铁磁谐振过电压

合集下载

铁磁谐振过电压对电网有哪些危害?

铁磁谐振过电压对电网有哪些危害?

铁磁谐振过电压对电网有哪些危害?
前面小编带大家了解了铁磁谐振对电力设备的危害,那对电网又会有哪些危害呢,请大家跟我来了解:
当线路发生单相接地或断路器操作等干扰时,造成电压互感器电压升高,三相铁芯受到不同的激励而呈现不同程度的饱和,电压互感器的各相感抗发生变化,各相电感值不相同,中性点位移产生零序电压。

由于线路电流持续增大,导致电压互感器铁芯逐渐磁饱和,当满足ωL=1/ωC时,即具备铁磁谐振条件,从而产生铁磁谐振过电压,其造成的主要影响如下:
(1)中性点不接地系统中,单相接地时接地电弧不能自动熄灭必然产生电弧过电压,一般为3~5倍相电压甚至更高,致使电网中绝缘薄弱的地方放电击穿,并且在过电压的作用下极易造成第二点接地发展为相间短路造成设备损坏和停电事故,严重威胁电网安全运行。

(2)在发生铁磁谐振时,电压互感器一次励磁电流急剧增大,使高压熔丝熔断。

如果电流尚未达到熔丝的熔断值,但超过了电压互感器额定电流,长时间处于过电流状况下运行,必然造成电压互感器烧损。

(3)铁磁谐振发生后电路由原来的感性状态转变为容性状态,电流基波相位发生180°反转,发生相位反倾现象,可导致逆序分量胜于正序分量,从而使小容量的异步电动机发生反转现象。

(4)铁磁谐振时产生高零序电压分量,出现虚幻接地和不正确的接地指示。

[整理]铁磁谐振过电压

[整理]铁磁谐振过电压

电压互感器铁磁谐振过电压浅析摘要:高压系统中的铁磁谐振过电压是电力系统常见的过电压之一,是由于变电站倒闸操作或在运行时接地故障消除等原因引起的,其实质就是电磁式电压互感器励磁特性饱和,激发铁磁谐振。

发生铁磁谐振过电压,不但对大量电力设备和系统安全运行带来危害,还严重危及人身安全,必须予以足够重视和防范。

关键词:铁磁谐振过电压防范措施一、引言由于10kV设备多为高压三相设备,当单相接地时,为了保证三相电压还能继续保持平衡、对称的关系,系统能够持续运行,提高供电可靠性,因此10kV系统多采用不接地运行方式。

为了能正确识别单相接地故障,并对电网电压进行监测,这就需要10kV系统中的电压互感器中性点接地。

当母线空载或出线较少时,因合闸充电或在运行时接地故障消除等原因的激发,会使电压互感器过饱和,则可能产生铁磁谐振过电压,出现相对地电压不稳定、接地指示误动作、电压互感器高压保险丝熔断等异常现象,严重时会导致电压互感器烧毁,继而引发其它事故。

二、铁磁谐振过电压原理铁磁谐振仅发生在含有铁芯电感的电路中。

当电感元件带有铁芯时(如变压器、电压互感器等),一般都会出现饱和现象,这时电感不再是常数,而是随着电流或磁通的变化而变化,在满足一定条件时,就会产生铁磁谐振现象。

铁磁元件的饱和特性,使其电感值呈现非线性特性,所以铁磁谐振又称为非线性谐振。

为探讨铁磁谐振过电压最基本的特性,可利用图1的L-C串联谐振电路进行分析。

假设正常运行条件下,其初始感抗大于容抗(ωL > 1/ωC),电路不具备谐振的条件,而电感线圈中出现涌流时就有可能使铁芯饱和,感抗下降,使ωL = 1/ωC,满足串联谐振条件,产生谐振。

图1 串联铁磁谐振电路图2为铁芯电感和电容上的电压(U L、U C)(有效值)随电流变化的曲线。

U C为一直线;在铁芯为饱和时U L基本上是一直线,当电流增大,铁芯饱和后,电感值减小,U L不再是直线,因此两条伏安特性曲线必相交,这时产生铁磁谐振的前提。

浅谈电力系统中的铁磁谐振过电压及消除方法

浅谈电力系统中的铁磁谐振过电压及消除方法

浅谈电力系统中的铁磁谐振过电压及消除方法摘要:本文简要分析了电力系统中铁磁谐振产生的原因、现象及对电气设备的危害,并介绍了消除铁磁谐振过电压的常用方法。

关键词:电力系统;铁磁谐振;过电压;电容;电感1 引言电力系统中有许多的电感、电容元件,如变压器、互感器、电抗器、消弧线圈、发电机等的电感,输电线路的对地电容及相间电容,以及各种高压设备的电容。

这些电感,电容元件在特定的参数配合条件下构成振荡回路,当系统进行操作或发生故障时形成谐振现象,从而产生谐振过电压,导致系统中某些电气设备出现严重的过电压而损坏,影响电力系统的安全运行。

2铁磁谐振过电压产生的原因电力系统内,一般的回路都可简化成电阻R、感抗、容抗的串联和并联回路。

铁磁谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。

正常运行条件下,感抗大于容抗,即>,此时电路运行在感性工作状态,不具备线性谐振条件,回路保持稳定状态。

铁磁谐振回路的容抗在频率不变的情况下基本上是个不变的常数,而感抗一般是由带铁芯的线圈产生的,铁芯饱和时感抗会变小。

当电源电压有所升高或电感线圈中出现涌流时,就有可能使铁芯饱和,其感抗值随之减小,当=时,即满足串联谐振条件,于是发生铁磁谐振[4]。

电力系统运行参数具有随机性,其运行方式灵活,构架比较复杂,容易使系统参数发生变化。

在进行操作或者发生故障的条件下,电力系统中的电容和电抗元件很容易形成振荡回路,尤其是主变压器,电压互感器等有绕组及铁芯的设备在一定的激励条件下,最容易产生电磁耦合现象,进而产生串、并联谐振,引发铁磁谐振过电压。

35kV、10kV系统大多采用中性点不接地方式运行,电网结构相对薄弱,加上电力系统操作频繁,运行方式又多变,很容易导致铁磁谐振过电压。

据有关统计,铁磁谐振过电压导致故障概率高达50% ~ 55%。

铁磁谐振过电压导致故障的严重性可见一般。

铁磁谐振过电压本质上是由于非线性励磁电感与电力系统对地电容所构成的铁磁谐振所引发的电网中性点不稳定现象。

浅析电压互感器铁磁谐振过电压防范措施

浅析电压互感器铁磁谐振过电压防范措施

浅析电压互感器铁磁谐振过电压防范措施1. 引言1.1 电压互感器在电力系统中起着至关重要的作用电压互感器在电力系统中起着至关重要的作用。

它是电力系统中必不可少的设备之一,主要用于测量、监控和传输电力系统中的电压信号。

通过电压互感器,我们可以及时准确地获取电力系统中的电压信息,帮助运行人员了解系统运行状态,及时调整电力系统的运行参数,确保系统的安全稳定运行。

电压互感器广泛应用于电力系统的各个环节,包括高压输配电网、变电站、电力监测系统等。

它能够将高压信号转换为适合测量仪表或保护设备使用的低压信号,为电力系统的运行和管理提供了重要的技术支持。

没有电压互感器,电力系统的安全稳定运行将无法保障,难以及时有效地对系统中出现的问题做出反应和处理。

电压互感器在电力系统中的作用不容忽视。

它不仅是电力系统正常运行的关键设备,同时也是电力系统安全运行的重要保障。

只有充分认识到电压互感器的重要性,才能更好地确保电力系统的安全稳定运行。

【至关重要】。

2. 正文2.1 铁磁谐振对电压互感器的影响铁磁谐振是电力系统中常见的问题,对电压互感器会产生一定的影响。

铁磁谐振是指在电流经过互感器铁芯时,由于其自身的铁磁特性而导致的谐振现象。

这种谐振会导致互感器铁芯中的铁芯损耗增加,同时也会影响其正常的工作状态。

具体来说,铁磁谐振会导致电压互感器的性能受到影响,使其输出的信号出现波动或失真,甚至在严重的情况下可能导致互感器损坏。

对于电力系统而言,互感器是非常重要的设备,一旦出现问题可能会导致系统运行不稳定甚至发生故障。

防范铁磁谐振对电压互感器的影响是非常必要的。

采取一系列的措施来减少铁磁谐振现象的发生,可以有效地保护电压互感器的正常运行和延长其使用寿命。

在日常运行中,需要密切监测互感器的工作状态,及时发现问题并采取相应的措施进行处理,以确保电力系统的安全稳定运行。

通过不断完善措施和技术,可以有效预防铁磁谐振对电压互感器的影响,提高系统的可靠性和安全性。

浅析电压互感器铁磁谐振过电压防范措施

浅析电压互感器铁磁谐振过电压防范措施

浅析电压互感器铁磁谐振过电压防范措施电压互感器是电力系统中常用的测量仪器,也是系统中的重要装置之一。

但是,在电力系统的运行中,电压互感器的使用也面临着很多问题,如铁磁谐振过电压。

铁磁谐振过电压是电压互感器在谐振情况下,长时间处于高电压状态下,容易造成设备损坏,甚至导致安全事故发生。

因此,需要采取有效措施,加强电压互感器的防范措施,以保障电力系统的安全稳定运行。

一、铁磁谐振过电压的成因及危害电压互感器中的铁芯是由硅钢片叠压而成,其导磁特性是非线性的。

一般情况下,电压互感器的负载比较小,电压互感器的电路谐振是极难发生的。

但是,如果出现负载开路(如断路器拆卸等操作),则使得电压互感器中的感应电流大幅度减小,电感值变大,当电容注入电流时,系统中的电容和电感共振,形成铁磁谐振。

当发生脉冲放电或过电流的冲击时,电感器内部的电压猛地升高,这就是铁磁谐振过电压的成因之一。

铁磁谐振过电压会造成设备局部击穿,损坏电容、电抗器等电力设备,对电力系统的可靠性和安全性造成严重威胁。

另外,如果频繁发生铁磁谐振过电压现象,还会造成电网负荷调节不稳定,导致电压波动,影响系统的稳定性。

二、电压互感器的防范措施1.调整电压互感器的谐振频率电压互感器的谐振频率是通过电容和电感器之间建立的谐振回路来实现的。

因此,在设计和安装过程中,可以调整电容和电感器之间的参数,以达到一定的谐振频率,减少铁磁谐振过电压的发生。

2.加装过电压保护装置过电压保护装置是电力系统中重要的防护装置之一,其作用是对电力系统中的过电压进行有效的控制。

在电压互感器的设计和安装过程中,可以增加过电压保护装置的投入,当电压互感器出现谐振时,过电压保护装置可以及时地将过电压抑制在一定范围内,从而保护电力系统的运行安全。

3.系统电容投入系统电容投入可以改善电网系统的功率因数和电压水平,同时还可以抑制铁磁谐振过电压的发生。

在电网系统的设计和运行中,可以根据需要增加系统电容的投入,减少电容和电感器之间的谐振,从而保护电力设备的运行安全。

铁磁谐振过电压

铁磁谐振过电压

电压互感器铁磁谐振过电压可分两种:一种是中性点不稳定过电压;另一种是中性点位移过电压。

前者多在正常运行的中性点不接地的电网中产生, 例如投入空母线时的过电压;后者均在定相的过程中产生, 这主要是由于定相的方法不当引起的。

经过检修的某些线路、电缆等在恢复送电时, 新建的线路、电缆、变压器等在投入运行时, 以及两部分电网首次并联运行时, 必须事先检查相位, 进行定相, 以免造成严重的设备损坏和人身事故。

在110, 定相通常是利用电压互感器进行的。

利用一台电压互感器, 直接在高压电网中定相时产生的过电压, 主要是由基波谐振引起的, 特性比较稳定, 因此称为中性点位移过电压;利用两台外接的或母线上原有的中性点直接接地的电压互感器, 而在其低压侧定相时产生的过电压, 是由基波、高次谐波或分次谐波谐振所引起,同时具有不稳定的特点, 故称为中性点不稳定过电压。

后者在国内外的电力系统中发生较多,即过去所谓的中性点位移过电压和现在的电压互感器铁芯饱和过电压。

一、中性点不稳定过电压中性点不稳定过电压,不仅可以在定相的过程中发生, 而且在在我国3~220千伏运行的电网中, 也曾普遍发生, 是新建的和经过检修后投入运行的电气设备损坏的重要原因之一,同时也是电压互感器烧毁及其高压保险频繁熔断的主要原因。

1.产生的条件试验研究结果表明, 当发生此种过电压时, 中性点出现显著的位移, 相电压变动并升高, 而线电压保持不变。

因此可以判定此种过电压是零序回路出现的一种谐振现象。

此种过电压对相间电容与三相对称的负荷没有影响。

只要同时符合以下四个条件, 便可能产生此种过电压。

(1)电源变压器为三角形接线或中性点不接地的星形接线, 以及中性点不接地的电网(注:这里指电源侧中性点不接地)(2)单台或多台电压互感器的中性点直接接地, 同时零序电压线圈接近开路状态(注:这里指电压互感器中性点直接接地)(3)母线或电网各相的对地电容与电压互感器各相的对地电感相匹配, 且初始感抗必须大于容抗(4)因电压或励磁涌流的冲击, 使电压互感器的铁芯三相发生不同程度的饱和。

浅析电压互感器铁磁谐振过电压防范措施

浅析电压互感器铁磁谐振过电压防范措施

浅析电压互感器铁磁谐振过电压防范措施电压互感器是电力系统中常见的一种测量设备,其作用是将高压变电器的高电压变换为低电压用于测量和保护系统。

电压互感器在运行过程中会受到各种干扰和影响,其中铁磁谐振过电压是一个常见的问题。

本文将对电压互感器铁磁谐振过电压的原因进行分析,并提出相应的防范措施。

一、铁磁谐振过电压的原因1. 铁芯饱和电压互感器的铁芯在运行过程中,会受到系统电压的影哨,当系统电压过高时,铁芯可能会发生饱和现象。

当铁芯饱和时,会导致互感器的谐振频率发生变化,从而产生过电压。

2. 负载变化3. 保护动作在系统故障或过载状态下,保护设备会进行动作,引发短时过电压。

这种过电压也可能引起电压互感器的铁磁谐振现象。

1. 加强互感器绝缘为了防范铁磁谐振过电压的发生,首先要确保互感器的绝缘性能良好。

在选择互感器时,应选择具有较高击穿电压的绝缘材料,以提高互感器的绝缘强度。

2. 优化互感器设计在互感器的设计过程中,应该根据系统的电压和负载特性,优化互感器的结构和参数,以减少铁磁谐振过电压的可能性。

3. 使用补偿电容器在互感器的设计中,可以加入合适的补偿电容器来抵消铁磁谐振过电压。

补偿电容器的选择和布置是一个复杂的工程问题,需要根据实际系统情况进行综合考虑。

4. 定期检测为了确保电压互感器的正常运行,需要定期对其进行检测和维护。

通过定期检测,可以及时发现互感器存在的问题,并采取相应的措施进行修复。

5. 系统优化在系统设计和运行过程中,应该保持系统的稳定性,避免出现系统过载或短路等故障情况,以减少铁磁谐振过电压的发生。

电压互感器铁磁谐振过电压是一个常见的问题,但通过合理的设计和操作措施,可以有效地防范和解决这一问题,从而确保电力系统的安全稳定运行。

希望本文的分析和建议能够为电力系统工程技术人员在实际工作中提供一些参考和帮助。

铁磁谐振过电压机理是什么?

铁磁谐振过电压机理是什么?

铁磁谐振过电压机理是什么?
在中性点非有效接地的配电系统中,若电网中发生单相接地铁磁谐振过电压故障,该电压等级电网母线上都将出现数值较高的零序电压。

利用这一特点,配网变电所母线上所接的绝缘监测装置,即一个三相五柱式电压互感器,其二次侧的星形联结绕组接三个电压表,以测量各相电压;另一个二次侧绕组接成开口三角形,接入过电压继电器,用来反映线路单相接地时出现的零序电压。

当电网发生单相接地铁磁谐振过电压故障时,故障相对地电压为零,其他两相对地电压升高,同时出现零序电压,使继电器动作,发出故障信号。

但是在配电网中,PT铁磁谐振和PT断线故障与单相接地故障类似,都能引起电网电压异常,使PT开口三角形两端产生电压,绝缘监测装置发出接地信号。

因此,为了准确的判别故障类型,除监测PT开口三角两端电压外,还需要对配电网中单相接地故障、PT铁磁谐振和PT断线故障的特征进行分析加以区别。

220kV变电站铁磁谐振过电压事故分析及防止措施

220kV变电站铁磁谐振过电压事故分析及防止措施

220kV变电站铁磁谐振过电压事故分析及防止措施摘要:文章结合某220kV变电站刀闸操作过程中出现的110kV母线设备铁磁谐振案例,对系统中因操作产生的铁磁谐振过电压情况进行分析,并提出预防措施和对策。

关键词:铁磁谐振过电压分析措施电力系统中具有一系列电气元件,组成极为复杂的电感电容的串联震荡回路,串联谐振现象会在电网的某一部分造成过电压,破坏电气设备绝缘,危机设备的安全运行。

对于小容量非线性电感元件(例如电压互感器)谐振过电压使它产生的大电流,在严重情况下,造成电感线圈及其保护熔丝烧毁甚至压变及高压设备爆炸,谐振过电压持续时间较长并可能稳定存在,因此了解谐振发生的原因及防止措施是十分必要的。

1 谐振基本概念1.1 串联谐振的定义谐振时XL=Xc,电路此时的工作状态叫谐振又由于谐振发生在RLC串联回路中又叫串联谐振(图1)。

1.2 为何串联谐振又叫电压谐振谐振电路中的电流I=U/Z=U/R(谐振时回路中的总电阻Z=R)谐振时各元件的电压:UR=I×R=R×U/R=U(说明谐振时电阻上的电压等于电源电压)UL=jωoLI=jωoL×U/R=j(ωoL/R)×U=jQU,Q:品质因数,Q=XL/R(说明谐振时电感上的电压等于Q倍电源电压) UC=j(1/ωoC)×I=j1/ωoC)×U/R=j(1/ωoCR)×U=jQU,Q:品质因数,Q=XC/R=1/ωoCR(说明谐振时电容上的电压等于Q倍电源电压) 从上述表达式中可以看出:Q=UC/U=UL/U。

一般在串联谐振时Q>1,在大电流接地系统中电源电压U很高,而在电感和电容上的电压是电源电压的Q倍。

在无线电中可以加以利用,使微弱的信号输入串联谐振回路中,电容两端可获得高电压。

但是在电力系统中由于电源电压本身就很高,如在串联谐振下工作则会严重损坏设备。

这是绝对不允许的,所以说在大电流接地系统中发生串联铁磁谐振也叫电压谐振。

电磁式电压互感器为什么会引起铁磁谐振过电压呢?

电磁式电压互感器为什么会引起铁磁谐振过电压呢?

电磁式电压互感器为什么会引起铁磁谐振过电压呢?运行经验证明,在我国中性点绝缘、中性点经消弧线图接地以及中性点直接接地的3~220kV电网中,都曾发生过由于电磁式电压互感器铁芯饱和引起的铁磁谐振过电压。

我们知道发生铁磁谐振过电压不仅或损坏电气设备,严重时可能影响系统的安全可靠运行。

今天我们一起来了解下电压互感器为什么会出现铁磁谐振现象呢电磁式电压互感器引起的铁磁谐振过电压。

其中以在中性点绝缘的配电网中出现的较为频繁,是造成事故最多的一种内部过电压,因为其他接地系统只有当它们变成中性点绝缘系统时才有可能发生这种过电压。

当这种过电压发生时,由于互感器的铁芯饱和,导致其绕组的励磁电流大大增加,严重时可达其额定励磁电流的百倍以上,从而引起互感器的熔断器馆断、喷油、绕组烧毁甚至爆炸;有些情况下,这种过电压可能产生3.0倍左右的相电压,引起绝缘闪络或避雷器爆炸。

另外,当这种过电压发生时,还会出现虚幻接地现象,其实电网中共天接地的处所,这给运行值班人员造成错觉。

总之,当发生这种过电压时,将会给电网的安全运行带来很大的威胁,因此引起电力系统的普遍重视。

电磁式电压互感器引起的铁磁谐振过电压。

其中以在中性点绝缘的配电网中出现的较为频繁,是造成事故最多的一种内部过电压,因为其他接地系统只有当它们变成中性点绝缘系统时才有可能发生这种过电压。

正常运行时,互感器铁芯不饱和,所以并联支路处于容性状态。

不会出现中性点不稳定现象,即中性点电位与地电位是重合的。

当电网中发生某种冲击扰动时,铁芯电感因受到“激发”而呈现不同程度的饱和,从而破坏了三相电路的对称性,即YA≠YB≠YC。

因此,中性点位移必然出现,而且位移电压可以是工频频率的,也可以是谐波频率的,形成所谓工频、分频或高频铁磁谐振过电压。

为预防谐振的发生,我们必须采取有效的措施。

因此,建议采用流敏型消谐装置进行电压互感器的相电压的监控以及消谐。

5.31关于系统断线铁磁谐振过电压分析及预防

5.31关于系统断线铁磁谐振过电压分析及预防

关于系统断线铁磁谐振过电压分析及预防
断线铁磁谐振过电压,是泛指由于导线的开断,开关的不同期合闸及熔断器的一相或两相熔断而引起的铁磁谐振过电压。

只要电网的电源侧或负荷侧中有一侧中性点不接地,在断线时经常出现谐振和中性点电位偏移,造成负载变压器相序反倾、绕组电流剧增和绕组两端、导线对地的过电压等。

不接地系统总的对地容抗及故障线路和末端配变参数一定的情况下,等值电势和电容与故障线路长度及其断线发生点有密切的关系,并决定发生谐振频率的可能范围。

即容抗小可能发生分频谐振,容抗较大则可能发生基频或高频谐振。

(1)单相断线且负载侧接地和两相断线且均在负载侧接地这两种情形下,断线点在全线任何位置,其谐振点对应的励磁感抗小于初始励磁感抗,比如铁磁谐振等各种谐振均有可能发生。

10KV I 母发生铁磁谐振
(2)单相断线、两相断线、两相断线且一相负载侧接地这3种故障情况下,断线点在全线任何位置,其基频及以上谐振点对应的励磁感抗均小于初始励磁感抗,基频及以上高频谐振均有可能发生。

断线谐振严重时,高频谐振与基频谐振的叠加,能使过电压幅值达到2.5倍的相电压。

可能导致系统中性点位移、绕组及导线出现过电压、绝缘闪络、避雷器爆炸、电气设备损坏。

在某些特定情况下,负载变压器相序可能反转,还有可
能将过电压传递到变压器的低压侧。

一般采用熔断器,避免三相断路器的不同期操作或在中性点接地系统中,操作中性点不接地变压器时,将其中性点临时接地,来防止断线谐振过电压。

变压器铁磁谐振过电压故障的分析与解决

变压器铁磁谐振过电压故障的分析与解决

变压器铁磁谐振过电压故障的分析与解决摘要:变压器运行过程中,在振荡回路容易形成铁磁谐振过电压现象,且这种现象与线性谐振过电压之间在性能和特点方面均存在较大的差异。

并且当变压器一旦出现铁磁谐振过电压现象,将会造成设备受到严重损坏,从而对整个电网运行的安全性造成严重的危害,所以工作人员应该对该故障现象进行全面的分析,并通过合理的抑制措施对该故障现象进行解决,从而保证整个电力系统得以安全运行。

关键词:变压器;电力系统;铁磁谐振过电压;故障分析;抑制措施电力系统的运行时,其振荡回路之中,因变压器铁芯电感磁路会形成饱和作用,导致容易形成持续性铁磁谐振过电压故障,且这种故障的幅值比较高,该故障在性能与特点方面与线性谐振过电压相比存在较大的差异,该故障一旦发生,通常会比额定电压数值高出几倍过电流和过电压,有时甚至能够达到几十倍,从而导致绝缘子套管以及瓷绝缘放电等发生电晕现象,并且容易造成一次熔断器出现熔断,是设备受到严重损坏,并且会对电网的安全性造成非常严重的影响,因此本文将对该故障发生的成因进行全面分析,并寻求该故障的解决对策。

1.变压器铁磁谐振过电压形成机制铁磁谐振可能为分次谐波谐振,也可能是告辞谐波谐振,甚至可能为基波谐振。

并且铁磁谐振的表现形式丰富多样,可能是三相,也可能是两相或单相对地电压升高,也有可能是受瓷绝缘放电、低频摆动等铁件产生电晕而造成避雷器保障或者是绝缘闪落,又或是形成值位较高的零序电压分量造成的虚假接地情况以及失准性接地指示,这些情况会导致其产生的过电压要高出额定电压几倍,甚至要高出几十倍,从而造成变压器的部件出现熔断或烧毁情况,对电网系统造成了严重的损害。

在实际工作中比较常见的便是基波谐振。

在变压器中性点不接地的情况下,通常会因压变或者是断线产生的磁饱和导致变压器铁磁谐振过电压形成。

其中,断线过电压一般指的是因导线断开、变压器熔断器以及开关的不同期熔断和切合等情况发生后导致的铁磁谐振过电压。

铁磁谐振过电压

铁磁谐振过电压

电压倍数为

U2


Ecos
U2
cos( )
最高。
U2 1
E cos
这表明线路长度越长 ,线路末端工频电压越高
(2)当电源容量为有限值时, 的存在电容效应,就像增加了导线长度一样。容量越小,工频电 压升高得越严重。
XS
因此为了估计最严重的工频 电压升高,应以系统最小电
源容量为依据。
二、不对称短路引起的工频电压升高 • 当A相接地时,可求得B、C两健全相上的电压为
任务3.3.3谐振过电压 电力系统中包含有许多电感和电容件,当系统进行操作或发生故障时,这些电感、电容元件可
能构成一系列不同自振频率的振荡同路,在外加电源的作用下,某些振荡回路可能产生串联 谐振现象,从而导致系统中的某些部分(或元件)上出现严重的 谐振过电压。

一、线性谐振过电压 图3-16
回路发生谐振 的条件为
U
U2
U1
.
E



Ux
Ecos Ecos cos cosXSsin cos()
x
XS
. I1
.
U1
l,Z ,v
0.
. I2 U2
Z
图图3-193- 1 3 沿 空 载 线 路 的 电 压 分 布
• 从线路末端( 末端电压为
x 0 )开始,沿线的工频电压按余弦规律分布,线路末端电压
• 讨论 (1)如果电源容量为无限大,则末端的工频过
二、影响电弧接地过电压的因素
1.电弧燃烧与熄灭的随机性 2.输电线路的相间电容及回路损耗 3.中性点的接地方式
三、限制措施
1.采用中性点直接接地方式. 这时单相接地将造成很大的单相短路电流,断路器将立即跳闸而切断故障,经过一段短时间歇,

什么叫基频铁磁谐振过电压?

什么叫基频铁磁谐振过电压?

什么叫基频铁磁谐振过电压?
基频铁磁谐振的现象是:因中性点的位移电压与某一接地相的电压相反,且零电位必须移到线电压三角形之外,故该相电压的相位恰好与原来的相位相反(产生反倾)而且其数值降低,但并不为零;其余两相对地电压升高,其值将超过线电压,产生虚幻接地现象;零序电压两端往往也会同时出现过电压。

试验和分析表明,由互感器引发的基频铁磁谐振表现为一相电压降低,两相电压升高,且中性点移到线电压三角形之外。

假定系统相电压为UΦ,基频铁磁谐振产生的过电压幅值一般不高,对地稳态过电压不超过2倍UΦ,暂态过电压也不过3.6UΦ。

一个典型的基频铁磁谐振过电压波形如图所示:基频铁磁谐振发生时,三相电压表中指示数值为两相高,一相低,线电压正常;过电流很大,往往导致电压互感器熔丝熔断,甚至烧毁电压互感器;过电压倍数在3.2 倍相电压以内,伴有接地信号指示,即虚假接地现象。

基频铁磁谐振故障具有如下特点:
①线路电压两相升高、一相降低或其中两相降低、一相升高,且升高的电压通常不超过
3.2倍相电压;
②系统中的保护装置发出"接地"告警信号;
③PT上的电流显著增大。

电力系统产生铁磁谐振过电压的原因及消除方法

电力系统产生铁磁谐振过电压的原因及消除方法

电力系统产生铁磁谐振过电压的原因及消除方法目前,我国的经济发展十分迅速,在电力系统中容易出现铁磁谐振过电压事故,严重威胁着人们的生命财产安全,需要引起高度的重视,有针对性采取解决措施,避免出现铁磁谐振过电压现象。

本文将简述铁磁谐振的危害性,并分析了其产生的原因与条件,最后提出了具体可行的预防对策。

标签:电力系统;铁磁谐振;消除方法引言电力系统内设置有众多的储能元件,在系统操作与出现故障以后,变压器、互感器等含铁芯元件的非线性电感元件和系统内电容串联将造成铁磁谐振现象,将严重威胁着电力系统运行的安全性与稳定性。

在出现铁磁谐振过电压以后,会让电压互感器一次熔丝熔断,并将电压互感器烧毁,严重时还会炸毁瓷绝缘子和避雷器,从而以引起系统停运。

且受到电源的作用,还会引起串联谐振的情况,让系统内发生严重的谐振过电压。

对此我们需要引起高度重视,消除铁磁谐振过电压势在必行。

1 电压互感器发生铁磁谐振的机理谐振是交流电路当中独有的一种现象,通常情况下,交流电路当中出现了电感以及电容的串联现象,会出现感抗等于容抗,从而造成谐振。

一般来说,电力系统当中,受到电容、电感等元件故障影响或者误操作时,就会产生以谐振为代表的震荡回路。

谐振所具有的串谐特征,还会对某些系统元件产生不可逆的破坏性影响,其中电压互感器在谐振影响下的表现十分明显,这是由于电压互感器作为铁芯元件,而铁芯在参与到回路当中所形成的饱和电路会表现为非线性的电感参数,从而造成其严重破坏。

就目前的电力系统谐振问题影响特征来看,谐振问题一般可以依据电网结构分为并联谐振以及串联谐振两种谐振类型,前者表现在小接地单流系统内部,并联状态下的铁磁谐振会使得电容互感器与电压互感器在一次中性接地点的非线性电感之上,构成谐振回路;而后者则是在大接地电流系统当中产生。

电磁式电压互感器会通过非线性电感与断路器断口的电容共同构成谐振回路。

而在众多谐振回路当中,铁磁电压谐振出现最为频繁,同时影响力也最大。

详细了解一下,铁磁谐振过电压影响因素

详细了解一下,铁磁谐振过电压影响因素

详细了解一下,铁磁谐振过电压影响因素小电流接地系统正常运行时,系统感抗大于容抗,不具备谐振条件,当系统发生扰动时,互感器中增大的励磁电流会造成铁芯饱和而使其电感下降至与容抗相等时,且系统电源发生剧烈波动時容易发生铁磁谐振故障。

促成电力系统发生铁磁谐振故障的因素由系统结构与参数、系统运行状态和设备参数三个方面构成:系统运行受到诸如单相铁磁谐振、外电路过电压故障、互感器空载合闸或母线不同期合闸等外界提供的能量激发,电流增大且流过互感器绕组,造成互感器铁芯饱和,从而致使系统感性参数下降,当下降的感性参数与容性参数不利配合时,系统发生铁磁谐振。

线路构成、相间电容和接地电容会影响系统的容性参数,电容型互感器分为电容式和电磁式两种,这两种都会发生铁磁谐振,不过中性点不接地系统较多采用电磁式互感器。

系统运行受外界能量激发会导致电流增大,不同的激发类型导致的感性参数变化有别,其中,单相接地短路电流水平受中性点参数高压侧直流电阻阻值呈负相关性,并与短路消除时间有关,因为故障消除时刻对应的各相电源电压的大小不同,电压恢复时释放的电荷量也就不同,造成TV铁心的饱和程度有差异,从而产生大小不同的铁磁谐振过电压;外电路过电压故障和互感器空载合闸提供激发能量所产生的电流水平与变压器负载率呈负相关性。

上述因扰动产生的增大的电流水平与互感器高压侧直流电阻均呈负相关关系,此外,过渡电阻、变压器中性点所加装的消弧线圈和中性点阻抗也会影响到所能量激发电流水平,进而限制铁磁谐振过电压水平。

当增大的电流流过互感器绕组时,感性参数下降的程度受到互感器饱和程度的影响,而互感器饱和程度又受到电流水平和铁芯材质共同影响。

当下降的感性参数与容性参数满足谐振条件时,铁磁谐振过电压故障发生。

想要更多的了解有关铁磁谐振方面的内容,详见下一期!。

铁磁谐振原理

铁磁谐振原理

(1)铁磁谐振是电力系统自激振荡的一种形式,是由于变压器、电压互感器等铁磁电感的饱和作用续性、高幅值谐振过电压现象。

其主要特点为:1、谐振回路中铁心电感为非线性的,电感量随电流增大、铁心饱和而下降;2、铁磁谐振需要一定的激发条件,使电压、电流幅值从正常工作状态转移到谐振状态。

如电源电压暂时升高、系统受到较强烈的电流冲击等;3、铁磁谐振存在自保持现象。

激发因素消失后,铁磁谐振过电压仍然可以继续长期存在;4、铁磁谐振过电压一般不会非常高,过电压幅值主要取决于铁心电感的饱和程度。

(2)中文词条名:铁磁谐振过电压现象和消除办法是什么?英文词条名:答:现象:三相电压不平衡,一或两相电压升高超过线电压。

消除办法:改变系统参数。

(1)断开充电断路器,改变运行方式。

(2)投入母线上的线路,改变运行方式。

(3)投入母线,改变接线方式。

(4)投入母线上的备用变压器或所用变压器。

(5)将TV开口三角侧短接。

(6)投、切电容器或电抗器。

发生铁磁谐振的防范措施中国电力网 2008年1月9日13:47 来源:点击直达中国电力社区110 kV良站10 kV系统为中性点不接地系统,在10 kV系统出现A相单相接地时,发生10 kV母线干式电压互感器烧坏的故障。

事后检查,母线电压互感器本体炸裂、内部绝缘物喷出,非接地相B、C相一次熔丝熔断,母线电压互感器的避雷器未动作,中性点所接消谐电阻正常,中性点绝缘正常,励磁特性在正常范围,二次回路绝缘正常。

现分析单相接地时,电压互感器烧坏及铁磁谐振产生的原因。

电力系统中存在着许多储能元件,当系统进行操作或发生故障时,变压器、互感器等含铁芯元件的非线性电感元件与系统中电容串联可能引起铁磁谐振,对电力系统安全运行构成危害。

在中性点不接地的非直接接地系统中,铁磁式电压互感器引起的铁磁谐振过电压是常见的,是造成事故较多的一种内部过电压。

这种过电压轻则使电压互感器一次熔丝熔断,重则烧毁电压互感器,甚至炸毁瓷绝缘子及避雷器造成系统停运。

铁磁谐振过电压

铁磁谐振过电压

铁磁谐振过电压1.铁磁谐振过电压的特点(1)谐振回路由带铁心的电感元件(如空裁变压器、电压互感器)和系统的电容元件组成。

因铁心电感元件的饱和现象,使回路的电感参数呈非线性。

(2)共振频率可以等于电源频率(基波共振),也可为其简单分数(分次谐波共振)或简单倍数(高次谐波共振)。

(3)定的情况下自激产生,但大多需要有外部激发条件。

回路中事先经历过足够强列的过渡过程的冲击扰动,它可突然产生或消失,当激发消除后,常能自保持。

(4)在一定的回路损耗电阻的情况下,其幅值主要受到非线性电威本身亚重饱和的限制。

2.断线引起的铁磁谐振过电压的限制电网因断线、断路器非全相动作,熔断器一相或两相熔断等而造成非全相运行时,电网电容与空载或轻载运行的变压器的励磁电感可能组成多种多样的串联谐振回路,产生基频、分频或高频谐振。

它可使电网中性点位移、绝缘闪络、避雷器爆炸。

限制断线引起的铁磁谐振过电压的措施为:(1)在线路上不采用熔断器。

(2)采取措施,保证析路器不发生非全相拒动,或在发生拒动时,利用保护装置作用于上一级跳闸。

(3)在中性点接地电网中,操作中性点不接地的负载变压器时,将变压器中性点临时接地。

3.电磁式电压互感器引起的铁磁谐振过电压的限制中性点不接地系统中,由于电压互感器突然合闸,一相或两相绕组出现涌流,线路单相弧光接地时出现暂态涌流以及发生传递过电压时,可能使电磁式电压互感器三相电感程度不同地产生严重饱和,形成三相或单相共振回路,激发各次谐波谐振过电压。

其中以分频谐振过电压危害最大,严重时可使电压互感器过热爆炸。

可采用下列措施消除由于电压互感器饱和引起的铁磁谐振过电压。

(1)选用励磁特性较好的电磁式电压互感器,或只用电容式电压互感器。

(2)在零回路中加阻尼电阻。

电压互感器开口三角绕组为零序电压绕组,在此绕组两端装设R<04X的电阻(X为互感器在线电压作用下归算至三角绕组上的单相绕组的励磁阻抗)。

当只在网内一台电压互感器装设电阻时,Xm应为x内所有电压互感器励磁阻抗的并联值。

10.高电压技术第十章讲稿-铁磁谐振过电压

10.高电压技术第十章讲稿-铁磁谐振过电压

2.按其性质可分为三类 按其性质可分为三类
(1).线性谐振 (2).铁磁谐振 (3).参数谐振
第二节 铁磁谐振的基本原理
1、铁磁谐振 、
产生谐振条件:
1 ωL 〉 ωC
2、物理过程 、 (1)串联铁磁谐振回路的伏安特性
(2)分析时注意: 产生铁磁谐振的必要条件 正确分析平衡点的稳定性
3.主要特点 主要特点: 主要特点
• 断线谐振回路组成: 断线谐振回路组成: 负载变压器的励磁电感(或消弧线圈的电感) 线路的线间电容 每相对地电容 ∵负载变压器绕组是谐振回路中的铁芯电感元件,∴只 有处于空载或轻载时,才可能出现断线谐振! 由于断线谐振回路的组成形式与故障形式、断开点位 置、断开点是否接地等随机因素相关,很难得出一个通 用的简明算式判断是否出现谐振、以及是基波还是谐波 谐振。
1.中性点工频位移过电压( 101.中性点工频位移过电压(图10-7) 中性点工频位移过电压 由电路定律得
.
. . .
U0
=
EA YA + EB YB + EC YC
Y A+Y B+Y C
正常运行时,
Y A=Y B=Y C= Y
.
U0
=
Байду номын сангаас(EA+ EB + EC )Y
3Y
.
.
.
=0
各相对地导纳呈容性,流过C 的电流大于流过L的电流! 各相对地导纳呈容性,流过C0的电流大于流过L的电流!
导致TV出现饱和差异的常见原因 导致 出现饱和差异的常见原因: 出现饱和差异的常见原因 ①TV的突然合闸。 ②雷击或其他原因使线路发生瞬时单相弧光接地,导致 健全相电压突然升高,而出现很大的涌流。 ③传递过电压,使铁芯饱和。 这种过电压具有明显的零序性质。

浅析电压互感器铁磁谐振过电压防范措施

浅析电压互感器铁磁谐振过电压防范措施

浅析电压互感器铁磁谐振过电压防范措施1. 引言1.1 电压互感器铁磁谐振过电压防范措施电压互感器是电力系统中常用的一种电气测量设备,用于测量高压电网中的电压值,并将其转化为与之成比例的低压信号输出。

在电压互感器运行过程中,会存在一种名为铁磁谐振过电压的危险现象,给电网设备和运行带来潜在的危害。

有必要对电压互感器铁磁谐振过电压进行有效的防范措施。

铁磁谐振过电压主要是指电压互感器在运行时与电网中的电容性负荷之间相互作用,导致谐振现象产生,使得电压互感器绕组中的电压值急剧上升,超出额定值范围。

这种过电压可能会引起设备损坏、电网故障甚至触电事故。

为了防范铁磁谐振过电压,首先需要选用合适的过电压防护装置,如过电压保护器、避雷器等,将过电压隔离或接地,减少对电压互感器的影响。

定期对设备进行检查和维护,及时发现并解决潜在问题,确保设备的正常运行。

加强对电压互感器铁磁谐振过电压的防范意识,不仅可以保障设备的稳定运行,更能提高电网的安全性,有效避免潜在的安全事故发生。

只有充分认识到铁磁谐振过电压的危害性,采取有效的防范措施,才能更好地确保电力系统的正常运行和安全性。

2. 正文2.1 铁磁谐振过电压的危害铁磁谐振过电压是电力系统中一种常见的故障现象,其危害不可忽视。

铁磁谐振过电压造成的主要危害包括以下几点:1. 损坏设备:铁磁谐振过电压会导致设备过载,使设备工作在超负荷状态下,从而加速设备的老化,降低设备的寿命,严重时甚至引发设备的爆炸和起火。

2. 影响系统稳定性:铁磁谐振过电压会导致电压波动、频率偏离等问题,影响整个电力系统的稳定运行。

这不仅会影响用户的用电质量,还可能导致系统的断电,造成更大范围的停电事故。

3. 经济损失:铁磁谐振过电压造成设备损坏和停电等问题都会给电力系统运营单位带来经济损失,而且修复和恢复工作所需的时间和成本也是不容忽视的。

要有效防范铁磁谐振过电压的危害,电力系统运营单位和相关部门需要重视此问题,采取有效的防范措施,确保设备和系统的安全稳定运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铁磁谐振过电压
摘要:铁磁谐振过电压是一种常见的内部过电压,多发生在
中性点不直接接地的配电网中,但在中性点直接接地的高压电网中,这种事故也常有发生。

分析了电力系统铁磁谐振的产生机理,介绍了一些典型的铁磁谐振过电压,以及几种消除铁磁谐振的措施及原理,最后对铁磁谐振的当前研究现状进行了评价,提出今后进一步的研究方向。

关键词:电力系统;铁磁谐振;过电压;消谐措施
Abstract:Ferroresonance is an internal overvoltage,which always occurs in ne utral isolated distribution network, and sometimes also occurs in high voltages netw ork. The research developments on ferroresonance are analyzed,
including their fundamental principles, characteristics and some typical example
s. It also introduces several treatments of ferroresonance eliminating and its principl e. Finally the further research trends are proposed.
Key words:power system; ferroresonance; overvoltage; treatment of resonance eliminating
在电力系统中包含有很多电感元件和电容元件。

在开关操作或发生故障时,这些电感和电容元件可能形成不同自振频率的振荡回路,在外加电源作用下产生谐振现象,引起谐振过电压。

谐振往往在电网某一局部造成过电压,从而危及电气设备的绝缘,甚至产生过电流而烧毁设备,还有可能影响过电压保护装置的正常工作条件。

在不同电压等级、不同结构的系统中可以产生不同类型的谐振过电压。

通常认为系统中的电阻和电容元件为线性参数,电感元件则一般有三类不同的特性参数。

对应三种电感参数,在一定的电容参数和其它条件的配
合下,可能产生三种不同性质的谐振现象。

①线性谐振:电感参数为常数,电感值不随元件上的电压或电流的变化而变化。

②铁磁谐振:电感元件因带有铁芯会产生饱和现象,电感参数不再是常数,而是随着电流或磁通的变化而变化。

③参数谐振:电感参数在外力的影响下发生周期性变化。

针对铁磁谐振的产生机理、特征等进行分析,并介绍几种典型的铁磁谐振以及抑制铁磁谐振常见的几种措施,对其研究现状进行评价。

1铁磁谐振发生机理分析
铁磁谐振是谐振过电压中最常见的,也是最难以预防的。

铁磁谐振又分为铁磁电压谐振(串联谐振)和铁磁电流谐振(并联谐振),两种谐振以铁磁电压谐振较为常见。

下面以铁磁电压谐振为例,分析铁磁谐振发生的机理。

图1(a)为最简单的电阻R、电容C和铁芯电感L的串联电路。

设在正常运行条件下初始感抗大于容抗。

图1(b)为电路中电压与电流的相量图。

设电流是正弦的,并以I·为参考相量。

U·L和U·C分别为L和C上的电压。

当略去铁损而把线圈的电感用等效电感代替,其等效正弦电压相量即U·L比I·超前90°。

当铁芯线圈用等效的非线性电感表示时,其
伏安特性与铁磁物质的磁化曲线相似,如图1(c)UL(I)所示。

电容上的电压UC=,与电流的关系为一直线关系,如图1(c)UC(I)所示。

为简单起见,令R=0,则有 E·=U·L+U·C
由于U·L和U·C为反相,故上式可改写为
E=△U,△U=|UL-UC|
在电源电压E一定的条件下,电路出现a、b、c三个平衡点,其中b点是不稳定的。

在b点时,回路中电流有任何微小扰动,都会使其倾向a或c两个稳定点中的一个,故b 点不成为回路的实际工作点。

回路工作在a点时,U L>U C,整个回路为感性,电感和电容上电压都不高,电流也不大,处于非谐振状态。

当工作在c点时,U C>UL,回路呈容性,电流增大,电容和电感都出现较高的过电压,此时回路处于谐振状态。

在I0点处,等效感抗ωL等于,这与线性谐振相仿,压降和电流将趋于无穷大,但因电感非线性的特点,当I越过I0而继续增大时,等效感抗进一步下降,使得ωL与自动错开,最后到达新的稳定点c点,所以铁磁谐振过电压虽由电感的非线性引起,但其幅值最终又受到非线性所限制,一般不超过电源电压的三倍。

2几种常见的铁磁谐振
2.1断线谐振
所谓断线泛指导线断落、断路器非全相操作以及熔断器的一相或二相熔断。

断线的结果可能形成电感电容的串联谐振回路,其中电感是指空载或轻负载变压器的励磁电感等,电容是指导线的对地和相间电容,或电感线圈的对地杂散电容等。

在中性不接地的配电网络中,断线谐振出现的比较频繁,并且造成各种后果,即:在绕组两端和导线对地间出电压;负载变压器的相序反倾;中性点位移和虚幻接地;绕组铁芯发出异常响声和导线出现电晕声。

在。

相关文档
最新文档