y Y =⨯+=+.∴(4025)4025490EX E Y EY =+=+=.(ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于400EX >,∴应该对余下的产品作检验. 21.(本小题满分12分)解:(1)()f x 的定义域为(0,)+∞,且22211()1a x ax f x x x x -+'=--+=-.(i )若2a ≤,则()0f x '≤,当且仅当2,1a x ==时,()0f x '=, ∴()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,2a x -=或2a x +=.当2a a x ⎛⎛⎫+∈+∞⎪ ⎪⎝⎭⎝⎭时,()0f x '<;当x∈⎝⎭时,()0f x '>. ∴()f x 在⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭单调递减,在⎝⎭单调递增.(2)由(1)知,()f x 存在两个极值点时,当且仅当2a >.由于()f x 的两个极值点12,x x 满足21=0x a x -+,∴121x x =,不妨设12x x <,则21x >. 1212()()f x f x x x --121212ln ln 11x x a x x x x -=--+-1212ln ln 2x x a x x -=-+-2522222ln 21x ax x -=-+-,∴1212()()2f x f x a x x -<--等价于 22212ln 0x x x -+<. 设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)=0g ,从而当(1,)x ∈+∞时,()0g x <. ∴22212ln 0x x x -+<,即 1212()()2f x f x a x x -<--.(二)选考题:22. (本小题满分10分)[选修4—4:坐标系与参数方程]解:(1)由cos ,sin x y ρθρθ==得2C 的直角坐标方程为22(1)4x y ++=. (2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为2,2=,解得43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,2=,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为423y x =-+.23.(本小题满分10分) [选修4—5:不等式选讲] 解:(1)当1a =时,()11f x x x =+--,即2(1),()2(11),2(1).x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩∴不等式()1f x >的解集为1,2⎛⎫+∞⎪⎝⎭. (2)当(0,1)x ∈时11x ax x +-->成立等价于当(0,1)x ∈时1ax -<1成立. 若0a ≤,则当(0,1)x ∈时1ax -≥1; 若a >0,1ax -<1的解集为20x a<<,∴21a≥,∴02a <≤. 综上,a 的取值范围为(]0,2.2532018年普通高等学校招生全国统一考试(全国卷Ⅱ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 DABBA ABCCA CD第Ⅱ卷(非选择题 90分)二、填空题(共20分) 13.2y x = 14.9 15.12-16.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分)解:(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.∴{a n }的通项公式为a n =2n –9.(2)由(1)得S n =n 2–8n =(n –4)2–16.∴当n =4时,S n 取得最小值,最小值为–16.18.(本小题满分12分)解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 =–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为 =99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠. 理由如下:(i )从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =–30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii )从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠. 以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分. 19.(本小题满分12分)解:(1)由已知得(1,0)F ,l 的方程为为(1)(0)y k x k =-≠. 设11(,)A x y ,22(,)B x y .由2(1),4y k x y x =-⎧⎨=⎩得22222(2)0k x k x k -++=. ∴ 216160k ∆=+>,212224=k x x k++. ∴AB AF BF =+212244(1)(+1)=k x x k +=++.由题设知2244=8k k+,解得k =–1(舍去),k =1.∴l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),∴AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+. 设所求圆的圆心坐标为(x 0,y 0),则00220005,(1)(1)16,2y x y x x =-+⎧⎪⎨-++=+⎪⎩ 解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩∴所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=. 20.(本小题满分12分) 解:(1)∵4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =254连结OB .因为2AB BC AC ==,所以ABC ∆为等腰直角三角形,且OB AC ⊥,122OB AC ==.由222OP OB PB +=知OP OB ⊥. 由OP OB ⊥,OP AC ⊥知 OP ⊥平面ABC .(2)如图,以O 为坐标原点,OB 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得(0,0,0),(2,0,0),(0,2,0)O B A -,(0,2,0)C,(0,0,P ,(0,2,AP =.取平面P AC 的法向量(2,0,0)OB =. 设(,2,0)(02)M a a a -<≤,则(,4,0)AM a a =-.设平面P AM 的法向量为(,,)x y z m =.由0,0,AP AM ⎧⋅=⎪⎨⋅=⎪⎩m m即20,(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩得,).y a x z a ⎧=⎪⎨-=⎪⎩可取),,)a a -m =.所以cos OB <>=m,由已知得cos 2OB <>=m,.=. 解得4a =或4a=-(舍去).∴4(,)333-m =.又∵(0,2,PC =-,∴3cos PC <>=m, ∴PC 与平面P AM 所成角的正弦值为4. 21.(本小题满分12分)解:(1)当a =1时,()1f x ≥等价于2(1)10x x e -+-≤.设函数2()(1)1xg x x e-=+-,则22()(21)(1)x x g x x x e x e --'=--+=--. 当1x ≠时,()0g x '<, ∴()g x 在(0,)+∞单调递减. 而(0)0g =,∴当0x ≥时,()0g x ≤,即()1f x ≥.(2)设函数2()1x h x ax e -=-.()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点.(i )当0a ≤时,()0h x >,()h x 没有零点;(ii )当a >0时,()(2)x h x ax x e -'=-.当(0,2)x ∈时,()0h x '<;当(2,)x ∈+∞时,()0h x '>.∴()h x 在(0,2)单调递减,在(2,)+∞单调递增.∴2(2)14h ae -=-是()h x 在[0,)+∞的最小值.①若(2)0h >,即214a e <,()h x 在255(0,)+∞没有零点;②若(2)0h =,即214a e =,()h x 在(0,)+∞只有一个零点;③若(2)0h <,即214a e >,由于(0)1h =,∴()h x 在(0,2)内有一个零点, 由(1)知,当0x >时,2x e x >,∴334221616(4)11()a a a a h a e e =-=-34161110(2)a a a>-=->.∴()h x 在(2,4)a 内有一个零点, ∴()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,214a e =.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.(本小题满分10分)[选修4-4:坐标系与参数方程] 解:(1)曲线C 的直角坐标方程为221416x y +=. 当cos 0α≠时,l 的直角坐标方程为 (tan )2tan y x αα=+-. 当cos 0α=时,l 的直角坐标方程为x =1. (2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程22(13cos )4(2cos t αα+++ sin )80t α-=.①∵曲线C 截直线所得线段的中点(1,2)在C 内,∴方程①有两个解12,t t ,且1224(2cos sin )13cos t t ααα++=-+. 由参数t 的几何意义得120t t +=.∴2cos sin 0αα+=,于是直线的斜率tan 2k α==-. 22.(本小题满分10分) [选修4—5:不等式选讲] 解:(1)当a =1时,24(1),()2(12),26(2).x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩当1x ≤-时,由()240f x x =+≥得2x ≥-,即21x -≤≤-;当12x -<≤时,()20f x =>; 当2x >时,由()260f x x =-+≥得 3x ≤,即23x <≤. 综上可得()0f x ≥的解集为[]2,3-. (2)()1f x ≤等价于24x a x ++-≥. 而22x a x a ++-≥+,且当x=2时等号成立.∴()1f x ≤等价于24a +≥. 由24a +≥可得6a ≤-或2a ≥. ∴a 的取值范围是(][),62,-∞-+∞.2562018年普通高等学校招生全国统一考试(全国卷Ⅲ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 CDABC ADBCB CB第Ⅱ卷(非选择题 90分)二、填空题(共20分) 13.1214.3- 15.3 16.2 (一)必考题:共60分. 一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合) 1.C解:∵{}[)101,A x x =-≥=+∞,{}012B =,,, ∴ {}1,2AB =,∴选C .2.D解:∵()()212223i i i i i i +-=-+-=+, ∴选D . 3.A解:选A . 4.B解:由已知条件,得2217cos 212sin 1239αα⎛⎫=-=-= ⎪⎝⎭,∴选B .5.C解:由已知条件,得 251031552()2rr r r r r r T C x C x x --+⎛⎫== ⎪⎝⎭,令1034r -=,解得2r =, x 4的系数为22552240rr C C ==, ∴选C .6.A解:由已知条件,得(2,0),(0,2)A B --,∴||AB == 圆22(2)2x y -+=的圆心为(2,0),∴圆心到直线20x y ++=的距离为= ∴点P 到直线20x y ++=的距离的取值范围为d ≤≤+d ≤≤,∴1||[2,6]2ABP S AB d ∆=⋅∈.∴选A . 7.D解:令0x =,得2y =,∴A,B 不能选. 令321424()02y x x x x '=-+=-->,得2x <-或02x <<,即函数在0⎛ ⎝⎭内单调递增, ∴选D . 8.B解:由已知条件知,X ~B (10,p ),且 10p (1-p )=2.4,解得p =0.6或p =0.4. 又由P (X=4)< P (X=6)得,即4466641010(1)(1)C p p C p p -<-,0.5p >,∴p =0.6. ∴选B . 9.C解:由已知条件,得2222cos 44ABC a b c ab CS ∆+-==cos 1sin 22ab C ab C ==,即tan 1C =,∴4C π=.∴选C . 10.B解:如图,ABC ∆为等边三角形,点O 为,,,A B C D 外接球的球心,E 为ABC ∆的重心,点F 为边BC 的中点.当点D 在EO 的延长上,即DE ⊥面ABC 时,三棱锥D ABC -体积取得最大值.V =,5分,.1=2,x,且196π.257258当366x πππ≤+≤时有1个零点,3,629x x πππ+==;当326x πππ<+≤时有1个零点,343,629x x πππ+==; 当192366x πππ<+≤时有1个零点,573=,629x x πππ+=. ∴零点个数为3,∴填3. 16.2解:由已知条件知,抛物线C 的焦点为(1,0)F . 设22121212(,),(,)()44y yA yB y y y ≠,则由A ,F ,B 三点共线,得221221(1)(1)44y y y y -=-,∴12=4y y -. ∵∠AMB =90º,∴221212(1,1)(1,1)44y y MA MB y y ⋅=+-⋅+-,221212(1)(1)(1)(1)44y y y y =+++-⋅-2121(2)04y y =+-=, ∴12=2y y +.∴212221124244y y k y y y y -===+-,∴填2. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. 17.(本小题满分12分) 解:(1)设数列{}n a 的公比为q ,则由534a a =,得2534a q a ==,解得2q =±. ∴12n n a -=或1(2)n n a -=-.(2)由(1)知,122112nn n S -==--或1(2)1[1(2)]123n n n S +-==--+,∴2163mm S =-=或1[1(2)]633m m S =--=(舍), ∴6m =.18.(本小题满分12分) 解:(1)第一种生产方式的平均数为184X =,第二种生产方式平均数为274.7X =,∴12X X >,∴第一种生产方式完成任务的平均时间大于第二种,即第二种生产方式的效率更高. (2)由茎叶图数据得到中位数80m =,∴列联表为(3)()()()()()22n ad bc K a b c d a c b d -=++++,()24015155510 6.63520202020⨯-⨯==>⨯⨯⨯,∴有99%的把握认为两种生产方式的效率有差异. 19.(本小题满分12分) 解:(1)由已知条件知,在正方形ABCD 中,AD CD ⊥.∵正方形ABCD ⊥半圆面CMD ,平面ABCD 半圆面CMD CD =, ∴AD ⊥半圆面CMD .∵CM 在平面CMD 内,∴AD CM ⊥,即CM AD ⊥.259OM (0,0,1)(0,-1,0)0)又∵M 是CD 上异于C ,D 的点, ∴CM MD ⊥.又∵AD DM D =, ∴CM ⊥平面AMD , ∵CM 在平面BMC 内,∴平面AMD ⊥平面(2)由条件知,2ABC S ∆=是常数, ∴当点M 到平面ABCD 的距离.最大,即点M 为弧CD 的中点时,三棱锥M – ABC 体积最大.如图,以CD 中点O 为原点,过点O 且平行于AD 的直线为x 轴,OC ,OM 所在直线为y ,Z 轴建立空间直角坐标系O-xyz ,则由已知条件知,相关点的坐标为 A(2,-1,0),B(2,1,0),M(0,0,1) ,且(0,2,0)AB =,(2,1,1)MA =--.由(1)知,平面MCD 的法向量为(1,0,0)=m .令平面MXB 的法向量为(,,)x y z =n ,则(,,)(0,2,0)=20,(,,)(2,1,1)20AB x y z y MA x y z x y z ⎧⋅=⋅=⎪⎨⋅=⋅--=--=⎪⎩,n n 即0,2y z x ==, ∴取(1,0,2)=n.∴cos ,⋅<>==⋅m nm n m n ,∴sin ,5<>=m n ,即面MAB 与MCD 所成二面角的正弦值.为5.20.(本小题满分12分)解:(1)设直线l 的方程为y kx t =+,则由22,143y kx t x y =+⎧⎪⎨+=⎪⎩消去y ,得222(43)84120k x ktx t +++-=,①由22226416(43)(3)0k t k t ∆=-+->,得2243t k <+.②设1122(,),(,)A x y B x y ,则12,x x 是方程①的两个根,且122843ktx x k -+=+,121226()243ty y k x x t k +=++=+. ∵线段AB 的中点为()()10M m m >,, ∴1228243ktx x k -+==+,121226()2243ty y k x x t m k +=++==+. ∵0m >,∴0t >,0k <,且2434k t k+=-.③由②③得22243434k k k ⎛⎫+-<+ ⎪⎝⎭,解得12k >或12k <-.∵0k <,∴12k <-.(2)∵点()()10M m m >,是线段AB 的中点,且FP FA FB ++=0,∴2FP FM +=0,即2FP FM =-.④ 由已知条件知,()()10M m m >,,()10F ,.令(,)P x y ,则由④得:(1,)2(0,)x y m -=-,即1,2x y m ==-, ∴P 的坐标为(1,2)m -.由于点P 在椭圆上,得214143m +=,解得26034m =或34m =-(舍去),且3(1,)2P -.又222211221,14343x y x y +=+=, ∴两式相减,得2112211234y y x xx x y y -+=--+. 又12123=2,22x x y y m ++==,∴21122112314y y x xk x x y y -+==-=--+, 243744k t k +=-=,∴直线l 的方程为74y x =-+. 将71,4k t =-=代入方程①,得 2285610x x -+=,解得121,11414x x =-=+,1233414414y y =+=-.∴3(2FA x ==+, 32FP =,3(2FB x == ∴=2FA FB FP +,即,,FA FP FB 成等差数列,且该数列的公差28d =±. 另解:(1)设1122(,),(,)A x y B x y ,则222211221,14343x y x y +=+=, 两式相减,得2112211234y y x xk x x y y -+==--+. ∵线段AB 的中点为()()10M m m >,, ∴122x x +=,122y y m +=,34k m=-. 由点()()10M m m >,在椭圆内得21143m +<,即302m <<. ∴12k <-.(2)由题设知(1,0)F .令(,)P x y ,则由FP FA FB ++=0得1122(1,)(1,)(1,)(0,0)x y x y x y -+-+-=,∴1212=3(),()x x x y y y -+=-+. 由得=1,2x y m =-<0. ∴P 的坐标为(1,2)m -.由于点P 在椭圆上,得214143m +=,解得34m =或34m =-(舍去),且3(1,)2P -,且32FP =. (FA x =122x=-,同理222xFB =-.∴12=2222x xFA FB +-+-124322x xFP +=-==,即,,FA FP FB 成等差数列.把34m =代入34k m =-得1k =-,且3(1,)4M∴直线l 的方程为74y x =-+. 把直线方程与椭圆方程联立,消去y 得:2285610x x -+=,于是有121212,28x x x x +==.设成等差数列的公差为d ,则26121122d FB FA x x =-=-==, d =±21.(本小题满分12分)解:由条件知,函数()f x 的定义域为(1,)-+∞.(1)若0a =,则函数()(2)ln(1)2f x x x x =++-,且1()ln(1)11f x x x'=++-+, 2211()1(1)(1)xf x x x x ''=-=+++. ∴(0)0f =,(0)0f '=,(0)0f ''=. ∴当10x -<<时,()0f x ''<,∴当10x -<<时,()f x '单调递减. ∴()(0)0f x f ''>=,∴当10x -<<时,()f x 单调递增, ∴()(0)0f x f <=,即()0f x <. 当x > 0时,()0f x ''>,∴当x > 0时, ()f x '单调递增.∴()(0)0f x f ''>=,∴当x > 0时,()f x 单调递增, ∴()(0)0f x f >=,即()0f x >. 综上可得,当10x -<<时,()f x <0; 当x > 0时,()0f x >. (2)(i )若0a ≥,由(1)知,当x >0时,()(2)ln(1)20(0)f x x x x f ≥++->=,这与x=0是()f x 的极大值点矛盾.(ii )若0a <,设函数2()()2f x g x x ax =++22ln(1)2xx x ax =+-++. 由于当min x ⎧⎪<⎨⎪⎩时,220x ax ++>, ∴()g x 与()f x 符号相同. 又(0)(0)0g f ==,∴0x =是()f x 的极大值点当且仅当0x =是()g x 的极大值点.22212(2)2(12)()12x ax x ax g x x x ax ++-+'=-+++() 22222(461)(1)(2)x a x ax a x x ax +++=+++. 如果610a +>,则当6104a x a+<<-,且m i n 1,x ⎧⎪<⎨⎪⎩时,()0g x '>,∴0x =不是()g x 的极大值点.如果610a +<,则22461=0a x ax a +++存在根10x <.∴当1(,0)x x ∈,且m in 1,x ⎧⎪<⎨⎪⎩时,()0g x '<,∴0x =不是()g x 的极大值点. 如果61=0a +,则322(24)()(1)(612)x x g x x x x -'=+--.当(1,0)x ∈-时,()0g x '>; 当(0,1)x ∈时,()0g x '<. ∴0x =是()g x 的极大值点,从而0x =是()f x 的极大值点.综上,16a =-.(二)选考题:共10分,请考生在第22、23题中任选一题作答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设,则 A .B .C .D2.已知集合,则A .B .C .D .3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少1i2i 1iz -=++||z =0121{}220A x x x =-->A =R{}12x x -<<{}12x x -≤≤}{}{|1|2x x x x <->}{}{|1|2x x x x ≤-≥B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记为等差数列的前项和.若,,则 A . B .C .D .5.设函数.若为奇函数,则曲线在点处的切线方程为 A .B .C .D .6.在中,为边上的中线,为的中点,则 A .B .C .D .7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A .B .C .3D .28.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为的直线与C 交于M ,N 两点,则= A .5B .6C .7n S {}n a n 3243S S S =+12a ==5a 12-10-101232()(1)f x x a x ax =+-+()f x ()y f x =(0,0)2y x =-y x =-2y x =y x =ABC △AD BC E AD EB =3144AB AC -1344AB AC -3144AB AC +1344AB AC +M A N B M N 1725223FM FN ⋅D .89.已知函数.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若为直角三角形,则|MN |= A .B .3C .D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 ABCD二、填空题:本题共4小题,每小题5分,共20分。

13.若,满足约束条件,则的最大值为_____________.14.记为数列的前项和.若,则_____________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)e 0()ln 0x xf x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++ABC △2213x y -=OMN △32x y 220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩32z x y =+n S {}n a n 21n n S a =+6S =16.已知函数,则的最小值是_____________.三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:60分。

17.(12分)在平面四边形中,,,,. (1)求;(2)若,求. 18.(12分)如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且. (1)证明:平面平面; (2)求与平面所成角的正弦值.19.(12分)设椭圆的右焦点为,过的直线与交于两点,点的坐标为.(1)当与轴垂直时,求直线的方程; (2)设为坐标原点,证明:. 20.(12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.学科&网()2sin sin2f x x x =+()f x ABCD 90ADC ∠=45A ∠=2AB =5BD =cos ADB∠DC =BC ABCD ,E F ,AD BC DF DFC△C P PF BF ⊥PEF ⊥ABFD DPABFD 22:12x C y +=F F l C ,A B M (2,0)l x AM O OMA OMB ∠=∠)10(<<p p(1)记20件产品中恰有2件不合格品的概率为,求的最大值点. (2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;(ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验? 21.(12分)已知函数. (1)讨论的单调性;(2)若存在两个极值点,证明:.(二)选考题:共10分。

请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。

22.[选修4—4:坐标系与参数方程](10分)在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为. (1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程. 23.[选修4—5:不等式选讲](10分)已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.)(p f )(p f 0p 0p p X EX 1()ln f x x a x x=-+()f x ()f x 12,x x ()()12122f x f x a x x -<--xOy 1C ||2y k x =+x 2C 22cos 30ρρθ+-=2C 1C 2C 1C ()|1||1|f x x ax =+--1a =()1f x >(0,1)x ∈()f x x >a参考答案: 1 2 3 4 5 6 7 8 9 10 11 12 CBABDABDCABA13.6 14. 15.16 16. 17.(12分)解:(1)在中,由正弦定理得.由题设知,,所以.由题设知,,所以. (2)由题设及(1)知,在中,由余弦定理得.所以. 18.(12分)解:(1)由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又平面ABFD ,所以平面PEF⊥平面ABFD . (2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,的方向为y 轴正方向,为单位长,建立如图所示的空间直角坐标系H −xyz .63-2-ABD △sin sin BD ABA ADB=∠∠52sin 45sin ADB=︒∠sin 5ADB ∠=90ADB ∠<︒cos ADB ∠==cos sin BDC ADB ∠=∠=BCD △2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠258255=+-⨯⨯25=5BC =BF ⊂HF ||BF由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE.又PF =1,EF =2,故PE ⊥PF . 可得. 则为平面ABFD 的法向量.设DP 与平面ABFD 所成角为,则.所以DP 与平面ABFD. 19.(12分)解:(1)由已知得,l 的方程为x =1.由已知可得,点A 的坐标为或. 所以AM 的方程为. (2)当l 与x 轴重合时,.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以.当l 与x 轴不重合也不垂直时,设l 的方程为,, 则,直线MA ,MB 的斜率之和为. 由得32PH EH ==33(0,0,0),(0,0,),(1,,0),(1,,2222H P D DP --=(0,0,)2HP =θ34sin ||||||3HP DP HP DP θ⋅===(1,0)F (1,)2(1,2-2y x =-+2y x =0OMA OMB ∠=∠=︒OMA OMB ∠=∠(1)(0)y k x k =-≠1221(,),(,)A y x y x B 12x x <<212122MA MB x x y yk k +=+--1122,y k k x y k x k =-=-.将代入得 .所以,.则. 从而,故MA ,MB 的倾斜角互补,所以. 综上,. 20.(12分)解:(1)20件产品中恰有2件不合格品的概率为.因此 .令,得.当时,;当时,. 所以的最大值点为. (2)由(1)知,.(i )令表示余下的180件产品中的不合格品件数,依题意知,,即.所以.(ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于,故应该对余下的产品作检验. 21.(12分)解:(1)的定义域为,. (i )若,则,当且仅当,时,所以在121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--(1)y k x =-2212x y +=2222(21)4220k x k x k +-+-=21221222422,2121x x x k k k x k -+==++3131322244128423()4021k k k k kk k k k x x x x --++-++==+0MA MB k k +=OMA OMB ∠=∠OMA OMB ∠=∠221820()C (1)f p p p =-2182172172020()C [2(1)18(1)]2C (1)(110)f p p p p p p p p '=---=--()0f p '=0.1p =(0,0.1)p ∈()0f p '>(0.1,1)p ∈()0f p '<()f p 00.1p =0.1p =Y (180,0.1)YB 20225X Y =⨯+4025X Y =+(4025)4025490EX E Y EY =+=+=400EX >()f x (0,)+∞22211()1a x ax f x x x x-+'=--+=-2a ≤()0f x '≤2a =1x =()0f x '=()f x (0,)+∞单调递减.(ii )若,令得,或.当时,; 当时,.所以在单调递减,在单调递增.(2)由(1)知,存在两个极值点当且仅当.由于的两个极值点满足,所以,不妨设,则.由于,所以等价于.设函数,由(1)知,在单调递减,又,从而当时,.所以,即. 22.[选修4—4:坐标系与参数方程](10分)解:(1)由,得的直角坐标方程为.(2)由(1)知是圆心为,半径为的圆.学&科网由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,2a >()0f x '=x=x =2(0,)()22a a ax -+∈+∞()0f x '<(,22a a x +∈()0f x '>()f x(0,),()22a a -++∞(22a a -+()f x 2a >()f x 12,x x 210x ax -+=121x x =12x x <21x >12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----1212()()2f x f x a x x -<--22212ln 0x x x -+<1()2ln g x x x x=-+()g x (0,)+∞(1)0g =(1,)x ∈+∞()0g x <22212ln 0x x x -+<1212()()2f x f x a x x -<--cos x ρθ=sin y ρθ=2C 22(1)4x y ++=2C (1,0)A -21C (0,2)B y y 1l y轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点.当与只有一个公共点时,到所在直线的距离为,故或.经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点.当与只有一个公共点时,到所在直线的距离为,,故或. 经检验,当时,与没有公共点;当时,与没有公共点. 综上,所求的方程为. 23.[选修4—5:不等式选讲](10分)解:(1)当时,,即故不等式的解集为.(2)当时成立等价于当时成立. 若,则当时; 若,的解集为,所以,故. 综上,的取值范围为.2l B 2C 1C 2C 1l 2C 2l 2C 2l 2C 1l 2C 1l 2C A 1l 22=43k =-0k =2C 0k =1l 2C 43k =-1l 2C 2l 2l 2C A 2l 22=0k =43k =0k =1l 2C 43k =2l 2C 1C 4||23y x =-+1a =()|1||1|f x x x =+--2,1,()2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩()1f x >1{|}2x x >(0,1)x ∈|1||1|x ax x +-->(0,1)x ∈|1|1ax -<0a ≤(0,1)x ∈|1|1ax -≥0a >|1|1ax -<20x a <<21a≥02a <≤a (0,2]。

相关文档
最新文档