高中数学立体几何大题有答案)
高中数学立体几何大题题库答案

立体几何解答题题库答案1.(1)作法:取BC 的中点H ,连接AH ,则直线AH 即为要求作的直线l .证明如下:,PA AB PA AC ⊥⊥,且AB AC A =,PA ∴⊥平面ABC .平面//α平面PAB ,且α平面11PAC P A =,平面PAB平面PAC PA =. 11P A ∴⊥平面ABC ,11PA AH ∴⊥. 又AB AC =,H 为BC 的中点,则AH BC ⊥,从而直线AH 即为要求作的直线l .(2)α将三棱锥P ABC -分成体积之比为8:19的两部分,∴四面体111P A B C 的体积与三棱锥P ABC -分成体积之比为8:27,又平面//α平面PAB ,11123AC B C PC AC BC PC ∴===. 易证//PA 平面111P A B ,则P 到平面111P A B 的距离1d 即为A 到平面111P A B 的距离,111d AA ∴==又D 为1B C 的中点,D ∴到平面111P A B 的距离21112d AC ==, 故四棱锥111A PPDB -的体积()1211422323V d d =⨯+⨯⨯⨯=. 2.(1)由几何体的三视图可知,底面ABCD 是边长为4的正方形,PA ⊥平面ABCD ,PA ∥EB ,且PA =,BE =,AB =AD =CD =CB =4,∴V P -ABCD =13PA ×S ABCD =13××4×4┉┉┉┉┉┉┉┉┉┉┉┉4分 (2)证明:连结AC 交BD 于O 点,取PC 中点F ,连结OF ,∵EB ∥PA ,且EB =12PA ,又OF ∥PA ,且OF =12PA ,∴EB ∥OF ,且EB =OF ,∴四边形EBOF 为平行四边形,∴EF ∥BD .又EF ⊂平面PEC ,BD ⊄平面PEC ,所以BD ∥平面PEC .┉┉┉┉┉┉┉┉┉┉┉┉8分解法二:可取PA 的中点Q,证明平面PEC ∥平面BDQ.BD ⊂平面BDQ.所以BD ∥平面PEC .(3)存在,点M 为线段BC 上任意一点. 证明如下:连结BP ,∵EBAB =BA PA ∠EBA =∠BAP =90°, ∴△EBA ∽△BAP ,∴∠PBA =∠BEA ,∴∠PBA +∠BAE =∠BEA +∠BAE =90°,∴PB ⊥AE . 又∵BC ⊥平面APEB ,∴BC ⊥AE ,∴AE ⊥平面PBC ,∴点M 为线段BC 上任意一点,均可使得AE ⊥PM. ┉┉┉┉┉┉┉┉┉┉12分3.(Ⅰ)在梯形ABCD 中,∵CD AB //,CB AD =,∴=∠BAD 60ABC ∠=,∴=∠ADC 120=∠BCD ,∵1==DC AD .∴=∠CAD 30=∠ACD ,∴ 90=∠ACB ,∴AC BC ⊥.(4分)∵平面ACFE ⊥平面ABCD ,平面 ACFE 平面ABCD AC =,∴⊥BC 平面ACFE .(Ⅱ)在ADC ∆中,-+=222DC AD AC ADC DC AD ∠⋅cos 23=,∴3=AC .分别以CF CB CA ,,为x 轴,y 轴,z 轴建立平面直角坐标系, 设h CF =,则)0,0,0(C ,)0,0,3(A ,)0,1,0(B ,)0,0,21(D ,),0,0(h F ,则)0,1,21(-=BD ,),1,0(h BF -=,易知平面BCF 的一个法向量为)0,0,1(=m , ∵平面BDF 的法向量为),,(z y x =,∴⎪⎩⎪⎨⎧=⋅=⋅,0,0BF n BD n 即⎪⎩⎪⎨⎧=+-=-,0,021hz y y x 令1=z ,则h x 2=,h y =, ∴平面BDF 的法向量为)1,,2(h h =,∵二面角D BF C --的平面角的余弦值为66, ∴>=<n m ,cos 1522+h h66=,解得1=h ,即1=CF .(10分) 所以六面体ABCDEF 的体积为:=ABCDEF V ACFE B V -ACFE D V -+BC S ACFE ⨯=正方形31D ACFE y S ⨯+正方形3121211311131=⨯⨯+⨯⨯=.(12分)4.(1)证明:取AD 的中点O,连OC,OP∵∆PAD 为等边三角形,且O 是边AD 的中点∴AD PO ⊥∵平面PAD ⊥底面ABCD ,且它们的交线为AD∴ABCD PO 平面⊥∴PO BA ⊥∵O PO AD AD BA =⊥ 且,∴PAD AB 平面⊥∴AB PD ⊥(2)设点M 到平面ACD 的距离为h ∵31==--ACD M ACM D V V ∴3131=⋅∆h S ACD ∴11ACD h S ∆== ∵31==OP h CP CM∴λ== 5.(I )连PM 、MB ∵PD ⊥平面ABCD ∴PD ⊥MD222222222323a AM AB BM a MD PD PM =+==+=∴又 ∴PM=BM 又PN=NB ∴MN ⊥PB,22,BC a PC a BC a DC PD ==∴===得NC ⊥PB MN NC N = ∴PB ⊥平面MNC⊂PB 平面PBC∴平面MNC ⊥平面PBC(II )取BC 中点E,连AE,则AE//MC ∴AE//平面MNC,A 点与E 点到平面MNC 的距离相等取NC 中点F,连EF,则EF 平行且等于21BN ∵BN ⊥平面MNC ∴EF ⊥平面MNC,EF 长为E点到平面MNC 的距离 ∵PD ⊥平面ABCD,PD BC ∴⊥ 又BC ⊥DC BC ∴⊥面PCD ∴BC ⊥PC.24121,222a PB BN EF a PC BC PB ====+=∴ 即点A 到平面MNC 的距离为2a 6.(2)连接A 1B ,设A 1B ∩AB 1=F ,连接EF .在直三棱柱ABC -A 1B 1C 1中,四边形AA 1B 1B 为平行四边形,所以F 为A 1B 的中点.又因为E 是BC 的中点,所以EF ∥A 1C .因为EF 在平面AB 1E 内,A 1C 不在平面AB 1E 内,所以A 1C ∥平面AB 1E .7.证明:(1)∵ABCD 为矩形,∴BC ⊥AB,又∵平面ABCD ⊥平面AEBF,BC ⊂平面ABCD,平面ABCD∩平面AEBF=AB, ∴BC ⊥平面AEBF, ……………(2分)又∵AF ⊂平面AEBF,∴BC ⊥AF. ……………(3分)∵∠AFB=90°,即AF ⊥BF,且BC 、BF ⊂平面BCF,BC∩BF=B , ∴AF ⊥平面BCF. ……………(5分)又∵AF ⊂平面ADF,∴平面ADF ⊥平面BCF. ………………………………(6分)(2)∵BC ∥AD,AD ⊂平面ADF,∴BC ∥平面ADF.∵ABE ∆和ABF ∆均为等腰直角三角形,且BAE AFB ∠=∠=90°,∴∠FAB=∠ABE=45°,∴AF ∥BE,又AF ⊂平面ADF,∴BE ∥平面ADF,∵BC∩BE=B ,∴平面BCE ∥平面ADF.延长EB 到点H,使得BH =AF,又BC //AD,连CH 、HF,易证ABHF 是平行四边形, ∴HF //AB //CD,∴HFDC 是平行四边形,∴CH ∥DF.过点B 作CH 的平行线,交EC 于点G,即BG ∥CH ∥DF,(DF ⊂平面CDF )∴BG ∥平面CDF,即此点G 为所求的G 点. ………………………………(9分) 又22AF BH ==,∴EG=23EC ,又2ABE ABF S S ∆∆=, 2444433333G ABE C ABE C ABF D ABF B ADF G ADF V V V V V V ------=====, 故43G ABE G ADF V V --=..………………………………(12分) 8.(1)证明: 四边形ABCD 为菱形 AC BD ⊥∴,………………1分又Q 面ACFE ⋂面ABCD =ACABCD BD 平面⊂∴………………2分面ABCD ⊥面ACFE C………………3分ACFE BD 面⊥∴,………………4分Q ACFE CH 面⊂ ………………5分CH BD ⊥∴………………………………6分(2)在FCG ∆中,GF CH CH CF CG ⊥===,23,3 所以︒=∠120GCF ,………………6分3=GF ………………8分ACFE BD 面⊥ ,ACFE GF 面⊂GF BD ⊥∴,………………9分3322121=⨯⨯=⋅=∆GF BD S BDF …………………………………. 10分 又BD CH ⊥∴,GF CH ⊥,G GF BD =⋂∴,BDF GF BD 平面⊂∴,∴CH ⊥平面BDF . . . . . . . . . . . . . 12分232333131=⋅⋅=⋅⋅==∆--CH S V V BDF BDF C BDC F ……………………………14分 9.(1)证明:取BD 的中点O ,连接OE ,OG在BCD ∆中,因为G 是BC 的中点,所以OG ∥DC 且112OG DC ==,……………1分 因为EF ∥AB ,AB ∥DC ,1EF =,所以EF ∥OG 且EF OG =,……………………2分所以四边形OGFE 是平行四边形,所以FG ∥OE , ………………………3分 又FG ⊄平面BED ,OE ⊂平面BED ,所以FG ∥平面BED . ……………………………4分(2)证明:在ABD ∆中,1AD =,2AB =,60BAD ∠=,由余弦定理得BD ==…………………………5分 因为222314BD AD AB +=+==,所以BD AD ⊥. …………………………6分因为平面AED ⊥平面ABCD ,BD ⊂平面ABCD ,平面AED 平面ABCD AD =, 所以BD ⊥平面AED . ……………………………7分(3)解法1:由(1)FG ∥平面BED ,所以点F 到平面BED 的距离等于点G 到平面BED 的距离, ……………………8分设点G 到平面BED 的距离为h ,过E 作EM DA ⊥,交DA 的延长线于M ,则EM ⊥平面ABG ,所以EM 是三棱锥E ABG -的高. ……………………9分 由余弦定理可得2cos 3ADE ∠=,所以sin ADE ∠=,sin EM DE ADE =⋅∠=. …………………………10分12DBG S DB BG ∆=⋅=12BDE S BD DE ∆=⋅= 因为G BDE E DBG V V--=,………………………………11分即1133BDE DBG S h S EM ∆∆⋅=⋅,解得h = 所以点F 到平面BED 的距离为65. ………………………………12分解法2:因为EF ∥AB ,且12EF AB =, 所以点F 到平面BED 的距离等于点A 到平面BED 的距离的12, ……………8分 由(2)BD ⊥平面AED .因为BD ⊂平面BED ,所以平面BED ⊥平面AED .过点A 作AH DE ⊥于点H ,又因为平面BED 平面AED ED =,故⊥AH 平面BED . 所以AH 为点A 到平面BED 的距离.…………………9分在ADE ∆中,6,3,1===AE DE AD , 由余弦定理可得2cos 3ADE ∠=所以sin ADE ∠=, …………………10分 因此35sin =∠⋅=ADE AD AH , ……………………………………………………11分所以点F 到平面BED 的距离为65. ………………………………………………12分10.(1)设O 为AC 的中点,连接OS ,OD ,∵SA SC =,∴OS AC ⊥,∵DA DC =,∴DO AC ⊥,又,OS OD ⊂平面SOD ,且OS OD O =,AC ⊥平面SOD ,又SD ⊂平面SOD ,∴AC SD ⊥.(2)连接BD ,在ASC ∆中,∵SA SC =,60ASC ∠=,O 为AC 的中点,∴ASC ∆为正三角形,且2AC =,OS =∵在ASC ∆中,2224DA DC AC +==,O 为AC 的中点,∴90ADC ∠=,且1OD =,∵在SOD ∆中,222OS OD SD +=,∴SOD ∆为直角三角形,且90SOD ∠=,∴SO OD ⊥又OS AC ⊥,且ACDO O =,∴SO ⊥平面ABCD . ∴B SAD S BAD V V --=13BAD S SO ∆=⋅⋅1132AD CD SO =⨯⋅⋅⋅11323=⨯=. 11.证明(1)因为∠BAD =∠CDA =90°,所以//AB CD ,四边形ABCD 为直角梯形,2CD =又PC PD ==222CD PC PD +=PD PC ∴⊥又,,AD CD AD PAD ⊥⊂,CD,PCD ABCD PCD ABCD ⊥=平面平面平面平面 AD PCD ∴⊥平面 又PC PBC ⊂平面 ,AD PC ∴⊥,,,PD PC PD PA A PD PA PAD ⊥=⊂点平面PC PAD ∴⊥平面,PC PBC ⊂平面所以平面P AD ⊥平面PBC ……………………4分(2)30°…………………………………8分(3)存在E 为PC 中点,即PE =满足条件……………………………12分 12.(1)证明:∵四边形11BB C C 是菱形,∴11B C BC ⊥,∵11,AB B C AB BC B ⊥⋂=, ∴1B C ⊥平面1ABC ,又AO ⊂平面1ABC ,∴1B C AO ⊥.∵1AB AC =,O 是1BC 的中点,∴1AO B C ⊥,∵11B C BC O ⋂=,∴AO ⊥平面11BB C C …………… ……6分(2)菱形11BB C C 的边长为2,又1160,B BC BB C ∠=︒∴∆是等边三角形,则12B C =. 由(1)知,1AO B C ⊥,又O 是1B C 的中点,1AB AC ∴=,又1160,B AC AB C ∠=︒∴∆是等边三角形,则112AC AB B C ===.在Rt ACO ∆中,22AO ===分11111122sin1201332C ABC A BCC BCC V V S AO --∆∴==⋅=⨯⋅⋅⋅=……………12分 13.(Ⅰ)证明:∵四边形ABCD 是菱形,∴AC BD ⊥.又∵PA ⊥平面ABCD ,BD ⊂≠平面ABCD ,∴PA BD ⊥.又PA AC A =,PA ⊂≠平面PAC ,AC ⊂≠平面PAC ,∴BD ⊥平面PAC ,∵BD ⊂≠平面PBD ,∴平面PBD ⊥平面PAC .(Ⅱ)解:BCD 11=221=3223C BDM M V V --=⨯⨯⨯⨯ 14. (1)证明:因为底面ABCD 为矩形,所以AD ∥BC .AD BCAD ADF BC ADF BC ADF ⎫⎪⊂⇒⎬⎪⊄⎭∥平面∥平面平面,BC ADFBC BCPQ BC PQ BCPQ ADF PQ ⎫⎪⊂⇒⎬⎪=⎭∥平面平面∥平面平面,PQ BC PQ ABCD PQ ABCD BC ABCD ⎫⎪⊄⇒⎬⎪⊂⎭∥平面∥平面平面.(2)解:由CD ⊥BE ,CD ⊥CB ,易证CD ⊥CE ,由BC ⊥CD ,BC ⊥FD ,易证BC ⊥平面CDFE ,所以CB ⊥CE ,即CD ,CE ,CB 两两垂直.连接FB ,FC ,则CD =2,BC =3,1(23)123F ABCD V -=⨯⨯⨯=, 111(31)1322F BCE V -=⨯⨯⨯⨯=, 15222ABCDEF F ABCD F BCE V V V --=+=+=.15.(1)证明:因为AB =1BC =,090ABC ∠=,所以2AC =,060BCA ∠=,在△ACD 中,AD =2AC =,060ACD ∠=,由余弦定理可得:2222cos AD AC CD AC CD ACD =+-∠解得:CD =4所以222AC AD CD +=,所以△ACD 是直角三角形,又E 为CD 的中点,所以12AE CD CE == 又060ACD ∠=,所以△ACE 为等边三角形,所以060CAE BCA ∠==∠,所以//BC AE ,又AE ⊂平面SAE ,BC ⊄平面SAE ,所以BC ∥平面SAE .(2)解:因为SA ⊥平面ABCD ,所以SA 同为三棱锥S BCE -与四棱锥S ABED -的高.由(1)可得0120BCE ∠=,122CE CD ==,所以1sin 2BCE S BC CE BCE ∆=⨯⨯∠1122=⨯⨯=.BCE ABED ABCD S S S ∆=-四边形四边形ABC ACD BCD S S S ∆∆∆=+-111222=+⨯⨯=.所以::1:4BCE ABED S S ∆==四边形 故:三棱锥S BCE -与四棱锥S BEDA -的体积比为1:4.16.(Ⅰ)取PA 的中点G,连FG,由题可知:BF=FP ,则FG //AB FG = 12AB ,又CE= ED ,可得:DE//AB 且DE = 12AB , ∴ FG //DE 且FG = DE ,∴四边形DEFG 为平行四边形,则EF //DG且EF =DG ,DG ⊂平面PAD ;EF ⊄平面PAD,∴ EF//平面PAD ⋯⋯⋯4分(Ⅱ)由PD ⊥平面ABCD ,PD ⊂平面PAD ,∴ 平面PAD ⊥平面ABCD,且交线为AD,又底面ABCD 是矩形,∴ BA ⊥ AD,∴BA ⊥ 平面PAD ,∴平面PAB ⊥平面PAD,其交线为PA ,又PD=AD,G 为PA 的中点,∴DG ⊥ PA,∴ DG ⊥平面PAB ,由(Ⅰ)知:EF // DG , ∴ EF ⊥平面PAB ⋯⋯⋯8分(Ⅲ)由得,AD=PD=1,F 为PB 的中点,∴ AEF P V -= AEF B V - = ABE F V -= ABE P V -21=PD S ABE ⋅⋅⋅∆3121 = 112213121⋅⋅⋅⋅⋅= 122⋯⋯⋯⋯12分 17.(1)见解析;(2.解:(1)证明:∵OD ABCD ⊥平面,PA QD ∥,∴PA ABCD ⊥平面,又∵BC ABCD ⊂平面,∴PA BC ⊥,又BC AB ⊥,PA PAB ⊂平面,AB PAB ⊂平面,PAAB A =,∴BC PAB ⊥平面,又∵BC QBC ⊂平面,∴平面PAB QBC ⊥平面. --------------------------518.(1)证明:∵平面PAD 垂直矩形平面ABCD ,∴CD ⊥平面PAD取DC 中点H,连接EH,EH ⊥CD,连接FH,则FH ⊥CD则CD ⊥平面EHF,∴平面EHF//平面PAD,又EF ∈平面EHF∴EF 平行PAD ; …………4分(2)证明:∵平面PAD 垂直矩形平面ABCD ,角CDA=90度,CD ⊥平面PAD,又平面PAD∩平面PDC 于PD,又DC ∈平面PDC,∴平面PDC 垂直平面PAD ………8分分19.(1)连结AB 1交A 1B 于点O,则O 为AB 1中点, D AC OD B CCD A BD B C A BD B C A BD∴⊂⊄∴111111是的中点又平面,平面平面20.(1)证明:连接BD ,交AC 于F ,连接EF .∵四边形ABCD 为正方形∴F 为BD 的中点∵E 为PB 的中点,∴EF ∥PD 又∵PD ⊄面ACE ,EF ⊂面ACE ,∴PD ∥平面ACE .(2).取AB 中点为G ,连接EG .∵E 为PB 的中点,∴EG ∥P A∵PA ⊥平面ABCD ,∴EG ⊥平面ABCD ,即EG 是三棱锥E ADC -的高,在Rt PAB ∆中,PB =4AB =,则4PA =, 2EG =,∴三棱锥E ADC -的体积为1116442323⨯⨯⨯⨯=. 21.(Ⅰ)证明:∵四边形ABCD 是矩形,∴CD ⊥BC .∵平面PBC ⊥平面ABCD ,平面PBC ∩平面ABCD =BC ,CD ⊂平面ABCD ,∴CD ⊥平面PBC ,∴CD ⊥PB .∵PB ⊥PD ,CD ∩PD =D ,CD 、PD ⊂平面PCD ,∴PB ⊥平面PCD .∵PB ⊂平面P AB ,∴平面P AB ⊥平面PCD .(Ⅱ)取BC 的中点O ,连接OP 、OE .∵PB ⊥平面PCD ,∴PB PC ⊥,∴112OP BC ==, ∵PB PC =,∴PO BC ⊥.∵平面PBC ⊥平面ABCD ,平面PBC ∩平面ABCD =BC ,PO ⊂平面PBC ,∴PO ⊥平面ABCD ,∵AE ⊂平面ABCD ,∴PO ⊥AE .∵∠PEA =90O , ∴PE ⊥AE .∵PO ∩PE=P ,∴AE ⊥平面POE ,∴AE ⊥OE .∵∠C=∠D =90O , ∴∠OEC =∠EAD ,∴Rt OCE Rt EDA ∆∆,∴OC CE ED AD=. ∵1OC =,2AD =,CE ED =,∴CE ED ==111332A PED P AED AED V V S OP AD ED OP --==⋅=⨯⋅⋅112132=⨯⨯= 22.(1)证明:因为23λ=,所以23CE CS =,在线段CD 上取一点F 使23CF CD =,连接EF,BF,则EF ∥SD 且DF =1. 因为AB =1,AB ∥CD,∠ADC =90°,所以四边形ABFD 为矩形,所以CD ⊥BF .又SA ⊥平面ABCD,∠ADC =90°,所以SA ⊥CD,AD ⊥CD .因为AD∩SA =A,所以CD ⊥平面SAD, PCBAE DO所以CD ⊥SD,从而CD ⊥EF .因为BF∩EF =F,所以CD ⊥平面BEF .又BE ⊂平面BEF,所以CD ⊥BE .(2)解:由题设得,111()2332S BCD BCD V S SA CD AD SA -=⋅=⨯⨯⨯⨯=△,又因为SB ==BD ==SD =,所以12SBD S SD =⋅=△,设点C 到平面SBD 的距离为h,则由V S —BCD =V C —SBD 得h =,因为13CE CS =,所以点E 到平面SBD 的距离为23h =.23.证明:(1)∵几何体1111ABCD A B C D -为四棱柱,∴四边形11BCC B 为平行四边形,即BC ∥11B C ,且BC =11B C ,……………2分又∵底面ABCD 为等腰梯形,∴BC ∥AM ,即AM ∥11B C , ………………………3分又∵22AD AB BC ==,且M 为边AD 的中点,∴AM BC =,即AM =11B C ,……………4分则四边形11AMC B 为平行四边形,即1C M ∥1AB , ………………………………5分 又∵1C M ⊄平面11A ABB ,1A B ⊂平面11A ABB ,∴1C M ∥平面11A ABB , ……………………………………………………7分(2)∵BC ∥AM ,且AM BC =,∴四边形AMCB 为平行四边形, 又∵2AD AM AB ==,∴四边形AMCB 为茭形,则BM ⊥AC , ……………9分 又∵1CB ⊥底面ABCD ,且BM ⊂底面ABCD ,∴BM ⊥1CB , ……………11分 又∵1AC CB C =,且AC ⊂平面1ACB ,1CB ⊂平面1ACB ,∴BM ⊥平面1ACB , ……………………………………………………13分 又∵BM ⊂底面1B BM ,∴平面1B BM ⊥平面1ACB ……………………………14分 24.(Ⅰ)证明:取BC 中点M ,连接,DM PM可知1MD AB ==且MD BC ⊥又,2PB PC BC ⊥=,∴在Rt PBC ∆有1PM = 又2PD =,222PD PM MD ∴=+,即MD PM ⊥ ………………………3分又,,MD BC PM BC M PM ⊥=⊂平面PBC ,BC ⊂平面PBCMD ∴⊥平面PBC , ………………………5分 又MD ⊂平面ABCD∴平面PBC ⊥平面ABCD ………………………6分(Ⅱ)设点D 到平面PAB 的距离为h,PC PB PC PB =⊥,PM BC ∴⊥ 又平面PBC ⊥平面ABCD ,且平面PBC 平面ABCD BC =PM ∴⊥面ABCD ………………………8分1111||1113326P ABD ABD V PM S -∆∴==⨯⨯⨯⨯=………………………9分在PAB ∆中有1,PB AB PA ===,222,PB AB PA PB AB ∴+=∴⊥∴2PAB S ∆=…………………10分1113326D ABP ABP V S h h -∆=⋅=⨯=,2h ∴=所以点D 到平面PAB.………………………12分 25.(1)因为//BC 平面SDM, BC ⊂平面ABCD,平面SDM 平面ABCD=DM,所以DM BC //,因为DC AB //,所以四边形BCDM 为平行四边形,又CD AB 2=,所以M 为AB 的中点. 因为AM λ=,12λ∴=. (2)因为BC ⊥SD , BC ⊥CD ,所以BC ⊥平面SCD ,又因为BC ⊂平面ABCD ,所以平面SCD ⊥平面ABCD ,平面SCD 平面ABCD CD =,在平面SCD 内过点S 作SE ⊥直线CD 于点E ,则SE ⊥平面ABCD , 在Rt △SEA 和Rt △SED 中,因为SA SD =,所以AE DE ==, 又由题知45EDA ∠=,所以AE ED ⊥,由已知求得AD =,所以1AE ED SE ===,连接BD,则111133S ABD V -=⨯⨯=三棱锥,又求得△SAD所以由B ASD S ABD V V --=三棱锥三棱锥点B 到平面SAD .26.(1)由已知,平面ABCD, ∵平面, 又∵,∴平面. 因平面EBD,则平面平面BDE . (2)法1:记AC 交BD 于点O,连PO,由(1)得平面平面BDP,且交于直线PO, 过点E 作于H,则平面PBD, ∴为BE 与平面PBD 所成的角. ∵,∴. ∴.又,则.于是,直线BE与平面PBD所成角的正弦值是.法2:(等体积法)∵,∴E点到平面PBD的距离为.又,则.于是,直线BE与平面PBD所成角的正弦值是.27.(1)又又(2)设,则.过作,为垂足,为中点....四棱锥P-ABCD的侧面积为:,。
高中数学必修立体几何考题附答案

高中数学必修2立体几何考题13.如图所示;正方体ABCD-A1B1C1D1中;M、N分别是A1B1;B1C1的中点.问:1AM和CN是否是异面直线说明理由;2D1B和CC1是否是异面直线说明理由.解析:1由于M、N分别是A1B1和B1C1的中点;可证明MN∥AC;因此AM与CN不是异面直线.2由空间图形可感知D1B和CC1为异面直线的可能性较大;判断的方法可用反证法.探究拓展:解决这类开放型问题常用的方法有直接法即由条件入手;经过推理、演算、变形等;如第1问;还有假设法;特例法;有时证明两直线异面用直线法较难说明问题;这时可用反证法;即假设两直线共面;由这个假设出发;来推证错误;从而否定假设;则两直线是异面的.解:1不是异面直线.理由如下:∵M、N分别是A1B1、B1C1的中点;∴MN∥A1C1.又∵A1A∥D1D;而D1D綊C1C;∴A1A綊C1C;∴四边形A1ACC1为平行四边形.∴A1A∥AC;得到MN∥AC;∴A、M、N、C在同一个平面内;故AM和CN不是异面直线.2是异面直线.理由如下:假设D1B与CC1在同一个平面CC1D1内;则B∈平面CC1D1;C∈平面CC1D1.∴BC平面CC1D1;这与在正方体中BC⊥平面CC1D1相矛盾;∴假设不成立;故D1B与CC1是异面直线.14.如下图所示;在棱长为1的正方体ABCD-A1B1C1D1中;M为AB的中点;N为BB1的中点;O为面BCC1B1的中心.1过O作一直线与AN交于P;与CM交于Q只写作法;不必证明;2求PQ的长不必证明.解析:1由ON∥AD知;AD与ON确定一个平面α.又O、C、M 三点确定一个平面β如下图所示.∵三个平面α;β和ABCD两两相交;有三条交线OP、CM、DA;其中交线DA与交线CM不平行且共面.∴DA与CM必相交;记交点为Q.∴OQ是α与β的交线.连结OQ与AN交于P;与CM交于Q;故OPQ即为所作的直线.2解三角形APQ可得PQ=错误!.15.如图;在直三棱柱ABC-A1B1C1中;AB=BC=B1B=a;∠ABC=90°;D、E分别为BB1、AC1的中点.2证明:DE为异面直线BB1与AC1的公垂线;3求异面直线BB1与AC1的距离.解析:1由于直三棱柱ABC-A1B1C1中;AA1∥BB1;所以∠A1AC1就是异面直线BB1与AC1所成的角.又AB=BC=B1B=a;∠ABC=90°;所以A1C1=错误!a;tan∠A1AC1=错误!;即异面直线BB1与AC1所成的角的正切值为错误!.2证明:解法一:如图;在矩形ACC1A1中;过点E作AA1的平行线MM1分别交AC、A1C1于点M、M1;连结BM;B1M1;则BB1綊MM1.又D、E分别是BB1、MM1的中点;可得DE綊BM.在直三棱柱ABC-A1B1C1中;由条件AB=BC得BM⊥AC;所以BM⊥平面ACC1A1;故DE⊥平面ACC1A1;所以DE⊥AC1;DE⊥BB1;即DE为异面直线BB1与AC1的公垂线.解法二:如图;延长C1D、CB交于点F;连结AF;由条件易证D是C1F的中点;B是CF的中点;又E是AC1的中点;所以DE∥AF.在△ACF中;由AB=BC=BF知AF⊥AC.在直三棱柱ABC-A1B1C1中;AA1⊥平面ABC;所以AF⊥AA1;故AF⊥平面ACC1A1;故DE⊥平面ACC1A1;所以DE⊥AC1;DE⊥BB1;即DE为异面直线BB1与AC1的公垂线.3由2知线段DE的长就是异面直线BB1与AC1的距离;由于AB =BC=a;∠ABC=90°;所以DE=错误!a.反思归纳:两条异面直线的公垂线是指与两条异面直线既垂直又相交的直线;两条异面直线的公垂线是惟一的;两条异面直线的公垂线夹在两条异面直线之间的线段的长度就是两条异面直线的距离.证明一直线是某两条异面直线的公垂线;可以分别证明这条直线与两条异面直线垂直.本题的思路是证明这条直线与一个平面垂直;而这一平面与两条异面直线的位置关系是一条直线在平面内;另一条直线与这个平面平行.16.如图所示;在正方体ABCD-A1B1C1D1中;O;M分别是BD1;AA1的中点.1求证:MO是异面直线AA1和BD1的公垂线;3若正方体的棱长为a;求异面直线AA1与BD1的距离.解析:1证明:∵O是BD1的中点;∴O是正方体的中心;∴OA=OA1;又M为AA1的中点;即OM是线段AA1的垂直平分线;故OM⊥AA1.连结MD1、BM;则可得MB=MD1.同理由点O为BD1的中点知MO⊥BD1;即MO是异面直线AA1和BD1的公垂线.2由于AA1∥BB1;所以∠B1BD1就是异面直线AA1和BD1所成的角.在Rt△BB1D1中;设BB1=1;则BD1=错误!;所以cos∠B1BD1=错误!;故异面直线AA1与BD1所成的角的余弦值等于错误!.3由1知;所求距离即为线段MO的长;由于OA=错误!AC1=错误!a;AM=错误!;且OM⊥AM;所以OM =错误!a.13.如图所示;正方体ABCD-A1B1C1D1中;侧面对角线AB1;BC1上分别有两点E、F;且B1E=C1F;求证:EF∥ABCD.证明:解法一:分别过E、F作EM⊥AB于M;FN⊥BC于N;连结MN.∵BB1⊥平面ABCD;∴BB1⊥AB;BB1⊥BC;∴EM∥BB1;FN∥BB1;∴EM∥FN.又B1E=C1F;∴EM=FN;故四边形MNFE是平行四边形;∴EF∥MN;又MN在平面ABCD中;所以EF∥平面ABCD.解法二:过E作EG∥AB交BB1于G;连结GF;则错误!=错误!;∵B1E=C1F;B1A=C1B;∴错误!=错误!;∴FG∥B1C1∥BC.又EG∩FG=G;AB∩BC=B;∴平面EFG∥平面ABCD;而EF平面EFG;∴EF∥平面ABCD.14.如下图;在四棱锥P-ABCD中;底面ABCD是正方形;侧棱PD⊥底面ABCD;PD=DC.过BD作与P A平行的平面;交侧棱PC于点E;又作DF⊥PB;交PB于点F.1求证:点E是PC的中点;2求证:PB⊥平面EFD.证明:1连结AC;交BD于O;则O为AC的中点;连结EO.∵P A∥平面BDE;平面P AC∩平面BDE=OE;∴P A∥OE.∴点E是PC的中点;2∵PD⊥底面ABCD且DC底面ABCD;∴PD⊥DC;△PDC是等腰直角三角形;而DE是斜边PC的中线;∴DE⊥PC;①又由PD⊥平面ABCD;得PD⊥BC.∵底面ABCD是正方形;CD⊥BC;∴BC⊥平面PDC.而DE平面PDC.∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB平面PBC;∴DE⊥PB;又DF⊥PB且DE∩DF=D;所以PB⊥平面EFD.15.如图;l1、l2是互相垂直的异面直线;MN是它们的公垂线段.点A、B在l1上;C在l2上;AM=MB=MN.1求证AC⊥NB;2若∠ACB=60°;求NB与平面ABC所成角的余弦值.证明:1如图由已知l2⊥MN;l2⊥l1;MN∩l1=M;可得l2⊥平面ABN.由已知MN⊥l1;AM=MB=MN;可知AN=NB且AN⊥NB.又AN为AC在平面ABN内的射影;∴AC⊥NB.2∵Rt△CNA≌Rt△CNB;∴AC=BC;又已知∠ACB=60°;因此△ABC为正三角形.∵Rt△ANB≌Rt△CNB;∴NC=NA=NB;因此N在平面ABC内的射影H是正三角形ABC 的中心.连结BH;∠NBH为NB与平面ABC所成的角.在Rt△NHB中;cos∠NBH=错误!=错误!=错误!.16.如图;在四面体ABCD中;CB=CD;AD⊥BD;点E、F分别是AB、BD的中点.求证:1直线EF∥平面ACD;2平面EFC⊥平面BCD.命题意图:本小题主要考查直线与平面、平面与平面的位置关系;考查空间想象能力、推理论证能力.证明:1在△ABD中;∵E、F分别是AB、BD的中点;所以EF∥AD.又AD平面ACD;EF平面ACD;∴直线EF∥平面ACD.2在△ABD中;∵AD⊥BD;EF∥AD;∴EF⊥BD.在△BCD中;∵CD=CB;F为BD的中点;∴CF⊥BD.∵EF平面EFC;CF平面EFC;EF与CF交于点F;∴BD⊥平面EFC.又∵BD平面BCD;∴平面EFC⊥平面BCD.13.如图;在四棱锥P-ABCD中;底面ABCD是边长为a的正方形;P A⊥平面ABCD;且P A=2AB.1求证:平面P AC⊥平面PBD;2求二面角B-PC-D的余弦值.解析:1证明:∵P A⊥平面ABCD;∴P A⊥BD.∵ABCD为正方形;∴AC⊥BD.∴BD⊥平面P AC;又BD在平面BPD内;∴平面P AC⊥平面BPD.2在平面BCP内作BN⊥PC;垂足为N;连结DN;∵Rt△PBC≌Rt△PDC;由BN⊥PC得DN⊥PC;∴∠BND为二面角B-PC-D的平面角;在△BND中;BN=DN=错误!a;BD=错误!a;∴cos∠BND=错误!=-错误!.14.如图;已知ABCD-A1B1C1D1是棱长为3的正方体;点E在AA1上;点F在CC1上;G在BB1上;且AE=FC1=B1G=1;H是B1C1的中点.1求证:E、B、F、D1四点共面;2求证:平面A1GH∥平面BED1F.证明:1连结FG.∵AE=B1G=1;∴BG=A1E=2;∴BG綊A1E;∴A1G綊BE.∵C1F綊B1G;∴四边形C1FGB1是平行四边形.∴FG綊C1B1綊D1A1;∴四边形A1GFD1是平行四边形.∴A1G綊D1F;∴D1F綊EB;故E、B、F、D1四点共面.2∵H是B1C1的中点;∴B1H=错误!.又B1G=1;∴错误!=错误!.又错误!=错误!;且∠FCB=∠GB1H=90°;∴△B1HG∽△CBF;∴∠B1GH=∠CFB=∠FBG;∴HG∥FB.又由1知A1G∥BE;且HG∩A1G=G;FB∩BE=B;∴平面A1GH∥平面BED1F.15.在三棱锥P-ABC中;P A⊥面ABC;△ABC为正三角形;D、E分别为BC、AC的中点;设AB=P A=2.1求证:平面PBE⊥平面P AC;2如何在BC上找一点F;使AD∥平面PEF;请说明理由;3对于2中的点F;求三棱锥B-PEF的体积.解析:1证明:∵P A⊥面ABC;BE面ABC;∴P A⊥BE.∵△ABC是正三角形;E为AC的中点;∴BE⊥AC;又P A与AC相交;∴BE⊥平面P AC;∴平面PBE⊥平面P AC.2解:取DC的中点F;则点F即为所求.∵E;F分别是AC;DC的中点;∴EF∥AD;又AD平面PEF;EF平面PEF;∴AD∥平面PEF.3解:V B-PEF=V P-BEF=错误!S△BEF·P A=错误!×错误!×错误!×错误!×2=错误!.16.2009·天津;19如图所示;在五面体ABCDEF中;F A⊥平面ABCD;AD∥BC∥FE;AB⊥AD;M为CE的中点;AF=AB=BC=FE=错误!AD.1求异面直线BF与DE所成的角的大小;2求证:平面AMD⊥平面CDE;3求二面角A-CD-E的余弦值.解答:1解:由题设知;BF∥CE;所以∠CED或其补角为异面直线BF与DE所成的角.设P为AD的中点;连结EP;PC.因为FE綊AP;所以F A綊EP.同理;AB綊PC.又F A⊥平面ABCD;所以EP⊥平面ABCD.而PC;AD都在平面ABCD内;故EP⊥PC;EP⊥AD.由AB⊥AD;可得PC⊥AD.设F A=a;则EP=PC=PD=a;CD=DE=EC=错误!a.故∠CED=60°.所以异面直线BF与DE所成的角的大小为60°.2证明:因为DC=DE且M为CE的中点;所以DM⊥CE.连结MP;则MP⊥CE.又MP∩DM=M;故CE⊥平面AMD.而CE平面CDE;所以平面AMD⊥平面CDE.3设Q为CD的中点;连结PQ;EQ.因为CE=DE;所以EQ⊥CD.因为PC=PD;所以PQ⊥CD;故∠EQP为二面角A-CD-E的平面角.由1可得;EP⊥PQ;EQ=错误!a;PQ=错误!a.于是在Rt△EPQ中;cos∠EQP=错误!=错误!.所以二面角A-CD-E的余弦值为错误!.13.2009·重庆如图所示;四棱锥P-ABCD 中;AB⊥AD;AD⊥DC;P A⊥底面ABCD;P A=AD=DC=错误!AB=1;M 为PC的中点;N点在AB上且AN=错误!NB.1求证:MN∥平面P AD;2求直线MN与平面PCB所成的角.解析:1证明:过点M作ME∥CD交PD于E点;连结AE.∵AN=错误!NB;∴AN=错误!AB=错误!DC=EM.又EM∥DC∥AB;∴EM綊AN;∴AEMN为平行四边形;∴MN∥AE;∴MN∥平面P AD.2解:过N点作NQ∥AP交BP于点Q;NF⊥CB于点F.连结QF;过N点作NH⊥QF于H;连结MH;易知QN⊥面ABCD;∴QN⊥BC;而NF⊥BC;∴BC⊥面QNF;∵BC⊥NH;而NH⊥QF;∴NH⊥平面PBC;∴∠NMH为直线MN与平面PCB所成的角.通过计算可得MN=AE=错误!;QN=错误!;NF=错误!错误!;∴NH=错误!=错误!=错误!;∴sin∠NMH=错误!=错误!;∴∠NMH=60°;∴直线MN与平面PCB所成的角为60°.14.2009·广西柳州三模如图所示;已知直平行六面体ABCD-A1B1C1D1中;AD⊥BD;AD=BD=a;E是CC1的中点;A1D⊥BE.1求证:A1D⊥平面BDE;2求二面角B-DE-C的大小.解析:1证明:在直平行六面体ABCD-A1B1C1D1中;∵AA1⊥平面ABCD;∴AA1⊥BD.又∵BD⊥AD;∴BD⊥平面ADD1A1;即BD⊥A1D.又∵A1D⊥BE且BE∩BD=B;∴A1D⊥平面BDE.2解:如图;连B1C;则B1C⊥BE;易证Rt△BCE∽Rt△B1BC;∴错误!=错误!;又∵E为CC1中点;∴BC2=错误!BB错误!.BB1=错误!BC=错误!a.取CD中点M;连结BM;则BM⊥平面CC1D1C;作MN⊥DE于N;连NB;由三垂线定理知:BN⊥DE;则∠BNM是二面角B-DE-C的平面角.在Rt△BDC中;BM=错误!=错误!a;Rt△CED中;易求得MN=错误!a;Rt△BMN中;tan∠BNM=错误!=错误!;则二面角B-DE-C的大小为arctan错误!.15.如图;已知正方体ABCD-A1B1C1D1中;E为AB的中点.1求直线B1C与DE所成的角的余弦值;2求证:平面EB1D⊥平面B1CD;3求二面角E-B1C-D的余弦值.解析:1连结A1D;则由A1D∥B1C知;B1C与DE所成的角即为A1D 与DE所成的角.连结A1E;由正方体ABCD-A1B1C1D1;可设其棱长为a;则A1D=错误!a;A1E=DE=错误!a;∴cos∠A1DE=错误!=错误!.∴直线B1C与DE所成角的余弦值是错误!.2证明取B1C的中点F;B1D的中点G;连结BF;EG;GF.∵CD⊥平面BCC1B1;且BF平面BCC1B1;∴DC⊥BF.又∵BF⊥B1C;CD∩B1C=C;∴BF⊥平面B1CD.又∵GF綊错误!CD;BE綊错误!CD;∴GF綊BE;∴四边形BFGE是平行四边形;∴BF∥GE;∴GE⊥平面B1CD.∵GE平面EB1D;∴平面EB1D⊥平面B1CD.3连结EF.∵CD⊥B1C;GF∥CD;∴GF⊥B1C.又∵GE⊥平面B1CD;∴EF⊥B1C;∴∠EFG是二面角E-B1C-D的平面角.设正方体的棱长为a;则在△EFG中;GF=错误!a;EF=错误!a;∴cos∠EFG=错误!=错误!;∴二面角E-B1C-D的余弦值为错误!.16.2009·全国Ⅱ;18如图所示;直三棱柱ABC-A1B1C1中;AB⊥AC;D、E分别为AA1、B1C的中点;DE⊥平面BCC1.1求证:AB=AC;2设二面角A-BD-C为60°;求B1C与平面BCD所成的角的大小.解析:1证明:取BC中点F;连结EF;则EF綊错误!B1B;从而EF綊DA.连结AF;则ADEF为平行四边形;从而AF∥DE.又DE⊥平面BCC1;故AF⊥平面BCC1;从而AF⊥BC;即AF为BC 的垂直平分线;所以AB=AC.2解:作AG⊥BD;垂足为G;连结CG.由三垂线定理知CG⊥BD;故∠AGC为二面角A-BD-C的平面角.由题设知;∠AGC=60°.设AC=2;则AG=错误!.又AB=2;BC=2错误!;故AF=错误!.由AB·AD =AG·BD得2AD=错误!·错误!;解得AD=错误!;故AD=AF.又AD⊥AF;所以四边形ADEF为正方形.因为BC⊥AF;BC⊥AD;AF∩AD=A;故BC⊥平面DEF;因此平面BCD⊥平面DEF.连结AE、DF;设AE∩DF=H;则EH⊥DF;EH⊥平面BCD.连结CH;则∠ECH为B1C与平面BCD所成的角.因ADEF为正方形;AD=错误!;故EH=1;又EC=错误!B1C=2;所以∠ECH=30°;即B1C与平面BCD所成的角为30°.13.在正四棱柱ABCD-A1B1C1D1中;底面边长为2错误!;侧棱长为4;E、F分别为棱AB、BC的中点.1求证:平面B1EF⊥平面BDD1B1;2求点D1到平面B1EF的距离d.分析:1可先证EF⊥平面BDD1B1.2用几何法或等积法求距离时;可由B1D1∥BD;将点进行转移:D1点到平面B1EF的距离是B点到它的距离的4倍;先求B点到平面B1EF的距离即可.解答:1证明:错误!EF⊥平面BDD1B1平面B1EF⊥平面BDD1B1.2解:解法一:连结EF交BD于G点.∵B1D1=4BG;且B1D1∥BG;∴D1点到平面B1EF的距离是B点到它的距离的4倍.利用等积法可求.由题意可知;EF=错误!AC=2;B1G=错误!.S△B1EF=错误!EF·B1G=错误!×2×错误!=错误!;S△BEF=错误!BE·BF=错误!×错误!×错误!=1.∵VB-B1EF=VB1-BEF;设B到面B1EF的距离为h1;则错误!×错误!×h1=错误!×1×4;∴h1=错误!.∴点D1到平面B1EF的距离为h=4h1=错误!.解法二:如图;在正方形BDD1B1的边BD上取一点G;使BG=错误!BD;连结B1G;过点D1作D1H⊥B1G于H;则D1H即为所求距离.可求得D1H=错误!直接法.14.如图直三棱柱ABC-A1B1C1中;侧棱CC1=2;∠BAC=90°;AB =AC=错误!;M是棱BC的中点;N是CC1中点.求:1二面角B1-AN-M的大小;2C1到平面AMN的距离.解析:1∵∠BAC=90°;AB=AC=错误!;M是棱BC的中点;∴AM⊥BC;BC=2;AM=1.∴AM⊥平面BCC1B1.∴平面AMN⊥平面BCC1B1.作B1H⊥MN于H;HR⊥AN于R;连结B1R;∴B1H⊥平面AMN.又由三垂线定理知;B1R⊥AN.∴∠B1RH是二面角B1-AN-M的平面角.由已知得AN=错误!;MN=错误!;B1M=错误!=B1N;则B1H=错误!;又Rt△AMN∽Rt△HRN;错误!=错误!;∴RH=错误!.∴B 1R =错误!;∴cos ∠B 1RH =错误!=错误!.∴二面角B 1-AN -M 的大小为arccos 错误!.2∵N 是CC 1中点;∴C 1到平面AMN 的距离等于C 到平面AMN 的距离.设C 到平面AMN 的距离为h ;由V C -AMN =V N -AMC得错误!×错误!·MN ·h =错误!×错误!AM ·MC .∴h =错误!.15.2009·北京海淀一模如图所示;四棱锥P -ABCD 中;P A ⊥平面ABCD ;底面ABCD 为直角梯形;且AB ∥CD ;∠BAD =90°;P A =AD =DC =2;AB =4.1求证:BC ⊥PC ;2求PB 与平面P AC 所成的角的正弦值;3求点A 到平面PBC 的距离.解析:1证明:如图;在直角梯形ABCD 中;∵AB ∥CD ;∠BAD =90°;AD =DC =2;∴∠ADC =90°;且AC =2错误!.取AB 的中点E ;连结CE ;由题意可知;四边形ABCD 为正方形;∴AE =CE =2.又∵BE =错误!AB =2.∴CE =错误!AB ;∴△ABC 为等腰直角三角形;∴AC ⊥BC .又∵P A ⊥平面ABCD ;且AC 为PC 在平面ABCD 内的射影; BC 平面ABCD ;由三垂线定理得;BC ⊥PC .2由1可知;BC ⊥PC ;BC ⊥AC ;PC ∩AC =C ;∴BC ⊥平面P AC .PC 是PB 在平面P AC 内的射影;∴∠CPB 是PB 与平面P AC 所成的角.又CB =2错误!;PB 2=P A 2+AB 2=20;PB =2错误!;∴sin ∠CPB =错误!=错误!;即PB 与平面P AC 所成角的正弦值为错误!.3由2可知;BC ⊥平面P AC ;BC 平面PBC ;∴平面PBC ⊥平面P AC .过A 点在平面P AC 内作AF ⊥PC 于F ;∴AF ⊥平面PBC ;∴AF 的长即为点A 到平面PBC 的距离.在直角三角形P AC中; P A=2;AC=2错误!;PC=2错误!;∴AF=错误!.即点A到平面PBC的距离为错误!.16.2009·吉林长春一模如图所示;四棱锥P-ABCD的底面是正方形;P A⊥底面ABCD;P A=2;∠PDA=45°;点E、F分别为棱AB、PD 的中点.1求证:AF∥平面PCE;2求二面角E-PD-C的大小;3求点A到平面PCE的距离.解析:1证明:如图取PC的中点G;连结FG、EG;∴FG为△PCD的中位线;∴FG=错误!CD且FG∥CD.又∵底面四边形ABCD是正方形;E为棱AB的中点;∴AE=错误!CD且AE∥CD;∴AE=FG且AE∥FG.∴四边形AEGF是平行四边形;∴AF∥EG.又EG平面PCE;AF平面PCE;∴AF∥平面PCE.2解:∵P A⊥底面ABCD;∴P A⊥AD;P A⊥CD.又AD⊥CD;P A∩AD=A;∴CD⊥平面P AD.又∵AF平面P AD;∴CD⊥AF.又P A=2;∠PDA=45°;∴P A=AD=2.∵F是PD的中点;∴AF⊥PD.又∵CD∩PD=D;∴AF⊥平面PCD.∵AF∥EG;∴EG⊥平面PCD.又GF⊥PD;连结EF;则∠GFE是二面角E-PD-C的平面角.在Rt△EGF中;EG=AF=错误!;GF=1;∴tan∠GFE=错误!=错误!.∴二面角E-PD-C的大小为arctan错误!.3设A到平面PCE的距离为h;由V A-PCE =V P-ACE;即错误!×错误!PC·EG·h=错误!P A·错误!AE·CB;得h=错误!;∴点A到平面PCE的距离为错误!.13.2009·陕西;18如图所示;在直三棱柱ABC-A1B1C1中;AB=1;AC=AA1=错误!;∠ABC=60°.1求证:AB⊥A1C;2求二面角A-A1C-B的大小.解析:1证明:∵三棱柱ABC-A1B1C1为直三棱柱;∴AB⊥AA1;在△ABC中;AB=1;AC=错误!;∠ABC=60°;由正弦定理得∠ACB=30°;∴∠BAC=90°;即AB⊥AC.∴AB⊥平面ACC1A1;又A1C平面ACC1A1;∴AB⊥A1C.2解:如图;作AD⊥A1C交A1C于D点;连结BD;由三垂线定理知BD⊥A1C;∴∠ADB为二面角A-A1C-B的平面角.在Rt△AA1C中;AD=错误!=错误!=错误!;在Rt△BAD中;tan∠ADB=错误!=错误!;∴∠ADB=arctan错误!;即二面角A-A1C-B的大小为arctan 错误!.14.如图;三棱柱ABC-A1B1C1的底面是边长为a的正三角形;侧面ABB1A1是菱形且垂直于底面;∠A1AB=60°;M是A1B1的中点.1求证:BM⊥AC;2求二面角B-B1C1-A1的正切值;3求三棱锥M-A1CB的体积.解析:1证明:∵ABB1A1是菱形;∠A1AB=60°△A1B1B是正三角形;BM⊥平面A1B1C1.错误!BM⊥AC.错误!BE⊥B1C1;∴∠BEM为所求二面角的平面角;△A1B1C1中;ME=MB1·sin60°=错误!a;Rt△BMB1中;MB=MB1·tan60°=错误!a;∴tan∠BEM=错误!=2;∴所求二面角的正切值是2.3VM-A1CB=错误!VB1-A1CB=错误!VA-A1CB=错误!VA1-ABC=错误!×错误!×错误!a2·错误!a=错误!a3.15.2009·广东汕头一模如图所示;已知△BCD中;∠BCD=90°;BC =CD=1;AB⊥平面BCD;∠ADB=60°;E、F分别是AC、AD上的动点;且错误!=错误!=λ0<λ<1.1求证:不论λ为何值;总有EF⊥平面ABC;2若λ=错误!;求三棱锥A-BEF的体积.解析:1证明:∵AB⊥平面BCD;∴AB⊥CD.又∵在△BCD中;∠BCD=90°;∴BC⊥CD.∵又AB∩BC=B;∴CD⊥平面ABC.又∵在△ACD中;E、F分别是AC、AD上的动点;且错误!=错误!=λ0<λ<1;∴不论λ为何值;都有EF∥CD;∴EF⊥平面ABC.2在△BCD中;∠BCD=90°;BC=CD=1;∴BD=错误!.又∵AB⊥平面BCD;∴AB⊥BC;AB⊥BD.又∵在Rt△ABD中;∠ADB=60°;∴AB=BD·tan60°=错误!;由1知EF⊥平面ABC;∴V A-BEF =V F-ABE=错误!S△ABE·EF=错误!×错误!S△ABC·EF=错误!×错误!×1×错误!×错误!=错误!.故三棱锥A-BEF的体积是错误!.16.在四棱锥P-ABCD中;侧面PDC是边长为2的正三角形;且与底面垂直;底面ABCD是面积为2错误!的菱形;∠ADC为菱形的锐角.1求证:P A⊥CD;2求二面角P-AB-D的大小;3求棱锥P-ABCD的侧面积;解析:1证明:如图所示;取CD的中点E;由PE⊥CD;得PE⊥平面ABCD;连结AC、AE.∵AD·CD·sin∠ADC=2错误!;AD=CD=2;∴sin∠ADC=错误!;即∠ADC=60°;∴△ADC为正三角形;∴CD⊥AE.∴CD⊥P A三垂线定理.2解:∵AB∥CD;∴AB⊥P A;AB⊥AE;∴∠P AE为二面角P-AB-D的平面角.在Rt△PEA中;PE=AE;∴∠P AE=45°.即二面角P-AB-D的大小为45°.3分别计算各侧面的面积:∵PD=DA=2;P A=错误!;∴cos∠PDA=错误!;sin∠PDA=错误!.S△PCD=错误!;S△P AB=错误!AB·P A=错误!·2·错误!·错误!=错误!;S△P AD=S△PBC=错误!PD·DA·sin∠PDA=错误!.∴S P=错误!+错误!+错误!.-ABCD侧13.把地球当作半径为R的球;地球上A、B两地都在北纬45°;A、B两点的球面距离是错误!R;A点在东经20°;求B点的位置.解析:如图;求B点的位置即求B点的经度;设B点在东经α;∵A、B两点的球面距离是错误!R.∴∠AOB=错误!;因此三角形AOB是等边三角形;∴AB=R;又∵∠AO1B=α-20°经度差问题转化为在△AO1B中借助AO1=BO1=AO cos45°=错误!R;求出∠AO1B=90°;则α=110°;同理:B点也可在西经70°;即B点在北纬45°东经110°或西经70°.14.在球心同侧有相距9cm的两个平行截面;它们的面积分别为49πcm2和400πcm2;求球的表面积和体积.解析:如图;两平行截面被球大圆所在平面截得的交线分别为AO1、BO2;则AO1∥BO2.若O1、O2分别为两截面圆的圆心;则由等腰三角形性质易知OO1⊥AO1;OO2⊥BO2;设球半径为R;∵πO2B2=49π;∴O2B=7cm;同理O1A=20cm.设OO1=x cm;则OO2=x+9cm.在Rt△OO1A中;R2=x2+202;在Rt△OO2B中;R2=x+92+72;∴x2+202=72+x+92;解得x=15cm.∴R=25cm;∴S球=2500πcm2;V球=错误!πR3=错误!πcm3.15.设A、B、C是半径为1的球面上的三点;B、C两点间的球面距离为错误!;点A与B、C两点间的球面距离均为错误!;O为球心;求:1∠AOB、∠BOC的大小;2球心O到截面ABC的距离.解析:1如图;因为球O的半径为1;B、C两点间的球面距离为错误!;点A与B、C两点间的球面距离均为错误!;所以∠BOC=错误!;∠AOB=∠AOC=错误!;2因为BC=1;AC=AB=错误!;所以由余弦定理得cos∠BAC=错误!;sin∠BAC=错误!;设截面圆的圆心为O1;连结AO1;则截面圆的半径r=AO1;由正弦定理得r=错误!=错误!;所以OO1=错误!=错误!.16.如图四棱锥A-BCDE中;AD⊥底面BCDE;AC⊥BC;AE⊥BE.1求证:A、B、C、D、E五点共球;2若∠CBE=90°;CE=错误!;AD=1;求B、D两点的球面距离.解析:1证明:取AB的中点P;连结PE;PC;PD;由题设条件知△AEB、△ADB、△ABC都是直角三角形.故PE=PD=PC=错误!AB=P A=PB.所以A、B、C、D、E五点在同一球面上.2解:由题意知四边形BCDE为矩形;所以BD=CE=错误!;在Rt△ADB中;AB=2;AD=1;∴∠DPB=120°;D、B的球面距离为错误!π.17.本小题满分10分如图;四棱锥S—ABCD的底面是正方形;SA⊥底面ABCD;E是SC上一点.1求证:平面EBD⊥平面SAC;2假设SA=4;AB=2;求点A到平面SBD的距离;解析:1∵正方形ABCD;∴BD⊥AC;又∵SA⊥平面ABCD;∴SA⊥BD;则BD⊥平面SAC;又BD平面BED;∴平面BED⊥平面SAC.2设AC∩BD=O;由三垂线定理得BD⊥SO.AO=错误!AC=错误!错误!AB=错误!·错误!·2=错误!;SA=4;则SO=错误!=错误!=3错误!;S△BSD=错误!BD·SO=错误!·2错误!·3错误!=6.设A到面BSD的距离为h;则V S-ABD=V A-BSD;即错误!S△ABD·SA=错误!S△BSD·h;解得h=错误!;即点A到平面SBD的距离为错误!.18.本小题满分12分如图;正四棱柱ABCD-A1B1C1D1中;AA1=2AB=4;点E在C1C上且C1E=3EC.1证明A1C⊥平面BED;2求二面角A1-DE-B的大小.解析:依题设知AB=2;CE=1;1证明:连结AC交BD于点F;则BD⊥AC.由三垂线定理知;BD⊥A1C.在平面A1CA内;连结EF交A1C于点G;由于错误!=错误!=2错误!;故Rt△A1AC∽Rt△FCE;∠AA1C=∠CFE;∠CFE与∠FCA1互余.于是A1C⊥EF.A1C与平面BED内两条相交直线BD、EF都垂直.所以A1C⊥平面BED.2作GH⊥DE;垂足为H;连结A1H.由三垂线定理知A1H⊥DE;故∠A1HG是二面角A1-DE-B的平面角.EF=错误!=错误!;CG=错误!=错误!.EG=错误!=错误!.错误!=错误!;GH=错误!×错误!=错误!.又A1C=错误!=2错误!;A1G=A1C-CG=错误!;tan∠A1HG=错误!=5错误!.所以二面角A1-DE-B的大小为arctan5错误!.19.本小题满分12分如图;四棱锥S-ABCD的底面是直角梯形;∠ABC=∠BCD=90°;AB=BC=SB=SC=2CD=2;侧面SBC⊥底面ABCD.1由SA的中点E作底面的垂线EH;试确定垂足H的位置;2求二面角E-BC-A的大小.解析:1作SO⊥BC于O;则SO平面SBC;又面SBC⊥底面ABCD;面SBC∩面ABCD=BC;∴SO⊥底面ABCD①又SO平面SAO;∴面SAO⊥底面ABCD;作EH⊥AO;∴EH⊥底面ABCD②即H为垂足;由①②知;EH∥SO;又E为SA的中点;∴H是AO的中点.2过H作HF⊥BC于F;连结EF;由1知EH⊥平面ABCD;∴EH⊥BC;又EH∩HF=H;∴BC⊥平面EFH;∴BC⊥EF;∴∠HFE为面EBC和底面ABCD所成二面角的平面角.在等边三角形SBC中;∵SO⊥BC;∴O为BC中点;又BC=2.∴SO=错误!=错误!;EH=错误!SO=错误!;又HF=错误!AB=1;∴在Rt△EHF中;tan∠HFE=错误!=错误!=错误!;∴∠HFE=arctan错误!.即二面角E-BC-A的大小为arctan错误!.20.本小题满分12分2010·唐山市高三摸底考试如图;在正四棱柱ABCD-A1B1C1D1中;AB=1;AA1=2;N是A1D的中点;M∈BB1;异面直线MN与A1A所成的角为90°.1求证:点M是BB1的中点;2求直线MN与平面ADD1A1所成角的大小;3求二面角A-MN-A1的大小.解析:1取AA1的中点P;连结PM;PN.∵N是A1D的中点;∴AA1⊥PN;又∵AA1⊥MN;MN∩PN=N;∴AA1⊥面PMN.∵PM面PMN;∴AA1⊥PM;∴PM∥AB;∴点M是BB1的中点.2由1知∠PNM即为MN与平面ADD1A1所成的角.在Rt△PMN中;易知PM=1;PN=错误!;∴tan∠PNM=错误!=2;∠PNM=arctan2.故MN与平面ADD1A1所成的角为arctan2.3∵N是A1D的中点;M是BB1的中点;∴A1N=AN;A1M=AM;又MN为公共边;∴△A1MN≌△AMN.在△AMN中;作AG⊥MN交MN于G;连结A1G;则∠A1GA即为二面角A-MN-A1的平面角.在△A1GA中;AA1=2;A1G=GA=错误!;∴cos∠A1GA=错误!=-错误!;∴∠A1GA=arccos-错误!;故二面角A-MN-A1的大小为arccos-错误!.21.2009·安徽;18本小题满分12分如图所示;四棱锥F-ABCD 的底面ABCD是菱形;其对角线AC=2;BD=错误!.AE、CF都与平面ABCD垂直;AE=1;CF=2.1求二面角B-AF-D的大小;2求四棱锥E-ABCD与四棱锥F-ABCD公共部分的体积.命题意图:本题考查空间位置关系;二面角平面角的作法以及空间几何体的体积计算等知识.考查利用综合法或向量法解决立体几何问题的能力.解答:1解:连接AC、BD交于菱形的中心O;过O作OG⊥AF;G为垂足;连接BG、DG.由BD⊥AC;BD⊥CF得BD⊥平面ACF;故BD⊥AF.于是AF⊥平面BGD;所以BG⊥AF;DG⊥AF;∠BGD为二面角B -AF-D的平面角.由FC⊥AC;FC=AC=2;得∠F AC=错误!;OG=错误!.由OB⊥OG;OB=OD=错误!;得∠BGD=2∠BGO=错误!.2解:连接EB、EC、ED;设直线AF与直线CE相交于点H;则四棱锥E-ABCD与四棱锥F-ABCD的公共部分为四棱锥H-ABCD.过H作HP⊥平面ABCD;P为垂足.因为EA⊥平面ABCD;FC⊥平面ABCD;所以平面ACEF⊥平面ABCD;从而P∈AC;HP⊥AC.由错误!+错误!=错误!+错误!=1;得HP=错误!.又因为S菱形ABCD=错误!AC·BD=错误!;故四棱锥H-ABCD的体积V=错误!S菱形ABCD·HP=错误!.22.2009·深圳调考一本小题满分12分如图所示;AB为圆O的直径;点E、F在圆O上;AB∥EF;矩形ABCD所在平面和圆O所在的平面互相垂直.已知AB=2;EF=1.1求证:平面DAF⊥平面CBF;2求直线AB与平面CBF所成角的大小;3当AD的长为何值时;二面角D-FE-B的大小为60°解析:1证明:∵平面ABCD⊥平面ABEF;CB⊥AB;平面ABCD∩平面ABEF=AB;∴CB⊥平面ABEF.∵AF平面ABEF;∴AF⊥CB;又∵AB为圆O的直径;∴AF⊥BF;∴AF⊥平面CBF.∵AF平面DAF;∴平面DAF⊥平面CBF.2解:根据1的证明;有AF⊥平面CBF;∴FB为AB在平面CBF上的射影;因此;∠ABF为直线AB与平面CBF所成的角.∵AB∥EF;∴四边形ABEF为等腰梯形;过点F作FH⊥AB;交AB于H.AB=2;EF=1;则AH=错误!=错误!.在Rt△AFB中;根据射影定理AF2=AH·AB;得AF=1;sin∠ABF=错误!=错误!;∴∠ABF=30°;∴直线AB与平面CBF所成角的大小为30°.3解:过点A作AM⊥EF;交EF的延长线于点M;连结DM.根据1的证明;DA⊥平面ABEF;则DM⊥EF;∴∠DMA为二面角D-FE-B的平面角;∠DMA=60°.在Rt△AFH中;∵AH=错误!;AF=1;∴FH=错误!.又∵四边形AMFH为矩形;∴MA=FH=错误!.∵AD=MA·tan∠DMA=错误!·错误!=错误!.因此;当AD的长为错误!时;二面角D-FE-B的大小为60°.。
高中数学立体几何经典题型练习题集(附有答案)

高中数学立体几何经典题型练习题集学校:______姓名:_____班级:______考号:______一.单选题1.正三棱锥的底边长和高都是2,则此正三棱锥的斜高长度为()A.B.C.D.2.在棱长为1的正方体ABCD-A1B1C1D1中,若E,F,G分别为C1D1,AA1,BB1的中点,则空间四边形EFBG在正方体下底面ABCD上的射影面积为()A.1B.C.D.3.一个棱柱是正四棱柱的条件是()A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱4、如图,P是正方体ABCD-A1B1C1D1对角线AC1上一动点,设AP的长度为x,若△PBD的面积为f(x),则f(x)的图象大致是()A.B.C.D.5、如图所示,AB是圆O的直径,C是异于A,B两点的圆周上的任意一点,PA垂直于圆O 所在的平面,则△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是()A.1B.2C.3D.46、如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是棱A1B1、BB1、B1C1的中点,则下列结论中:①FG⊥BD;②B1D⊥面EFG;③面EFG∥面ACC1A1;④EF∥面CDD1C1.正确结论的序号是()A.①和②B.③和④C.①和③D.②和④7、三棱锥P-ABC,PC⊥面ABC,△PAC是等腰三角形,PA=4,AB⊥BC,CH⊥PB,垂足为H,D是PA的中点,则△CDH的面积最大时,CB的长是()A.B.C.D.8、正方体的直观图如图所示,则其展开图是()A.B.C.D.二.填空题(共__小题)9、如图所示,ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,AC=m,BD=n,则四边形EFGH的面积为______.10、如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,给出下列结论:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°;⑤直线PD 与平面PAB所成角的余弦值为.其中正确的有______(把所有正确的序号都填上).11.如图所示,三棱锥M,PA⊥底面ABC,∠ABC=90°,则此三棱锥P-ABC中直角三角形有______个.12、如图,正三棱柱ABC-A1B1C1的各棱长都等于2,D在AC1上,F为BB1中点,且FD⊥AC1,有下述结论(1)AC1⊥BC;(2)=1;(3)二面角F-AC1-C的大小为90°;(4)三棱锥D-ACF的体积为.正确的有______.13.各棱长为a的正三棱柱的六个顶点都在同一个球面上,则此球的表面积为______.14.一四棱锥被平行于底面的平面所截,若截面面积与底面面积之比为1:4,则此截面把一条侧棱分成的两段之比为______.15、如图所示正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F且EF=,给出下列五个结论①AC⊥BE②EF∥平面ABCD③异面直线AE,BF所成的角为60°④A1点到面BEF的距离为定值⑤三棱柱A-BEF的体积为定值其中正确的结论有:______(写出所有正确结论的编号)三.简答题(共__小题)16、如图,立体图形A-BCD的四个面分别为△ABC、△ACD、△ADB和△BCD,E、F、G分别是线段AB、AC、AD上的点,且满足AE:AB=AF:AC=AG:AD,求证:△EFG∽△BCD.17、如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC 的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N 的位置;若不存在,试说明理由.参考答案一.单选题(共__小题)1.正三棱锥的底边长和高都是2,则此正三棱锥的斜高长度为()A.B.C.D.答案:D解析:解:在正三棱锥中,顶点P在底面的射影为底面正三角形的中心O,延长A0到E,则E为BC的中点,连结PE,则PE为正三棱锥的斜高.∵正三棱锥的底边长和高都是2,∴AB=PO=2,即AE=,OE=,∴斜高PE==,故选:D.2、在棱长为1的正方体ABCD-A1B1C1D1中,若E,F,G分别为C1D1,AA1,BB1的中点,则空间四边形EFBG在正方体下底面ABCD上的射影面积为()A.1B.C.D.答案:B解析:解:过E点做EH垂直CD于H,连接EH,易得H即为E在平面ABCD上的射影,连接AH,BH,如下图所示则AH,BH,AB分别为FE,EG,FB在平面ABCD上的射影,又由G在平面ABCD上的射影为B,故△ABH即为空间四边形EFBG在正方体下底面ABCD上的射影∵S△ABH=S ABCD=故选B3.一个棱柱是正四棱柱的条件是()A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱答案:C解析:解:上、下底面都是正方形,且侧棱垂直于底面的棱柱叫做正四棱柱.故A和B错在有可能是斜棱柱,D错在上下底面有可能不是正方形,底面是菱形,且有一个顶点处的三条棱两两垂直能保证上、下底面都是正方形,且侧棱垂直于底面.故选C.4、如图,P是正方体ABCD-A1B1C1D1对角线AC1上一动点,设AP的长度为x,若△PBD的面积为f(x),则f(x)的图象大致是()A.B.C.D.答案:A解析:解:设正方体的棱长为1,连接AC交BD于O,连PO,则PO是等腰△PBD的高,故△PBD的面积为f(x)=BD×PO,在三角形PAO中,PO==,∴f(x)=××=,画出其图象,如图所示,对照选项,A正确.故选A.5、如图所示,AB是圆O的直径,C是异于A,B两点的圆周上的任意一点,PA垂直于圆O所在的平面,则△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是()A.1B.2C.3D.4答案:D解析:证明:∵AB是圆O的直径∴∠ACB=90°即BC⊥AC,三角形ABC是直角三角形又∵PA⊥圆O所在平面,∴△PAC,△PAB是直角三角形.且BC在这个平面内∴PA⊥BC 因此BC垂直于平面PAC中两条相交直线,∴BC⊥平面PAC,∴△PBC是直角三角形.从而△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是,4.故选D.6、如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是棱A1B1、BB1、B1C1的中点,则下列结论中:①FG⊥BD;②B1D⊥面EFG;③面EFG∥面ACC1A1;④EF∥面CDD1C1.正确结论的序号是()A.①和②B.③和④C.①和③D.②和④答案:D解析:解:如图连接A1C1、A1B、BC1、BD、B1D,因为E、F、G分别是棱A1B1、BB1、B1C1的中点对于①因为FG∥BC1,△BDC1是正三角形,FG⊥BD,不正确.对于②因为平面A1C1B∥平面EFG,并且B1D⊥平面A1C1B,所以B1D⊥面EFG,正确.③面EFG∥面ACC1A1;显然不正确.④EF∥平面CDD1C1内的D1C,所以EF∥面CDD1C1.正确.故选D7、三棱锥P-ABC,PC⊥面ABC,△PAC是等腰三角形,PA=4,AB⊥BC,CH⊥PB,垂足为H,D是PA的中点,则△CDH的面积最大时,CB的长是()A.B.C.D.答案:D解析:解:三棱锥P-ABC中,PC⊥面ABC,AB⊂平面ABC,∴PC⊥AB;又AB⊥BC,BC∩PC=C,∴AB⊥平面PBC;又CH⊂平面PBC,∴AB⊥CH,又CH⊥PB,PB∩AB=B,∴CH⊥平面PAB,又DH⊂平面PAB,∴CH⊥DH;又△PAC是等腰直角三角形,且PA=4,D是PA的中点,∴CD=PA=2,设CH=a,DH=b,则a2+b2=CD2=4,∴4=a2+b2≥2ab,即ab≤1,当且仅当a=b=时,“=”成立,此时△CDH的面积最大;在Rt△PBC,设BC=x,则PB===,∴PC•BC=PB•CH,即2•x=•;解得x=,∴CB的长是.故选:D.8、正方体的直观图如图所示,则其展开图是()A.B.C.D.答案:D解析:解:根据题意,可得对于A,展开图中的上下两边的正方形的对边中点连线应该呈左右方向显现,故A的图形不符合题意;对于B,展开图中最右边的“日”字形正方形的对边中点连线应该是上下方向呈现,且应该在含有圆形的正方形的左边放置,故B的图形不符合题意;对于C,展开图中最右边的正方形应该与含有圆形的正方形相邻,故C的图形不符合题意;对于D,沿如图的红线将正方体的侧面剪裁,展开可得如D项图的形状,故D的图形符合题意故选:D二.填空题(共__小题)9、如图所示,ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,AC=m,BD=n,则四边形EFGH的面积为______.答案:解析:解:由ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,可得四边形EFGH为矩形,且此矩形的长和宽分别为和,故四边形EFGH的面积为=,故答案为:.10、如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,给出下列结论:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°;⑤直线PD与平面PAB所成角的余弦值为.其中正确的有______(把所有正确的序号都填上).答案:①④⑤解析:解:对于①、由PA⊥平面ABC,AE⊂平面ABC,得PA⊥AE,又由正六边形的性质得AE⊥AB,PA∩AB=A,得AE⊥平面PAB,又PB⊂平面PAB,∴AE⊥PB,①正确;对于②、又平面PAB⊥平面ABC,所以平面ABC⊥平面PBC不成立,②错;对于③、由正六边形的性质得BC∥AD,又AD⊂平面PAD,∴BC∥平面PAD,∴直线BC∥平面PAE也不成立,③错;对于④、在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,∴④正确;对于⑤、由于DE∥AB,∴D到平面PAB的距离即为E到平面PAB的距离,即E到直线PA的距离,即EA,EA=AB,在Rt△PAD中,PA=AD=2AB,∴PD=2AB,∴直线PD与平面PAB所成角的正弦值为=,∴直线PD与平面PAB所成角的余弦值为=,∴⑤正确.故答案为:①④⑤.11.如图所示,三棱锥M,PA⊥底面ABC,∠ABC=90°,则此三棱锥P-ABC中直角三角形有______个.答案:4解析:解:由已知PA⊥底面ABC,∠ABC=90°,所以CB⊥PA,CB⊥AB,又PA∩AB=A,所以CB⊥平面PAB,所以CB⊥PB,所以此三棱锥P-ABC中直角三角形有△ABC,△ABP,△ACP,△PBC共有4个.故答案为:4.12、如图,正三棱柱ABC-A1B1C1的各棱长都等于2,D在AC1上,F为BB1中点,且FD⊥AC1,有下述结论(1)AC1⊥BC;(2)=1;(3)二面角F-AC1-C的大小为90°;(4)三棱锥D-ACF的体积为.正确的有______.答案:(2)(3)(4)解析:解:(1)连接AB1,则∠B1C1A即为BC和AC1所成的角,在三角形AB1C1中,B1C1=2,AB1=2,AC1=2,cos∠B1C1A==,故(1)错;(2)连接AF,C1F,则易得AF=FC1=,又FD⊥AC1,则AD=DC1,故(2)正确;(3)连接CD,则CD⊥AC1,且FD⊥AC1,则∠CDF为二面角F-AC1-C的平面角,CD=,CF=,DF===,即CD2+DF2=CF2,故二面角F-AC1-C的大小为90°,故(3)正确;(4)由于CD⊥AC1,且FD⊥AC1,则AD⊥平面CDF,则V D-ACF=V A-DCF=•AD•S△DCF=×××=.故(4)正确.故答案为:(2)(3)(4)13.各棱长为a的正三棱柱的六个顶点都在同一个球面上,则此球的表面积为______.答案:解析:解:∵正三棱柱的六个顶点都在同一个球面上,所以球心在上下底面中心的连线的中点上,AB=a,OA=R,在△OEA中,OE=,AE=,∵AO2=OE2+AE2,∴,∴球的表面积为4πR2=,故答案为.14.一四棱锥被平行于底面的平面所截,若截面面积与底面面积之比为1:4,则此截面把一条侧棱分成的两段之比为______.答案:1:1解析:解:根据题意,设截得小棱锥的侧棱长为l,原棱锥的侧棱长为L,∵截面与底面相似,且截面面积与底面面积之比为1:4,∴相似比为:==,∴截面把棱锥的一条侧棱分成的两段之比是l:(L-l)=1:1.故答案为:1:1.15、如图所示正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F且EF=,给出下列五个结论①AC⊥BE②EF∥平面ABCD③异面直线AE,BF所成的角为60°④A1点到面BEF的距离为定值⑤三棱柱A-BEF的体积为定值其中正确的结论有:______(写出所有正确结论的编号)答案:①②④⑤解析:解:①AC⊥BE,由题意及图形知,AC⊥面DD1B1B,故可得出AC⊥BE,此命题正确;②EF∥平面ABCD,由正方体ABCD-A1B1C1D1的两个底面平行,EF在其一面上,故EF与平面ABCD无公共点,故有EF∥平面ABCD,此命题正确;③由图知,当F与B1重合时,令上底面顶点为O,则此时两异面直线所成的角是∠A1AO,当E与D1重合时,此时点F与O重合,则两异面直线所成的角是∠OBC1,此二角不相等,故异面直线AE、BF所成的角不为定值,故不正确.④A1点到面DD1B1B距离是定值,所以A1点到面BEF的距离为定值,正确;⑤三棱锥A-BEF的体积为定值,由几何体的性质及图形知,三角形BEF的面积是定值,A点到面DD1B1B距离是定值,故可得三棱锥A-BEF的体积为定值,此命题正确.故答案为:①②④⑤.三.简答题(共__小题)16、如图,立体图形A-BCD的四个面分别为△ABC、△ACD、△ADB和△BCD,E、F、G分别是线段AB、AC、AD上的点,且满足AE:AB=AF:AC=AG:AD,求证:△EFG∽△BCD.答案:证明:在△ABD中,∵AE:AB=AG:AD,∴EG∥BD.同理,GF∥DC,EF∥BC.又∠GEF与∠DBC方向相同.∴∠GEF=∠DBC.同理,∠EGF=∠BDC.∴△EFG∽△BCD.17、如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N 的位置;若不存在,试说明理由.答案:解:(1)∵AB⊥平面BCD,∴AB⊥BC,AB⊥BD.∵△BCD是正三角形,且AB=BC=a,∴AD=AC=.设G为CD的中点,则CG=,AG=.∴,,.三棱锥D-ABC的表面积为.(2)取AC的中点H,∵AB=BC,∴BH⊥AC.∵AF=3FC,∴F为CH的中点.∵E为BC的中点,∴EF∥BH.则EF⊥AC.∵△BCD是正三角形,∴DE⊥BC.∵AB⊥平面BCD,∴AB⊥DE.∵AB∩BC=B,∴DE⊥平面ABC.∴DE⊥AC.∵DE∩EF=E,∴AC⊥平面DEF.(3)存在这样的点N,当CN=时,MN∥平面DEF.连CM,设CM∩DE=O,连OF.由条件知,O为△BCD的重心,CO=CM.∴当CF=CN时,MN∥OF.∴CN=.。
高中数学立体几何专项练习题及答案

高中数学立体几何专项练习题及答案一、选择题1. 下面哪个选项不是描述柱体的特点?A. 体积恒定B. 底面形状不限C. 侧面是矩形D. 顶面和底面平行答案:A2. 如果一个四面体的一个顶点的对边垂直于底面,那么这个四面体是什么类型?A. 正方形四面体B. 倒立四面体C. 锥体D. 正方锥体答案:C3. 以下哪个选项正确描述了一个正方体的特点?A. 全部面都是正方形B. 12 条棱长度相同C. 8 个顶点D. 6 个面都是正方形答案:D4. 若长方体的高度是 6cm,底面积是 5cm²,底面对角线长为 a cm,那么 a 的值为多少?A. √11B. √29C. √31D. √41答案:C二、填空题1. 一个正方体的棱长为 4cm,它的体积是多少?答案:64cm³2. 一个球的表面积是100π cm²,那么它的半径是多少?答案:5cm3. 一个圆柱体的底面半径为 3cm,高度为 8cm,它的体积是多少?答案:72π cm³4. 一个圆锥的底面半径为 6cm,高度为 10cm,它的体积是多少?答案:120π cm³三、计算题1. 一个四棱锥的底面是边长为 5cm 的正方形,高度为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:5cm * 5cm = 25cm²再计算体积:25cm² * 8cm / 3 = 200cm³2. 一个圆柱体的底面直径为 12cm,高度为 15cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面半径:12cm / 2 = 6cm再计算底面积:π * 6cm * 6cm = 36π cm²最后计算体积:36π cm² * 15cm = 540π cm³3. 一个球的直径为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算半径:8cm / 2 = 4cm再计算体积:4/3 * π * 4cm * 4cm * 4cm = 268.08π cm³4. 一个圆锥的底面半径为 10cm,高度为 20cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:π * 10cm * 10cm = 100π cm²最后计算体积:100π cm² * 20cm / 3 = 2000π cm³四、解答题1. 若一个长方体的长度、宽度、高度分别为 a、b、c,它的表面积为多少?答案:单位为 cm²,计算过程如下:首先计算侧面积:2 * (a * b + a * c + b * c)再计算底面积:a * b最后计算表面积:2 * (a * b + a * c + b * c) + a * b2. 一个四棱锥的底面为边长为 a 的正三角形,高度为 h,求这个四棱锥的体积。
高中数学必修二第八章立体几何初步考点精题训练(带答案)

高中数学必修二第八章立体几何初步考点精题训练单选题1、南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m时,相应水面的面积为140.0km2;水位为海拔157.5m时,相应水面的面积为180.0km2,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m上升到157.5m时,增加的水量约为(√7≈2.65)()A.1.0×109m3B.1.2×109m3C.1.4×109m3D.1.6×109m3答案:C分析:根据题意只要求出棱台的高,即可利用棱台的体积公式求出.依题意可知棱台的高为MN=157.5−148.5=9(m),所以增加的水量即为棱台的体积V.棱台上底面积S=140.0km2=140×106m2,下底面积S′=180.0km2=180×106m2,∴V=13ℎ(S+S′+√SS′)=13×9×(140×106+180×106+√140×180×1012)=3×(320+60√7)×106≈(96+18×2.65)×107=1.437×109≈1.4×109(m3).故选:C.2、如图已知正方体ABCD−A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN//平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN//平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B1答案:A分析:由正方体间的垂直、平行关系,可证MN//AB,A1D⊥平面ABD1,即可得出结论.连AD1,在正方体ABCD−A1B1C1D1中,M是A1D的中点,所以M为AD1中点,又N是D1B的中点,所以MN//AB,MN⊄平面ABCD,AB⊂平面ABCD,所以MN//平面ABCD.因为AB不垂直BD,所以MN不垂直BD则MN不垂直平面BDD1B1,所以选项B,D不正确;在正方体ABCD−A1B1C1D1中,AD1⊥A1D,AB⊥平面AA1D1D,所以AB⊥A1D,AD1∩AB=A,所以A1D⊥平面ABD1,D1B⊂平面ABD1,所以A1D⊥D1B,且直线A1D,D1B是异面直线,所以选项C错误,选项A正确.故选:A.小提示:关键点点睛:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系.3、在正方体ABCD −A 1B 1C 1D 1中,三棱锥A −B 1CD 1的表面积为4√3,则正方体外接球的体积为( )A .4√3πB .√6πC .32√3πD .8√6π答案:B解析:根据三棱锥的表面积进一步求出正方体的棱长,最后求出正方体的外接球的半径,进一步求出结果. 解:设正方体的棱长为a ,则B 1D 1=AC =AB 1=AD 1=B 1C =D 1C =√2a ,由于三棱锥A −B 1CD 1的表面积为4√3,所以S =4S △AB 1C =4×12×√32(√2a)2=4√3所以a =√2所以正方体的外接球的半径为√(√2)2+(√2)2+(√2)22=√62, 所以正方体的外接球的体积为43π·(√62)3=√6π故选:B .小提示:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.4、已知三棱锥P −ABC ,其中PA ⊥平面ABC ,∠BAC =120°,PA =AB =AC =2,则该三棱锥外接球的表面积为( )A .12πB .16πC .20πD .24π答案:C分析:根据余弦定理、正弦定理,结合球的性质、球的表面积公式进行求解即可.根据题意设底面△ABC 的外心为G ,O 为球心,所以OG ⊥平面ABC ,因为PA ⊥平面ABC ,所以OG//PA ,设D 是PA 中点,因为OP =OA ,所以DO ⊥PA ,因为PA ⊥平面ABC ,AG ⊂平面ABC ,所以AG ⊥PA ,因此OD//AG ,因此四边形ODAG 是平行四边形,故OG =AD =12PA =1,由余弦定理,得BC =√AB 2+AC 2−2AB ⋅AC ⋅cos120°=√4+4−2×2×2×(−12)=2√3,由正弦定理,得2AG =√3√32⇒AG =2,所以该外接球的半径R 满足R 2=(OG )2+(AG )2=5⇒S =4πR 2=20π,故选:C .小提示:关键点睛:运用正弦定理、余弦定理是解题的关键.5、牟合方盖是由我国古代数学家刘徽首先发现并采用的一种用于计算球体体积的方法,该方法不直接给出球体的体积,而是先计算牟合方盖的体积.刘徽通过计算,“牟合方盖”的体积与球的体积关系为V 牟V 球=4π,并且推理出了“牟合方盖”的八分之一的体积计算公式,即V 牟8=r 3−V 方盖差,从而计算出V 球=43πr 3.如果记所有棱长都为r 的正四棱锥的体积为V ,则V 方差盖:V =( )A.√22B.1C.√2D.2√2答案:C分析:计算出V方盖差,V,即可得出结论.由题意,V方盖差=r3−18V牟=r3−18×4π×43×π×r3=13r3,所有棱长都为r的正四棱锥的体积为V正=13×r×r×r2−(√2r2)2=√26r3,∴V方盖差V正=13r3√2r36=√2,故选:C.6、如图,已知正方体的棱长为a,沿图1中对角面将它分割成两个部分,拼成如图2的四棱柱,则该四棱柱的全面积为()A.(8+2√2)a2B.(2+4√2)a2C.(4+2√2)a2D.(6−4√2)a2答案:C分析:拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,据此变化,进行求解. 由题意,拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,由于截面为矩形,长为√2a,宽为a,所以面积为√2a2,所以拼成的几何体的表面积为4a2+2√2a2=(4+2√2)a2.故选:C.7、如图所示的正方形SG1G2G3中,E , F分别是G1G2,G2G3的中点,现沿SE,SF,EF把这个正方形折成一个四面体,使G1,G2,G3重合为点G,则有()A.SG⊥平面EFG B.EG⊥平面SEFC.GF⊥平面SEF D.SG⊥平面SEF答案:A解析:根据正方形的特点,可得SG⊥FG,SG⊥EG,然后根据线面垂直的判定定理,可得结果. 由题意:SG⊥FG,SG⊥EG,FG∩EG=G,FG,EG⊂平面EFG所以SG⊥平面EFG正确,D不正确;.又若EG⊥平面SEF,则EG⊥EF,由平面图形可知显然不成立;同理GF⊥平面SEF不正确;故选:A小提示:本题主要考查线面垂直的判定定理,属基础题.8、如图,PA垂直于矩形ABCD所在的平面,则图中与平面PCD垂直的平面是()A.平面ABCD B.平面PBCC.平面PAD D.平面PCD答案:C分析:由线面垂直得到线线垂直,进而证明出线面垂直,面面垂直.因为PA⊥平面ABCD,CD⊂平面ABCD,所以PA⊥CD,由四边形ABCD为矩形得CD⊥AD,因为PA∩AD=A,所以CD⊥平面PAD.又CD⊂平面PCD,所以平面PCD⊥平面PAD.故选:C多选题9、沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上(细管长度忽略不下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的23计).假设该沙漏每秒钟漏下0.02cm3的沙,且细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆.以下结论正确的是()A.沙漏中的细沙体积为1024πcm381B.沙漏的体积是128πcm3C.细沙全部漏入下部后此锥形沙堆的高度约为2.4cmD.该沙漏的一个沙时大约是1565秒(π≈3.14)答案:AC解析:A.根据圆锥的体积公式直接计算出细沙的体积;B.根据圆锥的体积公式直接计算出沙漏的体积;C.根据等体积法计算出沙堆的高度;D.根据细沙体积以及沙时定义计算出沙时.A.根据圆锥的截面图可知:细沙在上部时,细沙的底面半径与圆锥的底面半径之比等于细沙的高与圆锥的高之比,所以细沙的底面半径r=23×4=83cm,所以体积V=13⋅πr2⋅2ℎ3=13⋅64π9⋅163=1024π81cm3B.沙漏的体积V=2×13×π×(ℎ2)2×ℎ=2×13×π×42×8=2563πcm3;C.设细沙流入下部后的高度为ℎ1,根据细沙体积不变可知:1024π81=13×(π(ℎ2)2)×ℎ1,所以1024π81=16π3ℎ1,所以ℎ1≈2.4cm;D.因为细沙的体积为1024π81cm3,沙漏每秒钟漏下0.02cm3的沙,所以一个沙时为:1024π810.02=1024×3.1481×50≈1985秒.故选:AC.小提示:该题考查圆锥体积有关的计算,涉及到新定义的问题,难度一般.解题的关键是对于圆锥这个几何体要有清晰的认识,同时要熟练掌握圆锥体积有关的计算公式.10、(多选题)在四棱锥A-BCDE中,底面四边形BCDE为梯形,BC∥DE.设CD,BE,AE,AD的中点分别为M,N,P,Q,则()A.PQ=1MN B.PQ∥MN2C.M,N,P,Q四点共面D.四边形MNPQ是梯形答案:BCD分析:根据中位线的性质,结合平行的性质逐个判定即可DE,且DE≠MN,由题意知PQ=12所以PQ≠1MN,故A不正确;又PQ∥DE,DE∥MN,2所以PQ∥MN,又PQ≠MN,所以B,C,D正确.故选:BCD11、给出以下关于斜二测直观图的结论,其中正确的是()A.水平放置的角的直观图一定是角B.相等的角在直观图中仍然相等C.相等的线段在直观图中仍然相等D.两条平行线段在直观图中仍是平行线段答案:AD分析:根据直观图和斜二测画法的规则,判断选项.水平放置的角的直观图一定是角,故A正确;角的大小在直观图中都会发生改变,有的线段在直观图中也会改变,比如正方形的直方图中,故BC错误;由斜二测画法规则可知,直观图保持线段的平行性,所以D正确.故选:AD填空题12、如图所示,P为平行四边形ABCD所在平面外一点,E为AD的中点,F为PC上一点,若PA//平面EBF,则PF=_______FC答案:12##0.5 分析:连接AC 交BE 于点M ,连接FM ,由线面平行的性质得线线平行,由平行线性得结论. 连接AC 交BE 于点M ,连接FM ,∵PA//平面EBF ,PA ⊂平面PAC ,平面PAC ∩平面EBF =EM ,∴PA//EM ,又AE//BC ,∴PF FC =AM MC =AE BC =12. 所以答案是:12. 13、已知一个圆锥的底面半径为6,其体积为30π则该圆锥的侧面积为________.答案:39π分析:利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案. ∵V =13π62⋅ℎ=30π∴ℎ=52∴l =√ℎ2+r 2=√(52)2+62=132 ∴S 侧=πrl =π×6×132=39π. 所以答案是:39π.14、如图,拿一张矩形纸片对折后略微展开,竖立在桌面上,折痕与桌面的关系是______.答案:垂直分析:根据给定条件,利用线面垂直的判定推理作答.令桌面所在的平面为α,折痕所在直线为l,纸片与桌面公共部分所在直线为a,b,如图,依题意有a∩b=A,因l⊥a,l⊥b,a,b⊂α,所以l⊥α,所以折痕与桌面垂直.所以答案是:垂直解答题15、如图,四棱锥P−ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.(1)证明:平面PAM⊥平面PBD;(2)若PD=DC=1,求四棱锥P−ABCD的体积.答案:(1)证明见解析;(2)√23.分析:(1)由PD⊥底面ABCD可得PD⊥AM,又PB⊥AM,由线面垂直的判定定理可得AM⊥平面PBD,再根据面面垂直的判定定理即可证出平面PAM⊥平面PBD;(2)由(1)可知,AM⊥BD,由平面知识可知,△DAB~△ABM,由相似比可求出AD,再根据四棱锥P−ABCD的体积公式即可求出.(1)因为PD⊥底面ABCD,AM⊂平面ABCD,所以PD⊥AM,又PB⊥AM,PB∩PD=P,所以AM⊥平面PBD,而AM⊂平面PAM,所以平面PAM⊥平面PBD.(2)[方法一]:相似三角形法由(1)可知AM⊥BD.于是△ABD∽△BMA,故ADAB =ABBM.因为BM=12BC,AD=BC,AB=1,所以12BC2=1,即BC=√2.故四棱锥P−ABCD的体积V=13AB⋅BC⋅PD=√23.[方法二]:平面直角坐标系垂直垂直法由(2)知AM⊥DB,所以k AM⋅k BD=−1.建立如图所示的平面直角坐标系,设BC =2a(a >0).因为DC =1,所以A(0,0),B(1,0),D(0,2a),M(1,a).从而k AM ⋅k BD =a−01−0×2a−00−1=a ×(−2a)=−2a 2=−1. 所以a =√22,即DA =√2.下同方法一.[方法三]【最优解】:空间直角坐标系法建立如图所示的空间直角坐标系D −xyz ,设|DA|=t ,所以D(0,0,0),C(0,1,0),P(0,0,1),A(t,0,0),B(t,1,0).所以M (t 2,1,0),PB ⃑⃑⃑⃑⃑ =(t,1,−1),AM ⃑⃑⃑⃑⃑⃑ =(−t 2,1,0).所以PB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =t ⋅(−t 2)+1×1+0×(−1)=−t 22+1=0. 所以t =√2,即|DA|=√2.下同方法一.[方法四]:空间向量法由PB ⊥AM ,得PB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.所以(PD⃑⃑⃑⃑⃑ +DA ⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ )⋅AM ⃑⃑⃑⃑⃑⃑ =0. 即PD ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +DA ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.又PD ⊥底面ABCD ,AM 在平面ABCD 内,因此PD ⊥AM ,所以PD ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.所以DA ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0,由于四边形ABCD 是矩形,根据数量积的几何意义,得−12|DA ⃑⃑⃑⃑⃑ |2+|AB ⃑⃑⃑⃑⃑ |2=0,即−12|BC ⃑⃑⃑⃑⃑ |2+1=0. 所以|BC⃑⃑⃑⃑⃑ |=√2,即BC =√2.下同方法一. 【整体点评】(2)方法一利用相似三角形求出求出矩形的另一个边长,从而求得该四棱锥的体积;方法二构建平面直角坐标系,利用直线垂直的条件得到矩形的另一个边长,从而求得该四棱锥的体积;方法三直接利用空间直角坐标系和空间向量的垂直的坐标运算求得矩形的另一个边长,为最常用的通性通法,为最优解;方法四利用空间向量转化求得矩形的另一边长.。
高中数学立体几何大题训练题含答案

立几大题训练题一、解答题(共50题;共505分)1. ( 10分) 已知四棱锥S−ABCD中,四边形ABCD为梯形,∠BCD=∠ADC=∠SAD=90°,平面SAD⊥平面ABCD,E为线段AD的中点,AD=2BC=2CD.(1)证明:BD⊥平面SAB;(2)若SA=AD=2,求点E到平面SBD的距离.2. ( 10分) 如图,平面ABCD∩平面ABEF=AB,四边形ABCD和ABEF都是边长为2的正方形,点M,N分别是AF,AB的中点,二面角D−AB−F的大小为60°.(1)求证:MN//平面BCF;(2)求直线DE与平面BCF所成角的正弦值.3. ( 10分) 如图,四棱锥P-ABCD的底面是正方形,E为AB的中点,PD⊥CE,AE=1,PD=3,PC=√13(1)证明:AD⊥平面PCD.(2)求DA与平面PCE所成角的正弦值.4. ( 10分) 如图所示,直三棱柱ABC−A1B1C1的各棱长均相等,点E为AA1的中点.(1)证明:EB1⊥BC1;(2)求二面角C1−EB1−C的余弦值.AD,G是PB的中点,5. ( 10分) 已知在四棱锥P−ABCD中,AD//BC,AB=BC=CD=12ΔPAD是等边三角形,平面PAD⊥平面ABCD.(1)求证:CD⊥平面GAC;(2)求二面角P−AG−C的余弦值.6. ( 10分) 如图,多面体ABCE中,平面AEC⊥平面ABC,AC⊥BC,AE⊥CD四边形BCDE 为平行四边形.(1)证明:AE⊥EC;(2)若AE=EC=CB=√2,求二面角D−AC−E的余弦值.7. ( 10分) 如图,在三棱锥A−BCD中, △ABC是等边三角形, ∠BAD=∠BCD=90°,点P是AC 的中点,连接BP,DP.(1)证明:平面ACD⊥平面BDP;(2)若BD=√6,且二面角A−BD−C为120°,求直线AD与平面BCD所成角的正弦值.8. ( 10分) 如图,在四棱锥P−ABCD中,AP⊥平面PCD,AD//BC,AB⊥BC,AP=AB=AD,E为AD的中点,AC与BE相交于点O.BC=12(1)证明:PO⊥平面ABCD.(2)若OB=1,求点C到平面PAB的距离.9. ( 10分) 如图,在斜三棱柱ABC−A1B1C1中,平面ABC⊥平面A1ACC1,CC1=2,△ABC,△ACC1,均为正三角形,E为AB的中点.(1)证明: AC1//平面B1CE,(2)求直线AC1与平面B1BAA1所成角的正弦值.10. ( 10分) 如图,四棱锥P−ABCD中,底面ABCD是边长为2的正方形,平面PAB⊥平面ABCD,AP=PB,AP⊥PB,E为CP的中点.(1)求证:AP//平面BDE;(2)求点D到平面ACP的距离.11. ( 10分) 在三棱柱ABC−A1B1C1中,已知AB=AC=AA1=√5,BC=4,O为BC的中点,A1O⊥平面ABC(1)证明四边形BB1C1C为矩形;(2)求直线AA1与平面A1B1C所成角的余弦值.12. ( 10分) 如图,四棱锥P−ABCD的底面是正方形,PA⊥平面ABCD,AE⊥PD.(1)证明:AE⊥平面PCD;(2)若AP=AB,求二面角B−PC−D的余弦值.13. ( 10分) 在直角梯形ABCD(如图1),∠ABC=90°,BC//AD,AD=8,AB=BC=4,M为线段AD中点.将△ABC沿AC折起,使平面ABC⊥平面ACD,得到几何体B−ACD(如图2).(1)求证:CD⊥平面ABC;(2)求AB与平面BCM所成角θ的正弦值.14. ( 15分) 如图,四棱锥S−ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SD=1.(1)求证BC⊥SC;(2)求平面SBC与平面ABCD所成二面角的大小;(3)设棱SA的中点为M,求异面直线DM与SB所成角的大小.15. ( 10分) 已知菱形ABCD的边长为4, AC∩BD=O, ∠ABC=60°,将菱形ABCD沿对角线BD折起,使AC=a,得到三棱锥A−BCD,如图所示.⇒(1)当a=2√2时,求证: AO⊥平面BCD;(2)当二面角A−BD−C的大小为120°时,求直线AD与平面ABC所成的正切值.16. ( 10分) 在四棱锥P–ABCD中,AB//CD,CD=2AB.⇀=mAP⇀(m>0),且MN//平面PCD,求实数m的值;(1)设AC与BD相交于点M,AN(2)若AB=AD=DP,∠BAD=60°,PB=√2AD,且PD⊥AD,求二面角A−PC−B的余弦值.17. ( 10分) 如图,在四棱锥P−ABCD中,PA⊥平面ABCD,ABCD是正方形,E是CD中点,点F在BC上,且BF=3FC.(1)证明:EF⊥平面PAE;(2)若PA=AB=4,求点C到平面PEF的距离.18. ( 10分) 如图,在四棱锥P−ABCD中,PA⊥平面ABCD,ABCD是正方形,E是CD中点,点F在BC上,且BF=3FC.(1)证明EF⊥平面PAE;AB,求平面PAB与平面PEF所成二面角的正弦值.(2)若PA=5419. ( 10分) 如图(1),在平面五边形EADCB中,已知四边形ABCD为正方形,ΔEAB为正三角形.沿着AB将四边形ABCD折起得到四棱锥E−ABCD,使得平面ABCD⊥平面EAB,设F在线段AD上且满足DF=2AF,G在线段CF上且满足FG=CG,O为ΔECD的重心,如图(2).(1)求证:GO//平面ABE;(2)求直线CF与平面BCE所成角的正弦值.20. ( 10分) 如图所示,在矩形ABCD中,AB=4,AD=2,E是CD的中点,O为AE的中点,以AE为折痕将ΔADE向上折起,使D点折到P点,且PC=PB.(1)求证: PO⊥面ABCE;(2)求AC与面PAB所成角θ的正弦值.21. ( 10分) 如图,在以A,B,C,D,E,F为顶点的多面体中,四边形ACDF是菱形,∠FAC=600,AB//DE,BC//EF,AB=BC=3,AF=2√3,BF=√15(1)求证:平面ABC⊥平面ACDF(2)求平面AEF与平面ACE所成的锐二面角的余弦值22. ( 10分) 已知四棱锥E−ABCD,AB=3,BC=4,CD=12,AD=13,cos∠ADC= 12,EC⊥平面ABCD.13(1)求证:平面ABE⊥平面EBC;(2)当CE=60时,求直线AC和平面ADE所成角的正弦值.23. ( 10分) 如图,在四棱锥P−ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB//CD,PC⊥底面ABCD,AB=2AD=2CD=4,PC=2a,E是PB的中点.(1)求证:AC⊥平面PBC;,求直线PA与平面EAC所成角的正弦值.(2)若二面角P−AC−E的余弦值为√6324. ( 10分) 如图1,在等腰梯形ABF1F2中,两腰AF2=BF1=2,底边AB=6,F1F2=4,D,C是AB的三等分点,E是F1F2的中点.分别沿CE,DE将四边形BCEF1和ADEF2折起,使F1,F2重合于点F,得到如图2所示的几何体.在图2中,M,N分别为CD,EF的中点.(1)证明:MN⊥平面ABCD.(2)求直线CN与平面ABF所成角的正弦值.25. ( 15分) 如图,在四棱锥P一ABCD中,已知AB=BC=√5,AC=4,AD=DC=2√2,点Q为AC中点,PO⊥底面ABCD, PO=2,点M为PC的中点.(1)求直线PB与平面ADM所成角的正弦值;(2)求二面角D-AM-C的正弦值;(3)记棱PD的中点为N,若点Q在线段OP上,且NQ//平面ADM,求线段OQ的长.26. ( 10分) 如图,已知ΔABC为等边三角形,ΔABD为等腰直角三角形,AB⊥BD,平面ABC⊥平面ABD,点E与点D在平面ABC的同侧,且CE//BD,BD=2CE.点F为AD中点,连接EF.(1)求证:EF//平面ABC;(2)求二面角C−AE−D的余弦值.27. ( 10分) 如图,在四棱锥S−ABCD中,底面ABCD是直角梯形,AD//BC,AB⊥BC,ΔSAB 是等边三角形,侧面SAB⊥底面ABCD,AB=2√3,BC=3,AD=1,点M、点N分别在棱SB、棱CB上,BM=2MS,BN=2NC,点P是线段MN上的任意一点.(1)求证:AP//平面SCD;(2)求二面角S−CD−B的大小.28. ( 15分) 如图,四棱锥P−ABCD的底面是正方形,PA⊥底面ABCD,PA=AD=2,点M,N分别在棱PD,PC上,且PC⊥平面AMN.(1)求证:AM⊥PD;(2)求直线CD与平面AMN所成角的正弦值.(3)求二面角C−AM−N的余弦值29. ( 10分) 如图,四棱锥P−ABCD中, PD⊥底面ABCD,且底面ABCD为平行四边形,若∠DAB= 60°, AB=2, AD=1.(1)求证: PA⊥BD;(2)若∠PCD=45°,求点D到平面PBC的距离ℎ.30. ( 10分) 在长方体ABCD−A1B1C1D1中,底面ABCD是边长为2的正方形,E是AB的中点,F是BC的中点.(1)求证:EF//平面A1DC1;(2)若AA1=2√3,求平面A1DC1与平面B1EF所成二面角的正弦值.31. ( 10分) 如图,在四棱锥P−ABCD中,底面ABCD是矩形,侧棱PD⊥底面ABCD,且PD= CD=1,过棱PC的中点E,作EF⊥PB交PB于点F.(1)证明:PA//平面EDB;,求PA与面ABCD所成角的正弦值.(2)若面DEF与面ABCD所成二面角的大小为π332. ( 5分) 如图,在三棱柱ABC−A1B1C1中,AA1⊥平面ABC,D是AB的中点,BC=AC,AB=2DC=2√2,AA1=4.(Ⅰ)求证:BC1//平面A1CD;(Ⅱ)求平面BCC1B1与平面A1CD所成锐二面角的平面角的余弦值.33. ( 10分) 如图,在三棱柱ABC−A1B1C1中,AA1⊥平面ABC,点D是AB的中点,BC= AC,AB=2DC=2,AA1=√3.(1)求证:平面A1DC⊥平面ABB1A1;(2)求点A到平面A1DC的距离.34. ( 10分) 如图,在平行六面体ABCD﹣A1B1C1D1中,AA1=A1D,AB=BC,∠ABC=120°.(1)证明:AD⊥BA1;(2)若平面ADD1A1⊥平面ABCD,且A1D=AB,求直线BA1与平面A1B1CD所成角的正弦值.35. ( 10分) 如图,在四棱锥P−ABCD中, PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP= 4,AB=BC=2, M,N为线段PC,AD上一点不在端点.AD,求证:MN∥面PBA(1)当M为中点时,AN=14,若存在(2)当N为AD中点时,是否存在M,使得直线MN与平面PBC所成角的正弦值为2√55求出M的坐标,若不存在,说明理由.36. ( 10分) 如图,正方体ABCD−A1B1C1D1的棱长为2,E为棱CC1的中点.(1)求 AD 1 与 DB 所成角的大小;(2)求 AE 与平面 ABCD 所成角的正弦值.37. ( 20分 ) 如图, E 是以 AB 为直径的半圆 O 上异于 A,B 的点,矩形 ABCD 所在的平面垂直于半圆 O 所在的平面,且 AB =2 , AD =3(1)求证:平面 EAD ⊥ 平面 EBC ;(2)若 EB ⌢ 的长度为 π3,求二面角 A −DE −C 的正弦值. 38. ( 5分 ) 如图1,在直角梯形 ABCD 中,AB ∥CD , AB ⊥AD ,且 AB =AD =12CD =1 .现以 为一边向梯形外作正方形 ADEF ,然后沿边 AD 将正方形 ADEF 翻折,使平面 ADEF 与平面 ABCD 垂直,如图2.(Ⅰ)求证:BC ⊥平面DBE ;(Ⅱ)求点D 到平面BEC 的距离.39. ( 10分 ) 如图,扇形 AOB 的半径为 2 ,圆心角 ∠AOB =120∘ ,点 C 为弧 AB 上一点, PO ⊥ 平面 AOB 且 PO =√5 ,点 M ∈PB 且 BM =2MP , PA ∥平面 MOC .(1)求证:平面MOC⊥平面POB;(2)求平面POA和平面MOC所成二面角的正弦值的大小.40. ( 10分) 如图,已知四边形ABCD为等腰梯形,BDEF为正方形,平面BDEF⊥平面ABCD,AD//BC,AD=AB=1,∠ABC=60°.(1)求证:平面CDE⊥平面BDEF;(2)点M为线段EF上一动点,求BD与平面BCM所成角正弦值的取值范围.41. ( 10分) 如图,在四棱锥P-ABCD中,AD=2√3,AB=3,AP=√3,AD//BC,AD⊥平面PAB,∠APB=90°,点E满足PE⇀=23PA⇀+13PB⇀.(1)证明:PE⊥DC;(2)求二面角A-PD-E的余弦值.42. ( 10分) 在斜三棱柱ABC−A1B1C1中,侧面AC1⊥平面ABC,AA1=√2a,A1C=CA=AB=a,AB⊥AC,D是AA1的中点.(1)求证:CD⊥平面AB1;(2)在侧棱BB1上确定一点E,使得二面角E−A1C1−A的大小为π.343. ( 10分) 如图,在四棱锥P−ABCD中,侧面PAD⊥底面ABCD,底面ABCD为梯形,AB//CD,=2.∠ABC=∠BCD=90°,BC=CD=AB2(1)证明: BD⊥PD;(2)若△PAD为正三角形,求二面角A−PB−C的余弦值.44. ( 10分) 如图,已知四棱锥P−ABCD的底面为直角梯形,∠ADC为直角,AP⊥平面ABCD,BC:AD:CD=5:4:2,且CD=1.(1)求证:BP⊥AC;(2)若AP=CD,求二面角D−PC−B的余弦值.45. ( 10分) 如图,在四棱锥P−ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,AB=1, AM⊥PD于点M,连接BM.(1)求证:PD⊥BM;(2)求直线CD与平面ACM所成角的正弦值.BC=1,E是BC的中46. ( 10分) 如图所示1,已知四边形ABCD满足AD//BC,BA=AD=DC=12点.将△BAE沿着AE翻折成△B1AE,使平面B1AE⊥平面AECD,F为CD的中点,如图所示2.(1)求证:EF⊥平面AB1E;(2)求AE到平面CB1D的距离.47. ( 10分) 如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,∠BCD=135°,PA⊥平面ABCD,AB=AC=PA=2,E,F,M分别为线段BC,AD,PD的中点.(1)求证:直线EF⊥平面PAC;(2)求平面MEF与平面PBC所成二面角的正弦值.48. ( 5分) 如图,三棱柱A1B1C1−ABC中,BB1⊥平面ABC,AB⊥BC,AB=2,BC= 1,BB1=3,D是CC1的中点,E是AB的中点.(Ⅰ)证明:DE//平面C1BA1;(Ⅱ)F是线段CC1上一点,且直线AF与平面ABB1A1所成角的正弦值为1,求二面角F−3BA1−A的余弦值.49. ( 5分) 如图,在四棱锥P−ABCD中, PA⊥平面ABCD, AD⊥CD,AD//BC,BC=4,PA= AD=CD=2,点E为PC的中点.(I) 证明:DE//平面PAB;(II)求直线PB与平面PCD所成角的正弦值.50. ( 10分) 如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的一点.(1)求证:平面PAC⊥平面PBC;(2)若AB=2 , AC=PA=1,求直线PA与平面PBC所成角的正弦值.答案解析部分一、解答题1.【答案】(1)解:由题意知∠BCD=∠ADC=90°,BC//ED,且BC=CD=12AD=DE,所以四边形BCDE是正方形,连接CE,所以BD⊥CE,又因为BC//AE,BC=AE,所以四边形ABCE是平行四边形,所以CE//AB,则BD⊥AB.因为平面SAD⊥平面ABCD,∠SAD=90°,平面SAD∩平面ABCD=AD,故SA⊥平面ABCD.所以SA∩AB=A,所以SA⊥BD,又因为SA∩AB=A,则BD⊥平面SAB.(2)解:∵SA=AD=2,BE=DE=1,∴△BDE的面积为12,又由(1)知SA⊥平面ABCD,∴V S−BDE=13×12×2=13,又在RtΔSAB中,SA=2,AB=DB=√2,∴SB=√6,由(1)知BD⊥SB,∴ΔSBD的面积为12×√2×√6=√3,设点E到平面SBD的距离为ℎ,则13S△BDS⋅ℎ=13,即ℎ=√33.【考点】直线与平面垂直的判定,点、线、面间的距离计算【解析】【分析】(1)利用线面垂直的判定定理,即可证得BD⊥平面SAB.(2)由(1)知SA⊥平面ABCD,求得V S−BDE=13,再根据等体积法,即可求解点点E到平面SBD的距离.2.【答案】(1)证明:∵M,N分别是AF,AB的中点,∴MN∥BF.∵MN⊄平面BCF,BF⊂平面BCF,∴MN//平面BCF.(2)解:∵四边形ABCD和ABEF都是边长为2的正方形,∴DA⊥AB,FA⊥AB,∴∠DAF就是二面角D−AB−F的平面角,∴∠DAF=60°.连接DM,在△DAM中,DA=2,AM=1,∠DAM=60°,∴DM2=AM2+AD2−2AM⋅AD⋅cos60°=3,∴DM=√3.∴DM2+AM2=AD2,∴DM⊥AM.∵DA⊥AB,FA⊥AB,FA∩DA=A,∴AB ⊥ 平面 ADM , ∴AB ⊥DM .∴DM ⊥ 平面 ABEF .以点 M 为原点, MF , MG ( G 是 BE 中点), MD 所在直线分别为 x 轴, y 轴, z 轴建立如图空间直角坐标系,如图所示:则 D(0,0,√3) , E(1,2,0) , B(−1,2,0) , F(1,0,0) , A(−1,0,0) ,DE ⃗⃗⃗⃗⃗ =(1,2,−√3) , BF ⃗⃗⃗⃗⃗ =(2,−2,0) , BC ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ =(1,0,√3) .设平面 BCF 的法向量为 m⃗⃗ =(x,y,z) , 则 {m ⇀⋅BF ⇀=2x −2y =0m ⇀⋅BC⇀=x +√3z =0 ,取 m ⃗⃗ =(√3,√3,−1) . 设直线 DE 与平面 BCF 所成角为 θ ,则 sinθ=|m⃗⃗⃗ ⋅DE ⃗⃗⃗⃗⃗⃗ ||m ⃗⃗⃗ ||DE ⃗⃗⃗⃗⃗⃗ |=√427 ,∴ 直线 DE 与平面 BCF 所成角的正弦值为 √427. 【考点】直线与平面平行的判定,用空间向量求直线与平面的夹角【解析】【分析】(1)根据三角形的中位线,有 MN ∥BF ,再利用线面平行的判定定理证明.(2)根据点 M , N 分别是 AF , AB 的中点,二面角 D −AB −F 的大小为60°,证明 DM ⊥ 平面 ABEF ,然后以点 M 为原点, MF , MG ( G 是 BE 中点), MD 所在直线分别为 x 轴, y 轴, z 轴建立如图空间直角坐标系,再求得平面 BCF 的一个法向量,利用线面角的向量求法求解.3.【答案】 (1)证明:因为E 为AB 的中点, AE =1 ,所以 CD =AB =2 ,所以 CD 2+PD 2=PC 2 ,从而 PD ⊥CD .又 PD ⊥CE , CD ∩CE =C ,所以 PD ⊥ 底面ABCD , 所以 PD ⊥AD .因为四边形ABCD 是正方形,所以 AD ⊥CD .又 CD ∩PD =D ,所以 AD ⊥ 平面PCD.(2)解:以D 为坐标原点,建立空间直角坐标系 D −xyz ,如图所示,则 A(2,0,0) , P(0,0,3) , E(2,1,0) , C(0,2,0) ,所以 PE ⃗⃗⃗⃗⃗ =(2,1,−3) , EC ⃗⃗⃗⃗⃗ =(−2,1,0) , DA ⃗⃗⃗⃗⃗ =(2,0,0) .设平面PCE 的法向量为 n⃗ =(x,y,z) , 则 PE ⃗⃗⃗⃗⃗ ⋅n ⃗ =EC ⃗⃗⃗⃗⃗ ⋅n ⃗ =0 ,即 {2x +y −3z =0−2x +y =0 ,令 x =3 ,得 n ⃗ =(3,6,4) . cos〈n ⃗ ,DA ⃗⃗⃗⃗⃗ 〉=n ⃗ ⋅DA ⃗⃗⃗⃗⃗⃗ |n ⃗ ||DA ⃗⃗⃗⃗⃗⃗ |=3√6161 , 故DA 与平面PCE 所成角的正弦值为 3√6161 .【考点】直线与平面垂直的判定,用空间向量求直线与平面的夹角【解析】【分析】(1)通过证明 PD ⊥AD , AD ⊥CD 即可证明线面垂直;(2)建立空间直角坐标系,利用向量方法求解线面角的正弦值.4.【答案】 (1)证明:设 BC 1 与 CB 1 交点为 O ,连接 OE , BE .由题可知四边形 BCC 1B 1 为正方形,所以 BC 1⊥CB 1 ,且 O 为 BC 1 中点.又因 BE 2=AB 2+AE 2 , C 1E 2=A 1E 2+A 1C 12 ,所以 BE =C 1E ,所以 BC 1⊥OE .又因为 OE ∩CB 1=O ,所以 BC 1⊥ 平面 EB 1C .因为 EB 1⊂ 平面 EB 1C ,所以 BC 1⊥EB 1 .(2)解:取 AB 的中点 O ′ ,连接 O ′C , O ′C ⊥AB ,在平面 ABB 1A 1 过点 O ′ 内作 AB 的垂线,如图所示,建立空间直角坐标系 O ′−xyz .设 AB =2 ,则 E(0,−1,1) , B 1(0,1,2) , B(0,1,0) , C 1(−√3,0,2) .所以 EB 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,1) , EC 1⃗⃗⃗⃗⃗⃗⃗ =(−√3,1,1) .设平面 C 1EB 1 的一个法向量为 n ⃗ =(x,y,z) ,则 {n ⇀⋅EB1⇀=2y +z =0n ⇀⋅EC 1⇀=−√3x +y +z =0 ,令 y =√3 ,则 n ⃗ =(−1,√3,−2√3) . 由(1)可知平面 CEB 1 的一个法向量为 BC 1⃗⃗⃗⃗⃗⃗⃗ =(−√3,−1,2) , 则 |cos〈BC 1⃗⃗⃗⃗⃗⃗⃗ ,n⃗ 〉|=|n ⃗ ⋅BC 1⃗⃗⃗⃗⃗⃗⃗⃗ ||n ⃗ |⋅|BC 1⃗⃗⃗⃗⃗⃗⃗⃗ |=√3√3+1+4⋅√1+3+12=√64.由图可知二面角 C 1−EB 1−C 为锐角,所以其余弦值为 √64.【考点】空间中直线与直线之间的位置关系,用空间向量求平面间的夹角【解析】【分析】(1)通过证明 BC 1⊥ 平面 EB 1C 即可证得;(2)建立空间直角坐标系,利用向量求解.5.【答案】 (1)证明:取 AD 的中点为 O ,连结 OP , OC , OB ,设 OB 交 AC 于 H ,连结 GH . 因为 AD//BC , AB =BC =CD =12AD , 四边形 ABCO 与四边形 OBCD 均为菱形, ∴OB ⊥AC , OB//CD , CD ⊥AC , 因为 △PAD 为等边三角形, O 为 AD 中点, ∴PO ⊥AD ,因为平面 PAD ⊥ 平面 ABCD ,且平面 PAD ∩ 平面 ABCD =AD .PO ⊂ 平面 PAD 且 PO ⊥AD , ∴PO ⊥ 平面 ABCD 因为 CD ⊂ 平面 ABCD , ∴PO ⊥CD ,因为H , G 分别为 OB , PB 的中点, ∴GH//PO , ∴GH ⊥CD .又因为 GH ∩AC =H , AC,GH ⊂ 平面 GAC , ∴CD ⊥ 平面 GAC .(2)解:取 BC 的中点为 E ,以 O 为空间坐标原点,分别以 OE ⇀,OD ⇀,OP ⇀ 的方向为 x 轴、 y 轴、 z 轴的正方向,建立如图所示的空间直角坐标系 O −xyz .设 AD =4 ,则 P(0,0,2√3) , A(0,−2,0) , C(√3,1,0) , D(0,2,0) , G(√32,−12,√3)AP ⃗⃗⃗⃗⃗ =(0,2,2√3) , AG ⇀=(√32,32,√3) , 设平面 PAG 的一法向量 n →=(x,y,z) .由 {n ⇀⋅AP⇀=0n ⇀⋅AG ⇀=0 ⇒{2y +2√3z =0√32x +32y +√3z =0⇒{y =−√3z x =z .令 z =1 ,则 n ⃗ =(1,−√3,1) . 由(1)可知,平面 AGC 的一个法向量 CD ⃗⃗⃗⃗⃗ =(−√3,1,0) , cos〈n ⇀,CD⇀〉=n ⇀⋅CD ⇀|n⇀||CD ⇀|=−√155∴ 二面角 P −AG −C 的平面角的余弦值为 −√155.【考点】直线与平面垂直的判定,用空间向量求平面间的夹角【解析】【分析】(1)取 AD 的中点为 O ,连结 OP , OC , OB ,设 OB 交 AC 于 H ,连结 GH .证明 AC ⊥CD , GH ⊥CD ,即可证 CD ⊥ 平面 GAC ;(2)取 BC 的中点为 E ,以 O 为空间坐标原点,分别以 OE⇀,OD ⇀,OP ⇀ 的方向为 x 轴、 y 轴、 z 轴的正方向,建立如图所示的空间直角坐标系 O −xyz .设 AD =4 ,利用向量法求二面角 P −AG −C 的余弦值.6.【答案】 (1)解:因为平面 AEC ⊥ 平面 ABC ,交线为 AC ,又 AC ⊥BC , 所以 BC ⊥ 平面 AEC , ∴BC ⊥AE ,又 AE ⊥CD , CD ∩BC =C , 则 AE ⊥ 平面 BCDE , EC ⊂ 平面 BCDE , 所以, AE ⊥EC ;(2)解:取 AC 的中点 O , AB 的中点 F ,连接 OE , OF ,则 OE ⊥ 平面 ABC , OF ⊥ 平面 AEC ;以点 O 为坐标原点,分别以 OA , OF , OE 为 x 轴, y 轴, z 轴建立空间直角坐标系如图所示,已知 AE =EC =CB =√2 ,则 AC =2 , OE =1 , O(0,0,0) , A(1,0,0) , C(−1,0,0) , D(0,−√2,1) , 则 AC⃗⃗⃗⃗⃗ =(−2,0,0) , AD ⃗⃗⃗⃗⃗ =(−1,−√2,1) , 设平面 DAC 的一个法向量 m⃗⃗ =(x,y,z) , 由 {m ⇀⋅AC⇀=0,m ⇀⋅AD ⇀=0 得 {−2x =0,−x −√2y +z =0令 y =√2 ,则 x =0 , z =2 ,即 m ⃗⃗ =(0,√2,2) ;平面 ECA 的一个法向量为 n ⃗ =(0,1,0) ; cos〈m ⃗⃗ ,n ⃗ 〉=m⃗⃗⃗ ⋅n ⃗ |m ⃗⃗⃗ ||n ⃗ |=√2√2+4=√33.所以二面角 D −AC −E 的余弦值为 √33.【考点】空间中直线与直线之间的位置关系,用空间向量求平面间的夹角【解析】【分析】(1)先通过平面 AEC ⊥ 平面 ABC 得到 BC ⊥AE ,再结合 AE ⊥CD ,可得 AE ⊥ 平面 BCDE ,进而可得结论;(2)取 AC 的中点 O , AB 的中点 F ,连接 OE , OF ,以点 O 为坐标原点,分别以 OA , OF , OE 为 x 轴, y 轴, z 轴建立空间直角坐标系,求出平面 DAC 的一个法向量以及平面 ECA 的一个法向量,求这两个法向量的夹角即可得结果. 7.【答案】 (1)证明:因为 △ABC 是等边三角形, ∠BAD =∠BCD =90° , 所以 Rt △ABD ≅Rt △CBD ,可得 AD =CD . 因为点 P 是 AC 的中点,则 PD ⊥AC , PB ⊥AC , 因为 PD ∩PB =P , PD ⊂ 平面PBD, PB ⊂ 平面 PBD , 所以 AC ⊥ 平面 PBD ,因为 AC ⊂ 平面 ACD , 所以平面 ACD ⊥ 平面 BDP .(2)解:如图,作 CE ⊥BD ,垂足为 E 连接 AE .因为 Rt △ABD ⊆Rt △CBD ,所以 AE ⊥BD, AE =CE, ∠AEC 为二面角A-BD-C 的平面角. 由已知二面角 A −BD −C 为 120° ,知 ∠AEC =120° . 在等腰三角形 AEC 中,由余弦定理可得 AC =√3AE . 因为 △ABC 是等边三角形,则 AC =AB ,所以 AB =√3AE . 在 Rt △ABD 中,有 12AE ⋅BD =12AB ⋅AD ,得 BD =√3AD , 因为 BD =√6 ,所以 AD =√2 . 又 BD 2=AB 2+AD 2 ,所以 AB =2 . 则 AE =2√33, ED =√63.以 E 为坐标原点,以向量 EC ⃗⃗⃗⃗⃗ , ED ⃗⃗⃗⃗⃗ 的方向分别为 x 轴, y 轴的正方向, 以过点 E 垂直于平面 BCD 的直线为 z 轴,建立空间直角坐标系 E −xyz ,则 D(0,√63,0) , A(−√33,0,1) ,向量 AD ⃗⃗⃗⃗⃗ =(√33,√63,−1) ,平面 BCD 的一个法向量为 m⃗⃗ =(0,0,1) , 设直线 AD 与平面 BCD 所成的角为 θ , 则 cos〈m ⃗⃗ ,AD ⃗⃗⃗⃗⃗ 〉=m⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗⃗ |m⃗⃗⃗ ||AD ⃗⃗⃗⃗⃗⃗ |=√2×1=−√22, sinθ=|cos〈m ⃗⃗ ,AD⃗⃗⃗⃗⃗ 〉|=√22所以直线 AD 与平面 BCD 所成角的正弦值为 √22.【考点】平面与平面垂直的判定,直线与平面所成的角,二面角的平面角及求法【解析】【分析】(1)由 △ABC 是等边三角形, ∠BAD =∠BCD =90° ,得 AD =CD .再证明 PD ⊥AC , PB ⊥AC ,从而和证明 AC ⊥ 平面 PBD ,故平面 ACD ⊥ 平面 BDP 得证.(2)作 CE ⊥BD ,垂足为 E 连接 AE .由 Rt △ABD ⊆Rt △CBD ,证得 AE ⊥BD, AE =CE, 结合二面角 A −BD −C 为 120° ,可得 AB =2 , AE =2√33, ED =√63 .建立空间直角坐标系,求出点的坐标则 D(0,√63,0) , A(−√33,0,1) ,向量AD ⃗⃗⃗⃗⃗ =(√33,√63,−1) ,即平面 BCD 的一个法向量 m ⃗⃗ =(0,0,1) ,运用公式 cos〈m ⃗⃗ ,AD ⇀〉=m ⃗⃗⃗ ⋅AD ⇀|m⃗⃗⃗ ||AD ⇀| 和 sinθ=|cos〈m ⃗⃗ ,AD ⇀〉| ,即可得出直线 AD 与平面 BCD 所成角的正弦值. 8.【答案】 (1)证明:∵ AP ⊥ 平面 PCD ,∴ AP ⊥CD . ∵ AD//BC , BC =12AD ,∴四边形 BCDE 为平行四边形, ∴ BE//CD , ∴ AP ⊥BE .又∵ AB ⊥BC , AB =BC =12AD ,且 E 为 AD 的中点, ∴四边形 ABCE 为正方形,∴ BE ⊥AC .又 AP ∩AC =A ,∴ BE ⊥ 平面 APC ,则 BE ⊥PO . ∵ AP ⊥ 平面 PCD ,∴ AP ⊥PC ,又 AC =√2AB =√2AP , ∴ ΔPAC 为等腰直角三角形, O 为斜边 AC 上的中点, ∴ PO ⊥AC 且 AC ∩BE =O ,∴ PO ⊥ 平面 ABCD .(2)解:∵ OB =1 ,∴ PA =PB =AB =√2 . 设 C 到平面 PAB 的距离为 d , 由 V C−PAB =V P−ABC ,得 13×√34×(√2)2×d =13×12×(√2)2×1 ,解得 d =2√33.【考点】直线与平面垂直的判定,点、线、面间的距离计算【解析】【分析】(1)首项通过证明 AP ⊥CD,CD//BE ,证得 AP ⊥BE ,然后通过证明四边形 ABCE 是正方形证得 BE ⊥AC ,由此证得 BE ⊥ 平面 APC ,所以 BE ⊥PO .通过证明 ΔPAC 为等腰直角三角形证得 PO ⊥AC ,由此证得 PO ⊥ 平面 ABCD .(2)利用等体积法,由 V C−PAB =V P−ABC 列方程,解方程求得点 C 到平面 PAB 的距离.9.【答案】 (1)解:如图,连接 BC 1 ,交 B 1C 于点M ,连接ME ,则 ME//AC 1 . 因为 AC 1⊄ 平面 B 1CE , ME ⊂ 平面 B 1CE ,所以 AC 1// 平面 B 1CE .(2)解:设O 是AC 的中点,连接 OC 1 ,OB.因为 △ACC 1 为正三角形, 所以 OC 1⊥AC ,又平面 ABC ⊥ 平面 A 1ACC 1 ,平面 ABC ∩ 平面 A 1ACC 1=AC , 所以 OC 1⊥ 平面ABC.由已知得 AC =2 .如图,分别以射线OB ,OA , OC 1 的方向为x ,y ,z 轴的正方向,建立空间直角坐标系,则有 A(0,1,0) , B(√3,0,0) , C 1(0,0,√3) , A 1(0,2,√3) , 故 AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,−1,√3) , AB ⃗⃗⃗⃗⃗ =(√3,−1,0) , AA 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,√3) , 设平面 B 1BAA 1 的一个法向量为 m⃗⃗ =(x,y,z) ,则 {AB ⇀⋅m ⇀=0AA 1⇀⋅m ⇀=0 , 所以 {√3x −y =0y +√3z =0 令 x =1 ,则 m ⃗⃗ =(1,√3,−1) .设直线 AC 1 与平面 B 1BAA 1 所成的角为 θ , 则 sinθ=|AC⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ ||AC⃗⃗⃗⃗⃗1|⋅|m⃗⃗⃗ |=√32×5=√155,故直线 AC 1 与平面 B 1BAA 1 所成角的正弦值为 √155.【考点】直线与平面平行的判定,直线与平面所成的角【解析】【分析】(1)如图,连接 BC 1 ,交 B 1C 于点M ,连接ME ,则 ME//AC 1 ,再利用线面平行的判定定理,即可证明线面平行;(2)设O 是AC 的中点,连接 OC 1 ,OB ,分别以射线OB ,OA , OC 1 的方向为x ,y ,z 轴的正方向,建立空间直角坐标系,求出平面 B 1BAA 1 的一个法向量为 m ⃗⃗ =(1,√3,−1) ,设直线 AC 1 与平面 B 1BAA 1 所成的角为 θ ,代入公式 sinθ=|AC ⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ ||AC ⃗⃗⃗⃗⃗ 1|⋅|m⃗⃗⃗ | 运算,即可得答案.10.【答案】 (1)解:如图,连接 AC 交 BD 于 O ,连接 OE ,则 O 为 AC 的中点.又E为CP上的中点,所以OE//PA.又AP⊄平面BDE,OE⊂平面BDE,所以AP//平面BDE(2)解:如图,取AB的中点M,连接PM,因为AP⊥PB,AP=PB,所以PM⊥AB,PM=12AB=1,AP=PB=√2,又平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PM⊂平面PAB,所以PM⊥平面ABCD.同理可得BC⊥平面PAB,∵AP、BP⊂平面PAB,∴BC⊥AP,BC⊥BP. 又因为AP⊥BP,BC∩BP=B,所以AP⊥平面BCP,∵PC⊂平面BCP,则AP⊥PC,所以PC=√PB2+BC2=√6,所以SΔAPC=12AP⋅PC=12×√2×√6=√3,又SΔACD=12×2×2=2,设点D到平面ACP的距离为ℎ,由V D−APC=V P−ACD,得13⋅SΔAPC⋅ℎ=13⋅PM⋅SΔACD,所以ℎ=3=2√33,即点D到平面ACP的距离为2√33.【考点】直线与平面平行的判定,点、线、面间的距离计算【解析】【分析】(1)连接AC交BD于O,则O为AC的中点,利用中位线的性质可得出OE//PA,然后利用直线与平面平行的判定定理可证明出AP//平面BDE;(2)取AB的中点M,连接PM,利用面面垂直的性质定理可得出PM⊥平面ABCD,由此可计算出三棱锥P−ACD的体积,并计算出ΔAPC的面积,并设点D到平面ACP的距离为ℎ,由V P−ACD=13SΔACP⋅ℎ可计算出点D到平面ACP的距离的值.11.【答案】(1)解:连接AO,因为O为BC的中点,可得BC⊥AO,∵ A 1O ⊥ 平面 ABC , BC ⊂ 平面 ABC ,∴ A 1O ⊥BC , 又∵ AO ∩A 1O =O ,∴ BC ⊥ 平面 AA 1O ,∴ BC ⊥AA 1 , ∵ BB 1//AA 1 , ∴ BC ⊥BB 1 , 又∵四边形 BB 1C 1C 为平行四边形, ∴四边形 BB 1C 1C 为矩形;(2)解:如图,分别以 OA,OB,OA 1 所在直线为 x,y,z 轴,建立空间直角坐标系,则 A(1,0,0),B(0,2,0),C(0,−2,0),Rt △AOB 中, AO =√AB 2−BO 2=1 , Rt △AA 1O 中, A 1O =√AA 12−AO 2=2 ,A 1(0,0,2) ,∴ AA 1⃗⃗⃗⃗⃗⃗⃗ =(−1,0,2) , A 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,−2,−2) , A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ =(−1,2,0) ,设平面 A 1B 1C 的法向量是 n⃗ =(x,y,z) , 由 {n ⇀⋅AB⇀=0,n ⇀⋅A 1C ⇀=0, 得 {−x +2y =0,−2y −2z =0, 即 {x =2y,z =−y, ,可取 n ⃗ =(2,1,−1) , 设直线 AA 1 与平面 A 1B 1C 所成角为 θ ,则 θ∈[0,π2] ,sinθ=|cos <AA 1⃗⃗⃗⃗⃗⃗⃗ ,n ⃗ >| =|AA 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗ ||AA 1⃗⃗⃗⃗⃗⃗⃗⃗ |⋅|n ⃗ |=√5⋅√6=215√30 , ∵ θ∈[0,π2] ,∴ cosθ=√1−sin 2θ=√10515,即直线 AA 1 与平面 A 1B 1C 所成角的余弦值为 √10515.【考点】直线与平面所成的角【解析】【分析】(1)连接 AO ,可得 BC ⊥AO ,易证 A 1O ⊥BC ,则 BC ⊥ 平面 AA 1O ,从而可证 BC ⊥BB 1 ,由此即可得出结论;(2)以 OA,OB,OA 1 所在直线分别为 x,y,z 轴建立空间直角坐标系,利用法向量解决问题.12.【答案】 (1)证明:因为 PA ⊥ 平面 ABCD , CD ⊂ 平面 ABCD , 所以 PA ⊥CD ,因为底面 ABCD 是正方形,所以 AD ⊥CD , 又 PA ∩AD =A ,所以 CD ⊥ 平面 PAD , 因为 AE ⊂ 平面 PAD ,所以 CD ⊥AE ,又因为 AE ⊥PD,CD ∩PD =D , CD,PD ⊂ 平面 PCD , 所以 AE ⊥ 平面 PCD(2)解:因为 PA ⊥ 平面 ABCD ,底面 ABCD 为正方形,所以 PA ⊥AB,PA ⊥AD,AB ⊥AD ,以 A 为原点,分别以 AB 、AD 、AP 所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系 A −xyz (如图所示),设 PA =AB =1 ,则 A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0),P(0,0,1) , 因为 AE ⊥PD ,所以 E 为 PD 中点,所以 E(0,12,12) , 所以 PB ⃗⃗⃗⃗⃗ =(1,0,−1),PC ⃗⃗⃗⃗⃗ =(1,1,−1),AE ⃗⃗⃗⃗⃗ =(0,12,12) , 由(1)得 AE ⃗⃗⃗⃗⃗ =(0,12,12) 为平面 PCD 的一个法向量, 设平面 PBC 的一个法向量为 m⃗⃗ =(x,y,z) , 由 {PB ⇀⋅m ⃗⃗ =0PC ⇀⋅m ⃗⃗ =0 ,即 {x −z =0x +y −z =0 ,令 x =1 ,则 z =1,y =0 ,所以 m ⃗⃗ =(1,0,1) , 因此 cos〈m⃗⃗ ,AE ⃗⃗⃗⃗⃗ 〉=m⃗⃗⃗ ⋅AE ⃗⃗⃗⃗⃗ |m⃗⃗⃗ |⋅|AE ⃗⃗⃗⃗⃗ |=12√2×√12=12, 由图可知二面角 B −PC −D 的大小为钝角, 故二面角 B −PC −D 的余弦值为 −12【考点】直线与平面垂直的判定,用空间向量求平面间的夹角【解析】【分析】(1)由 PA ⊥ 平面 ABCD 及底面 ABCD 是正方形可证得 CD ⊥ 平面 PAD ,则 CD ⊥AE ,又由 AE ⊥PD ,即可求证;(2)以 A 为原点,分别以 AB 、AD 、AP 所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系 A −xyz ,由(1)可知 AE ⃗⃗⃗⃗⃗ 为平面 PCD 的一个法向量,求得平面 PBC 的一个法向量 m ⃗⃗ ,进而利用数量积求解即可13.【答案】 (1)解:由题设可知 AC =4√2 , CD =4√2 , AD =8 ∴ AD 2=CD 2+AC 2 ∴ CD ⊥AC又∵平面 ABC ⊥ 平面 ACD ,平面 ABC ∩ 平面 ACD =AC ∴ CD ⊥ 面 ABC .(2)解:法一、等体积法取 AC 的中点 O 连接 OB ,由题设可知 △ABC 为等腰直角三角形,所以 OB ⊥ 面 ACM ∵ V B−ACM =V A−BCM 且 V B−ACM =13S ACM ⋅BO =16√23而 S ΔBCM =4√3∴ A 到面 BCM 的距离 ℎ=4√63,所以 sinθ=ℎAB =√63.法二、向量法取 AC 的中点 O 连接 OB ,由题设可知 △ABC 为等腰直角三角形,所以 OB ⊥ 面 ACM ,连接 OM ,因为 M 、O 分别为 AB 和 AC 的中点,所以 OM//CD ,由(1)可知 OM ⊥AC ,故以 OM 、OC 、OB 所在直线为 x 轴、 y 轴、 z 轴建立空间直角坐标系,如图所示. 则 A(0,−2√2,0) , B(0,0,2√2) , C(0,2√2,0) , M(2√2,0,0) ∴ CB⃗⃗⃗⃗⃗ =(0,−2√2,2√2) CM ⃗⃗⃗⃗⃗⃗ =(2√2,−2√2,0) BA ⃗⃗⃗⃗⃗ =(0,−2√2,−2√2) ∴面 BCM 的一个法向量 n ⃗ =(1,1,1) ∴ sinθ=|BA⃗⃗⃗⃗⃗ ⋅n ⃗ ||BA ⃗⃗⃗⃗⃗ ||n⃗ |=√63【考点】直线与平面垂直的判定,直线与平面所成的角【解析】【分析】(1)通过计算结合勾股定理的逆定理可以证明 CD ⊥AC ,再根据面面垂直的性质定理进行证明即可;(2)法一、取 AC 的中点 O 连接 OB ,根据 V B−ACM =V A−BCM ,结合三棱锥的体积公式进行求解即可;法二、取 AC 的中点 O 连接 OB ,由题设可知 △ABC 为等腰直角三角形,所以 OB ⊥ 面 ACM ,连接 OM ,因为 M 、O 分别为 AB 和 AC 的中点,所以 OM//CD ,由(1)可知 OM ⊥AC ,故以 OM 、OC 、OB 所在直线为 x 轴、 y 轴、 z 轴建立空间直角坐标系,如图所示.运用向量法求解即可.14.【答案】 (1)证明:∵底面 ABCD 是正方形, ∴ BC ⊥CD ,∵ SD ⊥ 底面 ABCD , BC ⊂ 底面 ABCD ,∴ SD ⊥BC ,又 DC ∩SD =D , ∴ BC ⊥ 平面 SDC ,∵ SC ⊂ 平面 SDC ,∴ BC ⊥SC .(2)解:由(1)知 BC ⊥SC ,又 CD ⊥BC ,∴ ∠SCD 为所求二面角的平面角, 在 RtΔDSC 中,∵ SD =DC =1 ,∴ ∠SCD =45° .(3)解:取AB中点P,连结MP,DP,在ΔABS,由中位线定理得MP//SB,∴∠DMP或其补角是异面直线DM与SB所成角,∵MP=12SB=√32,DM=√22,DP=√1+14=√52,所以ΔDMP中,有DP2=MP2+DM2,∴∠DMP=90°.【考点】直线与平面垂直的判定,二面角的平面角及求法【解析】【分析】(1)根据题意,由线面垂直证线线垂直,再根据线面垂直的判定定理,证明线面垂直,再证线线垂直.(2)由(1)中线面垂直,可知所求二面角的平面角为∠SCD,根据题意可求角度.(3)利用中位线将异面直线平移,则∠DMP或其补角是异面直线DM与SB所成角,根据勾股定理,即可求解.15.【答案】(1)解:在△AOC中, OA=OC=2,AC=a=2√2,∴OA2+OC2=AC2∴∠AOC=90°,即AO⊥OC,∵AO⊥BD,且AO∩BD=O,∴AO⊥平面BCD(2)解:由(1)知, OC⊥OD,以O为原点, OC,OD所在的直线分别为x轴, y轴建立如图的空间直角坐标系O−xyz:则 Q(0,0,0), B(0,−2√3,0), C(2,0,0), D(0,2√3,0) . ∵AO ⊥BD,CO ⊥BD∴∠AOC 为二面角 A −BD −C 的平面角, ∴∠AOC =120° ∴ 点 A(−1,0,√3)AD⃗⃗⃗⃗⃗ =(1,2√3,−√3) , BA ⃗⃗⃗⃗⃗ =(−1,2√3,√3) , BC ⃗⃗⃗⃗⃗ =(2,2√3,0) 设平面 ABC 的法向量为 n⃗ =(x,y,z) ,则 ∴ {n ⃗ ⋅BC ⇀=0n ⃗ ⋅BA ⇀=0 故 {2x +2√3y =0x +2√3y +√3z =0 取 x =1 ,则 y =−√33,z =√3∴ n ⃗ =(1,−√33,√3)设直线 AD 与平面 ABC 所成的角为 θ , sinθ=|AD⃗⃗⃗⃗⃗⃗ ⋅n ⃗ ||AD ⃗⃗⃗⃗⃗⃗ ||n ⃗ |=4√133=√313 ∴cosθ=√1−sin 2θ=√1013 ∴tanθ=sinθcosθ=√310=√3010∴ 直线 AD 与平面 ABC 所成的正切值: √3010【考点】直线与平面垂直的判定,用空间向量求直线与平面的夹角,用空间向量求平面间的夹角 【解析】【分析】(1)根据线面垂直定义,即可求得答案.(2)由于平面 ABC 不是特殊的平面,故建系用法向量求解,以 O 为原点建系, OC,OD 所在的直线分别为 x 轴, y 轴,求出平面 ABC 的法向量 n ⃗ ,求解 AD ⃗⃗⃗⃗⃗ 和 n⃗ 的夹角,即可求得答案. 16.【答案】 (1)解:因为 AB//CD ,所以 AMMC =ABCD =12 ,即AM AC=13.因为 MN// 平面PCD , MN ⊂ 平面PAC ,平面 PAC ∩ 平面 PCD =PC , 所以 MN//PC . 所以 ANAP =AM AC=13 ,即 m =13(2)解:因为 AB =AD , ∠BAD =60° ,可知 △ABD 为等边三角形, 所以 BD =AD =PD ,又 BP =√2AD , 故 BP 2=PD 2+DB 2 ,所以 PD ⊥DB .由已知 PD ⊥AD , AD ∩BD =D ,所以 PD ⊥ 平面ABCD ,如图,以D 为坐标原点, DA ⃗⃗⃗⃗⃗ ,DP⃗⃗⃗⃗⃗ 的方向为x , y 轴的正方向建立空间直角坐标系,设 AB =1 ,则 AB =AD =DP =1 , CD =2 , 所以 A(1,0,0) , B(12,0,√32) , P(0,1,0) , C(−1,0,√3) ,则 PB ⃗⃗⃗⃗⃗ =(12,−1,√32) , PC ⃗⃗⃗⃗⃗ =(−1,−1,√3) , PA ⃗⃗⃗⃗⃗ =(1,−1,0) 设平面PBC 的一个法向量为 n 1⃗⃗⃗⃗ =(x 1,y 1,z 1) ,则有 {n 1⇀⋅PB⇀=0n 1⇀⋅PC ⇀=0 即 {x 1−2y 1+√3z 1=0x 1+y 1−√3z 1=0. 令 x 1=1 ,则 y 1=2,z 1=√3 ,即 n 1⃗⃗⃗⃗ =(1,2,√3) , 设平面APC 的一个法向量为 n 2⃗⃗⃗⃗ =(x 2,y 2,z 2) ,则有{n 2⇀⋅PA ⇀=0n 2⇀⋅PC ⇀=0,即 {x 2−y 2=0−x 2−y 2+√3z 2=0 令 x 2=y 2=√3 ,则 z 2=2 ,即 n 2⃗⃗⃗⃗ =(√3,√3,2) . 所以 cos <n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ >=n 1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ |n 1⃗⃗⃗⃗⃗ |⋅|n 2⃗⃗⃗⃗⃗ |=√32√2×√10=√154设二面角 A −PC −B 的平面角为 θ ,则 cosθ=√154【考点】向量的共线定理,直线与平面平行的性质,用空间向量求平面间的夹角 【解析】【分析】(1)由AB ∥CD , 得到AM AC=13 ,由MN ∥平面PCD , 得MN ∥PC , 从而 ANAP =AM AC=13,由此能实数m 的值;(2)由AB =AD , ∠BAD =60°,知△ABD 为等边三角形,推导出PD ⊥DB , PD ⊥AD , 从而PD ⊥平面ABCD , 以D 为坐标原点, DA ⃗⃗⃗⃗⃗ ,DP ⃗⃗⃗⃗⃗ 的方向为x , y 轴的正方向建立空间直角坐标系,由此能求出二面角B ﹣PC ﹣B 的余弦值.17.【答案】 (1)证明:因为 PA ⊥ 平面 ABCD , EF ⊂ 平面 ABCD ,故可得 EF ⊥PA ; 设底面正方形的边长为4,故可得 AE =√AD 2+DE 2=√16+4=2√5 , EF =√FC 2+CE 2=√1+4=√5 , AF =√AB 2+BF 2=√16+9=5 , 故在 △AFE 中,满足 AE 2+EF 2=AF 2 ,故可得 AE ⊥EF ; 又 PA,AE ⊂ 平面 PAE ,且 PA ∩AE =A , 则 EF ⊥ 平面 PAE ,即证.(2)解:因为 PA ⊥ 平面 ABCD ,故 PA 为三棱锥 P −EFC 底面上的高线.故可得V P−EFC=13S∆EFC×PA=13×12×1×2×4=43.在△PEF中,因为PE=√PA2+AE2=6,EF=√5,由(1)可知EF⊥平面PAE,又PE⊂平面PAE,故可得EF⊥PE,则S△PEF=12×EF×PE=3√5,设点C到平面PEF的距离为ℎ,故可得V P−EFC=V C−PEF=13×S∆PEF×ℎ=43,解得ℎ=4√515.即点C到平面PEF的距离为:4√515.【考点】直线与平面垂直的判定,点、线、面间的距离计算【解析】【分析】(1)根据PA⊥平面ABCD,可得EF⊥PN,再证EF⊥AE,即可由线线垂直推证线面垂直;(2)转换三棱锥顶点,用等体积法求点面距离即可.18.【答案】(1)证明:因为PA⊥平面ABCD,EF⊂平面ABCD,故可得EF⊥PA;设底面正方形的边长为4,故可得AE=√AD2+DE2=√16+4=2√5,EF=√FC2+CE2=√1+4=√5,AF=√AB2+BF2=√16+9=5,故在△AFE中,满足AE2+EF2=AF2,故可得AE⊥EF;又PA,AE⊂平面PAE,且PA∩AE=A,则EF⊥平面PAE,即证.(2)解:因为PA⊥平面ABCD, AB,AD⊂平面ABCD,故可得PA⊥AB,PA⊥AD,又底面ABCD为正方形,故可得AB⊥AD,故以A为坐标原点,以AB,AD,AP所在直线为x,y,z轴建立空间直角坐标系如下图所示:设AB=4,故可得A(0,0,0),P(0,0,5),B(4,0,0),E(2,4,0),F(4,3,0)设平面PEF的法向量为m⃗⃗ =(x,y,z),则{m⃗⃗ ⋅EF⇀=0m⃗⃗ ⋅PE⇀=0,则{2x−y=02x+4y−5z=0取y=2,则m⃗⃗ =(1,2,2).不妨取平面PAB的法向量n⃗=(0,1,0).则cos〈m⃗⃗ ,n⃗ 〉=m⃗⃗⃗ ⋅n⃗|m⃗⃗⃗ ||n⃗ |=√9×1=23.。
高中空间立体几何经典例题精选全文完整版

可编辑修改精选全文完整版立体几何一、选择题1.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是 ( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【答案】D2 2.(20XX 年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为( )A .1:2B .1:4C .1:8D .1:16【答案】C 【答案】A3 3.(20XX 年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A4 4.(20XX 年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 ( )A .1B .2C .2-12D .2+12【答案】C5.(20XX 年普通高等学校招生统一考试山东数学(理)试题(含答案))已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,底面是边长为3.若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为( )A.512πB .3πC.4πD.6π【答案】B6.(20XX年普通高等学校招生统一考试重庆数学(理)试题(含答案))某几何体的三视图如题()5图所示,则该几何体的体积为()A.5603B.5803C.200D.240【答案】C7.(20XX年高考江西卷(理))如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为,m n,那么m n+=()A.8 B.9 C.10 D.11【答案】A二、填空题8.(20XX年高考北京卷(理))如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为__________.1D1BPD1CCEBA1A【答案】2559.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ____________.【答案】1:2410.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某几何体的三视图如图所示,则该几何体的体积是____________.【答案】1616π-11.(20XX 年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π12.(20XX 年上海市春季高考数学试卷(含答案))在如图所示的正方体1111ABCD A B C D -中,异面直线1A B 与1B C 所成角的大小为_______AB C1A D EF1B 1C【答案】3π三、解答题13.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,AB是圆的直径,PA 垂直圆所在的平面,C 是圆上的点. (I)求证:PAC PBC ⊥平面平面;(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值D 1 C 1 B 1A 1D C AB14.(20XX 年上海市春季高考数学试卷(含答案))如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC 与1AA 所成角的大小为6π,求该三棱柱的体积.【答案】[解]因为1CC 1AA .所以1BC C ∠为异面直线1BC 与1AA .所成的角,即1BC C ∠=6π. 在Rt 1BC C ∆中,113tan 6233BC CC BC C =⋅∠==从而2333ABC S BC ∆==因此该三棱柱的体积为1336183ABC V S AA ∆=⋅==15.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))B 1 A 1C 1ACB如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.【答案】证明:(1)∵AB AS =,SB AF ⊥∴F 分别是SB 的中点 ∵E.F 分别是SA.SB 的中点 ∴EF ∥AB又∵EF ⊄平面ABC, AB ⊆平面ABC ∴EF ∥平面ABC 同理:FG ∥平面ABC又∵EF FG=F, EF.FG ⊆平面ABC ∴平面//EFG 平面ABC (2)∵平面⊥SAB 平面SBC 平面SAB 平面SBC =BC AF ⊆平面SAB AF ⊥SB∴AF ⊥平面SBC 又∵BC ⊆平面SBC ∴AF ⊥BC又∵BC AB ⊥, AB AF=A, AB.AF ⊆平面SAB ∴BC ⊥平面SAB 又∵SA ⊆平面SAB ∴BC ⊥SA16.(20XX 年高考上海卷(理))如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C,并求直线BC 1到平面D 1AC 的距离.C 11A【答案】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =,故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C; 直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯=而1AD C ∆中,11AC DC AD ==故132AD C S ∆= AB CSGFE所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23.17.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))如图1,在等腰直角三角形ABC中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE =O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '(Ⅰ) 证明:A O '⊥平面BCDE ; (Ⅱ) 求二面角A CD B '--的平面角的余弦值.【答案】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD=由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O =,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角. 结合图1可知,H 为AC 中点,故2OH =,从而2A H '== 所以cos OH A HO A H '∠=='所以二面角ACD B '--向量法:以O 点为原点,建立空间直角坐标系O -.CO BDEA CDOBE'A图1图2C DO BE'AH则(A ',()0,3,0C -,()1,2,0D -所以(CA '=,(1,DA '=- 设(),,n x y z =为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y ⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩,令1x =,得(1,1,n =- 由(Ⅰ)知,(OA '=为平面CDB 的一个法向量,所以3cos ,3n OA n OA n OA'⋅'===',即二面角A CD B '--的平面角的余弦值为5.18.(20XX年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱ABCD-A1B1C1D1中, 侧棱A1A⊥底面ABCD, AB//DC, AB⊥AD, AD = CD = 1, AA1 = AB = 2, E为棱AA1的中点.(Ⅰ) 证明B1C1⊥CE;(Ⅱ) 求二面角B1-CE-C1的正弦值.(Ⅲ) 设点M在线段C1E上, 且直线AM与平面ADD1A1所成角的正弦值为2, 求线段AM的长.6【答案】19.(20XX年高考陕西卷(理))如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,12AB AA==(Ⅰ) 证明: A1C⊥平面BB1D1D;(Ⅱ) 求平面OCB1与平面BB1D1D的夹角θ的大小.1A【答案】解:(Ⅰ) BDOAABCDBDABCDOA⊥∴⊂⊥11,,面且面;又因为,在正方形AB CD 中,BDCAACACAACABDAACOABDAC⊥⊂⊥=⋂⊥11111,,故面且面所以;且.在正方形AB CD中,AO = 1 . .111=∆OAOAART中,在OECAOCEAEDB1111111⊥为正方形,所以,则四边形的中点为设.,所以由以上三点得且,面面又OOBDDDBBODDBBBD=⋂⊂⊂111111E.E,DDBBCA111面⊥.(证毕)(Ⅱ) 建立直角坐标系统,使用向量解题.以O为原点,以OC为X轴正方向,以OB为Y轴正方向.则)1,0,1()1,1,1(),10(),1(,0,1,0111-=⇒CABACB,,,,)(.由(Ⅰ)知, 平面BB1D1D的一个法向量.0,0,1),1,1,1(),1,0,1(111)(==-==OCOBCAn设平面OCB1的法向量为,则0,0,2122=⋅=⋅OCnOBnn).1-,1,0(法向量2=n为解得其中一个21221||||||,cos|cos212111=⋅=⋅=><=nnnnnnθ.所以,平面OCB1与平面BB1D1D的夹角θ为3π1A。
高中数学立体几何高难度练习题及参考答案2023

高中数学立体几何高难度练习题及参考答案2023【题目1】已知立方体ABCDEFGH的棱长为a,M为AD的中点,N为BF的中点,P为MN的中点。
求证:四边形MNHP是一个矩形。
【解答1】根据题意,我们可以先求出MN的长度。
由于M为AD的中点,因此DM = a/2。
同理,BN = a/2。
根据勾股定理,可以得到三角形MND的斜边ND的长度:ND = √(MN² + DM²)= √(MN² + (a/2)²)根据三角形BNF的性质,可以得到BNF是一个等腰直角三角形,因此NF = BN = a/2。
同理,我们可以计算出FP的长度:FP = NF = a/2最后,我们可以比较四边形MNHP的对角线长度。
根据反证法,如果MNHP不是一个矩形,那么MN和HP的长度应该不相等,即MN ≠ HP。
假设MN > HP,即MN² > HP²由于HP = FP = a/2,我们可以得到:MN² > (a/2)²将MN²和(a/2)²的值代入,得到:(MN² + (a/2)²) > (a/2)²经过整理化简,可得:MN > a/2这与MN = a/2矛盾,因此假设成立。
同理,可以得出假设MN < HP亦不成立。
由以上推理可知,四边形MNHP是一个矩形。
证毕。
【题目2】在三棱柱ABC-A'B'C'中,已知AB = 3,BC = 4,CA = 5,且AA'垂直于平面ABCD。
求证:A'B'² = 4² + 3² + 5²。
【解答2】根据题意,我们可以利用勾股定理和垂直平面的性质来解答此题。
首先,考虑三角形ABC。
由已知条件可知,它是一个直角三角形,且AB = 3,BC = 4,CA = 5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(2014•山东)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,P C的中点.(Ⅰ)求证:AP∥平面BEF;
(Ⅱ)求证:BE⊥平面PAC.
BC=
形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求证:BE∥平面PAD;
(Ⅱ)求证:BC⊥平面PBD;
(Ⅲ)设Q为侧棱PC上一点,,试确定λ的值,使得二面角Q﹣BD﹣P为45°.
中点,∴EF∥CD,且
,
,
的法向量为,,解得
4.(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:
(1)直线PA∥平面DEF;
(2)平面BDE⊥平面ABC.
PA=3
BC=4
13.(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:
(1)平面ADE⊥平面BCC1B1;
(2)直线A1F∥平面ADE.
AB、SC的中点
(1)求证:EF∥平面SAD
(2)设SD=2CD,求二面角A﹣EF﹣D的大小.
,
的中点,则
,,
,
所以向量的夹角等于二面角的平面角.
的大小为。