开关电源的常用软启动电路
开关电源常用的几种保护电路
开关电源常用的几种保护电路评价开关电源的质量指标应该是以安全性、可靠性为第一原则。
在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过热、过流、短路、缺相等保护电路。
开关电源常用的几种保护电路如下:1、防浪涌软启动电路开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。
在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。
上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。
图1是采用晶闸管V和限流电阻R1组成的防浪涌电流电路。
在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。
当电容器C充电到约80%额定电压时,逆变器正常工作。
经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源处于正常运行状态。
图1 采用晶闸管和限流电阻组成的软启动电路图2是采用继电器K1和限流电阻R1构成的防浪涌电流电路。
电源接通瞬间,输入电压经整流(D1~D4)和限流电阻R1对滤波电容器C1充电,防止接通瞬间的浪涌电流,同时辅助电源Vcc经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的电压达到继电器K1的动作电压时,K1动作,其触点K1.1闭合而旁路限流电阻R1,电源进入正常运行状态。
限流的延迟时间取决于时间常(R2C2),通常选取为0.3~0.5s。
为了提高延迟时间的准确性及防止继电器动作抖动振荡,延迟电路可采用图3所示电路替代RC延迟电路。
图2 采用继电器K1和限流电阻构成的软启动电路图3 替代RC的延迟电路2、过压、欠压及过热保护电路进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。
开关电源过欠压、 过流、 过温、 软启动详解!
开关电源过欠压、 过流、 过温、 软启动详解!
圆石矗>
夕��
ry =,· ·•输出过压保护电路
当用户在使用电源模块时,可能会由于某种原因,造成模块输出电压升高,为了保护用户电路板上的器件不被损坏,当模块的输出电压高于一定值时,模块必须封锁脉冲,阻止输出电压的继续上升。
Vcc1
Vo Vcc1 R330 51K D317 1N4148
R340 3K C315
Q_ 1u
R341 8.2K R334 20K-
R338 3K
D319 1N4148 Vo: 输出电压正极Vc c1: 辅助电源Co ntr ol: 控制信号231扣c 0 丁—寸
R343 100K
0321 1N4148 control
C316 0.1u 图1直流电压输出过压保护电路原理图
D320产生一个5.1V 电压基准送至运放U301反相输入端,R330、R334、R336用于检测输出电压检测电压值送至运放U 301同相输入端。
图11综合电路3
VIN R40 \文
100K R44 3.3k R43
R42 10K 欠压,过温,CNT保护综合电路举例(4)Vref OC207 J �RT1 i PT028 斗;s o R 35R39 ! 10K t
2.55K I C27 0.01U
二�.:i R41 27K C28 0.1U VDD f _= 10K vc `' Q10鲁 1 �I 1 I C30j_-;-�R181K 唱,:-
帘。
软启动电路及原理
软启动电路及原理一、软起动主电路图晶闸管降压软起动主电路如图所示,其中M是异步电动机,晶闸管KPl~KP6组成移相控制的三相交流调压电路,利用品闸管进行调压,其输出电压大小由晶闸管的导通角决定,而晶闸管的导通角又与其触发角有关;触发角越小,输出越大;因此,只需在电动机起动过程中通过控制晶闸管触发角的大小,不断改变晶闸管的导通角来改变输出电压波形,从而改变输出电压的有效值;随着输出电压的增加,电机转速不断上升;而电机定子电流的大小J下比于定子端电压,起动仞期,电机端电压较小,冲击电流电小,随着电机定子端电压的不断增加,定子电流也不断增加,最终达到额定转速,实现了电机的软起动;在每一瞬间,在三相交流调压电路中,至少要有两个器件导通,它们应处于不同的相,其中至少有一个是流向负载端,同时有另一个流向电源;在电路的正常工作状态下,6个晶闸管按照KPI、K_P2、KP3、KP4、KP5和KP6的顺序循环触发导通,而且相邻的两个晶闸管触发时刻之间相差600电角度;三相调压起动其实质是降压起动,与传统降压起动不同之处是无机械触点,起动电压和起动电流任意可调㈣;图中F为快速熔断器,RZ为压敏电阻,KP为晶闸管,另外还有并联于晶闸管两端的RC保护电路;理论上讲,本起动器可起动各种容量的三相异步电动机,针对不同的容量,软件控制思想均可不变,只要重新设计一下主电路即可,其中各元件的选择取决于被控电动机的容量;主电路图二、软启动触发电路如图,出发电路主要有监测、移相控制、脉冲串产生电路、触发驱动电路等组成;同步信号取于电源输入端R 、S 、T,即u i 、w V i v 、信号,三相交流电源经电阻2423987R R R R R 、与、、25R 、分压后,分别送往电压比较器U7A 、U7B 、U7C 反相输入端;三个电压比较器的同相端经29R 接在作星形连接252423R R 、、R 的公共端上,相当于接至三相交流电的中相点;各相交流电正向过零点时,对应的比较器输出低电平,驱动光电耦合器内发光二极管发光,光耦内的光电三极管导通,将低电平有效的同步信号送往单片机的P1.0、P1.1、P1.2输入端;而当交流电反相过零时,对应的比较器输出高电平送往单片机;同步波形如图 所示;由于比较器为单电源供电,故在其同相端加上了由稳压管2VZ 提供的5.1V 直流电压,建立了正常的工作点;采用比较器获取同步信号的方法具有很高的过零检测灵敏度;移相控制信号由80196看出KC单片机;单片机根据软启动器设置的启动方式,计算出移相控制角α值,在对应的相电源电压过零时,延迟α角由高速输出口HSO0、HSO1、HSO2、HSO3、HSO4、HSO5送出宽度为5ms的方波作为与非门U8A、U8B、U8C、U8D、U9A、U9D的门控信号;。
一种采用电压补偿技术的DCDC开关电源软启动电路
开始给电容 9 在9 $ E 3D 1* 0 % 充 电$ %的电压充到 % 之前 $ 因为 , %的输 出 B % , . C%就 一 直 为 高 电 平 + . 的反转阈值是 % 且4 和2 E 3D$ ) 2 5 * 6 7可以保证 9 % 的电压可以充到 % 高电平使过流比较器 E 3D 以上 : $ 另 一 方 面$ < = >?开 始 工 作 ( 1*) 1%) 1* 6和 1 * *也 导 通$ 电 平 移 位 电 路 开 始 工 作& 比 较 器 < = >?的 特 点 是$ 除了受使能信号 B 还受时钟信号 C%控 制 之 外 $ 比较器开始工作 & 当 F G H 的调制 $ B C%为高电平时 $
法的不足之处是 4 当输出电压的阈值未达到时 4 发生
收稿日期 ! " # # $ % # & % # ’ ( 定稿日期 ! " # # $ % # ) % # ’
基金项目 ! 国家重点基础研究发展规划项目 * + , & -* # # # & ’ ) # / ."
万方数据
第 *期
王海永等 ’ 一种采用电压补偿技术的 M N F M F开关电源软启动电路
一种采用电压补偿技术的 1 3 2 1 2开关 电源软启动电路
王海永 4李永明 4陈弘毅
清华大学 * 微电子学研究所 4北京 $ # # # / 0 -
摘 要 ! 提出了一种采用 5 6 7 89:工艺和电压补偿技术实现的软启动控制电路 ; 该电路消除了 浪涌电流现象 4 避免了开关电源重启动 ;<: 对于一个输入电压为 $ 输出电压 #@A = > 7 ?模拟表明 4 为& 负载电流为 & 利用该软启动电路 4 电感电流和输 B &@ 的降压型开关电源系统 4 B &C 的条件下 4 出电压近似分别以 & 和 速度平稳上升 表明该软启动电路的控制能力很强 B &DC3 B )D@3 4 ; E F " E F 此控制思想和结构适合各种 G 3 7 G 7开关电源的软启动电路设计 ; 关键词 ! 软启动电路 (G 3 7 G 7开关电源 (电压补偿技术 中图分类号 ! H 文献标识码 ! C & $ I0
24V开关电源的几种保护电路
24V开关电源常用的几种保护电路1.防浪涌软启动电路24V开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。
在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。
上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。
2.过压、欠压及过热保护电路进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。
因此对输入电源的上限和下限要有所限制,为此采用过压、欠压保护以提高电源的可靠性和安全性。
温度是影响电源设备可靠性的最重要因素。
根据有关资料分析表明,电子元器件温度每升高2℃,可靠性下降10%,温升50℃时的工作寿命只有温升25℃时的1/6,为了避免功率器件过热造成损坏,在开关电源中亦需要设置过热保护电路。
3.缺相保护电路由于电网自身原因或电源输入接线不可靠,24V开关电源有时会出现缺相运行的情况,且掉相运行不易被及时发现。
当电源处于缺相运行时,整流桥某一臂无电流,而其它臂会严重过流造成损坏,同时使逆变器工作出现异常,因此必须对缺相进行保护。
检测电网缺相通常采用电流互感器或电子缺相检测电路。
由于电流互感器检测成本高、体积大,故开关电源中一般采用电子缺相保护电路。
图5是一个简单的电子缺相保护电路。
三相平衡时,R1~R3结点H电位很低,光耦合输出近似为零电平。
当缺相时,H点电位抬高,光耦输出高电平,经比较器进行比较,输出低电平,封锁驱动信号。
比较器的基准可调,以便调节缺相动作阈值。
该缺相保护适用于三相四线制,而不适用于三相三线制。
电路稍加变动,亦可用高电平封锁PWM信号。
开关电源软启动电路设计
因 均会 造 成 开 关 电 源 无 法 正 常投 入 。 为 此 几 乎 所 有 的 开 关 电 源 在 其 输入 电路 设
置 的 防 止 冲 击 电 流 的 软 起 动 电 路 , 以 保
2 3 具 有 断 电检 测 的S R R . C — 电路
该 电 路 如 图4 示 。 它 是 图 3 改 进 型 所 的
逆 变 器 可 能还 处 于工 作 状 态 ,保 持 晶 闸 管 继 续 导通 ,此 时若 马 上 重 新 接 通 输 入
电 源 ,会 同样 起 不 到 防止 冲 击 电流 的 作
用。
成很 大 的 瞬时 冲 击 电流 如 图1 示 ,特 别 所 是 大功 率 开 关 电 源 ,其 输 入 采 用 较 大 容 量 的 滤 波 电 容 器 。 其 冲 击 电 流 可 达 1 0  ̄上 。在 电 源接 通 瞬 问如 此 大 的 冲 0 Av
VT1 止 ,反 相 器I 输 出 低 电 平 , 动 截 C2 ’起 定 时 电路 5 5 作 , 软 起 动 延 迟 时 间 由 时 5工
R2 并 接 于 继 电 器 K1 包 的 电 容 器 C2 对 线 充 电 , 当 C2 的 充 电 电 压 达 到 继 电 器 的 动 上
性 。 重新 恢 复 高 阻 需要 时 间 ,故 对 于 电
源 断 电后 又 需要 很 快接 通 的情 况 。有 时
起 不到 限流 作 用。
作 电压 时 ,K1 作 ,旁路 限流 电 阻R1 动 , 达到 瞬 时 防 冲 击 电 流的 作 用 。 通 常 在 电
源 接 通 之 后 , 继 电 器 K1 作 延 时 03 动 .~
05 , 否 则 限 流 电 阻R 1 通 流 时 间 长 会 .秒 因
软启动电路工作原理
软启动电路工作原理
软启动电路是一种用于电源启动过程中控制电流和电压上升斜率的电路。
它旨在避免启动电源时产生过大的电流冲击和电压波动,从而确保电路和设备的安全运行。
软启动电路通常由一个逐渐加大的电流源控制器和一个逐渐增加的电流稳压器组成。
在启动过程中,电流源控制器逐渐提供电流,而电流稳压器则逐渐增加电流的稳定性。
这样,电源输出的电流和电压可以在一个较短的时间内逐渐增加到额定水平,减少了电源启动过程中的冲击。
通过控制电流的上升斜率,软启动电路可以有效减少电源启动时的电流和电压冲击,从而保护电路和设备的元件不受损坏。
此外,软启动电路还可以减少电源启动时可能引起的电磁干扰,提高系统的可靠性和稳定性。
软启动电路广泛应用于各种电源系统,如直流电源、交流电源、变频器等,以提供安全可靠的启动过程。
开关电源的软起动电路
开关电源的软起动电路
在老的BJT工艺的如UCX84X系列是不带软起动的,需要外围配置。
但是因其成本低在工业领域还在大批量应用。
原因:启动时,最大占空比运行,容易引起超调,甚至过冲;
目的:控制PWM的占空比从小到大增长;
原理:利用Vcom脚被钳位,启动时环路不起作用来实现软起。
其在启动时,是以最大占空比进行运行,对应的输出电压的上升速度较快,容易引起超调,甚至过冲。
现在应用共集电极电路来控制UCX843的COMP的上升速率,以此来控制PWM的占空比,使占空比从小到大增长,直到COMP管脚电压不在被钳位。
调节COMP管脚的电路被称为软启动电路。
图中的虚线框内是软启动电路,三极管Q1与外围电路组成共集电极电路,共集电极电路的特点是:电压增益接近于1,所以,在三极管导通工作时,三极管的发射极的电压近似为基极的电压。
当开关电源输入给定电压后,软启动电路工作,输入电压通过分压电阻向电容Css充电,三极管的基极电压从0开始上升,上升的速率由充电电容Cs以及电阻Rss决定,相对应的三极管的发射极的电压同步增长。
UCX843的COMP管脚电压被钳位,使PWM波的占空比慢慢变大,此时环路PI调节器不起调节作用。
当COMP管脚的电压达到最大电压时,不在被钳位,三极管的基极电压增长到VBE+VCOMP 值时,三极管关闭,软启动电路工作完成。
但是,输入电压仍然给电容充电,直至电容电压趋于稳定值,此时环路的PI调节器开始工作,COMP管脚电压开始有PI调节器控制,电路进入正常运行状态。
-End-。
一种开关电源软启动电路及开关电源软启动方法
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号CN104883045A(43)申请公布日 2015.09.02(21)申请号CN201510282861.8(22)申请日2015.05.28(71)申请人株洲变流技术国家工程研究中心有限公司地址412001 湖南省株洲市石峰区时代路169号(72)发明人杨磊;曹洋;初蕊;徐振;王桂华;曾迪晖;陶洪亮;周成;彭勃;陈孟君(74)专利代理机构湖南兆弘专利事务所代理人周长清(51)Int.CI权利要求说明书说明书幅图(54)发明名称一种开关电源软启动电路及开关电源软启动方法(57)摘要本发明公开了一种开关电源软启动电路,该电路包括电流型PWM控制芯片和开关管,该控制芯片的Output端与开关管的栅极连接,该电路还包括由第一二极管V1、第二二极管V2、第一电阻R1和第一电容C1组成的软启动模块;第一二极管V1的负极与第二二极管V2的正极连接,正极与该控制芯片的Comp端连接;第二二极管V2的负极与芯片的Vref端连接;第一电阻R1的一端与第二二极管V2的负极连接,另一端与第二二极管V2的正极连接;第一电容C1的一端与第二二极管V2的正极连接,另一端接地。
本发明电路简单,具有较强的抗干扰能力和对环境的适应能力,发热量小,可以精确控制软启动时间,避免了常规的软启动电路的局限性。
法律状态法律状态公告日法律状态信息法律状态2015-09-02公开公开2015-09-02公开公开2015-09-30实质审查的生效实质审查的生效2015-09-30实质审查的生效实质审查的生效2018-09-28发明专利申请公布后的驳回发明专利申请公布后的驳回权利要求说明书一种开关电源软启动电路及开关电源软启动方法的权利要求说明书内容是....请下载后查看说明书一种开关电源软启动电路及开关电源软启动方法的说明书内容是....请下载后查看。
(完整版)电工们常用的五种电机软启动器接线图
电工们常用的五种电机软启动器接线图软启动器工作原理软起动器(软启动器)是一种集电机软起动、软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,国外称为Soft Starter。
软启器采用三相反并联晶闸管作为调压器,将其接入电源和电动机定子之间。
这种电路如三相全控桥式整流电路。
使用软启动器启动电动机时,晶闸管的输出电压逐渐增加,电动机逐渐加速,直到晶闸管全导通,电动机工作在额定电压的机械特性上,实现平滑启动,降低启动电流,避免启动过流跳闸。
待电机达到额定转数时,启动过程结束,软启动器自动用旁路接触器取代已完成任务的晶闸管,为电动机正常运转提供额定电压,以降低晶闸管的热损耗,延长软启动器的使用寿命,提高其工作效率,又使电网避免了谐波污染。
软启动器同时还提供软停车功能,软停车与软启动过程相反,电压逐渐降低,转数逐渐下降到零,避免自由停车引起的转矩冲击。
常用的五种电机软启动器接线图一、CMC-L系列数码型电机软启动器是一种将电力电子技术,微处理器和自动控制相结合的新型电机起动、保护装置。
它能无阶跃地平稳起动/停止电机,避免因采用直接起动、星/三角起动、自耦减压起动等传统起动方式起动电机而引起的机械与电气冲击等问题,并能有效地降低起动电流及配电容量,避免增容投资。
1、CMC-L系列数码型电机软启动器基本接线原理图:软起动器端子1L1、3L2、5L3接三相电源,2T1、4T2、6T3接电动机。
当采用旁路接触器时,可通过内置信号继电器K2控制旁路接触器。
2、CMC-L系列数码型电机软启动器基本接线示意图:3、CMC-L系列数码型电机软启动器典型应用接线图:注意:1.上图所示为单节点控制方式。
接点闭合软起动起动,接点打开软起动器停止。
但要注意这种接线LED面板起动操作无效。
端子3、4、5起停信号是一个无源节点。
2.PE接地线应尽可能短,接于距软起动器最近的接地点,合适的接地点应位于安装板上紧靠软起动器处,安装板也应接地,此处接地为功能地而不是保护接地。
一种采用电压补偿技术的DC_DC开关电源软启动电路_王海永
收稿日期:2001203206; 定稿日期:2001205206基金项目:国家重点基础研究发展规划项目(973)(G 200036508)文章编号:100423365(2002)0120020203一种采用电压补偿技术的DC DC 开关电源软启动电路王海永,李永明,陈弘毅(清华大学 微电子学研究所,北京 100084)摘 要: 提出了一种采用B i C M O S 工艺和电压补偿技术实现的软启动控制电路。
该电路消除了浪涌电流现象,避免了开关电源重启动。
H SP I CE 模拟表明,对于一个输入电压为10V 、输出电压为3.3V 的降压型开关电源系统,负载电流为3.3A 的条件下,利用该软启动电路,电感电流和输出电压近似分别以3.3mA Λs 和2.5mV Λs 速度平稳上升,表明该软启动电路的控制能力很强。
此控制思想和结构适合各种DC DC 开关电源的软启动电路设计。
关键词: 软启动电路;DC DC 开关电源;电压补偿技术中图分类号: TN 431文献标识码: A A Novel Sof t -Start C ircu it for DC DC Sw itch i ng Regula torUsi ng Voltage Com pen sa tion Techn iqueW AN G H ai 2yong ,L I Yong 2m ing ,CH EN Hong 2yi(Institu te of M icroelectron ics ,T sing hua U n iversity ,B eij ing 100084,P .R .Ch ina )Abstract : A B i C M O S 2compatible soft 2start circuit is p resented ,fo r w h ich the technique of vo ltage compensa 2ti on is adop ted to get rid of the surge 2current and avo id the restart of the s w itch ing regulato r .T he soft 2start circuitis used in a step 2dow n s w itch ing regulato r system .H SP I CE si m ulati on show s that ,w h ile the system has an input vo ltage of 10V and an output vo ltage of 3.3V at a load current of 3.3A ,the inductance current and output vo lt 2age increases p lacidly at app roxi m ately 3.3mA Λs and 2.5mV Λs ,respectively .T he design idea and circuit struc 2ture p resented in the paper can be used in vari ous DC DC s w itch ing regulato rs .Key words : Soft 2start circuit ;DC DC s w itch ing regulato r ;V o ltage compensati on technique EEACC : 12101 引 言目前,高效便携式电子产品在通信和计算机领域中所占份额急剧增长,对电源A S I C 的要求也越来越高[1]。
开关电源常用软启动电路介绍
开关电源常用软启动电路介绍开关电源的输入电路大都采用整流加电容滤波电路。
在输入电路合闸瞬间,由于电容器上的初始电压为零会形成很大的瞬时冲击电流(如图1所示),特别是大功率开关电源,其输入采用较大容量的滤波电容器,其冲击电流可达100A以上。
在电源接通瞬间如此大的冲击电流幅值,往往会导致输入熔断器烧断,有时甚至将合闸开关的触点烧坏,轻者也会使空气开关合不上闸,上述原因均会造成开关电源无法正常投入。
因此大部分开关电源在其输入电路设置防止冲击电流的软起动电路,以保证开关电源正常而可靠的运行。
下面将介绍了几种常用的软启动电路。
图1 合闸瞬间滤波电容电流波形(1)采用功率热敏电阻电路热敏电阻防冲击电流电路如图2所示。
它利用热敏电阻的Rt的负温度系数特性,在电源接通瞬间,热敏电阻的阻值较大,达到限制冲击电流的作用;当热敏电阻流过较大电流时,电阻发热而使其阻值变小,电路处于正常工作状态。
采用热敏电阻防止冲击电流一般适用于小功率开关电源,由于热敏电阻的热惯性,重新恢复高阻需要时间,故对于电源断电后又需要很快接通的情况,有时起不到限流作用。
图2 采用热敏电阻电路(2)采用SCR-R电路该电路如图3所示。
在电源瞬时接通时,输入电压经整流桥VD1?VD4和限流电阻R对电容器C充电。
当电容器C充电到约80%的额定电压时,逆变器正常工作,经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R,开关电源处于正常运行状态。
图3 采用SCR-R电路这种限流电路存在如下问题:当电源瞬时断电后,由于电容器C上的电压不能突变,其上仍有断电前的充电电压,逆变器可能还处于工作状态,保持晶闸管继续导通,此时若马上重新接通输入电源,会同样起不到防止冲击电流的作用。
(3)具有断电检测的SCR-R电路该电路如图4所示。
它是图3的改进型电路,VD5、VD6、VT1、RB、CB组成瞬时断电检测电路,时间常数RBCB的选取应稍大于半个周期,当输入发生瞬间断电时,检测电路得到的检测信号,关闭逆变器功率开关管VT2的驱动信号,使逆变器停止工作,同时切断晶闸管SCR的门极触发信号,确保电源重新接通时防止冲击电流。
开关电源软启动电路设计
开关电源软启动电路设计本文重点阐述如何正确合理设计开关电源的软启动电路,以供广大系统电源设计人员参考。
开关电源的输入电路大都采用整流加电容滤波电路。
在输入电路合闸瞬间,由于电容器上的初始电压为零会形成很大的瞬时冲击电流如图1所示,特别是大功率开关电源,其输入采用较大容量的滤波电容器,其冲击电流可达100A以上。
在电源接通瞬间如此大的冲击电流幅值,往往会导致输入熔断器烧断,有时甚至将合闸开关的触点烧坏,轻者也会使空气开关合不上闸,上述原因均会造成开关电源无法正常投入。
为此几乎所有的开关电源在其输入电路设置的防止冲击电流的软起动电路,以保证开关电源正常而可靠的运行。
2.常用软起动电路2.1采用功率热敏电阻电路热敏电阻防冲击电流电路如图2所示。
它利用热敏电阻的Rt的负温度系数特性,在电源接通瞬间,热敏电阻的阻值较大,达到限制冲击电流的作用;当热敏电阻流过较大电流时,电阻发热而使其阻值变小,电路处于正常工作状态。
采用热敏电阻防止冲击电流一般适用于小功率开关电源,由于热敏电阻的热惯性,重新恢复高阻需要时间,故对于电源断电后又需要很快接通的情况,有时起不到限流作用。
2.2采用SCR-R电路该电路如图3所示。
在电源瞬时接通时,输入电压经整流桥VD1-VD4和限流电阻R对电容器C充电。
当电容器C充电到约80%的额定电压时,逆变器正常工作,经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R,开关电源处于正常运行状态。
这种限流电路存在如下问题:当电源瞬时断电后,由于电容器C上的电压不能突变,其上仍有断电前的充电电压,逆变器可能还处于工作状态,保持晶闸管继续导通,此时若马上重新接通输入电源,会同样起不到防止冲击电流的作用。
2.3具有断电检测的SCR-R电路该电路如图4所示。
它是图3的改进型电路,VD5、VD6、VT1、RB、CB组成瞬时断电检测电路,时间常数RBCB的选取应稍大于半个周期,当输入发生瞬间断电时,检测电路得到的检测信号,关闭逆变器功率开关管VT2的驱动信号,使逆变器停止工作,同时切断晶闸管SCR的门极触发信号,确保电源重新接通时防止冲击电流。
软启动电路及原理
软启动电路及原理一软起动主电路图、晶闸管降压软起动主电路如图所示,其中M是异步电动机,晶闸管KPl~KP6组成移相控制的三相交流调压电路,利用品闸管进行调压,其输出电压大小由晶闸管的导通角决定,而晶闸管的导通角又与其触发角有关。
触发角越小,输出越大。
因此,只需在电动机起动过程中通过控制晶闸管触发角的大小,不断改变晶闸管的导通角来改变输出电压波形,从而改变输出电压的有效值。
随着输出电压的增加,电机转速不断上升。
而电机定子电流的大小J下比于定子端电压,起动仞期,电机端电压较小,冲击电流电小,随着电机定子端电压的不断增加,定子电流也不断增加,最终达到额定转速,实现了电机的软起动。
在每一瞬间,在三相交流调压电路中,至少要有两个器件导通,它们应处于不同的相,其中至少有一个是流向负载端,同时有另一个流向电源。
在电路的正常工作状态下,6个晶闸管按照KPI、K_P2、KP3、KP4、KP5和KP6的顺序循环触发导通,而且相邻的两个晶闸管触发时刻之间相差600电角度。
三相调压起动其实质是降压起动,与传统降压起动不同之处是无机械触点,起动电压和起动电流任意可调㈣。
图中F为快速熔断器,RZ为压敏电阻,KP为晶闸管,另外还有并联于晶闸管两端的RC保护电路。
理论上讲,本起动器可起动各种容量的三相异步电动机,针对不同的容量,软件控制思想均可不变,只要重新设计一下主电路即可,其中各元件的选择取决于被控电动机的容量。
.主电路图、软启动触发电路二如图,出发电路主要有监测、移相控制、脉冲串产生电路、触发驱动电路等组成。
同步信号取于电源输入端R、S、T,即、信号,i、vi uwV三相交流电源经电阻分压后,分别送往R、R与R、、R、RR252482379电压比较器U7A、U7B、U7C反相输入端。
三个电压比较器的同相端经接在作星形连接的公共端上,相当R R、R、R25232429于接至三相交流电的中相点。
各相交流电正向过零点时,对应的比较器输出低电平,驱动光电耦合器内发光二极管发光,光耦内的光电三极管导通,将低电平有效的同步信号送往单片机的P1.0、P1.1、P1.2输入端;而当交流电反相过零时,对应的比较器输出高电平送往单片机。
软启动器怎么接线?一张电路图一张实物图供大家参考
软启动器怎么接线?一张电路图一张实物图供大家参考
朋友们大家好,我是大俵哥,今天我们来聊一下软启动。
很多大型动力设备在启动的时候,启动电流都是比较大的,对整个电网有冲击性,所以不能直接启动,具体原因有以下两点。
一,有的电机启动电流为额定电流的4--7倍,直接启动会影响同一电网内的其他用电设备。
二,直接启动产生较高的峰值转矩,不仅对驱动电机有冲击性,而且易损坏机械装置。
软启动相比星三角降压启动、自耦变压器启动等效果要好一些,启动更加平稳,保护也更加全面,不过成本较高。
软启动器
启动方式:通过控制内部晶闸管的导通角,对电机的输入电压实现调节,从零到我们设置的参数逐渐上升,直至启动完成全压运行。
在启动过程中,转矩和转速也会逐渐增加。
与传统的降压启动相比,恒流启动,对电网没有冲击性。
常见的启动方式有:斜坡升压软起动、斜坡恒流软起动、阶跃起动、脉冲冲击起动等。
电路图
RST三相电源的进线端,UVW接三相异步电机,旁路开关控制外部的交流接触器,底部的启动停止公共端可以实现端子控制。
实物接线图
实物图
接线还是比较少比较简洁的,另外软启动器有:过载保护功能、缺相保护功能、过热保护功能、测量回路参数功能等,保护也非常的全面。
电路图
更多的接线可以参考这张图,不同品牌的软启动器接法都是大同小异,依附带的说明书为主要参考依据。
开关电源常用保护电路-过热、过流、过压以及软启动保护电路
1引言随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,因此直流开关电源开始发挥着越来越重要的作用,并相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了直流开关电源。
同时随着许多高新技术,包括高频开关技术、软开关技术、功率因数校正技术、同步整流技术、智能化技术、表面安装技术等技术的发展,开关电源技术在不断地创新,这为直流开关电源提供了广泛的发展空间。
但是由于开关电源中控制电路比较复杂,晶体管和集成器件耐受电、热冲击的能力较差,在使用过程中给用户带来很大不便。
为了保护开关电源自身和负载的安全,根据了直流开关电源的原理和特点,设计了过热保护、过电流保护、过电压保护以及软启动保护电路。
2、开关电源的原理及特点2、1工作原理直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成。
功率转换部分是开关电源的核心,它对非稳定直流进行高频斩波并完成输出所需要的变换功能。
它主要由开关三极管和高频变压器组成。
图1画出了直流开关电源的原理图及等效原理框图,它是由全波整流器,开关管V,激励信号,续流二极管Vp,储能电感和滤波电容C组成。
实际上,直流开关电源的核心部分是一个直流变压器。
2、2特点为了适应用户的需求,国内外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是通过改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料上加大科技创新,以提高在高频率和较大磁通密度下获得高的磁性能,同时SMT 技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。
因此直流开关电源的发展趋势是高频、高可靠、低耗、低噪声、抗干扰和模块化。
直流开关电源的缺点是存在较为严重的开关干扰,适应恶劣环境和突发故障的能力较弱。
由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因此直流开关电源的制作技术难度大、维修麻烦和造价成本较高,3、直流开关电源的保护基于直流开关电源的特点和实际的电气状况,为使直流开关电源在恶劣环境及突发故障情况下安全可靠地工作,本文根据不同的情况设计了多种保护电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图2 采用热敏电阻电路
(2)采用SCR-R电路该电路。在电源瞬时接通时,输入电压经整流桥VD1VD4和限流电阻R对电容器C充电。当电容器C充电到约80%的额定电压时,逆变器正常工作,经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R,开关电源处于正常运行状态。
图3 采用SCR-R电路
(4)继电器K1与电阻R构成的电路该电路原理图。电源接通时,输入电压经限流电阻R1对滤波电容器C1充电,同时辅助电源VCC经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的充电电压达到继电器的动作电压时,K1动作,旁路限流电阻R1,达到瞬时防冲击电流的作用。通常在电源接通之后,继电器K1动作延时0.3~0.5秒,否则限流电阻R1因通流时间过长会烧坏。
图1 合闸瞬间滤波电容电流波形
(1)采用功率热敏电阻电路热敏电阻防冲击电流电路。它利用热敏电阻的Rt的负温度系数特性,在电源接通瞬间,热敏电阻的阻值较大,达到限制冲击电流的作用;当热敏电阻流过较大电流时,电阻发热而使其阻值变小,电路处于正常工作状态。采用热敏电阻防止冲击电流一般适用于小功率开关电源,由于热敏电阻的热惯性,重新恢复高阻需要时间,故对于电源断电后又需要很快接通的情况,有时起不到限流作用。
开关电源的常用软启动电路
中心议题:开光电源的几种常用软启动电路
解决方案:功率热敏电阻电路SCR-R电路既具有断电检测的SCR-R电路继电器K1与电阻R构成的电路采用定时触发器的继电器与限流电阻的电路过零触发的光耦可控硅与双向可控硅构成的电路
开关电源的输入电路大都采用整流加电容滤波电路。在输入电路合闸瞬间,由于电容器上的初始电压为零会形成很大的瞬时冲击电流(),特别是大功率开关电源,其输入采用较大容量的滤波电容器,其冲击电流可达100A以上。在电源接通瞬间如此大的冲击电流幅值,往往会导致输入熔断器烧断,有时甚至将合闸开关的触点烧坏,轻者也会使空气开关合不上闸,上述原因均会造成开关电源无法正常投入。为此几乎所有的开关电源在其输入电路设置防止冲击电流的软起动电路,以保证开关电源正常而可靠的运行。本文介绍了几种常用的软启动电路。
图7 过零触发的光耦可控硅与双向可控硅构成的电路
这种限流电路存在如下问题:当电源瞬时断电后,由于电容器C上的电压不能突变,其上仍有断电前的充电电压,逆变器可能还处于工作状态,保持晶闸管继续导通,此时若马上重新接通输入电源,会同样起不到防止冲击电流的作用。(3)具有断电检测的SCR-R电路该电路。它是图3的改进型电路,VD5、VD6、VT1、RB、CB组成瞬时断电检测电路,时间常数RBCB的选取应稍大于半个周期,当输入发生瞬间断电时,检测电路得到的检测信号,关闭逆变器功率开关管VT2的驱动信号,使逆变器停止工作,同时切断晶闸管SCR的门极触发信号,确定时电路
(6)过零触发的光耦可控硅与双向可控硅构成的电路该电路。集成稳压器输出稳定的5V电压,为软起动电路提供电源电压。晶体管VT1、反相器IC2构成过零触发电路,IC1555构成单稳态触发器,R1、C1为定时周期,但因5端至1端接有延迟电路R2、C2,所以555是逐步达到满周期的。当电网电压过零时,晶体管VT1截止,反相器IC2输出低电平,起动定时电路555工作,软起动延迟时间由时间常数R1C1及R2C2共同决定。
图5 由继电器与电阻构成的电路
然而这种简单的RC延迟电路在考虑到继电器吸合电压时还必须顾及流过线包的电流,一般电阻的阻值较小而电容的容量较大,延迟时间很难准确控制,这主要是电容容量的误差和漏电流造成,需要仔细地挑选和测试。同时继电器的动作阈值取决于电容器C2上的充电电压,继电器的动作电压会抖动及振荡,造成工作不可靠。(5)采用定时触发器的继电器与限流电阻的电路该电路(仅画出定时电路,主电路同图5),它是图5的改进型电路。电源接通时,输入电压经整流桥和限流电阻R1对C1充电,同时定时时基电路555的定时电容C2由辅助电源经定时电阻R2开始充电,经0.3秒后,集成电路555的2端电压低于二分之一电源电压,其输出端3输出高电平,VT2导通,继电器K1动作,限流电阻R1被旁路,直流供电电压对C1继续充电而达到额定值,逆变器处于正常工作状态。由于该电路在RC延迟定时电路与继电器之间插入了单稳态触发器和电流放大器,确保继电器动作干脆、可靠,有效地起到防止冲击电流的效果,而不会像图5电路那样由于继电器动作的不可靠性而烧坏限流电阻及继电器的自身触点。
图4 具有断电检测的SCR-R电路
推荐相关文章:PWM开关稳压电源的噪声尖峰干扰抑制措施LED电源市场渐趋走向成熟600V FRED Pt® Hyperfast和Ultrafast:Vishay推出新型整流器开关电源的抗干扰技术2011年功率电晶体市场将达131亿美元开关电源原理开关电源电路图开关电源原理与维修视频开关电源原理与维修开关电源设计宝典下载