圆锥曲线焦点三角形和焦点弦性质

合集下载

圆锥曲线专题解析3:焦点弦问题

圆锥曲线专题解析3:焦点弦问题

圆锥曲线专题解析3:焦点弦问题圆锥曲线专题解析3:焦点弦问题Ø方法导读圆锥曲线是高考的必考内容,主要命题点有直线与圆锥曲线的位置关系的应用,圆锥曲线中的弦长、弦中点、面积、定点、定值、最值、取值范围、存在性问题,综合性较强.从近三年高考情况来看,多考查直线与椭圆或抛物线的位置关系,常与向量、圆等知识结合,难度较大.解题时,充分利用数形结合思想,转化与化归思想,同时注重数学思想在解题中的指导作用,以及注重对运算能力的培养.在解题过程中常用到点差法、根与系数的关系、设而不求、整体代换等技巧,注意掌握.如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦.圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识.焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的.Ø高考真题【2018·全国I卷理·19】设椭圆的右焦点为,过的直线与交于,两点,点M的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.Ø解题策略【过程分析】第一问,先求出椭圆的右焦点的坐标,由于与轴垂直,所以可求出直线的方程,从而求出点的坐标,再利用直线方程的两点式,即可求出直线的方程;第二问,对直线分三类讨论:当直线与轴重合时,直接求出.当直线与轴垂直时,可直接证得.当直线与轴不重合也不垂直时,设的方程为,,,利用斜率公式表示出,把直线的方程代入椭圆的方程,消去转化为关于X的一元二次方程,利用根与系数的关系即可证明,从而证得.【深入探究】破解此类解析几何题的关键,一是“图形”引路,一般需画出大致图形,把已知条件翻译到图形中,利用直线方程的点斜式或两点式,即可快速表示出方程;二是“转化”桥梁,即会把要证的两角相等,根据图形的特征,转化为斜率之间的关系,再把直线与椭圆的方程联立,利用根与系数的关系,以及斜率公式即可证得结论.Ø解题过程(1)由已知得,的方程为.由已知可得,点的坐标为或,所以的方程为或.(2)当与轴重合时,.当与轴垂直时,为的垂直平分线,所以.当与轴不重合也不垂直时,设的方程为,,,则,,直线,的斜率之和为.由,得.将代入得.所以,,则.从而,故,的倾斜角互补,所以.综上,.Ø解题分析本题考查椭圆的标准方程及其简单性质、焦点弦斜率问题,考查考生的推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想,考查的核心素养是逻辑推理、直观想象、数学运算.对比2015年全国I卷理科数学第20题:在直角坐标系中,曲线与直线交于,两点.(1)当时,分别求在点和处的切线方程;(2)轴上是否存在点,使得当变动时,总有说明理由.2018年的全国I卷的第19题只是把2015年全国I卷的第20题的“抛物线”变为“椭圆”,仍然考查直线与圆锥曲线有两个交点的位置关系,都是“求方程”与“相交弦的斜率”问题,只是去掉了原来的是否存在型的外包装.在强调命题改革的今天,通过改编、创新等手段来赋予高考典型试题新的生命,这成为高考命题的一种新走向,所以我们在复习备考的过程中要注意对高考真题的训练,把握其实质,掌握其规律,规范其步骤,做到“胸中有高考真题”,那么我们就能做到以不变应万变.Ø拓展推广1.圆锥曲线过焦点的所有弦中最短的弦过焦点且与对称轴垂直的弦称为通径.(1)椭圆过焦点的最短弦为通径,长为.(2)双曲线过焦点的最短弦为通径或实轴长,长为或.注意:对于焦点在轴上的椭圆、双曲线,上述结论仍然成立.(3)抛物线过焦点的最短弦为通径,长为.注意:对于焦点在轴负半轴上,焦点在轴上的抛物线,上述结论仍然成立.2.圆锥曲线的焦半径公式圆锥曲线上任意一点到焦点的距离叫做圆锥曲线关于该点的焦半径,利用圆锥曲线的第二定义很容易得到圆锥曲线的焦半径公式.(1)椭圆的焦半径公式①若为椭圆上任意一点,点,分别为椭圆的左右焦点,则,.②若为椭圆上任意一点,点,分别为椭圆的上下焦点,则,.(2)双曲线的焦半径公式①若为双曲线上任意一点,点,分别为双曲线的左右焦点,当点在双曲线的左支上时,则,;当点在双曲线的右支上时,则,.①若为双曲线上任意一点,点,分别为双曲线的上下焦点,当点在双曲线的下支上时,则,;当点在双曲线的上支上时,则,.(3)抛物线的焦半径公式①若为抛物线上任意一点,则;②若为抛物线上任意一点,则;③若为抛物线上任意一点,则;④若为抛物线上任意一点,则.3.圆锥曲线的焦点弦的两个焦半径倒数之和为定值(1)椭圆的焦点弦的两个焦半径倒数之和为常数,(其中).(2)双曲线的焦点弦的两个焦半径倒数之和为常数,当焦点弦的两个端点,在同支时,;当,在异支时,(其中).注意:对于焦点在轴上的椭圆、双曲线,上述结论仍然成立.(3)抛物线的焦点弦的两个焦半径倒数之和为常数(其中).涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.另外熟记圆锥曲线焦点弦的一些重要结论,可以快速求解与焦点弦有关的最值或范围问题.变式训练1如图,椭圆的右焦点为,过点的直线与椭圆交于、两点,直线与轴相交于点,点在直线上,且满足轴.(1)当直线与轴垂直时,求直线的方程;(2)证明:直线AM经过线段的中点.变式训练2已知抛物线的焦点与椭圆的右焦点重合,抛物线的动弦过点,过点且垂直于弦的直线交抛物线的准线于点.(1)求抛物线的标准方程;(2)求的最小值.变式训练3设抛物线的焦点为,过且斜率为()的直线与交于两点,.(1)求的方程;(2)求过点且与的准线相切的圆的方程.变式训练4已知抛物线的焦点为,过的直线交抛物线于,两点.(1)若以,为直径的圆的方程为,求抛物线的标准方程;(2)过,分别作抛物线的切线,,证明:,的交点在定直线上.变式训练5抛物线的焦点为,是上一点,且.(1)求的方程;(2)过点的直线与抛物线相交于,两点,分别过点,两点作抛物线的切线,,两条切线相交于点,点关于直线的对称点,判断四边形是否存在外接圆,如果存在,求出外接圆面积的最小值;如果不存在,请说明理由.。

最新解析几何专题二(焦点弦及焦点三角形)

最新解析几何专题二(焦点弦及焦点三角形)

专题二:圆锥曲线焦点弦、焦点△知识专题【焦半径——椭圆】θ取弦与焦点轴的锐角为121212::=2:=2a ex;a ex;|AB |a e(x x );|AB |a e(x x )ρρ=+=-++-+左焦半径右焦半径左焦弦右焦弦【焦半径——双曲线】θ取弦与焦点轴的锐角为 (1) 单支焦点半径112::=-2(a ex );|AB |a e(x x );ρ=-+-+左焦半径左焦弦 1122::=ex a;|AB |e(x x )a;ρ=-+-右焦半径右焦弦(2) 双支焦点半径1122::=a ex;|AB |a e(x x );ρ=+++异支左焦半径异支左焦弦 1122::=a ex;|AB |a e(x x );ρ=--+异支右焦半径异支右焦弦【焦半径——抛物线】θ取弦与焦点轴的锐角为1212==y x |AB |x x p;y |AB |y p ++++焦点在轴上焦点在轴上::【焦点弦有关推论——椭圆】θ取弦与焦点轴的锐角为1、过椭圆、双曲线的一焦点F 交椭圆或双曲线(单支)于A,B 两点,则2、过双曲线的焦点F 的直线分别与两支交于A,B ,与焦点轴夹角为)2(πθ<21122cos a cos |AF ||BF |p b θθ•+==3、过抛物线的焦点F 直线交抛物线于A,B 两点,与焦点轴夹角为)2(πθ<112|AF ||BF |p+= 4、已知点是离心率为的椭圆或双曲线的焦点,过点的弦与的焦点所在的轴的夹角为θ,且。

(1) 当焦点内分弦时,有(2) 当焦点外分弦时(此时曲线为双曲线),有【椭圆焦三角形 面积】q 为动点到原点的距离,,m,n 为弦长,α为弦夹角【椭圆】222122()S (a c )tanb tanαα=-=22()S b mn b =-3()S (a c )(a c )(a q )(a q )=+-+-【双曲线焦△ 面积】q 为动点到原点的距离,,m,n 为弦长,α为弦夹角212b ()S tanα=22()Sb mn b =-3()S (a c )(a c )(a q )(a q )=+-+-【抛物线焦点弦与原点△ 面积】θ取弦与焦点轴的锐角为【焦点△顶角】椭圆:双曲线一、焦半径与焦点弦 2πθ取弦与焦点轴小于的夹角22221x y a b+=焦点弦,准线图【焦半径——椭圆】 分析:如上左图,11:22|F A ||F B |a b e;e;p =-c =|AM ||BN |c c==根据椭圆第二定义准线与对应焦点距离11111|F A |epx e |F A |e |AM |e(p |F A |cos )|F A ||AM |e cos θθθ=⇒==+⇒=-设焦点弦与轴成角;11111|F B |epe |F B |e |BN |e(p |F B |cos )|F B ||BN |e cos θθ=⇒==-⇒=+12222111::=ep ep ep;;|AB |e cos e cos e cos ρρθθθ==-+-小结:长半焦短半焦焦点弦分析:如上右图,1:22|F A |a b e;p =-c =|AM |c c=根据椭圆第二定义准线与对应焦点距离11111|F A |epx e |F A |e |AM |e(p |F A |cos )|F A ||AM |e cos θθθ=⇒==-⇒=+设焦点弦与轴成角;11111|F B |epe |F B |e |BN |e(p |F B |cos )|F B ||BN |e cos θθ=⇒==+⇒=-12222111::=ep ep epx ;;|AB |e cos e cos e cos ρρθθθ==-+-焦点在轴上结论:长半焦短半焦焦点弦22221y x a b += 22221y x a b+=分析:如上左图,1:22|F A |a b e;p =-c =|AM |c c=根据椭圆第二定义准线与对应焦点距离11111|F A |epx e |F A |e |AM |e(p |F A |cos )|F A ||AM |e cos θθθ=⇒==-⇒=+设焦点弦与轴成角;11111|F B |epe |F B |e |BN |e(p |F B |cos )|F B ||BN |e cos θθ=⇒==+⇒=-分析:如上右图,1:22|F A |a b e;p =-c =|AM |c c=根据椭圆第二定义准线与对应焦点距离11111|F A |epe |F A |e |AM |e(p |F A |cos )|F A ||AM |e cos θθ=⇒==+⇒=-11111|F B |epe |F B |e |BN|e(p |F B |sin )|F B ||BN |e sin θθ=⇒==-⇒=+AB MN2b p c=2a x c=θ【焦半径——双曲线】内部焦点半径 2)x(y πθ取弦与或轴小于的夹角22221y x a b -=12222:=111ep ep ep;;|AB |e cos e cos e cos ρρθθθ==-+-:短结论:长半焦半焦焦点弦外部焦点半径 2πθ取弦与焦点轴小于的夹角AF12a x c=F2MBNAF12a x c=-F2MBN121212::=2:=2a ex;a ex;|AB |a e(x x );|AB |a e(x x )ρρ=+=-++-+左焦半径右焦半径左焦弦右焦弦21a a a |F A |e |AM |e(x )a ex c ==+=+21b ba |F B |e |BN |e(x )a ex c ==+=+22a aa |F A |e |AM |e(x )a ex c==-=-22b ba |F B |e |BN |e(x )a ex c==-=-ABM N2b p c=2a x c=θM‘MBAAM’M分析:如上左图, 122|F A |a b e;p =c =|AM |c c=-:根据第二定义准线与对应焦点距离 11111|F A |x e |F A |e |AM |e(|AM'|p )|AM |epe(|F A |cos p )|F A |e cos θθθ=⇒==-=-⇒=-设焦点弦与轴成角;11111|F B |epe |F B |e |BN |e(p |F B |cos )|F B ||BN |e cos θθ=⇒==-⇒=+ 11222111ep ep ep|AB ||AF ||BF |e cos e cos e cos θθθ⇒=-=-=-+- 分析:如上右图,22221|F A |epe |F A |e |AM |e(|AM'|p )e(|F A |cos p )|F A ||AM |e cos θθ=⇒==-=-⇒=-22221|F B |epe |F B |e |BN |e(p |F B |cos )|F B ||BN |e cos θθ=⇒==-⇒=+11222111ep ep ep|AB ||AF ||BF |e cos e cos e cos θθθ⇒=-=-=-+- 12222111焦点在轴上结论:=ep ep epx ;;|AB |e cos e cos e cos ρρθθθ==-+-:长半焦半焦焦点弦:短同理可以推出:(也可从旋转的角度得出以下结论)12222111:短ep ep epy ;;|AB |e cos e cos e cos ρρθθθ==-+-:=焦点在轴上结论:长半焦半焦焦点弦θM‘MN’NBABθN‘N【焦半径——抛物线】2)x(yπθ取弦与或轴小于的夹角从上图容易得出以下结论122211p p p;;|AB|cos cos sinρρθθθ==-+:=:短结论:长半焦半焦焦点弦从上图分析12在轴上=x|AB||AM||B N|(|AM'||M'M|)(|BN'||N'N|)|AB|x x p −−−→=+=+++⇒++焦点定义:12在轴上=y|AB||AM||B N|(|AM'||M'M|)(|BN'||N'N|)|AB|y y p −−−→=+=+++⇒++焦点定义:【焦半径与焦点弦有关推论】21a aa|F A|e|AM|e(x)a exc==+=+22a aa|F A|e|AM|e(x)a exc==-+=-122:==a b a ba b a ba ex;a ex|AB|a ex a ex e(x x)|AB|a ex a ex a e(x x)ρρ=+=-+--=--+-=-+异左焦半径异右焦半径异左异右AB F2a x c=-2b p c=MN Fθ ABMN2b p c=2a x c=θ【推论1】——常用来求定值过椭圆、双曲线的一焦点F 交椭圆或双曲线(单支)于A,B 两点,则21122a |AF ||BF |b ep+== 过双曲线的一焦点F 的直线分别与两支交于A,B ,与焦点轴夹角为)2(πθ<21122cos a cos |AF ||BF |p b θθ•+==过抛物线的一焦点F 直线交抛物线于A,B 两点,与焦点轴夹角为)2(πθ<112|AF ||BF |p+= 【推论2】2πθ取弦与焦点轴小于的夹角————常用来求定角或斜率已知点是离心率为的椭圆或双曲线的焦点,过点的弦与的焦点所在的轴的夹角为θ,且。

圆锥曲线统一性质(动态图示)

圆锥曲线统一性质(动态图示)

目录一、几个统一定义1.椭圆、双曲线、抛物线的统一定义一2.椭圆、双曲线、抛物线的统一定义二圆锥曲线动态结构135例众所周知圆锥曲线来源于圆锥,其定义简洁而明快,然而却有非常丰富的几何、代数性质,更让世人折服的是还有这么多统一的性质,本人通过几何画板的探索与归纳初步整理了135条性质,归类为四十六个统一性质,并附上相应的动画课件,列举如下:二、与焦半径相关的问题3.椭圆、双曲线、抛物线的切线与焦半径的性质(准线作法)4.椭圆、双曲线、抛物线的焦点在切线上射影的性质5.椭圆、双曲线、抛物线的焦半径圆性质6.椭圆、双曲线、抛物线的焦点弦直径圆性质7.椭圆、双曲线、抛物线焦点三角形内切圆性质三、与焦点弦相关的问题8.椭圆、双曲线、抛物线的焦点弦性质(定值1)9.椭圆、双曲线、抛物线的正交焦点弦性质(定值2)10.椭圆、双曲线、抛物线的焦点弦与其中垂线性质(定值3)11.椭圆、双曲线、抛物线的焦点弦性质1(中点共线)12.椭圆、双曲线、抛物线的焦点弦性质2(三点共线)13.椭圆、双曲线、抛物线的焦点弦性质3(对焦点直张角)14.椭圆、双曲线、抛物线的相交焦点弦与准线关系15.椭圆、双曲线、抛物线的相交焦点弦与准线关系(角平分线)16.椭圆、双曲线、抛物线的相交弦与准线关系推广17.椭圆、双曲线、抛物线的焦点弦直线被曲线及对称轴所分比之和为定值18.椭圆、双曲线、抛物线的焦半径向量模的比之和为定值四、相交弦的蝴蝶特征19.椭圆、双曲线、抛物线的相交弦蝴蝶定理一20.椭圆、双曲线、抛物线的相交弦蝴蝶定理二五、切点弦的相关问题21.椭圆、双曲线、抛物线的切点弦性质1(等比中项)22.椭圆、双曲线、抛物线的切点弦性质2(倒数和2倍)23.椭圆、双曲线、抛物线的切点弦性质3(外项积定值)24.椭圆、双曲线、抛物线的切点弦性质4(平行线族)25.椭圆、双曲线、抛物线的切点弦性质5(切点弦过定点)六、等角问题26.椭圆、双曲线、抛物线的等角定理一27.椭圆、双曲线、抛物线的等角定理二28.椭圆、双曲线、抛物线的对称点共线29.椭圆、双曲线、抛物线的焦点对切线张角性质30.椭圆、双曲线、抛物线的共轭弦性质七、与动弦中点相关的问题31.圆、椭圆、双曲线中点弦与中心性质32.圆、椭圆、双曲线切线与半径的斜率积为定值(中点弦的极限状态)33.椭圆、双曲线、抛物线的动弦中垂线性质34.椭圆、双曲线、抛物线的定向弦中点轨迹35.椭圆、双曲线、抛物线的定点弦中点轨迹八、数量积定值问题36.椭圆、双曲线、抛物线的焦点弦张角向量点积为定值37.椭圆、双曲线、抛物线的定点弦张角向量点积为定值九、其他重要性质38.圆锥曲面光线反射路径的性质39.椭圆、双曲线、抛物线的切线与割线性质40.椭圆、双曲线、抛物线的直周角性质41.椭圆、双曲线的90度的中心角性质42.圆、椭圆、双曲线上动点对直径端点的斜率积为定值43.椭圆、双曲线、抛物线的顶点对垂直弦连线交点轨迹对偶44.椭圆、双曲线、抛物线准线上点对焦点弦端点及焦点斜率成等差45.椭圆、双曲线、抛物线的焦点与切线的距离性质46.椭圆、双曲线、抛物线的中心与共轭点距离等积问题探究1动点P 在圆A :22()4x y λ++=上运动,定点(,0)B λ,则 (1)线段QB 的垂直平分线与直线QA 的交点P 的轨迹是什么?(2)若BM tMQ =u u u u r u u u u r,直线l 过点M ,与直线QA 的交于点P ,则点P 轨迹又是什么?实验成果动态课件定圆上一动点与圆内一定点的垂直平分线与其半径的交点的轨迹是椭圆 备用课件定圆上一动点与圆外一定点的垂直平分线与其半径所在直线的交点的轨迹是双曲线 备用课件定直线(无穷大定圆)上一动点与圆外一定点的垂直平分线与其半径所在直线的交点的轨迹是抛物线 备用课件问题探究2已知定点(1,0)A -,定直线1l :3x =-,动点N 在直线1l 上,过点N 且与1l 垂直的直线2l 上有一动点P ,满足PAPNλ=,请讨论点P 的轨迹类型. 实验成果动态课件动点到一定点与到一定直线的距离之比为小于1的常数,则动点的轨迹是椭圆备用课件动点到一定点与到一定直线的距离之比为大于1的常数,则动点的轨迹是双曲线备用课件动点到一定点与到一定直线的距离之比为等于1的常数,则动点的轨迹是抛物线备用课件3.椭圆、双曲线、抛物线的切线与焦半径的性质(准线作法)问题探究3已知两定点(1,0),(1,0)A B -,动点P 满足条件8PA PB +=,另一动点Q满足0,()0PA PB QB PB QP PA PB•=•+=u u u r u u u ru u u r u u u r u u u r u u u r u u u r ,求动点Q 的轨迹方程.实验成果动态课件椭圆上一点处的切线与该点的焦半径的过相应焦点的垂线的交点的轨迹为椭圆相应之准线备用课件双曲线上一点处的切线与该点的焦半径的过相应焦点的垂线的交点的轨迹为双曲线相应之准线备用课件抛物线上一点处的切线与该点的焦半径的过相应焦点的垂线的交点的轨迹为抛物线之准线备用课件4.椭圆、双曲线、抛物线的焦点在切线上射影的性质问题探究4已知两定点(2,0),(2,0)A B -,动点P 满足条件2PA PB -=,动点Q 满足()0PA PBQB PA PB•+=u u u r u u u r u u u r u u u r u u u r ,()0PA PB QP PA PBλ++=u u u r u u u ru u u r u u u r u u u r ,求动点Q 的轨迹方程.实验成果动态课件焦点在椭圆切线上的射影轨迹是以长轴为直径的圆备用课件焦点在双曲线切线上的射影轨迹是以实轴为直径的圆备用课件焦点在抛物线切线上的射影轨迹是切抛物线于顶点处的直线(无穷大圆) 备用课件5.椭圆、双曲线、抛物线的焦半径圆性质问题探究51.已知动点P在椭圆22143x y+=上,F为椭圆之焦点,0PM FM+=u u u u r u u u u r,探究2OM PF+u u u u r u u u r是否为定值2.已知点P在双曲线22143x y-=上,F为双曲线之焦点,0PM FM+=u u u u r u u u u r,探究2OM PF-u u u u r u u u r是否为定值实验成果动态课件椭圆中以焦半径为直径的圆必与长轴为直径的圆相切(此圆与椭圆内切)备用课件双曲线中以焦半径为直径的圆必与实轴为直径的圆相切(此圆与双曲线外切)备用课件抛物线中以焦半径为直径的圆必与切于抛物线顶点处的直线相切(此圆无穷大与曲线外切)备用课件6.椭圆、双曲线、抛物线的焦点弦直径圆性质问题探究6过抛物线y x 42=上不同两点A 、B 分别作抛物线的切线相交于P 点,.0=⋅PB PA(1)求点P 的轨迹方程;(2)已知点F (0,1),是否存在实数λ使得0)(2=+⋅FP FB FA λ?若存在,求出λ的值,若不存在,请说明理由.实验成果动态课件椭圆中以焦点弦为直径的圆必与准线相离备用课件双曲线中以焦点弦为直径的圆必与准线相交备用课件抛物线中以焦点弦为直径的圆必与准线相切备用课件7.椭圆、双曲线、抛物线焦点三角形内切圆性质问题探究71.已知动点P在椭圆22143x y+=上,12,F F为椭圆之左右焦点,点G为△12F PF的内心,试求点G的轨迹方程.2.已知动点P在双曲线22143x y-=上,12,F F为双曲线之左右焦点,圆G是△12F PF的内切圆,探究圆G是否过定点,并证明之.实验成果动态课件椭圆中焦点三角形的内切圆圆心轨迹是以原焦点为顶点的椭圆备用课件双曲线中焦点三角形的内切圆圆心轨迹是以过原顶点的两平行开线段(长为2b)备用课件抛物线中焦点三角形(另一焦点在无穷远处)的内切圆圆心轨迹是以原焦点为顶点的抛物线备用课件8.椭圆、双曲线、抛物线的焦点弦性质(定值1)问题探究8已知椭圆22143x y +=,1F 为椭圆之左焦点,过点1F 的直线交椭圆于A ,B 两点,是否存在实常数λ,使AB FA FB λ=•u u u r u u u r u u u r恒成立.并由此求∣AB ∣的最小值.(借用柯西不等式)实验成果动态课件椭圆的焦点弦的两个焦半径倒数之和为常数11112||||AF BF ep+= 备用课件双曲线的焦点弦的两个焦半径倒数之和为常数AB 在同支11112||||AF BF ep += AB 在异支11112||||||AF BF ep-= 备用课件抛物线的焦点弦的两个焦半径倒数之和为常数112||||AF BF ep+=备用课件9.椭圆、双曲线、抛物线的正交焦点弦性质(定值2)问题探究9已知椭圆22143x y +=,1F 为椭圆之左焦点,过点1F 的直线12,l l 分别交椭圆于A ,B 两点和C ,D 两点,且12l l ⊥,是否存在实常数λ,使AB CD AB CD λ+=•u u u r u u u r u u u r u u u r恒成立.并由此求四边形ABCD 面积的最小值和最大值.实验成果动态课件椭圆互相垂直的焦点弦倒数之和为常数epe CD AB 22||1||12-=+ 备用课件双曲线互相垂直的焦点弦倒数之和为常数epe CD AB 2|2|||1||12-=+备用课件抛物线互相垂直的焦点弦倒数之和为常数epe CD AB 22||1||12-=+备用课件10.椭圆、双曲线、抛物线的焦点弦与其中垂线性质(定值3)问题探究10已知椭圆22143x y +=,1F 为椭圆之左焦点,过点1F 的直线交椭圆于A ,B 两点,AB 中垂线交x 轴于点D ,是否存在实常数λ,使1AB F D λ=u u u r u u u u r恒成立?实验成果动态课件设椭圆焦点弦AB 的中垂线交长轴于点D ,则∣DF ∣与∣AB ∣之比为离心率的一半(F 为焦点)备用课件设双曲线焦点弦AB 的中垂线交焦点所在直线于点D ,则∣DF ∣与∣AB ∣之比为离心率的一半(F 为焦点)备用课件设抛物线焦点弦AB 的中垂线与对称轴交于点D ,则∣DF ∣与 ∣AB ∣之比为离心率的一半(F 为焦点)备用课件问题探究11已知椭圆22143x y +=,1F 为椭圆之左焦点,过点1F 的直线1l 交椭圆于A ,B 两点,直线2l :4x =-交x 轴于点G ,点,A B 在直线2l 上的射影分别是,N M ,设直线,AM BN 的交点为D ,是否存在实常数λ,使1GD DF λ=u u u r u u u u r恒成立.实验成果动态课件椭圆的焦点弦的端点在相应准线上的投影与端点的交叉连线与对称轴的交点平分焦点与准线与对称轴的交点线段. 备用课件双曲线的焦点弦的端点在相应准线上投影与端点的交叉连线与对称轴的交点平分焦点与准线与对称轴的交点线段. 备用课件抛物线的焦点弦的端点在相应准线上投影与端点的交叉连线与对称轴的交点平分焦点与准线与对称轴的交点线段. 备用课件问题探究12已知椭圆22143x y +=,1F 为椭圆之左焦点,过点1F 的直线1l 交椭圆于A ,B 两点, ,C D 分别为椭圆的左、右顶点,动点P 满足,,PA AD PC CB λμ==u u u r u u u r u u u r u u u r试探究点P 的轨迹.实验成果动态课件椭圆焦点弦端点A 、B 与另一顶点D 连线与相应准线的交点N 、M ,则N 、C 、B 三点共线,M 、C 、A 三点共线备用课件 双曲线焦点弦端点A 、B 与另一顶点D 连线与相应准线的交点N 、M ,则N 、C 、B 三点共线,M 、C 、A 三点共线备用课件抛物线焦点弦端点A 、B 与另一顶点D 连线与相应准线的交点N 、M ,则N 、C 、B 三点共线,M 、C 、A 三点共线(抛物线的D 点在无穷远处).备用课件13.椭圆、双曲线、抛物线的焦点弦性质3(对焦点直张角)问题探究13已知双曲线22131x y -=,1F 为双曲线之左焦点,过点1F 的直线1l 交双曲线于A ,B 两点, ,C D 分别为双曲线的左、右顶点,动点P 满足11,,PA AD PC CB λμ==u u u r u u u r u u u r u u u r 动点Q 满足22,,QA AC QB BD λμ==u u u r u u u r u u u r u u u r试探究1PF Q ∠是否为定值.实验成果动态课件椭圆焦点弦端点A 、B 与另一顶点D 连线与相应准线的交点N 、M ,则11NF MF ⊥备用课件双曲线焦点弦端点A 、B 与另一顶点D 连线与相应准线的交点N 、M ,则11NF MF ⊥备用课件抛物线焦点弦端点A 、B 与另一顶点D 连线与相应准线的交点N 、M ,则NF MF ⊥(抛物线的D 点在无穷远处)备用课件14.椭圆、双曲线、抛物线的相交焦点弦与准线关系问题探究14已知椭圆22143x y +=,1F 为椭圆之左焦点,过点1F 的直线12,l l 分别交椭圆于A ,B 两点和C ,D 两点,直线2l :4x =-,直线AD 交直线2l 于点P ,试判断点P 、C 、B 是否三点共线,并证明之.实验成果动态课件椭圆的任意两焦点弦端点所在直线交点的轨迹是准线备用课件本性质还可解释圆也有准线(在无穷远处), 因为当焦点逐步向中心靠拢时准线逐步外移双曲线的任意两焦点弦端点所在直线交点的轨迹是准线备用课件抛物线的任意两焦点弦端点所在直线交点的轨迹是准线备用课件15.椭圆、双曲线、抛物线的相交焦点弦与准线关系(角平分线)问题探究15已知椭圆22143x y +=,1F 为椭圆之左焦点,过点1F 的直线12,l l 分别交椭圆于A ,B 两点和C ,D 两点,直线3l :4x =-,直线AD 交直线3l 于点P ,试证明11PF A PF D ∠=∠.实验成果动态课件椭圆的任意两焦点弦端点所在直线交点必在准线上且交点与焦点的连线平分2AF C ∠备用课件双曲线的任意两焦点弦端点所在直线交点必在准线上且交点和焦点的连线平分1AF C ∠备用课件抛物线的任意两焦点弦端点所在直线交点必在准线上且交点和焦点的连线平分AF D ∠备用课件16.椭圆、双曲线、抛物线的相交弦与准线关系推广问题探究16已知椭圆22184x y +=,过点(2,0)N 的直线12,l l 分别交椭圆于A ,B 两点和C ,D 两点,设直线AD 与直线CB 交于点P ,试证明点P 的轨迹为直线4x =.实验成果动态课件过椭圆长轴上任意一点N (0,t )的两条弦端点的直线的交点的轨迹是一定直线ta x 2=备用课件过双曲线实轴上任意一点N (0,t )的两条弦端点的直线的交点的轨迹是一定直线ta x 2=备用课件过抛物线对称轴上任意一定点N (0,t )的两条弦端点的直线的交点的轨迹是一定直线t x -=备用课件17.椭圆、双曲线、抛物线的焦点弦直线被曲线及对称轴所分比之和为定值问题探究17已知椭圆22184x y +=,点1F 为椭圆之左焦点,过点1F 的直线1l 分别交椭圆于A ,B 两点,设直线AB 与y 轴于点M ,11,,MA AF MB BF λμ==u u u r u u u r u u u r u u u r试求λμ+的值.实验成果动态课件椭圆的焦点弦所在直线被曲线及短轴直线所分比之和为定值.备用课件双曲线的焦点弦所在直线被曲线及虚轴直线所分比之和为定值.备用课件过抛物线的焦点弦所在直线被曲线及顶点处的切线所分比之和为定值. 备用课件18.椭圆、双曲线、抛物线的焦半径向量模的比之和为定值问题探究18已知方向向量为(1,3)e =r 的直线l 过点(0,23)A -和椭圆2222:1x y C a b+=(0)a b >>的焦点,且椭圆C 的中心O 和椭圆的右准线上的点B 满足:0,OB e AB AO •==u u u r r u u u r u u u r.⑴求椭圆C 的方程;⑵设E 为椭圆C 上任一点,过焦点12,F F 的弦分别为,ES ET ,设111,EF FS λ=u u u r u u u r 222EF F T λ=u u u u r u u u r,求12λλ+的值.实验成果动态课件过椭圆上任点A 作两焦点的焦点弦AC ,AB ,其共线向量比之和为定值.即1112222122121AF m F B AF m F B e m m e →→→→==++==-定值备用课件过双曲线上任点A 作两焦点的焦点弦AC ,AB ,其共线向量比之和为定值.即1112222122121AF m F B AF m F B e m m e→→→→==++==-定值备用课件(注:图中测算不是向量,故中间一式用的是差)由于抛物线的开放性,焦点只有一个,故准线相应地替换了焦点,即PA=m 1AF PB=m 2BF备用课件m 1+m 2=019.椭圆、双曲线、抛物线的相交弦蝴蝶定理一问题探究19已知椭圆22184x y +=,过点T(1,0)的直线12,l l 分别交椭圆于A ,B 两点和C ,D 两点,设直线3l 过点T 且3l x ⊥轴,交12,l l 于点N ,M ,试证明∣TN ∣=∣TM ∣.实验成果动态课件过椭圆长轴所在直线上任意一点 T (0,t )的两条弦端点的直线截过T 点的垂线段相等NT =TM备用课件过双曲线实轴所在直线上任意一点T (0,t )的两条弦端点的直线截过T 点的垂线段相等NT =TM备用课件过抛物线对称轴上任意一点T (0,t )的两条弦端点的直线截过T 点的垂线段相等NT =TM备用课件20.椭圆、双曲线、抛物线的相交弦蝴蝶定理二问题探究20已知椭圆22184x y +=,过点(0,1)T 的直线12,l l 分别交椭圆于1122(,),(,)A x y B x y 两点和3344(,),(,)C x y D x y 两点,设直线3l 过点T 且3l x ⊥轴,交12,l l 于点N ,M ,试证明1324y y y y -=-.实验成果动态课件过椭圆短轴上任意一点M 的两条弦端点作两条直线,一定截过M 点与对称轴垂直的直线为相等的线段PM =MQ备用课件过双曲线虚轴上任意一点N (0,t )的两条弦端点作两条直线,一定截过N 点与对称轴垂直的直线为相等的线段PM =MQ备用课件过抛物线对称轴上任意一点M (0,t )的两条弦端点作两条直线,一定截过M 点与对称轴垂直的直线为相等的线段PM =MQ备用课件21.椭圆、双曲线、抛物线的切点弦性质1(等比中项)问题探究21已知椭圆22184x y +=,过原点(0,0)O ,点(2,1)T 的直线l 交椭圆于点N ,过点T 的中点弦为AB ,过A ,B 分别作切线12,l l 且交于点P ,求证:2||||||OT OP ON =.实验成果动态课件椭圆中心O 与点00(,)P x y 的连线交椭圆于N ,交切点弦于点Q ,则2||||||OQ OP ON =.且Q 点平分切点弦AB (无论点P 在曲线的什么位置,上述结论均成立).且点P 与直线001Ax x By y +=沿直线PO 作反向运动.备用课件双曲线中心O 与点00(,)P x y 的连线交双曲线于N ,交切点弦于点Q ,则2||||||OQ OP ON =.且Q 点平分切点弦AB (无论点P 在曲线的什么位置,上述结论均成立).且点P 与直线001Ax x By y +=沿直线PO 作反向运动(直线保持平行).备用课件设过点P 与抛物线对称轴平行(中心在对称轴方向的无穷远处)的直线交抛物线于N ,交切点弦于点Q ,则2||||||O Q O P O N ∞∞∞=.且Q 点平分切点弦AB (无论点P 在曲线的什么位置,上述结论均成立).且点P 与直线00()y y p x x =+作反向运动(直线保持平行).备用课件22.椭圆、双曲线、抛物线的切点弦性质2(倒数和2倍)问题探究22过抛物线2y x =外一点(2,0)P 作抛物线的两条切线PA ,PB ,切点分别为A ,B ,另一直线l 过点P 与抛物线交于两点C 、D ,与直线AB 交于点Q ,试探求||PQ PQPC PD +的值是否为定值.实验成果动态课件椭圆221Ax By +=外一点P 的任一直线与椭圆的两个交点为C 、D ,与椭圆切点弦001Ax x By y +=的交点为Q ,则112||||PC PD PQ +=成立.反之亦然.备用课件双曲线221Ax By +=外一点P 的任一直线与双曲线的两个交点为C 、D ,与双曲线切点弦001Ax x By y +=的交点为Q ,则112||||PC PD PQ +=成立.反之亦然.备用课件 过抛物线外一点P 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦的交点为Q ,则112||||PC PD PQ +=成立.反之亦然.备用课件23.椭圆、双曲线、抛物线的切点弦性质3(外项积定值)问题探究23已知椭圆22184x y +=,过点T (1,0)的直线1l ,2l 分别交椭圆于两点C 、D ,点Q 在直线l 上,且满足CP QD PD CQ =u u u r u u u r u u u r u u u r,试探求点Q 的轨迹.实验成果动态课件过椭圆221Ax By +=外一点P 的任一直线与椭圆的两个交点为C 、D ,点Q 是此直线上另一点,且满足CP QD PD CQ =u u u r u u u r u u u r u u u r,则点Q 的轨迹即为切点弦001Ax x By y +=,反之亦然. 备用课件过双曲线221Ax By +=外一点P 的任一直线与双曲线的两个交点为C 、D ,点Q 是此直线上另一点,且满足CP QD PD CQ =u u u r u u u r u u u r u u u r,则点Q 的轨迹即为切点弦001Ax x By y +=,反之亦然. 备用课件过抛物线外一点P 的任一直线与抛物线的两个交点为C 、D ,点Q 是此直线上另一点,且满足CP QD PD CQ =u u u r u u u r u u u r u u u r,则点Q 的轨迹即为切点弦,反之亦然. 备用课件24.椭圆、双曲线、抛物线的切点弦性质4(平行线族)问题探究24过抛物线2y x =外一点(2,0)P 作抛物线的两条切线PA ,PB ,切点分别为A ,B ,另一直线l :2x =与抛物线交于点N ,与直线AB 交于点Q ,求证:(1)N 点处的切线与直线AB 平行.(2)AQ QB =u u u r u u u r.实验成果动态课件椭圆221Ax By +=中心与椭圆外一点的直线与椭圆的交点处的切线平行于椭圆的切点弦001Ax x By y +=.备用课件双曲线221Ax By +=中心与双曲线外一点的直线与双曲线的交点处的切线平行于双曲线的切点弦001Ax x By y +=. 备用课件过抛物线中心(这中心在无穷远处)与抛物线外一点的直线与抛物线的交点处的切线平行于抛物线的切点弦. 备用课件25.椭圆、双曲线、抛物线的切点弦性质5(弦过定点)问题探究25过抛物线2y x =外一点(1,2)Q 作抛物线的中点弦AB (Q 为AB 中点),两条切线PA ,PB 交于点P ,过点P 作直线l ,且l ∥AB ,点G 是直线l 上的动点,过G 作抛物线的两条切线GC 、GD ,求证:直线CD 过定点.实验成果动态课件点T 是与椭圆221Ax By +=外一点P 的切点弦对应的直线上的动点,则与点T 对应的切点弦必过定点Q .备用课件点T 是与双曲线221Ax By +=外一点P 的切点弦对应的直线上的动点,则与点T 对应的切点弦必过定点Q .备用课件点T 是与抛物线22y px =外一点P 的切点弦对应的直线上的动点,则与点T 对应的切点弦必过定点Q .(PQ 平行对称轴)备用课件26.椭圆、双曲线、抛物线的等角定理一问题探究26已知椭圆22184x y +=,点1F 为椭圆之左焦点,过点1F 的直线1l 分别交椭圆于A ,B 两点,问是否在x 轴上存在一点P ,使得斜率0PA PB k k +=.实验成果动态课件椭圆准线与长轴的交点与焦半径端点连线所成角被长轴平分 备用课件双曲线准线与实轴的交点与焦半径端点连线所成角被实轴平分 备用课件抛物线准线与对称轴的交点与焦半径端点连线所成角被对称轴平分 备用课件27.椭圆、双曲线、抛物线的等角定理二问题探究27已知双曲线22131x y -=,过(,0)N t 点的直线1l 交双曲线于A ,B 两点,问是否在x 轴上存在一点P ,使得斜率0PA PB k k +=.实验成果动态课件过椭圆长轴上任意一点N (0,t )的一条弦端点与对应点)0,(2ta 的连线所成角被焦点所在直线平分. 备用课件过双曲线实轴所在直线上任意一点N (0,t )的一条弦端点与对应点)0,(2ta 的连线所成角被焦点所在直线平分.备用课件过抛物线对称轴上任意一点N (0,t )的一条弦端点与对应点)0,(2ta 的连线所成角被对称轴平分 备用课件28.椭圆、双曲线、抛物线的对称点共线问题探究28抛物线24y x =,直线l 过点(,0)F t 并交抛物线于M 、N ,若)0(>=λλFN MF ,直线x t =-与x 轴交于点E ,试探究:EN EM EF λ-与的夹角是否为定值.实验成果动态课件过点Q (T ,0)的任一直线交椭圆于A ,B 两点,点A 关于x 轴的对称点A ’,则点A ’,B ,2(,0)a P t三点共线.备用课件过点Q (T ,0)的任一直线交双曲线于A ,B 两点,点A 关于x 轴的对称点A ’,则点A ’,B , 2(,0)a P t三点共线.备用课件过点P (T ,0)的任一直线交椭圆于A ,B 两点,点A 关于x 轴的对称点A ’,则点A ’,B ,P ’(-t ,0)三点共线.备用课件29.椭圆、双曲线、抛物线的焦点对切线张角性质问题探究29过点(2,0)P 作抛物线24x y 的切线P A (斜率不为0),F 为焦点,研究斜率PF PA k k 与的关系.实验成果动态课件过椭圆外一点作椭圆的两切线与焦点连线所成的角相等.备用课件过双曲线外一点作双曲线的两切线与焦点连线所成的角相等.备用课件过抛物线外一点作抛物线的两切线与焦点(另一焦点在无穷远处)连线所成的角相等. 备用课件30.椭圆、双曲线、抛物线的共轭弦性质问题探究30过点(1,2)P 作抛物线24y x =的直线P A 、PB ,且斜率0PB PA k k =+. (1)探究直线AB 的斜率是否为定值.(2)试研究三角形P AB 的面积是否有最大值.实验成果动态课件过椭圆上一定点作倾角互补的两直线与椭圆的另两交点的连线的倾角为定值备用课件过双曲线上一定点作倾角互补的两直线与双曲线的另两交点的连线的倾角为定值 备用课件过抛物线上一定点作倾角互补的两直线与抛物线的另两交点的连线的倾角为定值 备用课件31.圆、椭圆、双曲线弦中点与中心性质问题探究31已知椭圆22184x y+=的动弦AB的中点为M,试研究斜率AB OMk k是否为定值(O为原点).实验成果动态课件圆的弦的斜率与其中点和圆中心连线的斜率积为定值1PA PBK K⋅=-备用课件椭圆的弦的斜率与其中点和椭圆中心连线的斜率积为定值22PA PBbK Ka⋅=-备用课件双曲线的弦的斜率与其中点和双曲线中心连线的斜率积为定值22PA PBbK Ka⋅=备用课件32.圆、椭圆、双曲线切线与半径的斜率积为定值(中点弦的极限状态)问题探究32已知点P为椭圆22184x y+=上的动点,设点P的切线斜率为k,试研究斜率OPk k是否为定值(O为原点).实验成果动态课件圆切线与半径的斜率积为定值1PO LK K⋅=-备用课件椭圆切线与切点和中心连线的斜率积为定值22PO LbK Ka⋅=-备用课件双曲线切线与切点和中心连线的斜率积为定值22PO LbK Ka⋅=备用课件。

圆锥曲线焦点弦的八大结论

圆锥曲线焦点弦的八大结论

圆锥曲线焦点弦的八大结论圆锥曲线是几何学中的一类重要的曲线,包括圆、椭圆、双曲线和抛物线。

在圆锥曲线的研究中,焦点和弦是两个重要的概念,它们之间有着许多有趣的关系。

本文将介绍圆锥曲线焦点弦的八大结论。

一、椭圆的焦点弦椭圆有两个焦点,分别为F1和F2。

对于任意一条经过椭圆两个焦点的弦AB,有以下结论:1. 弦中点M在线段F1F2上;2. 焦点到弦的距离之和等于弦长,即AF1 + BF2 = AB;3. 焦点到弦的距离之差等于弦段所在直线与椭圆长轴的距离之差,即AF1 - BF2 = PM - PN,其中P和N分别为弦AB的两个端点在椭圆上的垂足;4. 焦点到弦的距离之比等于弦段所在直线与椭圆焦点连线的斜率,即AF1/AF2 = MF/MG,其中M为弦中点,G为椭圆长轴的中点;5. 弦中点M到椭圆两个焦点的距离之差等于弦段所在直线与椭圆长轴的距离之差,即MF1 - MF2 = PM - PN;6. 弦端点P和N到椭圆两个焦点的距离之差相等,即PF1 - PF2 = NF1 - NF2;7. 椭圆的两个焦点到弦的距离之积等于椭圆长轴的平方减去弦长的平方,即AF1·BF2 = AC - AB,其中AC为椭圆长轴的长度;8. 弦段所在直线与椭圆中心连线的斜率等于椭圆长轴和短轴的比值,即PG/PM = b/a,其中a和b分别为椭圆长轴和短轴的长度。

二、双曲线的焦点弦双曲线有两个焦点,分别为F1和F2。

对于任意一条经过双曲线两个焦点的弦AB,有以下结论:1. 弦中点M在线段F1F2的延长线上;2. 焦点到弦的距离之差等于弦长,即AF1 - BF2 = AB;3. 焦点到弦的距离之和等于弦段所在直线与双曲线渐近线的距离之和,即AF1 + BF2 = PM + PN,其中P和N分别为弦AB的两个端点在双曲线上的垂足;4. 焦点到弦的距离之比等于弦段所在直线与双曲线渐近线的斜率,即AF1/AF2 = MF/MG,其中M为弦中点,G为双曲线渐近线的中点;5. 弦中点M到双曲线两个焦点的距离之和等于弦段所在直线与双曲线渐近线的距离之和,即MF1 + MF2 = PM + PN;6. 弦端点P和N到双曲线两个焦点的距离之差相等,即PF1 - PF2 = NF2 - NF1;7. 双曲线的两个焦点到弦的距离之积等于双曲线的常数c的平方减去弦长的平方,即AF1·BF2 = c - AB,其中c为双曲线的常数;8. 弦段所在直线与双曲线中心连线的斜率等于双曲线焦点之间的距离和双曲线渐近线的斜率之和的倒数,即PG/PM = (F1F2/c) + (c/PN)。

焦点弦的性质

焦点弦的性质

焦点弦的性质
焦点弦的性质是指一种多边形,它由两个焦点点和一条连接它们的弦构成。

焦点弦的特征是,其两个焦点之间的距离是定值,而其大小受到该弦所在的多边形的形状和尺寸的限制。

这意味着,当多边形的形状和尺寸发生变化时,焦点弦也会随之而变化。

焦点弦的性质有助于人们理解多边形的形状和尺寸之间的关系,并可以应用于几何学中的各种问题。

例如,通过焦点弦的性质,可以判断多边形的内角和外角之间的关系,从而可以判断多边形是否是正方形或者正三角形。

另外,焦点弦的性质在几何学中也有重要的作用。

例如,Hilbert曲线、Peano曲线、Lemoine曲线等,都是通过焦点弦的性质来构建的。

Hilbert曲线是一种复杂的多边形图形,它可以用来表示几何图形的复杂性。

Peano曲线和Lemoine曲线则是一种“螺旋”图形,可以用来表示几何图形的复杂性。

此外,焦点弦的性质在几何学中也有广泛的应用。

例如,可以用焦点弦的性质来计算多边形的周长和面积,并可以用它来测量多边形的边长和角度。

此外,它可用于几何学中的图像变换,如旋转、缩放和反射等。

总之,焦点弦的性质是一种有效的几何学工具,它可以帮助人们理解多边形的形状、尺寸和角度,并可以用于计算多边形的周长和面积,以及几何图像变换等问题。

高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结专题一:椭圆一、椭圆的定义平面内到两定点21,F F 的距离的和为常数(大于21F F )的动点的轨迹叫椭圆。

即a MF MF 221=+当2a ﹥2c 时,轨迹是椭当2a =2c 时,轨迹是一条线段21F F ,当2a ﹤2c 时,轨迹不存在。

椭圆的几何性质:222b c a +=(符合勾股定理的结构)【补充】过焦点做垂直与实轴且交椭圆的线段叫通径,通径的一半为ab 2专题二:双曲线知识点:1、双曲线的概念:平面内到两定点21,F F 的距离的差的绝对值为常数(小于21F F )的动点的轨迹叫双曲线。

即a MF MF 221=- 当2a ﹤2c 时,轨迹是双曲线 当2a =2c 时,轨迹是两条射线 当2a ﹥2c 时,轨迹不存在【注】有绝对值时是两支,不含绝对值时仅一支. 2、双曲线的标准方程及几何性质:【注】焦点到渐近线的距离为b ;通径为ab 22。

3、常见双曲线的设法:(1)已知b a =的双曲线设为)0(22≠=-λλy x ; (2)已知过两点的双曲线可设为)0(122<=+AB By Ax ;(3)已知渐近线0=±nym x 的双曲线方程可设为)0(2222≠=-λλn y m x .4、两种特殊的双曲线:(1)实轴和虚轴等长的双曲线称为等轴双曲线.等轴双曲线的离心率为2.(2)双曲线()222210,0x y a b a b-=>>的共轭双曲线方程为12222=-a x b y ,它们有共同的渐近线为x aby ±=,它们的离心率21,e e 满足的关系式为1112221=+e e . 5、焦点三角形:设若双曲线方程为,F 1,F 2分别为它的左右焦点,P 为双曲线上任意一点,则有:若则2tan221θb S PF F =∆;特别地,当时,有。

6、直线与双曲线的位置关系:(注意直线与渐近线平行)思考:平面内任一点P 作直线与双曲线只有一个交点,这样的直线有几条? 几何方法:1、若P 在双曲线内,有2条(分别与渐近线平行);2、若P 在双曲线上,有3条(与渐近线平行的有两条,切线一条);3、若P 在双曲线外:①若P 在渐近线上且P 为原点时,0条;2222x y 1a b-=12FP F ,∠=θ12F P F 90∠=o122FPF S b =V 22221(0,0)x ya b a b-=>>②若P 在渐近线上且P 不为原点时,2条(与另一渐近线平行的一条,切线一条);③若P 不在渐近线上,有4条(与渐近线平行的有两条,切线两条); 代数方法:通过对直线方程与双曲线方程组成的一元二次方程组的求解来讨论它们的位置关系。

解析几何专题二(焦点弦及焦点三角形)

解析几何专题二(焦点弦及焦点三角形)
例3(2007年重庆卷第16题)过双曲线 的右焦点 作倾斜角为 的直线,交双曲线于 两点,则 的值为___
【解】易知 均在右支上,因为 ,离心率 ,点准距 ,因倾斜角为 ,所以 。由焦半径公式得,

例4(由2007年重庆卷第16题改编)过双曲线 的右焦点 作倾斜角为 的直线,交双曲线于 两点,则 的值为___
(3)当焦点 内分弦 时,有
(4)当焦点 外分弦 时(此时曲线为双曲线),有
【(1)分析证明】
【(2)分析证明】
【焦半径与焦点弦有关例题】
例1(2009年高考福建卷理科第13题)过抛物线 的焦点 作倾斜角为 的直线,交抛物线于 两点,若线段 的长为8,则 ___
【解】由抛物线焦点弦的弦长公式为 得, ,解得 。
, 。故四边形的面积为, 。
所以四边形面积的最小值为 。
二、圆锥曲线中的焦点三角形面积
【椭圆焦三角形】
【分析】
设|OM|=q
【双曲线焦点三角形】
【抛物线原焦弦三角形】
同样焦点在y轴上时
三、圆锥曲线中的焦点三角形顶角问题
【椭圆】
【分析】
也可利用向量来证明x的取值范围
【双曲线】原理同椭圆,可求出x的取值范围
从上图分析
【焦半径与焦点弦有关推论】
【推论1】——常用来求定值
过椭圆、双曲线的一焦点F交椭圆或双曲线(单支)于A,B两点,则
过双曲线的一焦点F的直线分别与两支交于A,B,与焦点轴夹角为
过抛物线的一焦点F直线交抛物线于A,B两点,与焦点轴夹角为
【推论2】 ————常用来求定角或斜率
已知点 是离心率为 的椭圆或双曲线 的焦点,过点 的弦 与 的焦点所在的轴的夹角为 ,且 。
专题二:圆锥曲线焦点弦、焦点△知识专题

圆锥曲线技巧一----焦点三角形

圆锥曲线技巧一----焦点三角形

圆锥曲线结论1. 焦点三角形模型例 1. 已知P 是椭圆192522=+y x 上的点,1F 、2F 分别是椭圆的左、右焦点,若21||||2121=⋅PF PF ,则△21PF F 的面积为( ) A. 33 B. 32 C. 3 D.33例2. 已知12F F ,是双曲线2214x y -=的左、右焦点,P 是双曲线上一点,若△21PF F 面积为1,,则12PF PF •等于例3. 已知12F F ,是双曲线221x y -=的焦点,P 是双曲线上一点,且01260F PF ∠=,则12||||PF PF •等于【练习】1. 已知12F F ,是双曲线2214x y -=的焦点,P 是双曲线上一点,且01290F PF ∠=,则21PF F ∆面积等于2. 已知12F F ,是双曲线221169x y -=的焦点,P 是双曲线上一点,且01260F PF ∠=,则21PF F ∆面积等于3. 焦点为12,F F 的椭圆2214924x y +=上有一点M ,若120MF MF ⋅=,求12MF F ∆的面积 .4.已知双曲线221x y -=,设12F F ,是其两个焦点,点P 是双曲线上一点,若 12F P PF ⊥,则12||+||F P PF 的值为2. 焦半径模型椭圆、双曲线焦半径:2||cos b AF a c θ=-,2||cos b BF a c θ=+适用范围(如果是双曲线,AB 必须在同一支上,且双曲线可能需要加绝对值)1. 其中θ表示直线AB 的倾斜角2.不区分椭圆双曲线,不区分左右焦点3.原则:长则除小,短则除大4. 焦点在y 轴上时,cos θ换成sin θ证明:例1. 过双曲线224x y -=的右焦点F 作倾斜角为105°的直线交双曲线于P 、Q 两点,求||.||PF FQ 的值例2. 已知椭圆22:184x y C +=(1)已知过点1F (-2,0)倾斜角为θ的直线交椭圆C 于A 、B 两点,求证:2||2cos AB θ=- (2)已知过点1F (-2,0)做两条互相垂直的直线分别交椭圆C 于A 、B 和D 、E ,求|AB|+|DE|的最小值例3. 如图,在平面直角坐标系中,椭圆22221(0)x y a b a b+=>>的左右焦点分别为12,F F ,已知(1,),(,2e e 都在椭圆上,其中e 为椭圆的离心率 (1)求椭圆方程(2)设A 、B 是椭圆上位于x 轴上方的两点,且直线1AF 与直线2BF 平行,2AF 与2BF 相交于P,若直线12||||AF BF -=,求直线AF 的斜率【练习】1. (2019年全国卷1,文、理)设12,F F 为椭圆22:13620x y C +=的两个焦点,M 为C 上一点且在第一象限,若12MF F ∆为等腰三角形,则M 的坐标为2.(2019年浙江)已知椭圆22195x y +=的焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点以原点O 为圆心,||OF 为半径的圆上,则直线PF 的斜率是3.焦点弦比例模型已知 AF FB λ=,或(0)FB AF λλ=>则: 1|cos |||1e λθλ-=+或1|1e λλ-=+ 适用范围 1.其中θ表示直线AB 的倾斜角 2.不区分椭圆双曲线抛物线,不区分左右焦点3.注意:上述公式中圆锥曲线是双曲线,点A 和点B 必须是双曲线的同一支(如果是异支,1|cos |||1e λθλ+=-);4. 焦点在y 轴上时,cos θ换成sin θ例1. 已知双曲线的右焦点为F ,过F 且斜率为的直线交C 于A 、B 两点,若,则C 的离心率为例2. 已知椭圆2222:1(0,0)x y C a b a b+=>>的离心率为2,过右焦点F 且斜率为k (k>0)的直线交椭圆C 于A 、B 两点,若3AF FB =,则例3.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点F ,过点F 的直线交椭圆C 于A 、B 两点,直线l 的倾斜角为60°,若2AF FB =(1) 求椭圆C 的离心率(2) 如果15||4AB =,求椭圆C 的方程【练习】1.(2019年全国卷1)已知椭圆2222:1(0,0)x y C a b a b+=>>, 12(1,0),(1,0)F F -,过2F 的直线与C 交于A 、B 两点,若221||2||,||||AF F B AB BF ==,则C 的方程( )A. 2212x y +=B. 22132x y +=C.22143x y +=D. 22154x y +=2.(2014年安徽)设12F F ,为椭圆2221y x b +=上的左、右焦点,过1F 的直线交椭圆于A 、B 两点,若11||3||AF BF =,2AF ⊥X 轴,则椭圆E3.(北京)直线l 经过抛物线24y x =的焦点F ,且与抛物线交于,A B 两点,若5AF FB =,则直线l .4. (全国)已知F 是椭圆C 的一个焦点,B 是短轴上一个端点,线段BF 的延长线交C 于点D ,且2BF FD =,则C5.(天津)抛物线22(0)y px p =>的焦点与双曲线22221(0,0)x y a b a b -=>>的右焦点F 重合,且相交于A 、B 两点,直线AF 交抛物线于另一个点C ,且与双曲线一条渐近线平行,若1||||2AF FC =,。

圆锥曲线焦点弦的又一优美性质

圆锥曲线焦点弦的又一优美性质

圆锥曲线焦点弦的又一优美性质圆锥曲线焦点弦的又一优美性质
圆锥曲线焦点弦是几何学中的一种基本曲线,由一条圆锥曲线以及两个以它为焦点的弦构成,有着另外一种神奇的性质。

首先,当两个弦上任意两点连线,内切曲线定点差值不大于弦距离的一半,它将会过该点,而该点的连线将是弦的平行线,这就是所谓的Pappus点的定义。

此外,当两个弦上任意点连线,延长着的曲线会穿过圆锥曲线的其他三顶点,这就是所谓的Pascal三等分点定义。

也就是说,两个相邻的弦上任意点连线,将会穿过圆锥曲线的另一顶点,而该点来自另一条弦。

再者,当有任意三点在弦上,以两个点之间线段为直径圆上有着另外一点,该点与两个点连线组成的曲线含有另外一条相交的弦,而且被称为Steiner的内接圆三分点,即内接圆距离弦等于弦的四分之一。

以上便是圆锥曲线焦点弦的又一优美性质。

它是几何学中又一个奇妙的定理,它生动写明了圆锥曲线之间及其和弦之间的相互关系及特殊性,使这个定理有其美感,受到国内外数学研究者的关注和好评。

圆锥曲线重要结论

圆锥曲线重要结论

双曲线的焦点弦的两个焦半径倒数之和为常数圆锥曲线中的重要性质经典精讲上性质一:椭圆中焦点三角形的内切圆圆心轨迹是以原焦点为顶点的椭圆 双曲线中焦点三角形的内切圆圆心轨迹是以过原顶点的两平行开线段(长为2b )2 21已知动点P 在椭圆—L 4 3 1上,F i , F 2为椭圆之左右焦点,点 G F 1PF 2内心,试求点G 的轨迹方程 x 2 2 •已知动点P 在双曲线一 4 3 仝 1上,F 1, F 2为双曲线之左右焦点,圆G 是厶F 1PF 2的内切圆,探究圆G 是否过定点,并证明之• 性质二:圆锥曲线的焦点弦的两个焦半径倒数之和为定值。

椭圆的焦点弦的两个焦半径倒数之和为常数 IAF 1 | |BF 1 |ep|AF | |BF | epAB 在同支时I AR | | BF 1 | ep—AB 在异支时ep性质三:圆锥曲线相互垂直的焦点弦长倒数之和为常数此求四边形ABCD 面积的最小值•性质四:椭圆、双曲线、抛物线的焦点弦直线被曲线及对称轴所分比之和为定值X 2 y 25.已知椭圆-冷1,点F 1为椭圆之左焦点,过点F 1的直线11分别交椭圆于A , B 两点,II设直线AB 与 y 轴于点M , MA AFtMB BF 1,试求性质五:椭圆、双曲线的焦半径向量模的比之和为定值过椭圆或双曲线上任点 A 作两焦点的焦点弦AB AC 其共线向量比之和为定值. 即AF 1 F 1 B AF 2 F 2C12 1F A?FB 恒成立•并由此求I ABI 的最小值•椭圆互相垂直的焦点弦倒数之和为常数2 e 2双曲线互相垂直的焦点弦倒数之和为常数抛物线互相垂直的焦点弦倒数之和为常数|AB||CD|2ep|AB||CD ||2 e 2|2ep2 e 2|AB||CD|2ep24.已知椭圆—4 2红 1 , F 1为椭圆之左焦点,过点 F 1的直线11,12分别交椭圆于 A, B 两3点和C, D 两点,且 I 112 ,是否存在实常数,使的值.实常数 ,恒成立•并由⑴求椭圆C 的方程;⑵设E 为椭圆C 上任一点,过焦点 F i , F 2的弦分别为ES, ET ,设圆锥曲线中的重要性质经典精讲中2性质一:过圆锥曲线焦点所在轴上任意一点N( t,0 )的一条弦端点与对应点Y ,0的连线所成角被对称轴平分。

圆锥曲线常用结论

圆锥曲线常用结论

| MF 1 | a ex 0 ,| MF 2122 :点P(x o , y °)和椭圆二 aa ex o ( F i ( c,0)211 ( a bb 2F 2(C ,0) M2 2笃淫1 ; (2)点P(x °,y °)在椭圆上a b2 2 X 。

y 。

11°a b2X 。

2yo(3)点P (X o ,y 。

)在椭圆(1)椭圆:由x 2, y 2b o 的左焦点、右焦点分别为F 1、F 2,点P 在椭圆上,RPR 2 ,求证: 2b 2PF1IPF2 ---------- 且 PF 1F 2的面积 S b 2 tan ° 1 cos母的大小决定,焦点在分母大的坐标轴上。

一椭圆 2 2x y1椭圆r 21 (a >b >0)的焦半径公式:a b3 :圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断)2 2如已知方程— 1表示焦点在y 轴上的椭m 1 2 m圆,则m 的取值范围是1(1 3) (2)双曲线:由x 2, y 2项系数的正负决定,焦点' '2在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口 方向。

1解:设PF 1 m , PF 2 n ,则S — mnsin2 ,又F 1F 2 2C ,由余弦定理2 2C 22m n 2 2mn cos2 =m n 22mn2mn cos = 22a 2mn 1 cos2 , 于是 2mn 21 cos24a 4C 2 = 4b 2 ,所以mn2b,从而有1 cos 2c 1 2b 2. 2S -sin2 =b tan °2 1 cos25:从椭圆一个焦点发出的光,经过椭圆反射后,反射光线都汇聚到椭圆的 另一个焦点上。

6 :点P 处的切线PT 平分△ PF 1F 2在点P 处的外角。

即有MPKF 2PM , PT MN, F 1 PT F ?PT °7•: PT 平分△ PF 1F 2在点P 处的外角,则焦点在直线 PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点。

圆锥曲线(课堂讲义和例题)

圆锥曲线(课堂讲义和例题)

专题1 焦长与焦比体系】过椭圆的一个焦点的弦与另一个焦点围成的三角形的周长是 .【例2】 过椭圆的一个焦点F 作弦AB ,若,,则 的数值为( ) A . B .C .D .与、斜率有关【例3】设直线与椭圆相交于A 、B 两个不同的点,与x 轴相交于点F .(1)证明:;(2)若F 是椭圆的一个焦点,且,求椭圆的方程.【例4】设椭圆中心在坐标原点,焦点在轴上,一个顶点,离心率为. (1)求椭圆的方程;(2)若椭圆左焦点为,右焦点,过且斜率为1的直线交椭圆于,求的面积.秒杀秘籍:椭圆焦长以及焦比问题体:过椭圆的左焦点F 1的弦与右焦点F 2围成的三角形的周长是4a ;焦长公式:A 是椭圆上一点,、是左、右焦点,为,过,c 是椭圆半焦距,则(1);(2);(3).体面积:,. 证明:(1)如图所示,,故; (2)设由余弦定理得 ;整理得 ;整理得则过焦点的弦长.(焦长公式)焦比定理:过椭圆的左焦点F 1的弦,,令,即,代入弦长公式可得.yO F 2AB xF 1【例5】已知椭圆C:的左右顶点为A,B,点P为椭圆C上不同于A,B,的一点,且直线P A,PB的斜率之积为;(1)求椭圆的离心率;(2)设为椭圆C的左焦点,直线l过点F与椭圆C交与不同的两点M,N,且求直线l的斜率.【例6】(2014•安徽)设F1,F2分别是椭圆E:的左、右焦点,过点F1的直线交椭圆E于A、B两点,若,轴,则椭圆E的方程为.【例7】(2011•浙江)设F1,F2分别为椭圆的焦点,点A,B在椭圆上,若,则点A的坐标是.【例8】(2014•安徽)设F1,F2分别是椭圆E:的左、右焦点,过点F1的直线交椭圆E于A,B两点,.(1)若,的周长为16,求;(2)若,求椭圆E的离心率._________.【例10】过双曲线的左焦点F 1作倾斜角为的直线交双曲线于A 、B 两点,则=________.【例11】已知双曲线的左、右焦点分别为,.过的直线与双曲线的右支相交于,两点,若,若是以为顶角的等腰三角形,则双曲线的离心率为( ) A . B .C .D .注意:关于这类型焦比双曲线求离心率的题目很多,通常需要利用双曲线的几何性质把拥有焦比的较长的那段用关于的式子表示出来,再利用(交一支)或者(交两支)得出离心率.证明:1. ;同理. 2..3.设O 到AB 的距离为,则 ,故. 4.,. 5.;;;.关于抛物线的焦长公式及定理(A 为直线与抛物线右交点,B 为左交点,为AB 倾斜角) 1.;2. 3.;4.设,则; 5.设AB 交准线于点P ,.【例12】已知抛物线C :的焦点为F ,直线与C 交于A ,B (A 在x 轴上方)两点,若,则m 的值为( ) A .B .C .D .【例13】已知抛物线的方程为,过其焦点F 的直线与抛物线交于A 、B 两点,且,O 为坐标原点,则的面积和的面积之比为( ) A . B . C . D .【例14】过抛物线的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C ,若,且则此抛物线的方程为( )若交于两支时,,代入弦长公式可得.秒杀秘籍:抛物线焦长公式及性质 1..2..3..4.设,则.5.设AB 交准线于点P ,则;.秒杀秘籍:过焦点的弦与其中垂线的性质 1.设椭圆焦点弦的中垂线与长轴的交点为,则与之比是离心率的一半(如图)。

圆锥曲线中的应记的二级结论

圆锥曲线中的应记的二级结论

(11)SABO
p2
2sin
,
yA
M
O •F
x
B
几何特征: (1)AN BN; (2)PF QF; (3)NF AB; (4) AN是PAF的平分线, BN同理; (5)AN是抛物线的切线, BN同理; (6)A,O,Q三点共线, B,O, P三点共线;
直线和圆锥曲线的位置关系中,应该求出坐标的点:
于准线于N , 直线AB的倾斜角为,A(x1, y1), B(x2, y2 ),
代数特征:
(7)x1x2, y1 y2及OA OB均为定值;
(8)
|
AB
|
x1
x2
p
2p
sin 2
;
(9) | AF | p ,| BF | p ;
1 cos
1 cos
(10) 1 1 2 ; | AF | | BF | p
1.两直线的交点; 2.曲线C与坐标轴的交点; 3.直线与圆锥曲线的特殊的交点
b2
BF1 a c cos
=
a2
2ab2 c2 cos2
(长减、短加; 为直线AB与焦点所在对称轴的夹角)
抛物线C:x2 2 py
焦半径 : AF p ,
1 cos
BF = p
1+ cos
焦点弦 :
AB
2p
1 cos2
2p
= sin2
四.和圆中三个垂直关 系对应椭圆中的类似 性质: (1)椭圆的“垂径” 定理:
B2 4AC A2
(1 k 2 ) =
A
(2)同理:椭x 圆m方y 程n
AB
(1 m2 ) A
三.焦半径和焦点弦:
简证 : AF1F2中, 设AF1 m

高二数学圆锥曲线二级结论

高二数学圆锥曲线二级结论

高二数学圆锥曲线二级结论详解一、引言圆锥曲线是高中数学中的一个重要内容,对于很多学生来说也是一个难点。

圆锥曲线包括椭圆、双曲线和抛物线,它们在数学和实际生活中都有着广泛的应用。

在学习圆锥曲线的过程中,我们需要掌握一些基本的结论和性质,这些结论和性质可以帮助我们更好地理解和应用圆锥曲线。

本文将详细介绍高二数学圆锥曲线的二级结论,包括其推导过程和应用。

二、基础知识在学习圆锥曲线的二级结论之前,我们需要先掌握一些基础知识。

首先,我们需要了解圆锥曲线的定义和性质,包括椭圆、双曲线和抛物线的定义、标准方程和性质等。

其次,我们需要掌握一些基本的代数和几何知识,如向量、直线、圆等。

最后,我们还需要了解一些基本的解析几何方法,如坐标法、参数法等。

三、二级结论1. 焦点到直线的距离公式对于给定的圆锥曲线和其焦点,我们可以求出焦点到任意直线的距离。

具体的公式可以根据不同的圆锥曲线和直线的位置关系推导出来。

这个公式在解决一些与焦点有关的问题时非常有用。

2. 焦点弦长公式焦点弦是指通过圆锥曲线焦点的弦。

对于给定的圆锥曲线和其焦点,我们可以求出焦点弦的长度。

具体的公式可以根据不同的圆锥曲线推导出来。

这个公式在解决一些与焦点弦有关的问题时非常有用。

3. 切线与法线的关系对于给定的圆锥曲线和其上的一点,我们可以求出该点的切线和法线。

切线是与曲线在该点相切的直线,而法线是与切线垂直的直线。

切线和法线之间有着密切的关系,这个关系可以帮助我们更好地理解和应用圆锥曲线的性质。

4. 焦点三角形的性质焦点三角形是指由圆锥曲线的两个焦点和曲线上任意一点构成的三角形。

焦点三角形有着许多重要的性质,如面积、周长、角度等都与圆锥曲线的性质有关。

这些性质可以帮助我们更好地理解和应用圆锥曲线的性质。

四、应用举例为了更好地理解和掌握这些二级结论,我们可以通过一些具体的例子来进行说明和应用。

例如,我们可以通过求解一些与焦点距离、焦点弦长、切线与法线以及焦点三角形有关的问题来应用这些二级结论。

2024高考数学专项复习圆锥曲线基础知识手册

2024高考数学专项复习圆锥曲线基础知识手册

圆锥曲线一、椭圆及其性质第一定义平面内一动点P 与两定点F 1、F 2距离之和为常数(大于F 1F 2 )的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF 1d 1=MF 2d 2=e 焦点焦点在x 轴上焦点在y 轴上图形yxF 1F 2abc O A 1A 2B 2B 1x =a 2cx =-a 2c y x F 1F 2ab c A 1A 2B 2B 1y =a2cy =-a2c标准方程x 2a 2+y 2b 2=1a >b >0y 2a 2+x 2b2=1a >b >0范围-a ≤x ≤a 且-b ≤y ≤b-b ≤x ≤b 且-a ≤y ≤a顶点A 1-a ,0 ,A 2a ,0 ,B 10,-b ,B 20,bA 10,-a ,A 20,a ,B 1-b ,0 ,B 2b ,0轴长长轴长=2a ,短轴长=2b ,焦距=F 1F 2 =2c ,c 2=a 2-b 2焦点F 1-c ,0 、F 2c ,0F 10,-c 、F 20,c焦半径PF 1 =a +e x 0,PF 2 =a -e x 0PF 1 =a -e y 0,PF 2 =a +e y 0焦点弦左焦点弦|AB |=2a +e (x 1+x 2),右焦点弦|AB |=2a -e (x 1+x 2).离心率e =c a=1-b 2a20<e <1 准线方程x =±a 2cy =±a 2c切线方程x 0x a 2+y 0y b 2=1x 0xb 2+y 0y a 2=1通径过椭圆焦点且垂直于对称轴的弦长AB =2b 2a(最短焦点弦)焦点三角形(1)由定义可知:|PF 1|+|PF 2|=2a ,周长为:2a +2c (2)焦点三角形面积:S △F 1PF 2=b 2×tan θ2(3)当P 在椭圆短轴上时,张角θ最大,θ≥1-2e 2cos (4)焦长公式:PF 1 =b 2a -c αcos 、MF 1 =b 2a +c αcos MP =2ab 2a 2-c 22αcos =2ab 2b 2+c 22αsin (5)离心率:e =(α+β)sin α+βsin sin yxF 1F 2θαP OMβ2024高考数学专项复习第一定义平面内一动点P与两定点F1、F2距离之差为常数(大于F1F2)的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF1d1=MF2d2=e焦点焦点在x轴上焦点在y轴上图形yxF1F2bc虚轴实轴ayxF1F2实轴虚轴标准方程x2a2-y2b2=1a>0,b>0y2a2-x2b2=1a>0,b>0范围x≤-a或x≥a,y∈R y≤-a或y≥a,x∈R 顶点A1-a,0、A2a,0A10,-a、A20,a轴长虚轴长=2b,实轴长=2a,焦距=F1F2=2c,c2=a2+b2焦点F1-c,0、F2c,0F10,-c、F20,c焦半径|PF1|=a+e x0,|PF2|=-a+e x0左支添“-”离心率e=ca=1+b2a2e>1准线方程x=±a2c y=±a2c渐近线y=±ba x y=±ab x切线方程x0xa2-y0yb2=1x0xb2-y0ya2=1通径过双曲线焦点且垂直于对称轴的弦长AB=2b2a(最短焦点弦)焦点三角形(1)由定义可知:|PF1|-|PF2|=2a(2)焦点直角三角形的个数为八个,顶角为直角与底角为直角各四个;(3)焦点三角形面积:S△F1PF2=b2÷tanθ2=c∙y(4)离心率:e=F1F2PF1-PF2=sinθsinα-sinβ=sin(α+β)sinα-sinβyxF1F2Pθαβ定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.方程y 2=2px p >0y 2=-2px p >0x 2=2py p >0x 2=-2py p >0图形yxF x =-p2yxFx =p2y xFy =-p2yxFy =p2顶点0,0对称轴x 轴y 轴焦点F p2,0 F -p 2,0 F 0,p 2 F 0,-p 2准线方程x =-p 2x =p2y =-p 2y =p 2离心率e =1范围x ≥0x ≤0y ≥0y ≤0切线方程y 0y =p x +x 0y 0y =-p x +x 0x 0x =p y +y 0x 0x =-p y +y 0通径过抛物线焦点且垂直于对称轴的弦AB =2p (最短焦点弦)焦点弦AB 为过y 2=2px p >0 焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =x 1+p 2BF =x 2+p2AB =x 1+x 2+p ,(2)x 1x 2=p 24y 1y 2=-p 2(3)AF =p 1-αcos BF =p 1+αcos 1|FA |+1|FB |=2P (4)AB =2psin 2αS △AOB =p 22αsin AB 为过x 2=2py (p >0)焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =p 1-αsin BF =p1+αsin (2)AB =2p 2αcos S △AOB=p 22αcos (3)AF BF=λ,则:α=λ-1λ+1sin yxFx =-p 2αABO yxFαABOy 2=2px (p >0)y 2=2px (p >0)四、圆锥曲线的通法F 1F 2POxyOxyFP MOxyF 1F 2P椭圆双曲线抛物线点差法与通法1、圆锥曲线综述:联立方程设交点,韦达定理求弦长;变量范围判别式,曲线定义不能忘;弦斜中点点差法,设而不求计算畅;向量参数恰当用,数形结合记心间.★2、直线与圆锥曲线的位置关系(1)直线的设法:1若题目明确涉及斜率,则设直线:y =kx +b ,需考虑直线斜率是否存在,分类讨论;2若题目没有涉及斜率或直线过(a ,0)则设直线:x =my +a ,可避免对斜率进行讨论(2)研究通法:联立y =kx +bF (x ,y )=0得:ax 2+bx +c =0判别式:Δ=b 2−4ac ,韦达定理:x 1+x 2=−b a ,x 1x 2=ca(3)弦长公式:AB =(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=(1+k 2)⋅[(x 1+x 2)2-4x 1x 2]=1+1k2(y 1+y 2)2−4y 1y 2 3、硬解定理设直线y =kx +φ与曲线x 2m +y 2n=1相交于A (x 1,y 1)、B (x 2,y 2)由:y =kx +φnx 2+my 2=mn,可得:(n +mk 2)x 2+2kφmx +m (φ2-n )=0判别式:△=4mn (n +mk 2-φ2)韦达定理:x 1+x 2=-2kmφn +mk 2,x 1x 2=m (φ2-n )n +mk 2由:|x 1-x 2|=(x 1+x 2)2-4x 1x 2,代入韦达定理:|x 1-x 2|=△n +mk 2★4、点差法:若直线l 与曲线相交于M 、N 两点,点P (x 0,y 0)是弦MN 中点,MN 的斜率为k MN ,则:在椭圆x 2a 2+y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=−b 2a2;在双曲线x 2a 2−y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=b 2a2;在抛物线y 2=2px (p >0)中,有k MN ⋅y 0=p .(椭圆)设M 、N 两两点的坐标分别为(x 1,y 1)、(x 2,y 2),则有x 12a 2+y 12b 2=1,⋯⋯(1)x 22a 2+y 22b 2=1.⋯⋯(2) (1)−(2),得x 12−x 22a 2+y 12−y 22b 2=0.∴y 2−y 1x 2−x 1⋅y 2+y 1x 2+x 1=−b 2a2.又∵k MN =y 2−y 1x 2−x 1,y 1+y 2x 1+x 2=2y 2x =y x .∴k MN ⋅y x =−b 2a2.圆锥曲线的参数方程1、参数方程的概念在平面直角坐标系中,曲线上任意一点的坐标x ,y 都是某个变数t 的函数x =f (t )y =g (t )并且对于t 的每一个允许值,由这个方程所确定的点M (x ,y )都在这条曲线上,该方程就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.※2、直线的参数方程(1)过定点P (x 0,y 0)、倾斜角为α(α≠π2)的直线的参数方程x =x 0+t cos αy =y 0+t sin α (t 为参数)(2)参数t 的几何意义:参数t 表示直线l 上以定点M 0为起点,任意一点M (x ,y )为终点的有向线段的长度再加上表示方向的正负号,也即|M 0M|=|t |,|t |表示直线上任一点M 到定点M 0的距离.当点M 在M 0上方时,t >0;当点M 在M 0下方时,t <0;当点M 与M 0重合时,t =0;(3)直线方程与参数方程互化:y −y o =tan α(x −x o )⇔x =x 0+t cos αy =y 0+t sin α(t 为参数)(4)直线参数方程:x =x 0+aty =y 0+bt (t 为参数),当a 2+b 2=1时,参数方程为标准型参数方程,参数的几何意义才是代表距离.当a 2+b 2≠1时,将参数方程化为x =x 0+aa 2+b 2t y =y 0+ba 2+b 2t 然后在进行计算.★3、圆的参数方程(1)圆心(a ,b ),半径r 的圆(x -a )2+(y -b )2=r 2参数方程x =a +r cos θy =b +r sin θ (θ为参数);特别:当圆心在原点时,半径为r 的圆x 2+y 2=r 2的参数方程为:x =r cos θy =r sin θ (θ是参数).(2)参数θ的几何意义:θ表示x 轴的正方向到圆心和圆上任意一点的半径所成的角.(3)消参的方法:利用sin 2θ+cos 2θ=1,yxF 1F 2PN OMyxM 0tαO M 1αP (x ,y )rxy可得圆方程:(x -a )2+(y -b )2=r 2★4、椭圆的参数方程(1)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为x =a cos φy =b sin φ (φ为参数);椭圆y 2a 2+x 2b2=1(a >b >0)的参数方程为x =b cos φy =a sin φ (φ为参数);(2)参数θ的几何意义:参数θ表示椭圆上某一点的离心角.如图所示,点P 对应的离心角为θ=∠QOx (过P 作PQ ⊥x 轴,交大圆即以2a 为直径的圆于Q ),切不可认为是θ=∠POx .5、双曲线的参数方程(1)双曲线x 2a 2-y 2b 2=1(a >b >0)的参数方程x =a sec φy =b tan φ (φ为参数);sec φ=1cos φ双曲线y 2a 2-x 2b2=1(a >b >0)的参数方程x =b cot φy =a csc φ (φ为参数);csc φ=1sin φ(2)参数θ的几何意义:参数θ表示双曲线上某一点的离心角.※6、抛物线的参数方程(1)抛物线y 2=2px 参数方程x =2pt 2y =2pt(t 为参数,t =1tan α);(2)参数t 的几何意义:抛物线上除顶点外的任意一点与原点连线的斜率的倒数.t =1k OP仿射变换与齐次式1、仿射变换:在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间.※2、椭圆的变换:椭圆b 2x 2+a 2y 2=a 2b 2变换内容x =x y=a b y x =xy =b a yx =b a x y=yx =a b x y =y圆方程x 2+y 2=a 2x 2+y 2=b 2图示yxAB OCyxABOCyxAB OCyxAB OC 点坐标A (x 0,y 0)→A '(x 0,a by 0)A (x 0,y 0)→A '(b ax 0,y 0)斜率变化k '=a bk ,由于k A 'C '⋅k B 'C '=−1.k AC ⋅k BC =b a k A 'C '⋅b a k B 'C '=−b 2a 2k '=a bk ,由于k A 'C '⋅k B 'C '=−1.k AC ⋅k BC =b a k A 'C '⋅b a k B 'C '=−b 2a2弦长变化则AB =1+k 2x 1-x 2 ⇒A 'B '=1+k '2x 1-x 2 =1+(a b)2k 2x 1-x 2 yxαPOQ面积变化S△ABC=b a S△A'B'C'(水平宽不变,铅锤高缩小)S△ABC=a b S△A'B'C'(水平宽扩大,铅垂高不变)3、中点弦问题,k OP⋅k AB=−b2a2,中垂线问题k OPk MP=b2a2,且x M=c2x0a2y N=-c2y0b2,拓展1:椭圆内接△ABC中,若原点O为重心,则仿射后一定得到△OB'C'为120°的等腰三角形;△A'B'C'为等边三角形;拓展2:椭圆内接平行四边形OAPB(A、P、B)在椭圆上,则仿射后一定得菱形OA'P'B' 4、面积问题:(1)若以椭圆x2a2+y2b2=1对称中心引出两条直线交椭圆于A、B两点,且k OA⋅k OB=−b2a2,则经过仿射变换后k OA'⋅k OB'=−1,所以S△AOB为定值.(2)若椭圆方程x2a2+y2b2=1上三点A,B,M,满足:①k OA⋅k OB=−b2a2②S△AOB=ab2③OM=sinαOA+cosαOBα∈0,π2,三者等价※5、平移构造齐次式:(圆锥曲线斜率和与积的问题)(1)题设:过圆锥曲线上的一个定点P作两条直线与圆锥曲线交于A、B,在直线PA和PB斜率之和或者斜率之积为定值的情况下,直线AB过定点或者AB定斜率的问题.(2)步骤:①将公共点平移到坐标原点(点平移:左加右减上减下加)找出平移单位长.②由①中的平移单位长得出平移后的圆锥曲线C ,所有直线方程统一写为:mx+ny=1③将圆锥曲线C 展开,在一次项中乘以mx+ny=1,构造出齐次式.④在齐次式中,同时除以x2,构建斜率k的一元二次方程,由韦达定理可得斜率之积(和).圆锥曲线考点归类(一)条件方法梳理1、椭圆的角平分线定理(1)若点A、B是椭圆x2a2+y2b2=1(a>b>0)上的点,AB与椭圆长轴交点为N,在长轴上一定存在一个点M,当仅当则x M⋅x N=a2时,∠AMN=∠BMN,即长轴为角平分线;(2)若点A、B是椭圆x2a2+y2b2=1(a>b>0)上的点,AB与椭圆短轴交点为N,在短轴上一定存在一个点M,当仅当则y M⋅y N=b2时,∠AMN=∠BMN,即短轴为角平分线;※2、关于角平分线的结论:若直线AO的斜率为k1,直线CO的斜率为k2,EO平分∠AOC则有:k1+k2=tanα+tan(π-α)=0角平分线的一些等价代换条件:作x轴的对称点、点到两边的距离相等.3、四种常用直线系方程(1)定点直线系方程:经过定点P 0(x 0,y 0)的直线系方程为y -y 0=k (x -x 0)(除直线x =x 0),其中k 是待定的系数;经过定点P 0(x 0,y 0)的直线系方程为A (x -x 0)+B (y -y 0)=0,其中A ,B 是待定的系数.(2)共点直线系方程:经过两直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0的交点的直线系方程为(A 1x +B 1y +C 1)+λ(A 2x +B 2y +C 2)=0(除l 2),其中λ是待定的系数.(3)平行直线系方程:直线y =kx +b 中当斜率k 一定而b 变动时,表示平行直线系方程.与直线Ax +By +C =0平行的直线系方程是Ax +By +λ=0(λ≠0),λ是参变量.(4)垂直直线系方程:与直线Ax +By +C =0(A ≠0,B ≠0)垂直的直线系方程是Bx -Ay +λ=0,λ是参变量.4、圆系方程(1)过直线l :Ax +By +C =0与圆C :x 2+y 2+Dx +Ey +F =0的交点的圆系方程是x 2+y 2+Dx +Ey +F +λ(Ax +By +C )=0,λ是待定的系数.(2)过圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0的交点的圆系方程是x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0,λ是待定的系数.★(二)圆锥曲线过定点问题1、直线过定点的背景:(1)直线过定点模型:A ,B 是圆锥曲线上的两动点,M 是一定点,其中α,β分别为MA ,MB 的倾斜角,则:①、MA ⋅MB 为定值⇔直线AB 恒过定点;②、k MA ⋅k MB 为定值⇔直线AB 恒过定点;③、α+β=θ(0<θ<π)⇔直线AB 恒过定点.(2)抛物线中直线过定点:A ,B 是抛物线y 2=2px (p >0)上的两动点,α,β分别为OA ,OB 的倾斜角,则:OA ⊥OB ⇔k OA ⋅k OB =-1⇔α-β =π2⇔直线AB 恒过定点(2p ,0).(3)椭圆中直线过定点模型:A ,B 是椭圆x 2a 2+y 2b2=1(a >b >0)上异于右顶点D 的两动点,其中α,β分别为DA ,DB 的倾斜角,则可以得到下面几个充要的结论:DA ⊥DB ⇔k DA ⋅k DB =-1⇔α-β =π2⇔直线AB 恒过定点(ac 2a 2+b 2,0)2、定点的求解方法:1含参形式简单的直线方程,通过将直线化为y -y 0=k (x -x 0)可求得定点坐标(x 0,y 0)2含参形式复杂的通过变换主元法求解定点坐标.变换主元法:将直线化为h (x ,y )+λf (x ,y )=0,解方程组:h (x ,y )=0f (x ,y )=0 可得定点坐标.eg :直线方程:(2m +1)x +(m -5)y +6=0,将m 看作主元,按照降幂排列:(2x +y )m+x -5y +6=0,解方程组:2x +y =0x -5y +6=0,解得:x =-611y =1211,求得直线过定点(-611,1211).3、关于以AB 为直径的圆过定点问题:(1)直接法:设出参数后,表示出圆的方程.圆的直径式方程:(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0(2)由特殊到一般:利用赋值法,先求出几个位置的圆方程,联立圆方程解出公共交点,该交点即为圆所过的定点,再利用向量数量积为0证明点恒在圆上.★(三)圆锥曲线面积问题1、面积的求解方法:(1)S △ABC =12MN ∙d ,从公式可以看出,求面积重在求解弦长和点到线的距离.(2)S △ABC =12×水平宽×铅锤高,主要以点的坐标运算为主.(3)S △AOB =12x 1y 2-x 2y 1例题1.在平面直角坐标系xOy 中,已知点O 0,0 ,A x 1,y 1 ,B x 2,y 2 不共线,证明:△AOB 的面积为S △AOB =12x 1y 2-x 2y 1 .2、面积中最值的求解(1)f (x )=αx 2+βx +φx +n型:令t =x +n ⇒x =t -n 进行代换后裂项转化为:y =at +bt (2)f (x )=x +n αx 2+βx +φ型:先在分母中配出分子式f (x )=x +n α(x +n )2+λ(x +n )+υ令t =x +n ,此时:y =t αt 2+λt +υ,分子分母同时除t ,此时y =1αt +υt+λ,再利用对勾函数或不等式分析最值.(3)f (x )=αx +βx +n型:令t =x +n ⇒x =t 2-n 进行代换后裂项,可转化为:y =at +bt五、椭圆的二级结论1.PF1+PF2=2a2.标准方程x2a2+y2b2=13.PF1d1=e<14.点P处的切线PT平分△PF1F2在点P处的外角.5.PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.6.以焦点弦PQ为直径的圆必与对应准线相离.7.以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.8.设A1、A2为椭圆的左、右顶点,则△PF1F2在边PF2(或PF1)上的旁切圆,必与A1A2所在的直线切于A2 (或A1).9.椭圆x2a2+y2b2=1(a>b>0)的两个顶点为A1(-a,0),A2(a,0),与y轴平行的直线交椭圆于P1、P2时A1P1与A2P2交点的轨迹方程是x2a2-y2b2=1.10.若点P0(x0,y0)在椭圆x2a2+y2b2=1a>b>0上,则在点P0处的切线方程是x0xa2+y0yb2=1.11.若P0(x0,y0)在椭圆x2a2+y2b2=1外,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是x0xa2+y0yb2=1.12.AB是椭圆x2a2+y2b2=1的不平行于对称轴的弦,M为AB的中点,则k OM⋅k AB=-b2a2.13.若P0(x0,y0)在椭圆x2a2+y2b2=1内,则被PO所平分的中点弦的方程是x0xa2+y0yb2=x02a2+y02b2.14.若P0(x0,y0)在椭圆x2a2+y2b2=1内,则过PO的弦中点的轨迹方程是x2a2+y2b2=x0xa2+y0yb2.15.若PQ是椭圆x2a2+y2b2=1(a>b>0)上对中心张直角的弦,则1r12+1r22=1a2+1b2(r1=|OP|,r2=|OQ|).16.若椭圆x2a2+y2b2=1(a>b>0)上中心张直角的弦L所在直线方程为Ax+By=1(AB≠0),则(1)1a2+1 b2=A2+B2;(2)L=2a4A2+b4B2a2A2+b2B2.17.给定椭圆C1:b2x2+a2y2=a2b2(a>b>0),C2:b2x2+a2y2=a2-b2a2+b2ab2,则(i)对C1上任意给定的点P(x0,y0),它的任一直角弦必须经过C2上一定点M a2-b2a2+b2x0,-a2-b2a2+b2y0. (ii)对C2上任一点P (x0 ,y0 )在C1上存在唯一的点M ,使得M 的任一直角弦都经过P 点.18.设P(x0,y0)为椭圆(或圆)C:x2a2+y2b2=1(a>0,.b>0)上一点,P1P2为曲线C的动弦,且弦PP1,PP2斜率存在,记为k1,k2,则直线P1P2通过定点M(mx0,-my0)(m≠1)的充要条件是k1⋅k2=-1+m1-m⋅b2a2.19.过椭圆x2a2+y2b2=1(a>0,b>0)上任一点A(x0,y0)任意作两条倾斜角互补的直线交椭圆于B,C两点,则直线BC有定向且k BC=b2x0a2y0(常数).20.椭圆x2a2+y2b2=1(a>b>0)的左右焦点分别为F1,F2,点P为椭圆上任意一点∠F1PF2=γ,则椭圆的焦点三角形的面积为S△F1PF2=b2tanγ2,P±ac c2-b2tan2γ2,±b2c tanγ2.21.若P为椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1,F2是焦点,∠PF1F2=α,∠PF2F1=β,则a-ca+c=tanα2tanβ2.22.椭圆x2a2+y2b2=1(a>b>0)的焦半径公式:|MF1|=a+ex0,|MF2|=a-ex0(F1(-c,0),F2(c,0),M(x0,y0)).23.若椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,左准线为L,则当2-1≤e<1时,可在椭圆上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项.24.P为椭圆x2a2+y2b2=1(a>b>0)上任一点,F1,F2为二焦点,A为椭圆内一定点,则2a-|AF2|≤|PA|+|PF1|≤2a+|AF2|,当且仅当A,F2,P三点共线时,等号成立.25.椭圆x2a2+y2b2=1(a>b>0)上存在两点关于直线l:y=k(x-x0)对称的充要条件是x02≤(a2-b2)2a2+b2k2.26.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P是椭圆x=a cosϕy=b sinϕ(a>b>0)上一点,则点P对椭圆两焦点张直角的充要条件是e2=11+sin2ϕ.29.设A,B为椭圆x2a2+y2b2=k(k>0,k≠1)上两点,其直线AB与椭圆x2a2+y2b2=1相交于P,Q,则AP=BQ.30.在椭圆x 2a 2+y 2b 2=1中,定长为2m (o <m ≤a )的弦中点轨迹方程为m 2=1-x 2a 2+y 2b 2a 2cos 2α+b 2sin 2α ,其中tan α=-bx ay ,当y =0时,α=90∘.31.设S 为椭圆x 2a 2+y 2b2=1(a >b >0)的通径,定长线段L 的两端点A ,B 在椭圆上移动,记|AB |=l ,M(x 0,y 0)是AB 中点,则当l ≥ΦS 时,有(x 0)max =a 2c -l 2e c 2=a 2-b 2,e =c a;当l <ΦS 时,有(x 0)max =a 2b4b 2-l 2,(x 0)min=0.32.椭圆x 2a 2+y 2b2=1与直线Ax +By +C =0有公共点的充要条件是A 2a 2+B 2b 2≥C 2.33.椭圆(x -x 0)2a 2+(y -y 0)2b2=1与直线Ax +By +C =0有公共点的充要条件是A 2a 2+B 2b 2≥(Ax 0+By 0+C )2.34.设椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记∠F 1PF 2=α,∠PF 1F 2=β,∠F 1F 2P =γ,则有sin αsin β+sin γ=c a =e.35.经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则|P 1A 1|⋅|P 2A 2|=b 2.36.已知椭圆x 2a 2+y 2b2=1(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP ⊥OQ .(1)1|OP |2+1|OQ |2=1a 2+1b2;(2)|OP |2+|OQ |2的最小值为4a 2b 2a 2+b 2;(3)S ΔOPQ 的最小值是a 2b 2a 2+b 2.37.MN 是经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)焦点的任一弦,若AB 是经过椭圆中心O 且平行于MN 的弦,则|AB |2=2a |MN |.38.MN 是经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)焦点的任一弦,若过椭圆中心O 的半弦OP ⊥MN ,则2a |MN |+1|OP |2=1a 2+1b2.39.设椭圆x 2a 2+y 2b2=1(a >b >0),M (m ,o )或(o ,m )为其对称轴上除中心,顶点外的任一点,过M 引一条直线与椭圆相交于P 、Q 两点,则直线A 1P 、A 2Q (A 1,A 2为对称轴上的两顶点)的交点N 在直线l :x =a2m(或y =b 2m)上.40.设过椭圆焦点F 作直线与椭圆相交P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF .41.过椭圆一个焦点F的直线与椭圆交于两点P、Q,A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.42.设椭圆方程x2a2+y2b2=1,则斜率为k(k≠0)的平行弦的中点必在直线l:y=kx的共轭直线y=k x上,而且kk =-b2 a2 .43.设A、B、C、D为椭圆x2a2+y2b2=1上四点,AB、CD所在直线的倾斜角分别为α,β,直线AB与CD相交于P,且P不在椭圆上,则PA⋅PBPC⋅PD=b2cos2β+a2sin2βb2cos2α+a2sin2α.44.已知椭圆x2a2+y2b2=1(a>b>0),点P为其上一点F1,F2为椭圆的焦点,∠F1PF2的外(内)角平分线为l,作F1、F2分别垂直l于R、S,当P跑遍整个椭圆时,R、S形成的轨迹方程是x2+y2=a2c2y2=a2y2+b2x x±c2 a2y2+b2x±c2.45.设△ABC内接于椭圆Γ,且AB为Γ的直径,l为AB的共轭直径所在的直线,l分别交直线AC、BC于E和F,又D为l上一点,则CD与椭圆Γ相切的充要条件是D为EF的中点.46.过椭圆x2a2+y2b2=1(a>b>0)的右焦点F作直线交该椭圆右支于M,N两点,弦MN的垂直平分线交x轴于P,则|PF||MN|=e2.47.设A(x1,y1)是椭圆x2a2+y2b2=1(a>b>0)上任一点,过A作一条斜率为-b2x1a2y1的直线L,又设d是原点到直线L的距离,r1,r2分别是A到椭圆两焦点的距离,则r1r2d=ab.48.已知椭圆x2a2+y2b2=1(a>b>0)和x2a2+y2b2=λ(0<λ<1),一直线顺次与它们相交于A、B、C、D四点,则│AB│=|CD│.49.已知椭圆x2a2+y2b2=1(a>b>0),A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0),则-a2-b2a<x0<a2-b2 a.50.设P点是椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1、F2为其焦点记∠F1PF2=θ,则(1)|PF1||PF2|=2b21+cosθ.(2)SΔPF1F2=b2tanθ2.51.设过椭圆的长轴上一点B(m,o)作直线与椭圆相交于P、Q两点,A为椭圆长轴的左顶点,连结AP和AQ分别交相应于过H点的直线MN:x=n于M,N两点,则∠MBN=90∘⇔a-ma+m=a2n-m2 b2(n+a)2.52.L是经过椭圆x2a2+y2b2=1(a>b>0)长轴顶点A且与长轴垂直的直线,E、F是椭圆两个焦点,e是离心率,点P∈L,若∠EPF=α,则α是锐角且sinα≤e或α≤arcsin e(当且仅当|PH|=b时取等号).53.L是椭圆x2a2+y2b2=1(a>b>0)的准线,A、B是椭圆的长轴两顶点,点P∈L,e是离心率,∠EPF=α,H是L与X轴的交点c是半焦距,则α是锐角且sinα≤e或α≤arcsin e(当且仅当|PH|=ab c时取等号).54.L是椭圆x2a2+y2b2=1(a>b>0)的准线,E、F是两个焦点,H是L与x轴的交点,点P∈L,∠EPF=α,离心率为e,半焦距为c,则α为锐角且sinα≤e2或α≤arcsin e2(当且仅当|PH|=b c a2+c2时取等号).55.已知椭圆x2a2+y2b2=1(a>b>0),直线L通过其右焦点F2,且与椭圆相交于A、B两点,将A、B与椭圆左焦点F1连结起来,则b2≤|F1A|⋅|F1B|≤(2a2-b2)2a2(当且仅当AB⊥x轴时右边不等式取等号,当且仅当A、F1、B三点共线时左边不等式取等号).56.设A、B是椭圆x2a2+y2b2=1(a>b>0)的长轴两端点,P是椭圆上的一点,∠PAB=α,∠PBA=β,∠BPA=γ,c、e分别是椭圆的半焦距离心率,则有(1)|PA|=2ab2|cosα|a2-c2cos2α.(2)tanαtanβ=1-e2.(3)SΔPAB=2a2b2b2-a2cotγ.57.设A、B是椭圆x2a2+y2b2=1(a>b>0)长轴上分别位于椭圆内(异于原点)、外部的两点,且x A、x B的横坐标x A⋅x B=a2,(1)若过A点引直线与这椭圆相交于P、Q两点,则∠PBA=∠QBA;(2)若过B引直线与这椭圆相交于P、Q两点,则∠PAB+∠QAB=180∘.58.设A、B是椭圆x2a2+y2b2=1(a>b>0)长轴上分别位于椭圆内(异于原点),外部的两点,(1)若过A点引直线与这椭圆相交于P、Q两点,(若BP交椭圆于两点,则P、Q不关于x轴对称),且∠PBA=∠QBA,则点A、B的横坐标x A、x B满足x A⋅x B=a2;(2)若过B点引直线与这椭圆相交于P、Q两点,且∠PAB+∠QAB=180∘,则点A、B的横坐标满足x A⋅x B=a2.59.设A,A 是椭圆x2a2+y2b2=1的长轴的两个端点,QQ 是与AA 垂直的弦,则直线AQ与A Q 的交点P的轨迹是双曲线x2a2-y2b2=1.60.过椭圆x2a2+y2b2=1(a>b>0)的左焦点F作互相垂直的两条弦AB、CD则8ab2a2+b2≤|AB|+|CD|≤2(a2+b2)a.61.到椭圆x 2a 2+y 2b2=1(a >b >0)两焦点的距离之比等于a -c b (c 为半焦距)的动点M 的轨迹是姊妹圆(x ±a )2+y 2=b 2.62.到椭圆x 2a 2+y 2b2=1(a >b >0)的长轴两端点的距离之比等于a -c b (c 为半焦距)的动点M 的轨迹是姊妹圆x ±a e 2+y 2=b e 2.63.到椭圆x 2a 2+y 2b2=1(a >b >0)的两准线和x 轴的交点的距离之比为a -c b (c 为半焦距)的动点的轨迹是姊妹圆x ±a e 2 2+y 2=b e 2 2(e 为离心率).64.已知P 是椭圆x 2a 2+y 2b2=1(a >b >0)上一个动点,A ,A 是它长轴的两个端点,且AQ ⊥AP ,A Q ⊥AP ,则Q 点的轨迹方程是x 2a 2+b 2y 2a4=1.65.椭圆的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和长轴之长的比例中项.66.设椭圆x 2a 2+y 2b 2=1(a >b >0)长轴的端点为A ,A ,P (x 1,y 1)是椭圆上的点过P 作斜率为-b 2x 1a 2y 1的直线l ,过A ,A 分别作垂直于长轴的直线交l 于M ,M ,则(1)|AM ||A M |=b 2.(2)四边形MAA M 面积的最小值是2ab .67.已知椭圆x 2a 2+y2b2=1(a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC ⎳x 轴,则直线AC 经过线段EF 的中点.68.OA 、OB 是椭圆(x -a )2a 2+y 2b 2=1(a >0,b >0)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB必经过一个定点2ab 2a 2+b 2,0 .(2)以OA 、OB 为直径的两圆的另一个交点Q 的轨迹方程是x -ab 2a 2+b 2 2+y 2=ab 2a 2+b 2 2(x ≠0).69.P (m ,n )是椭圆(x -a )2a 2+y 2b2=1(a >b >0)上一个定点,PA 、PB 是互相垂直的弦,则(1)直线AB 必经过一个定点2ab 2+m (a 2-b 2)a 2+b 2,n (b 2-a 2)a 2+b 2 .(2)以PA 、PB 为直径的两圆的另一个交点Q 的轨迹方程是x -ab 2+a 2m a 2+b 2 2+y -b 2n a 2+b 2 2=a 2[b 4+n 2(a 2-b 2)](a 2+b 2)2(x ≠m 且y ≠n ).70.如果一个椭圆短半轴长为b ,焦点F 1、F 2到直线L 的距离分别为d 1、d 2,那么(1)d 1d 2=b 2,且F 1、F 2在L 同侧⇔直线L 和椭圆相切.(2)d 1d 2>b 2,且F 1、F 2在L 同侧⇔直线L 和椭圆相离,(3)d 1d 2<b 2,或F 1、F 2在L 异侧⇔直线L 和椭圆相交.71.AB 是椭圆x 2a 2+y 2b2=1(a >b >0)的长轴,N 是椭圆上的动点,过N 的切线与过A 、B 的切线交于C 、D两点,则梯形ABDC的对角线的交点M的轨迹方程是x2a2+4y2b2=1(y≠0).72.设点P(x0,y0)为椭圆x2a2+y2b2=1(a>b>0)的内部一定点,AB是椭圆x2a2+y2b2=1过定点P(x0,y0)的任一弦,当弦AB平行(或重合)于椭圆长轴所在直线时(|PA|⋅|PB|)max=a2b2-(a2y02+b2x02)b2.当弦AB垂直于长轴所在直线时,(|PA|⋅|PB|)min=a2b2-(a2y02+b2x02)a2.73.椭圆焦三角形中,以焦半径为直径的圆必与以椭圆长轴为直径的圆相内切.74.椭圆焦三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点.75.椭圆两焦点到椭圆焦三角形旁切圆的切线长为定值a+c与a-c.76.椭圆焦三角形的非焦顶点到其内切圆的切线长为定值a-c.77.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)78.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.79.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.80.椭圆焦三角形中,椭圆中心到内点的距离、内点到同侧焦点的距离、半焦距及外点到同侧焦点的距离成比例.81.椭圆焦三角形中,半焦距、外点与椭圆中心连线段、内点与同侧焦点连线段、外点与同侧焦点连线段成比例.82.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行.83.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长.84.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,垂足就是垂足同侧焦半径为直径的圆和椭圆长轴为直径的圆的切点.85.椭圆焦三角形中,非焦顶点的外角平分线与焦半径、长轴所在直线的夹角的余弦的比为定值e.86.椭圆焦三角形中,非焦顶点的法线即为该顶角的内角平分线.87.椭圆焦三角形中,非焦顶点的切线即为该顶角的外角平分线.88.椭圆焦三角形中,过非焦顶点的切线与椭圆长轴两端点处的切线相交,则以两交点为直径的圆必过两焦点.89.已知椭圆x2a2+y2b2=1(a>0,b>0)(包括圆在内)上有一点P,过点P分别作直线y=b a x及y=-b a x的平行线,与x 轴于M ,N ,与y 轴交于R ,Q .,O 为原点,则:(1)|OM |2+|ON |2=2a 2;(2)|OQ |2+|OR |2=2b 2.90.过平面上的P 点作直线l 1:y =b a x 及l 2:y =-b ax 的平行线,分别交x 轴于M ,N ,交y 轴于R ,Q .(1)若|OM |2+|ON |2=2a 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).(2)若|OQ |2+|OR |2=2b 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).91.点P 为椭圆x 2a 2+y 2b2=1(a >0,b >0)(包括圆在内)在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-b ax 于Q ,R ,记ΔOMQ 与ΔONR 的面积为S 1,S 2,则:S 1+S 2=ab 2.92.点P 为第一象限内一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-b ax 于Q ,R ,记△OMQ 与△ONR 的面积为S 1,S 2,已知S 1+S 2=ab 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).93.过椭圆焦点垂直于长轴的弦(通径)是最短的弦,长为2b 2a,过焦点最长弦为长轴.94.过原点最长弦为长轴长2a ,最短弦为短轴长2b .95.与椭圆x 2a 2+y 2b 2=1(a >b >0)有共焦点的椭圆方程为x 2a 2+λ+y 2b 2+λ=1(a >b >0,λ>-b 2).96.与椭圆y 2a 2+x 2b 2=1(a >b >0)有共焦点的椭圆方程为y 2a 2+λ+x 2b 2+λ=1(a >b >0,λ>-b 2).97.焦点三角形:椭圆上的点P (x 0,y 0)与两焦点F 1,F 2构成的△PF 1F 2叫做焦点三角形.若r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①当r 1=r 2时,即点P 为短轴端点时,θ最大;cos θ=r 21+r 22-4c 22r 1r 2=r 1+r 2 2-2r 1r 2-4c22r 1r 2=4b 22r 1r 2-1=2b 2r 1r 2-1≥2b 2r 1+r 222-1=2b 2-a 2a 2=b 2-c 2a 2当且仅当r 1=r 2时,等号成立.②S =12|PF 1||PF 2|sin θ=c |y 0|=sin θ1+cos θb 2=b 2tan θ2,当|y 0|=b ,即点P 为短轴端点时,S 取得最大值,最大值为bc ;③△PF 1F 2的周长为2(a +c ).98.AB 为过F 的焦点弦,则1FA +1FB =2ab 299.已知椭圆Γ:x 2a 2+y 2b2=1a >b >0 的左右焦点分别为F 1、F 2.椭圆Γ在点P 处的切线为l ,Q ∈l .且满足∠AQF1=θ0<θ<π2,则点Q在以C0,±cθcot为圆心,a θsin为半径的圆上.六、双曲线的二级结论1.PF1-PF2=2a2.标准方程x2a2-y2b2=13.PF1d1=e>14.点P处的切线PT平分△PF1F2在点P处的内角.5.PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以实轴为直径的圆,除去实轴的两个端点.6.以焦点弦PQ为直径的圆必与对应准线相交.7.以焦点半径PF1为直径的圆必与以实轴为直径的圆外切.8.设P为双曲线上一点,则△PF1F2的内切圆必切于与P在同侧的顶点.9.双曲线x2a2-y2b2=1(a>0,b>0)的两个顶点为A1(-a,0),A2(a,0),与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹方程是x2a2+y2b2=1.10.若点P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)上,则在点P0处的切线方程是x0xa2-y0yb2=1.11.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)外,则过P0作双曲线的两条切线切点为P1、P2,则切点弦P1P2的直线方程是x0xa2-y0yb2=1.12.若AB是双曲线x2a2-y2b2=1(a>0,b>0)的不平行于对称轴且过原点的弦,M为AB的中点,则k OM⋅k AB=b2a2.13.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)内,则被P0所平分的中点弦的方程是x0xa2-y0yb2=x02a2-y02 b2 .14.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)内,则过Po的弦中点的轨迹方程是x2a2-y2b2=x0xa2-y0y b2.15.若PQ是双曲线x2a2-y2b2=1(b>a>0)上对中心张直角的弦,则1r12+1r22=1a2-1b2(r1=|OP|,r2=|OQ|).16.若双曲线x2a2-y2b2=1(b>a>0)上中心张直角的弦L所在直线方程为Ax+By=1(AB≠0),则(1)1a2-1 b2=A2+B2;(2)L=2a4A2+b4B2|a2A2-b2B2|.17.给定双曲线C1:b2x2-a2y2=a2b2(a>b>0),C2:b2x2-a2y2=a2+b2a2-b2ab2,则(i)对C1上任意给定的点P(x0,y0),它的任一直角弦必须经过C2上一定点M a2+b2a2-b2x0,-a2+b2a2-b2y0. (ii)对C2上任一点P (x0 ,y0 )在C1上存在唯一的点M ,使得M 的任一直角弦都经过P 点.18.设P(x0,y0)为双曲线x2a2-y2b2=1(a>0,b>0)上一点,P1P2为曲线C的动弦,且弦PP1,PP2斜率存在,记为k1,k2,则直线P1P2通过定点M(mx0,-my0)(m≠1)的充要条件是k1⋅k2=1+m1-m⋅b2a2.19.过双曲线x2a2-y2b2=1(a>0,b>o)上任一点A(x0,y0)任意作两条倾斜角互补的直线交双曲线于B,C两点,则直线BC有定向且k BC=-b2x0a2y0(常数).20.双曲线x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,点P为双曲线上任意一点∠F1PF2=γ,则双曲线的焦点角形的面积为S△F1PF2=b2cotγ2=b2γ2tan,P±ac c2+b2cot2γ2,±b2c cotγ2.21.若P为双曲线x2a2-y2b2=1(a>0,b>0)右(或左)支上除顶点外的任一点,F1,F2是焦点,∠PF1F2=α,∠PF2F1=β,则c-ac+a=tan α2cotβ2(或c-ac+a=tanβ2cotα2).22.双曲线x2a2-y2b2=1(a>0,b>o)的焦半径公式:F1(-c,0),F2(c,0)当M(x0,y0)在右支上时,|MF1|=ex0+a,|MF2|=ex0-a.当M(x0,y0)在左支上时,|MF1|=-ex0-a,|MF2|=-ex0+a.23.若双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,左准线为L,则当1<e≤2+1时,可在双曲线上求一点P,使得PF1是P到对应准线距离d1与PF2的比例中项.24.P为双曲线x2a2-y2b2=1(a>0,b>0)上任一点,F1,F2为二焦点,A为双曲线左支内一定点,则|AF2|-2a≤|PA|+|PF1|,当且仅当A,F2,P三点共线且P在左支时,等号成立.25.双曲线x2a2-y2b2=1(a>0,b>0)上存在两点关于直线l:y=k(x-x0)对称的充要条件是x02>(a2+b2)2 a2-b2k2k≠0且k≠±a b .26.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P是双曲线x=a secϕy=b tanϕ(a>0,b>0)上一点,则点P对双曲线两焦点张直角的充要条件是e2=11-tan2ϕ.29.设A,B为双曲线x2a2-y2b2=k(a>0,b>0,k>0,k≠1)上两点,其直线AB与双曲线x2a2-y2b2=1相交于P,Q,则AP=BQ.30.在双曲线x2a2-y2b2=1中,定长为2m(m>0)的弦中点轨迹方程为m2=1-x2a2-y2b2a2cosh2t+b2sinh2t,coth t=-aybx,x=0时t=0,弦两端点在两支上x2a2-y2b2-1a2sinh2t+b2cosh2t,coth t=-bxay,y=0时t=0,弦两端点在同支上31.设S为双曲线x2a2-y2b2=1(a>0,b>0)的通径,定长线段L的两端点A,B在双曲线右支上移动,记|AB|=l,M(x0,y0)是AB中点,则当l≥ΦS时,有(x0)min=a2c+l2e c2=a2+b2,e=c a;当l<ΦS时,有(x0)min=a2b4b2+l2.32.双曲线x2a2-y2b2=1(a>0,b>0)与直线Ax+By+C=0有公共点的充要条件是A2a2-B2b2≤C2.33.双曲线(x-x0)2a2-(y-y0)2b2=1(a>0,b>0)与直线Ax+By+C=0有公共点的充要条件是A2a2-B2b2≤(Ax0+By0+C)2.34.设双曲线x2a2-y2b2=1(a>0,b>0)的两个焦点为F1、F2,P(异于长轴端点)为双曲线上任意一点,在△PF1F2中,记∠F1PF2=α,∠PF1F2=β,∠F1F2P=γ,则有sinα±(sinγ-sinβ)=c a=e.35.经过双曲线x2a2-y2b2=1(a>0,b>0)的实轴的两端点A1和A2的切线,与双曲线上任一点的切线相交于P1和P2,则|P1A1|⋅|P2A2|=b2.36.已知双曲线x2a2-y2b2=1(b>a>0),O为坐标原点,P、Q为双曲线上两动点,且OP⊥OQ.(1)1|OP|2+1 |OQ|2=1a2-1b2;(2)|OP|2+|OQ|2的最小值为4a2b2b2-a2;(3)SΔOPQ的最小值是a2b2b2-a2.37.MN是经过双曲线x2a2-y2b2=1(a>0,b>0)过焦点的任一弦(交于两支),若AB是经过双曲线中心O且平行于MN的弦,则|AB|2=2a|MN|.38.MN是经过双曲线x2a2-y2b2=1(a>b>0)焦点的任一弦(交于同支),若过双曲线中心O的半弦OP⊥。

圆锥曲线知识点总结

圆锥曲线知识点总结

圆锥曲线知识点总结___________________________________1、圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段F F,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|F F|,定义中的“绝对值”与<|F F|不可忽视。

若=|F F|,则轨迹是以F,F为端点的两条射线,若﹥|F F|,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率。

圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。

Attention:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F,F的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,最大,,在双曲线中,最大,。

4.圆锥曲线的几何性质:(1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;④准线:两条准线;⑤离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。

(2)(2)双曲线(以()为例):①范围:或;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2,虚轴长为2,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;④准线:两条准线;⑤离心率:,双曲线,等轴双曲线,越小,开口越小,越大,开口越大;⑥两条渐近线:。

(3)抛物线(以为例):①范围:;②焦点:一个焦点,其中的几何意义是:焦点到准线的距离;③对称性:一条对称轴,没有对称中心,只有一个顶点(0,0);④准线:一条准线;⑤离心率:,抛物线。

圆锥曲线复习课市公开课金奖市赛课一等奖课件

圆锥曲线复习课市公开课金奖市赛课一等奖课件
(2)点A5,0到双曲线上动点 P的距离的
最小值为 6.
第44页
B两点, (1)若以AB为直径的圆过原点,求 实数a的值 (2)是否存在这样的实数 a,使双曲线上能找
到两点M,N关于直线y ax 1对称?若存在, 求a的范围.
第41页
例9、抛物线y2 4ax与圆( x a r )2 y2 r 2
(2a r )的上半部分交于 M , N两点,抛物线 2
使 BN BM ?若存在,求k的取值范围;若不存在 , 说明理由.
第39页
例7 、椭圆
x2 a2
y2 b2
1(a
b
0)与x轴,y轴正方向
交于A,B两点, 在劣弧AB上取一点 C , 使四边形
OACB的面积最大 .求最大面积 .
y
B
C
o
Ax
第40页
例8、已知直线y ax 1与双曲线3x2 y2 1交于A,
y
4.焦点弦性质 A1
A(x1,y1)
(1)x1 x2
p2 4
(2) y1 y2 p2
2 11
O
(3)
p mn
(设AF=m, BF=n)
B1
(4) A、O、B1
三点共线
x
p
2
y2 2 px( p 0)
F( P ,0)
x
2
B(x2,y2)
第25页
y
A1
(5) 以AB为直径圆与 准线相切
x2 a2
y2 b2
1
消元
(b2 a2k 2 ) x2 2kma 2 x a2m 2 a2b2 0
b2 a2k2 0
a2m2 a2b2 x 2kma 2
一交点

圆锥曲线公式结论

圆锥曲线公式结论
一、椭圆
1.椭圆 (a>b>0)的参数方程是 .
2.椭圆 (a>b>0)的焦半径公式
(1)|PF1|a+ex0,|PF2|=a-ex0.
(2)|P1F2| ,|P2F2|= ,|P1P2|=
3.焦点三角形:
P为椭圆 (a>b>0)上一点,三角形的面积S=b2tan .
5.椭圆的内外部
(1)点P(x0,y0)在椭圆 (a>b>0)的内部 (a>b>0);
二、双曲线
1.双曲线 (a>0,b>0)的焦半径公式
左半支:|PF1|=-ex0-a,|PF2|=-ex0+a(左减右加)
右半支:|PF1|=-ex0+a,|PF2|=-ex0-a(左加右减)
2.双曲线的内外部
(1)点P(x0,y0)在双曲线 (a>0,b>0)的内部
(2)点P(x0,y0)在双曲线 (a>0,b>0)的外部
3.AB为抛物线过焦点的弦,AB的中点P(x0,y0),
则|AB|=(x1+ )+(x2+ )=x1+x2+p=2x0+p.
4.过焦点垂直于x轴的焦点弦|AB|=2p.
5.P(x0,y0)是抛物线上的一点,过点P的切线交准线与M,做PN⊥l,则有∠PCN=90°,|MN|=|MC|.
6.焦点弦两端交于准线上一点,且两条切线相互垂直;
(2)点P(x0,y0)在椭圆 (a>b>0)的外部 (a>b>0);
6.椭圆的切线方程
(1)椭圆 (a>b>0)上一点P(x0,y0)处的切线方程是
(a>b>0)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线焦点三角形和焦点弦性质的探讨数学系20021111班朱家庆指导教师向长福摘要:圆锥曲线是现行高中解析几何学的重要内容之一,且圆锥曲线知识既是高中数学的重点,又是难点,因而成为高考的重点考查内容。

而圆锥曲线的主要内容之一是过圆锥曲线焦点的弦或直线的有关问题,学生在求解此类题目时,常常感到无从下手。

为解除这种困惑,在全面研究了高中数学教材及要求的基础上,通过分析、推导的方法,文章对椭圆焦点三角形的性质,双曲线焦点三角形的性质及圆锥曲线焦点弦的性质进行了研究和探讨,得出圆锥曲线焦点三角形的五条基本性质,以便使学生对相关知识有一个更全面、更系统、更深刻的了解,从而进一步提高运用这些性质去解决相关题目的数学能力和应用能力。

关键词:圆锥曲线;焦点三角形;性质;焦点On the Properties of Conic Focal Point Triangle and Focal Point String Abstract: The cone curve, as an important part of content of analytical geometry in present high school, is rated not only as a key point but also a difficulty in mathematics teaching in senior high school, and so it becomes a key examination point in the college entrance examination. The most important content of cone curve is the problems concerning the string or straight line which passes through the conic focal point. Faced with this kind of questions, some students do not always know what to begin with. To relieve their confusion, this paper, on the basis of a thorough study of the mathematical teaching material for high schools and by means of analysis and deduction, probes into the nature of ellipse focal point triangle, the nature of hyperbolic curve focal point triangle and the nature of conic focal point string, and points out five basic properties of the conic focal point triangle. These properties can help students further understand the conic knowledge systematically and improve their mathematics competence and application ability in solving mathematical problems.Key words: cone curve; focal point triangle; properties; focal point1引言圆锥曲线是现行高中解析几何学的重要内容之一,且圆锥曲线知识既是高中数学的重点,又是难点.而圆锥曲线的主要内容之一是过圆锥曲线焦点的弦或直线的相关问题.在求解这类问题时,许多学生常常感到束手无策,部分学生由于计算量大的繁锁,产生厌学数学的情绪.为了解除这种困惑,培养或提高学生学习数学的兴趣,让学生掌握一定的解题方法或数学思想是很必要的.在数学中,我们常常是利用性质去讨论问题,因此,文章首先探讨圆锥曲线焦点三角形及焦点弦的性质,然后再讨论这些性质的应用.圆锥曲线焦点三角形及焦点弦具有不少性质,许多教师或专家已做过研究.文献[2]主要是对椭圆焦点三角形的性质进行研究,而文献[7]主要是对双曲线焦点三角形的性质进行研究.文献[2]、[7]都是孤立地进行探讨,缺乏系统性,显得单一.文献[1]、[10]主要围绕焦点三角形的内切圆将椭圆焦点三角形与双曲线焦点三角形的性质结合起来探讨,弥补了文献[2]、[7]的不足之处.文献[9]主要是探讨圆锥曲线焦点弦的几何特征.作为一个有机整体的圆锥曲线焦点三角形,探求其所具有的共同特征的性质应该是一件非常有意义的事情.在对文献进行分析、研究的基础上,文章主要是结合高中数学课程的要求,对椭圆焦点三角形的性质,双曲线焦点三角形的性质及圆锥曲线焦点弦的性质作一定的探讨,将其系统地归纳集中或进行了一定的扩展,让学生对其有一个更全面、更深刻的了解,从而进一步提高学生运用这些性质去解决相关问题的数学素质和应用能力.2圆锥曲线焦点三角形的定义及性质圆锥曲线上一点与其两焦点所构成的三角形叫做圆锥曲线的焦点三角形[1].2.1 椭圆焦点三角形的性质以椭圆)0(12222>>=+b a b y a x 的两个焦点1F ,2F 及椭圆上任意一点P (除长轴上两个端点外)为顶点的21PF F ∆,叫做椭圆的焦点三角形[2].设21PF F ∠=θ,21F PF ∠=α,12F PF ∠=β,椭圆的离心率为e 性质1:θcos 12221+=⋅b PF PF .证明:在21PF F ∆中,由余弦定理,有221212221cos 2F F PF PF PF PF =⋅⋅-+θ a PF PF 221=+ 221222142a PF PF PF PF=⋅++∴2212124cos 224c PF PF PF PF a =⋅⋅-⋅-∴θ 整理,得 .cos 12221θ+=⋅b PF PF 例1 如图:1F 、2F 分别为椭圆)0(12222>>=+b a by a x 的左、右焦点,点P 在椭圆上,2POF ∆是面积为1的正三角形,求2b 的值.分析:此题按常规思路是从12=∆POF S 入手,即=S 260sin 21PO OF =⋅︒求得.3342=c 所以点P 的坐标分别为2c ,c 23.由于点P ⎪⎩=+222ac b解此方程组就可得到2b 的值.但这涉及到解二元二次方程组,计算量很大,非常麻烦.若用性质1求解可使运算得以简化.解:连接,1PF 则︒=∠9021PF F , 有21221PF F POF S S ∆∆=︒⋅⋅⋅=∴90sin 2121121PF PF .290sin 90cos 1241122=∴⋅+⋅=∴︒︒b b 性质2:.2tan221θ⋅=∆b S PF F证明:由性质1得θsin 212121⋅⋅⋅=∆PF PF S PF F .2tan cos 1sin sin cos 1221222θθθθθ⋅=+⋅=⋅+⋅=b b b 例2 已知1F 、2F 是椭圆1256422=+y x 的两个焦点,P 是椭圆上任一点,且321π=∠PF F ,求21PF F ∆的面积. 分析:如果设P 点的坐标为),(y x ,由P 点在已知椭圆上且321π=∠PF F ,利用这两个条件,列出关于x ,y 的两个方程,解出x ,y .再求21PF F ∆的面积,这种方法,运算量大且过程繁杂,须另寻捷径.知道321π=∠PF F ,可以直接利用性质2求解,使运算量简化.解: 2tan221θ⋅=∆b S PF F .33256tan2521=⋅=∴∆πPF F S 例3:已知点),(00y x P )0(0>y 是椭圆)0(12222>>=+b a by a x 上任一点,且θ=∠21PF F .求证:2tan 20θ⋅=c b y . 证明: 0212221211y c h F F S PF F ⋅⋅=⋅⋅=∆ 2tan 221θ⋅=∆b S PF F =⋅⋅∴0221y c 2tan 2θ⋅b00>y .2tan 20θ⋅=∴c b y 例4:点P 是椭圆14522=+y x 上一点,以点P 以及焦点1F 、2F 为顶点的三角形的面积等于1,求点P 的坐标.分析:要求点P 的坐标,不妨设P 点坐标为),(00y x ,由P 点在已知椭圆上和21PF F ∆的面积等于1,可列两个方程,解方程可得点P 的坐标.此题也可在例3的基础上进行求解[3].解:设P 点坐标为),(00y x ,则有c c S c b y PF F 12tan 2120==⋅=∆θ 122=-=b a c .1100±=∴=∴y y 把10±=y 代入14522=+y x 得.2150±=x .1215121512151215),),(,),(,),(,坐标为(点----∴P 性质3 :)12arccos(22-≤<ab O θ.证明:由正弦定理,有θαβsin sin sin 2121F F PF PF ==)](180sin[sin sin sin sin sin 2121βαβαθβα+-+=+=+∴F F PF PF 2cos 2sin 22cos2sin2)sin(sin sin βαβαβαβαβαβα+⋅+⋅-+⋅=++=2sin12cos 12cos 2cosθβαβαβα=+≤+-=θcos 12-= a PF PF 221=+ )(44222221b a c F F-==θθcos 12cos 122222222-≤-∴-≤-∴b a a b a a即 2222cos a a b -≥θ. 因为πθ<<0,所以 2222arccos a a b -≤θ.当点P 在长轴上的端点时,0=θ,这时,21PF F ∆不存在,因此,)12arccos(022-≤<ab θ[4].性质4:离心率 .2cos2cosβαβα-+=e 证明:由正弦定理,有)sin(sin sin sin 212121βαθαβ+===F F F F PF PF 2cos 2sin 22cos 2sin2sin sin )sin(2121βαβαβαβαβαβα-⋅++⋅+=++=+∴PF PF F F .2cos2cosβαβα-+==∴e ac 例5(2004年福建高考题)已知1F 、2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若2ABF ∆是正三角形,求这个椭圆的离心率[5].分析:由2ABF ∆是正三角形可知122AF AF =,根据椭圆的第一定义可求得a AF 2322⋅=. 再由22130cos AF F F =︒可求得离心率e.若用性质4解:根据已知条件有.30,902121︒︒=∠=∠A F F F AF (如图).3330cos 60cos 23090cos23090cos2cos 2cos ==-+=-+=∴︒︒︒︒︒︒βαβαe 性质5:ee+-=⋅112tan2tanβα. 证明:由正弦定理,有θαβsin sin sin 2121F F PF PF == βαβαβαθsin sin )sin(sin sin sin 2121++=+=+∴PF PF F F =++==∴βαβαsin sin )sin(a c e 2cos2sin 22cos2sin2βαβαβαβα-+++ 2sin 2sin 2cos 2cos 2sin2sin 2cos 2cos 2cos 2cosβαβαβαβαβαβα⋅+⋅⋅-⋅=-+=2tan2tan 12tan2tan1βαβα⋅+⋅-=e e +-=⋅∴112tan 2tan βα.例6:如图,P 是椭圆12222=+by a x 上一点,1F 、2F 是焦点,已知,2,1221αα=∠=∠F PF F PF 求椭圆的离心率[6].分析:知道,2,1221αα=∠=∠F PF F PF 我们可以直接利用性质5解题.解:由性质5有e e ee+-=⋅=⋅∴+-=⋅11cos 2cos 2sin cos sin 2cos 2sin1122tan2tan22αααααααααee+-=+-∴11cos cos cos 122ααα 化简,得.1cos 2-=αe2.2 双曲线焦点三角形的性质以双曲线)0,0(12222>>=-b a by a x 的两个焦点1F 、2F 及双曲线上任意一点P (除实轴上两个端点外)为顶点的21PF F ∆,叫做双曲线的焦点三角形[7].例1:设1F 和2F 为双曲线191622=-y x 的两个焦点,点P 在双曲线上且满足︒=∠9021PF F ,求21PF F ∆的面积. 解: 1890cos 192cos 12221=-⨯=-=⋅︒θb PF PF 990sin 2121=⋅⋅⋅=∴︒PF PF S . 性质2:2cot221θ⋅=∆b S PF F .证明:由性质1得θsin 212121⋅⋅⋅=∆PF PF S PF F θθsin cos 12212⋅-⋅=b θθcos 1sin 2-⋅=b θθθsin cos 12tan-=θθθcos 1sin 2cot -=∴ 2cot 221θ⋅=∴∆b S PF F .例2:已知点1F (0,2-)、2F (0,2),动点P 满足212=-PF PF .当点P 的纵坐标是21时, 若令θ=∠21PF F ,求2cotθ的值.解:由双曲线的第一定义可知点P 的轨迹方程为).0(122<=-x y x 则2,122==c b .所以222122121=⋅⋅=∆c S PF F.222cot222cot2=∴=⋅∴θθb例3:设点)0)(,(000<y y x P 是双曲线)0,0(12222>>=-b a by a x 上任一点,且,21θ=∠PF F求证:.2cot 20θ⋅-=c b y 分析:此题根据已知条件列方程求解,计算量大且过程繁琐,应另外寻求解法,由于0y 和21PF F ∆的高相等,不妨从21PF F ∆的面积入手进行求解.证明:0212121y F F S PF F ⋅⋅=∆ 2cot 221θ⋅=∆b S PF F 2cot 22120θ⋅=⋅⋅∴b y c 00<y .2cot 20θ⋅-=∴c b y性质3:离心率 2sin2sinαβαβ-+=e (βα≠).证明:由正弦定理,有)sin(sin sin sin 212121βαθαβ+===F F F F PF PF αβsin sin ≠ .)sin(sin sin 2121βααβ+=--∴F F PF PF即=-⋅+2sin 2cosαβαβa2cos 2sinαβαβ+⋅+c又 02cos,≠+<+<βαπβαo 2sin2sinαβαβ-+==∴ac e .例4:(2002年上海高考题) 如图,已知1F 、2F 为双曲线)0,0(12222>>=-b a by a x 的焦点,过2F 作垂直于x 轴的直线交双曲线于点P ,且︒=∠3021F PF .求双曲线的渐近线方程.分析:由于双曲线的渐近线方程为x aby ±=,若能求出a ,b 的值,渐近线方程就可确定.在此题中,我们不易求出a ,b 的值,我们将x ab y ±=作一下变形,2222222222)1(x e x a a c x a b y ⋅-=⋅-=⋅=,若能求出e 的值,则渐近线方程就求出.知道︒=∠3021F PF ,︒=∠9012F PF ,利用性质4解:330sin 60sin 2sin 2sin==-+=︒︒αβαβe.2222x y x y ±=∴=∴ 性质4 :(1)当P 点在双曲线右支上时 .112cot 2tan +-=⋅e e βα(2)当P 点在双曲线左支上时 .112cot 2tan +-=⋅e e αβ证明:(1)当P 点在双曲线右支上时.221a PF PF =- 由正弦定理,有βsin 1PF =)sin(sin sin 22)sin(sin sin sin sin sin 2121βααββααβθαβ+-=∴+-=-=-∴c a F F PF PF =-+==∴αββαsin sin )sin(a c e 2sin2cos 22cos2sin2αβαββαβα-+++ 2sin 2cos 2cos 2sin 2sin2cos2cos2sin2sin 2sinαβαββαβααββα⋅-⋅⋅+⋅=-+=2cot2tan 12cot2tan1βαβα⋅-⋅+= .112cot 2tan +-=⋅∴e e βα.13+=∴e 3圆锥曲线焦点弦的性质性质1:过椭圆一个焦点F 的直线与椭圆交于点P 、Q ,1A 、2A 为椭圆长轴上的顶点,P A 1和Q A 2交于点N ,P A 2和Q A 1交于点M ,则NF MF ⊥.证明:如图,设椭圆的方程为)0(12222>>=+b a by a x ,则可设点F 的坐标为),0,(c -点P 、Q 的坐标分别为)sin ,cos (ααb a ,)sin ,cos (θθb a ,则P A 1的方程为 ).()cos 1(sin a x a b y +⋅+=αα①Q A 2的方程为).()1(cos sin a x a b y -⋅-=θθ ② 由①②得2cos2cossin sin )sin()]sin(sin [sin θαθαθαθαθαθα-+⋅=---+--=a a x ③由于点P 、F 、Q 共线,则有ca b c a b +=+θθααcos sin cos sin 化简,得)sin (sin )sin(αθθα-=-c a2sin2sin2cos22cos2sin 2≠--⋅+⋅=-⋅-⋅∴αθαθαθθαθα c a c a -=-+∴2cos2cosθαθα④ 将④式代入③式,得c a x 2-=所以,点N 的坐标为).)1(cos )(sin ,(2-+--θθc c a b c a 同理,点M 的坐标为))1(cos )(sin ,(2+---θθc c a b c a [9].∴.1)()1(cos sin )(4422222222-=-=-⋅--=⋅bb c ca cbc a K K NFMF θθ 即 .NF MF ⊥ 性质2:过双曲线一个焦点F 的直线与双曲线交于P 、Q 两点,1A 、2A 为双曲线实轴上的顶点,P A 1和Q A 2相交于点N ,Q A 1和P A 2相交于点M ,则NF MF ⊥. 证明与性质1的证明类似,从略.性质3:过抛物线的焦点F 线交AQ 于点M ,过Q 证明:设抛物线方程为)0(22>=p py x ,则点P 的坐标可分别设为)2,2(211pt pt ,2,2(2pt 因为P 、F 、Q 三点共线,所以121222pt p pt =-化简,得 1421-=t t . 又PA 的方程为 t y 1=由①②得.2221p t pt y -== 即 点N 的坐标为)2,2(2pt -. 同理点M 的坐标为)2,2(1pt -[10]. .12221-=-⋅-=⋅∴pt p pt p K K NF MF 即 .NF MF ⊥4总结文章主要是在对文献进行分析、研究的基础上,结合高中数学课程的要求,将具有共同特征的椭圆焦点三角形与双曲线焦点三角形的性质进行系统地归纳集中,得出五条基本性质,并采用初等方法进行了证明,对圆锥曲线焦点弦的性质进行有机统一,让学生对其有一个更全面、更深刻的了解,从而进一步提高学生运用这些性质去解决相关问题的数学素质和应用能力. 参考文献[1]唐永金.圆锥曲线焦点三角形的性质探微[J].数学通报,2000,(9):24~25. [2]熊光汉.椭圆焦点三角形的若干性质[J].数学通报,2004,(5):24~25.[3]人民教育出版社中学数学室.全日制普通高级中学教科书(必修)数学第二册(上)[M],北京:人民教育出版社,2004.[4]李迪淼.关于椭圆的十个最值问题[J].数学通报,2002,(4):24~25.[5]任志鸿.十年高考分类解析与应试策略(数学)[M].海南:南方出版社,2005.[6]薛金星.中学教材全解高二数学(上)[M].陕西:陕西人民教育出版社,2003.[7]徐希扬.双曲线焦点三角形的几个性质[J].数学通报,2002,(7):27.[8]潘际栋.黄冈新考典十年高考分类解析及命题趋势[M].吉林:延边大学出版社,2005.[9]李康海.圆锥曲线焦点弦的一个有趣性质[J]. 数学通报,2001,(5):23.[10]毛美生范慧珍.圆锥曲线的一组相关性质[J].数学通报,2002,(12):27~28.指导教师评语:圆锥曲线是高中解析几何的重要内容,现行高中教材仅介绍了圆锥曲线的一些基本性质,对解决较复杂的圆锥曲线问题就显得无能为力了,而在其他一些的文献中,虽对有关内容也有探讨,但只是停留在解题的层面上,不系统更未形成独立的体系。

相关文档
最新文档