高中数学立体几何大题有答案)

合集下载

高中数学立体几何大题题库答案

高中数学立体几何大题题库答案

立体几何解答题题库答案1.(1)作法:取BC 的中点H ,连接AH ,则直线AH 即为要求作的直线l .证明如下:,PA AB PA AC ⊥⊥,且AB AC A =,PA ∴⊥平面ABC .平面//α平面PAB ,且α平面11PAC P A =,平面PAB平面PAC PA =. 11P A ∴⊥平面ABC ,11PA AH ∴⊥. 又AB AC =,H 为BC 的中点,则AH BC ⊥,从而直线AH 即为要求作的直线l .(2)α将三棱锥P ABC -分成体积之比为8:19的两部分,∴四面体111P A B C 的体积与三棱锥P ABC -分成体积之比为8:27,又平面//α平面PAB ,11123AC B C PC AC BC PC ∴===. 易证//PA 平面111P A B ,则P 到平面111P A B 的距离1d 即为A 到平面111P A B 的距离,111d AA ∴==又D 为1B C 的中点,D ∴到平面111P A B 的距离21112d AC ==, 故四棱锥111A PPDB -的体积()1211422323V d d =⨯+⨯⨯⨯=. 2.(1)由几何体的三视图可知,底面ABCD 是边长为4的正方形,PA ⊥平面ABCD ,PA ∥EB ,且PA =,BE =,AB =AD =CD =CB =4,∴V P -ABCD =13PA ×S ABCD =13××4×4┉┉┉┉┉┉┉┉┉┉┉┉4分 (2)证明:连结AC 交BD 于O 点,取PC 中点F ,连结OF ,∵EB ∥PA ,且EB =12PA ,又OF ∥PA ,且OF =12PA ,∴EB ∥OF ,且EB =OF ,∴四边形EBOF 为平行四边形,∴EF ∥BD .又EF ⊂平面PEC ,BD ⊄平面PEC ,所以BD ∥平面PEC .┉┉┉┉┉┉┉┉┉┉┉┉8分解法二:可取PA 的中点Q,证明平面PEC ∥平面BDQ.BD ⊂平面BDQ.所以BD ∥平面PEC .(3)存在,点M 为线段BC 上任意一点. 证明如下:连结BP ,∵EBAB =BA PA ∠EBA =∠BAP =90°, ∴△EBA ∽△BAP ,∴∠PBA =∠BEA ,∴∠PBA +∠BAE =∠BEA +∠BAE =90°,∴PB ⊥AE . 又∵BC ⊥平面APEB ,∴BC ⊥AE ,∴AE ⊥平面PBC ,∴点M 为线段BC 上任意一点,均可使得AE ⊥PM. ┉┉┉┉┉┉┉┉┉┉12分3.(Ⅰ)在梯形ABCD 中,∵CD AB //,CB AD =,∴=∠BAD 60ABC ∠=,∴=∠ADC 120=∠BCD ,∵1==DC AD .∴=∠CAD 30=∠ACD ,∴ 90=∠ACB ,∴AC BC ⊥.(4分)∵平面ACFE ⊥平面ABCD ,平面 ACFE 平面ABCD AC =,∴⊥BC 平面ACFE .(Ⅱ)在ADC ∆中,-+=222DC AD AC ADC DC AD ∠⋅cos 23=,∴3=AC .分别以CF CB CA ,,为x 轴,y 轴,z 轴建立平面直角坐标系, 设h CF =,则)0,0,0(C ,)0,0,3(A ,)0,1,0(B ,)0,0,21(D ,),0,0(h F ,则)0,1,21(-=BD ,),1,0(h BF -=,易知平面BCF 的一个法向量为)0,0,1(=m , ∵平面BDF 的法向量为),,(z y x =,∴⎪⎩⎪⎨⎧=⋅=⋅,0,0BF n BD n 即⎪⎩⎪⎨⎧=+-=-,0,021hz y y x 令1=z ,则h x 2=,h y =, ∴平面BDF 的法向量为)1,,2(h h =,∵二面角D BF C --的平面角的余弦值为66, ∴>=<n m ,cos 1522+h h66=,解得1=h ,即1=CF .(10分) 所以六面体ABCDEF 的体积为:=ABCDEF V ACFE B V -ACFE D V -+BC S ACFE ⨯=正方形31D ACFE y S ⨯+正方形3121211311131=⨯⨯+⨯⨯=.(12分)4.(1)证明:取AD 的中点O,连OC,OP∵∆PAD 为等边三角形,且O 是边AD 的中点∴AD PO ⊥∵平面PAD ⊥底面ABCD ,且它们的交线为AD∴ABCD PO 平面⊥∴PO BA ⊥∵O PO AD AD BA =⊥ 且,∴PAD AB 平面⊥∴AB PD ⊥(2)设点M 到平面ACD 的距离为h ∵31==--ACD M ACM D V V ∴3131=⋅∆h S ACD ∴11ACD h S ∆== ∵31==OP h CP CM∴λ== 5.(I )连PM 、MB ∵PD ⊥平面ABCD ∴PD ⊥MD222222222323a AM AB BM a MD PD PM =+==+=∴又 ∴PM=BM 又PN=NB ∴MN ⊥PB,22,BC a PC a BC a DC PD ==∴===得NC ⊥PB MN NC N = ∴PB ⊥平面MNC⊂PB 平面PBC∴平面MNC ⊥平面PBC(II )取BC 中点E,连AE,则AE//MC ∴AE//平面MNC,A 点与E 点到平面MNC 的距离相等取NC 中点F,连EF,则EF 平行且等于21BN ∵BN ⊥平面MNC ∴EF ⊥平面MNC,EF 长为E点到平面MNC 的距离 ∵PD ⊥平面ABCD,PD BC ∴⊥ 又BC ⊥DC BC ∴⊥面PCD ∴BC ⊥PC.24121,222a PB BN EF a PC BC PB ====+=∴ 即点A 到平面MNC 的距离为2a 6.(2)连接A 1B ,设A 1B ∩AB 1=F ,连接EF .在直三棱柱ABC -A 1B 1C 1中,四边形AA 1B 1B 为平行四边形,所以F 为A 1B 的中点.又因为E 是BC 的中点,所以EF ∥A 1C .因为EF 在平面AB 1E 内,A 1C 不在平面AB 1E 内,所以A 1C ∥平面AB 1E .7.证明:(1)∵ABCD 为矩形,∴BC ⊥AB,又∵平面ABCD ⊥平面AEBF,BC ⊂平面ABCD,平面ABCD∩平面AEBF=AB, ∴BC ⊥平面AEBF, ……………(2分)又∵AF ⊂平面AEBF,∴BC ⊥AF. ……………(3分)∵∠AFB=90°,即AF ⊥BF,且BC 、BF ⊂平面BCF,BC∩BF=B , ∴AF ⊥平面BCF. ……………(5分)又∵AF ⊂平面ADF,∴平面ADF ⊥平面BCF. ………………………………(6分)(2)∵BC ∥AD,AD ⊂平面ADF,∴BC ∥平面ADF.∵ABE ∆和ABF ∆均为等腰直角三角形,且BAE AFB ∠=∠=90°,∴∠FAB=∠ABE=45°,∴AF ∥BE,又AF ⊂平面ADF,∴BE ∥平面ADF,∵BC∩BE=B ,∴平面BCE ∥平面ADF.延长EB 到点H,使得BH =AF,又BC //AD,连CH 、HF,易证ABHF 是平行四边形, ∴HF //AB //CD,∴HFDC 是平行四边形,∴CH ∥DF.过点B 作CH 的平行线,交EC 于点G,即BG ∥CH ∥DF,(DF ⊂平面CDF )∴BG ∥平面CDF,即此点G 为所求的G 点. ………………………………(9分) 又22AF BH ==,∴EG=23EC ,又2ABE ABF S S ∆∆=, 2444433333G ABE C ABE C ABF D ABF B ADF G ADF V V V V V V ------=====, 故43G ABE G ADF V V --=..………………………………(12分) 8.(1)证明: 四边形ABCD 为菱形 AC BD ⊥∴,………………1分又Q 面ACFE ⋂面ABCD =ACABCD BD 平面⊂∴………………2分面ABCD ⊥面ACFE C………………3分ACFE BD 面⊥∴,………………4分Q ACFE CH 面⊂ ………………5分CH BD ⊥∴………………………………6分(2)在FCG ∆中,GF CH CH CF CG ⊥===,23,3 所以︒=∠120GCF ,………………6分3=GF ………………8分ACFE BD 面⊥ ,ACFE GF 面⊂GF BD ⊥∴,………………9分3322121=⨯⨯=⋅=∆GF BD S BDF …………………………………. 10分 又BD CH ⊥∴,GF CH ⊥,G GF BD =⋂∴,BDF GF BD 平面⊂∴,∴CH ⊥平面BDF . . . . . . . . . . . . . 12分232333131=⋅⋅=⋅⋅==∆--CH S V V BDF BDF C BDC F ……………………………14分 9.(1)证明:取BD 的中点O ,连接OE ,OG在BCD ∆中,因为G 是BC 的中点,所以OG ∥DC 且112OG DC ==,……………1分 因为EF ∥AB ,AB ∥DC ,1EF =,所以EF ∥OG 且EF OG =,……………………2分所以四边形OGFE 是平行四边形,所以FG ∥OE , ………………………3分 又FG ⊄平面BED ,OE ⊂平面BED ,所以FG ∥平面BED . ……………………………4分(2)证明:在ABD ∆中,1AD =,2AB =,60BAD ∠=,由余弦定理得BD ==…………………………5分 因为222314BD AD AB +=+==,所以BD AD ⊥. …………………………6分因为平面AED ⊥平面ABCD ,BD ⊂平面ABCD ,平面AED 平面ABCD AD =, 所以BD ⊥平面AED . ……………………………7分(3)解法1:由(1)FG ∥平面BED ,所以点F 到平面BED 的距离等于点G 到平面BED 的距离, ……………………8分设点G 到平面BED 的距离为h ,过E 作EM DA ⊥,交DA 的延长线于M ,则EM ⊥平面ABG ,所以EM 是三棱锥E ABG -的高. ……………………9分 由余弦定理可得2cos 3ADE ∠=,所以sin ADE ∠=,sin EM DE ADE =⋅∠=. …………………………10分12DBG S DB BG ∆=⋅=12BDE S BD DE ∆=⋅= 因为G BDE E DBG V V--=,………………………………11分即1133BDE DBG S h S EM ∆∆⋅=⋅,解得h = 所以点F 到平面BED 的距离为65. ………………………………12分解法2:因为EF ∥AB ,且12EF AB =, 所以点F 到平面BED 的距离等于点A 到平面BED 的距离的12, ……………8分 由(2)BD ⊥平面AED .因为BD ⊂平面BED ,所以平面BED ⊥平面AED .过点A 作AH DE ⊥于点H ,又因为平面BED 平面AED ED =,故⊥AH 平面BED . 所以AH 为点A 到平面BED 的距离.…………………9分在ADE ∆中,6,3,1===AE DE AD , 由余弦定理可得2cos 3ADE ∠=所以sin ADE ∠=, …………………10分 因此35sin =∠⋅=ADE AD AH , ……………………………………………………11分所以点F 到平面BED 的距离为65. ………………………………………………12分10.(1)设O 为AC 的中点,连接OS ,OD ,∵SA SC =,∴OS AC ⊥,∵DA DC =,∴DO AC ⊥,又,OS OD ⊂平面SOD ,且OS OD O =,AC ⊥平面SOD ,又SD ⊂平面SOD ,∴AC SD ⊥.(2)连接BD ,在ASC ∆中,∵SA SC =,60ASC ∠=,O 为AC 的中点,∴ASC ∆为正三角形,且2AC =,OS =∵在ASC ∆中,2224DA DC AC +==,O 为AC 的中点,∴90ADC ∠=,且1OD =,∵在SOD ∆中,222OS OD SD +=,∴SOD ∆为直角三角形,且90SOD ∠=,∴SO OD ⊥又OS AC ⊥,且ACDO O =,∴SO ⊥平面ABCD . ∴B SAD S BAD V V --=13BAD S SO ∆=⋅⋅1132AD CD SO =⨯⋅⋅⋅11323=⨯=. 11.证明(1)因为∠BAD =∠CDA =90°,所以//AB CD ,四边形ABCD 为直角梯形,2CD =又PC PD ==222CD PC PD +=PD PC ∴⊥又,,AD CD AD PAD ⊥⊂,CD,PCD ABCD PCD ABCD ⊥=平面平面平面平面 AD PCD ∴⊥平面 又PC PBC ⊂平面 ,AD PC ∴⊥,,,PD PC PD PA A PD PA PAD ⊥=⊂点平面PC PAD ∴⊥平面,PC PBC ⊂平面所以平面P AD ⊥平面PBC ……………………4分(2)30°…………………………………8分(3)存在E 为PC 中点,即PE =满足条件……………………………12分 12.(1)证明:∵四边形11BB C C 是菱形,∴11B C BC ⊥,∵11,AB B C AB BC B ⊥⋂=, ∴1B C ⊥平面1ABC ,又AO ⊂平面1ABC ,∴1B C AO ⊥.∵1AB AC =,O 是1BC 的中点,∴1AO B C ⊥,∵11B C BC O ⋂=,∴AO ⊥平面11BB C C …………… ……6分(2)菱形11BB C C 的边长为2,又1160,B BC BB C ∠=︒∴∆是等边三角形,则12B C =. 由(1)知,1AO B C ⊥,又O 是1B C 的中点,1AB AC ∴=,又1160,B AC AB C ∠=︒∴∆是等边三角形,则112AC AB B C ===.在Rt ACO ∆中,22AO ===分11111122sin1201332C ABC A BCC BCC V V S AO --∆∴==⋅=⨯⋅⋅⋅=……………12分 13.(Ⅰ)证明:∵四边形ABCD 是菱形,∴AC BD ⊥.又∵PA ⊥平面ABCD ,BD ⊂≠平面ABCD ,∴PA BD ⊥.又PA AC A =,PA ⊂≠平面PAC ,AC ⊂≠平面PAC ,∴BD ⊥平面PAC ,∵BD ⊂≠平面PBD ,∴平面PBD ⊥平面PAC .(Ⅱ)解:BCD 11=221=3223C BDM M V V --=⨯⨯⨯⨯ 14. (1)证明:因为底面ABCD 为矩形,所以AD ∥BC .AD BCAD ADF BC ADF BC ADF ⎫⎪⊂⇒⎬⎪⊄⎭∥平面∥平面平面,BC ADFBC BCPQ BC PQ BCPQ ADF PQ ⎫⎪⊂⇒⎬⎪=⎭∥平面平面∥平面平面,PQ BC PQ ABCD PQ ABCD BC ABCD ⎫⎪⊄⇒⎬⎪⊂⎭∥平面∥平面平面.(2)解:由CD ⊥BE ,CD ⊥CB ,易证CD ⊥CE ,由BC ⊥CD ,BC ⊥FD ,易证BC ⊥平面CDFE ,所以CB ⊥CE ,即CD ,CE ,CB 两两垂直.连接FB ,FC ,则CD =2,BC =3,1(23)123F ABCD V -=⨯⨯⨯=, 111(31)1322F BCE V -=⨯⨯⨯⨯=, 15222ABCDEF F ABCD F BCE V V V --=+=+=.15.(1)证明:因为AB =1BC =,090ABC ∠=,所以2AC =,060BCA ∠=,在△ACD 中,AD =2AC =,060ACD ∠=,由余弦定理可得:2222cos AD AC CD AC CD ACD =+-∠解得:CD =4所以222AC AD CD +=,所以△ACD 是直角三角形,又E 为CD 的中点,所以12AE CD CE == 又060ACD ∠=,所以△ACE 为等边三角形,所以060CAE BCA ∠==∠,所以//BC AE ,又AE ⊂平面SAE ,BC ⊄平面SAE ,所以BC ∥平面SAE .(2)解:因为SA ⊥平面ABCD ,所以SA 同为三棱锥S BCE -与四棱锥S ABED -的高.由(1)可得0120BCE ∠=,122CE CD ==,所以1sin 2BCE S BC CE BCE ∆=⨯⨯∠1122=⨯⨯=.BCE ABED ABCD S S S ∆=-四边形四边形ABC ACD BCD S S S ∆∆∆=+-111222=+⨯⨯=.所以::1:4BCE ABED S S ∆==四边形 故:三棱锥S BCE -与四棱锥S BEDA -的体积比为1:4.16.(Ⅰ)取PA 的中点G,连FG,由题可知:BF=FP ,则FG //AB FG = 12AB ,又CE= ED ,可得:DE//AB 且DE = 12AB , ∴ FG //DE 且FG = DE ,∴四边形DEFG 为平行四边形,则EF //DG且EF =DG ,DG ⊂平面PAD ;EF ⊄平面PAD,∴ EF//平面PAD ⋯⋯⋯4分(Ⅱ)由PD ⊥平面ABCD ,PD ⊂平面PAD ,∴ 平面PAD ⊥平面ABCD,且交线为AD,又底面ABCD 是矩形,∴ BA ⊥ AD,∴BA ⊥ 平面PAD ,∴平面PAB ⊥平面PAD,其交线为PA ,又PD=AD,G 为PA 的中点,∴DG ⊥ PA,∴ DG ⊥平面PAB ,由(Ⅰ)知:EF // DG , ∴ EF ⊥平面PAB ⋯⋯⋯8分(Ⅲ)由得,AD=PD=1,F 为PB 的中点,∴ AEF P V -= AEF B V - = ABE F V -= ABE P V -21=PD S ABE ⋅⋅⋅∆3121 = 112213121⋅⋅⋅⋅⋅= 122⋯⋯⋯⋯12分 17.(1)见解析;(2.解:(1)证明:∵OD ABCD ⊥平面,PA QD ∥,∴PA ABCD ⊥平面,又∵BC ABCD ⊂平面,∴PA BC ⊥,又BC AB ⊥,PA PAB ⊂平面,AB PAB ⊂平面,PAAB A =,∴BC PAB ⊥平面,又∵BC QBC ⊂平面,∴平面PAB QBC ⊥平面. --------------------------518.(1)证明:∵平面PAD 垂直矩形平面ABCD ,∴CD ⊥平面PAD取DC 中点H,连接EH,EH ⊥CD,连接FH,则FH ⊥CD则CD ⊥平面EHF,∴平面EHF//平面PAD,又EF ∈平面EHF∴EF 平行PAD ; …………4分(2)证明:∵平面PAD 垂直矩形平面ABCD ,角CDA=90度,CD ⊥平面PAD,又平面PAD∩平面PDC 于PD,又DC ∈平面PDC,∴平面PDC 垂直平面PAD ………8分分19.(1)连结AB 1交A 1B 于点O,则O 为AB 1中点, D AC OD B CCD A BD B C A BD B C A BD∴⊂⊄∴111111是的中点又平面,平面平面20.(1)证明:连接BD ,交AC 于F ,连接EF .∵四边形ABCD 为正方形∴F 为BD 的中点∵E 为PB 的中点,∴EF ∥PD 又∵PD ⊄面ACE ,EF ⊂面ACE ,∴PD ∥平面ACE .(2).取AB 中点为G ,连接EG .∵E 为PB 的中点,∴EG ∥P A∵PA ⊥平面ABCD ,∴EG ⊥平面ABCD ,即EG 是三棱锥E ADC -的高,在Rt PAB ∆中,PB =4AB =,则4PA =, 2EG =,∴三棱锥E ADC -的体积为1116442323⨯⨯⨯⨯=. 21.(Ⅰ)证明:∵四边形ABCD 是矩形,∴CD ⊥BC .∵平面PBC ⊥平面ABCD ,平面PBC ∩平面ABCD =BC ,CD ⊂平面ABCD ,∴CD ⊥平面PBC ,∴CD ⊥PB .∵PB ⊥PD ,CD ∩PD =D ,CD 、PD ⊂平面PCD ,∴PB ⊥平面PCD .∵PB ⊂平面P AB ,∴平面P AB ⊥平面PCD .(Ⅱ)取BC 的中点O ,连接OP 、OE .∵PB ⊥平面PCD ,∴PB PC ⊥,∴112OP BC ==, ∵PB PC =,∴PO BC ⊥.∵平面PBC ⊥平面ABCD ,平面PBC ∩平面ABCD =BC ,PO ⊂平面PBC ,∴PO ⊥平面ABCD ,∵AE ⊂平面ABCD ,∴PO ⊥AE .∵∠PEA =90O , ∴PE ⊥AE .∵PO ∩PE=P ,∴AE ⊥平面POE ,∴AE ⊥OE .∵∠C=∠D =90O , ∴∠OEC =∠EAD ,∴Rt OCE Rt EDA ∆∆,∴OC CE ED AD=. ∵1OC =,2AD =,CE ED =,∴CE ED ==111332A PED P AED AED V V S OP AD ED OP --==⋅=⨯⋅⋅112132=⨯⨯= 22.(1)证明:因为23λ=,所以23CE CS =,在线段CD 上取一点F 使23CF CD =,连接EF,BF,则EF ∥SD 且DF =1. 因为AB =1,AB ∥CD,∠ADC =90°,所以四边形ABFD 为矩形,所以CD ⊥BF .又SA ⊥平面ABCD,∠ADC =90°,所以SA ⊥CD,AD ⊥CD .因为AD∩SA =A,所以CD ⊥平面SAD, PCBAE DO所以CD ⊥SD,从而CD ⊥EF .因为BF∩EF =F,所以CD ⊥平面BEF .又BE ⊂平面BEF,所以CD ⊥BE .(2)解:由题设得,111()2332S BCD BCD V S SA CD AD SA -=⋅=⨯⨯⨯⨯=△,又因为SB ==BD ==SD =,所以12SBD S SD =⋅=△,设点C 到平面SBD 的距离为h,则由V S —BCD =V C —SBD 得h =,因为13CE CS =,所以点E 到平面SBD 的距离为23h =.23.证明:(1)∵几何体1111ABCD A B C D -为四棱柱,∴四边形11BCC B 为平行四边形,即BC ∥11B C ,且BC =11B C ,……………2分又∵底面ABCD 为等腰梯形,∴BC ∥AM ,即AM ∥11B C , ………………………3分又∵22AD AB BC ==,且M 为边AD 的中点,∴AM BC =,即AM =11B C ,……………4分则四边形11AMC B 为平行四边形,即1C M ∥1AB , ………………………………5分 又∵1C M ⊄平面11A ABB ,1A B ⊂平面11A ABB ,∴1C M ∥平面11A ABB , ……………………………………………………7分(2)∵BC ∥AM ,且AM BC =,∴四边形AMCB 为平行四边形, 又∵2AD AM AB ==,∴四边形AMCB 为茭形,则BM ⊥AC , ……………9分 又∵1CB ⊥底面ABCD ,且BM ⊂底面ABCD ,∴BM ⊥1CB , ……………11分 又∵1AC CB C =,且AC ⊂平面1ACB ,1CB ⊂平面1ACB ,∴BM ⊥平面1ACB , ……………………………………………………13分 又∵BM ⊂底面1B BM ,∴平面1B BM ⊥平面1ACB ……………………………14分 24.(Ⅰ)证明:取BC 中点M ,连接,DM PM可知1MD AB ==且MD BC ⊥又,2PB PC BC ⊥=,∴在Rt PBC ∆有1PM = 又2PD =,222PD PM MD ∴=+,即MD PM ⊥ ………………………3分又,,MD BC PM BC M PM ⊥=⊂平面PBC ,BC ⊂平面PBCMD ∴⊥平面PBC , ………………………5分 又MD ⊂平面ABCD∴平面PBC ⊥平面ABCD ………………………6分(Ⅱ)设点D 到平面PAB 的距离为h,PC PB PC PB =⊥,PM BC ∴⊥ 又平面PBC ⊥平面ABCD ,且平面PBC 平面ABCD BC =PM ∴⊥面ABCD ………………………8分1111||1113326P ABD ABD V PM S -∆∴==⨯⨯⨯⨯=………………………9分在PAB ∆中有1,PB AB PA ===,222,PB AB PA PB AB ∴+=∴⊥∴2PAB S ∆=…………………10分1113326D ABP ABP V S h h -∆=⋅=⨯=,2h ∴=所以点D 到平面PAB.………………………12分 25.(1)因为//BC 平面SDM, BC ⊂平面ABCD,平面SDM 平面ABCD=DM,所以DM BC //,因为DC AB //,所以四边形BCDM 为平行四边形,又CD AB 2=,所以M 为AB 的中点. 因为AM λ=,12λ∴=. (2)因为BC ⊥SD , BC ⊥CD ,所以BC ⊥平面SCD ,又因为BC ⊂平面ABCD ,所以平面SCD ⊥平面ABCD ,平面SCD 平面ABCD CD =,在平面SCD 内过点S 作SE ⊥直线CD 于点E ,则SE ⊥平面ABCD , 在Rt △SEA 和Rt △SED 中,因为SA SD =,所以AE DE ==, 又由题知45EDA ∠=,所以AE ED ⊥,由已知求得AD =,所以1AE ED SE ===,连接BD,则111133S ABD V -=⨯⨯=三棱锥,又求得△SAD所以由B ASD S ABD V V --=三棱锥三棱锥点B 到平面SAD .26.(1)由已知,平面ABCD, ∵平面, 又∵,∴平面. 因平面EBD,则平面平面BDE . (2)法1:记AC 交BD 于点O,连PO,由(1)得平面平面BDP,且交于直线PO, 过点E 作于H,则平面PBD, ∴为BE 与平面PBD 所成的角. ∵,∴. ∴.又,则.于是,直线BE与平面PBD所成角的正弦值是.法2:(等体积法)∵,∴E点到平面PBD的距离为.又,则.于是,直线BE与平面PBD所成角的正弦值是.27.(1)又又(2)设,则.过作,为垂足,为中点....四棱锥P-ABCD的侧面积为:,。

高中数学必修立体几何考题附答案

高中数学必修立体几何考题附答案

高中数学必修2立体几何考题13.如图所示;正方体ABCD-A1B1C1D1中;M、N分别是A1B1;B1C1的中点.问:1AM和CN是否是异面直线说明理由;2D1B和CC1是否是异面直线说明理由.解析:1由于M、N分别是A1B1和B1C1的中点;可证明MN∥AC;因此AM与CN不是异面直线.2由空间图形可感知D1B和CC1为异面直线的可能性较大;判断的方法可用反证法.探究拓展:解决这类开放型问题常用的方法有直接法即由条件入手;经过推理、演算、变形等;如第1问;还有假设法;特例法;有时证明两直线异面用直线法较难说明问题;这时可用反证法;即假设两直线共面;由这个假设出发;来推证错误;从而否定假设;则两直线是异面的.解:1不是异面直线.理由如下:∵M、N分别是A1B1、B1C1的中点;∴MN∥A1C1.又∵A1A∥D1D;而D1D綊C1C;∴A1A綊C1C;∴四边形A1ACC1为平行四边形.∴A1A∥AC;得到MN∥AC;∴A、M、N、C在同一个平面内;故AM和CN不是异面直线.2是异面直线.理由如下:假设D1B与CC1在同一个平面CC1D1内;则B∈平面CC1D1;C∈平面CC1D1.∴BC平面CC1D1;这与在正方体中BC⊥平面CC1D1相矛盾;∴假设不成立;故D1B与CC1是异面直线.14.如下图所示;在棱长为1的正方体ABCD-A1B1C1D1中;M为AB的中点;N为BB1的中点;O为面BCC1B1的中心.1过O作一直线与AN交于P;与CM交于Q只写作法;不必证明;2求PQ的长不必证明.解析:1由ON∥AD知;AD与ON确定一个平面α.又O、C、M 三点确定一个平面β如下图所示.∵三个平面α;β和ABCD两两相交;有三条交线OP、CM、DA;其中交线DA与交线CM不平行且共面.∴DA与CM必相交;记交点为Q.∴OQ是α与β的交线.连结OQ与AN交于P;与CM交于Q;故OPQ即为所作的直线.2解三角形APQ可得PQ=错误!.15.如图;在直三棱柱ABC-A1B1C1中;AB=BC=B1B=a;∠ABC=90°;D、E分别为BB1、AC1的中点.2证明:DE为异面直线BB1与AC1的公垂线;3求异面直线BB1与AC1的距离.解析:1由于直三棱柱ABC-A1B1C1中;AA1∥BB1;所以∠A1AC1就是异面直线BB1与AC1所成的角.又AB=BC=B1B=a;∠ABC=90°;所以A1C1=错误!a;tan∠A1AC1=错误!;即异面直线BB1与AC1所成的角的正切值为错误!.2证明:解法一:如图;在矩形ACC1A1中;过点E作AA1的平行线MM1分别交AC、A1C1于点M、M1;连结BM;B1M1;则BB1綊MM1.又D、E分别是BB1、MM1的中点;可得DE綊BM.在直三棱柱ABC-A1B1C1中;由条件AB=BC得BM⊥AC;所以BM⊥平面ACC1A1;故DE⊥平面ACC1A1;所以DE⊥AC1;DE⊥BB1;即DE为异面直线BB1与AC1的公垂线.解法二:如图;延长C1D、CB交于点F;连结AF;由条件易证D是C1F的中点;B是CF的中点;又E是AC1的中点;所以DE∥AF.在△ACF中;由AB=BC=BF知AF⊥AC.在直三棱柱ABC-A1B1C1中;AA1⊥平面ABC;所以AF⊥AA1;故AF⊥平面ACC1A1;故DE⊥平面ACC1A1;所以DE⊥AC1;DE⊥BB1;即DE为异面直线BB1与AC1的公垂线.3由2知线段DE的长就是异面直线BB1与AC1的距离;由于AB =BC=a;∠ABC=90°;所以DE=错误!a.反思归纳:两条异面直线的公垂线是指与两条异面直线既垂直又相交的直线;两条异面直线的公垂线是惟一的;两条异面直线的公垂线夹在两条异面直线之间的线段的长度就是两条异面直线的距离.证明一直线是某两条异面直线的公垂线;可以分别证明这条直线与两条异面直线垂直.本题的思路是证明这条直线与一个平面垂直;而这一平面与两条异面直线的位置关系是一条直线在平面内;另一条直线与这个平面平行.16.如图所示;在正方体ABCD-A1B1C1D1中;O;M分别是BD1;AA1的中点.1求证:MO是异面直线AA1和BD1的公垂线;3若正方体的棱长为a;求异面直线AA1与BD1的距离.解析:1证明:∵O是BD1的中点;∴O是正方体的中心;∴OA=OA1;又M为AA1的中点;即OM是线段AA1的垂直平分线;故OM⊥AA1.连结MD1、BM;则可得MB=MD1.同理由点O为BD1的中点知MO⊥BD1;即MO是异面直线AA1和BD1的公垂线.2由于AA1∥BB1;所以∠B1BD1就是异面直线AA1和BD1所成的角.在Rt△BB1D1中;设BB1=1;则BD1=错误!;所以cos∠B1BD1=错误!;故异面直线AA1与BD1所成的角的余弦值等于错误!.3由1知;所求距离即为线段MO的长;由于OA=错误!AC1=错误!a;AM=错误!;且OM⊥AM;所以OM =错误!a.13.如图所示;正方体ABCD-A1B1C1D1中;侧面对角线AB1;BC1上分别有两点E、F;且B1E=C1F;求证:EF∥ABCD.证明:解法一:分别过E、F作EM⊥AB于M;FN⊥BC于N;连结MN.∵BB1⊥平面ABCD;∴BB1⊥AB;BB1⊥BC;∴EM∥BB1;FN∥BB1;∴EM∥FN.又B1E=C1F;∴EM=FN;故四边形MNFE是平行四边形;∴EF∥MN;又MN在平面ABCD中;所以EF∥平面ABCD.解法二:过E作EG∥AB交BB1于G;连结GF;则错误!=错误!;∵B1E=C1F;B1A=C1B;∴错误!=错误!;∴FG∥B1C1∥BC.又EG∩FG=G;AB∩BC=B;∴平面EFG∥平面ABCD;而EF平面EFG;∴EF∥平面ABCD.14.如下图;在四棱锥P-ABCD中;底面ABCD是正方形;侧棱PD⊥底面ABCD;PD=DC.过BD作与P A平行的平面;交侧棱PC于点E;又作DF⊥PB;交PB于点F.1求证:点E是PC的中点;2求证:PB⊥平面EFD.证明:1连结AC;交BD于O;则O为AC的中点;连结EO.∵P A∥平面BDE;平面P AC∩平面BDE=OE;∴P A∥OE.∴点E是PC的中点;2∵PD⊥底面ABCD且DC底面ABCD;∴PD⊥DC;△PDC是等腰直角三角形;而DE是斜边PC的中线;∴DE⊥PC;①又由PD⊥平面ABCD;得PD⊥BC.∵底面ABCD是正方形;CD⊥BC;∴BC⊥平面PDC.而DE平面PDC.∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB平面PBC;∴DE⊥PB;又DF⊥PB且DE∩DF=D;所以PB⊥平面EFD.15.如图;l1、l2是互相垂直的异面直线;MN是它们的公垂线段.点A、B在l1上;C在l2上;AM=MB=MN.1求证AC⊥NB;2若∠ACB=60°;求NB与平面ABC所成角的余弦值.证明:1如图由已知l2⊥MN;l2⊥l1;MN∩l1=M;可得l2⊥平面ABN.由已知MN⊥l1;AM=MB=MN;可知AN=NB且AN⊥NB.又AN为AC在平面ABN内的射影;∴AC⊥NB.2∵Rt△CNA≌Rt△CNB;∴AC=BC;又已知∠ACB=60°;因此△ABC为正三角形.∵Rt△ANB≌Rt△CNB;∴NC=NA=NB;因此N在平面ABC内的射影H是正三角形ABC 的中心.连结BH;∠NBH为NB与平面ABC所成的角.在Rt△NHB中;cos∠NBH=错误!=错误!=错误!.16.如图;在四面体ABCD中;CB=CD;AD⊥BD;点E、F分别是AB、BD的中点.求证:1直线EF∥平面ACD;2平面EFC⊥平面BCD.命题意图:本小题主要考查直线与平面、平面与平面的位置关系;考查空间想象能力、推理论证能力.证明:1在△ABD中;∵E、F分别是AB、BD的中点;所以EF∥AD.又AD平面ACD;EF平面ACD;∴直线EF∥平面ACD.2在△ABD中;∵AD⊥BD;EF∥AD;∴EF⊥BD.在△BCD中;∵CD=CB;F为BD的中点;∴CF⊥BD.∵EF平面EFC;CF平面EFC;EF与CF交于点F;∴BD⊥平面EFC.又∵BD平面BCD;∴平面EFC⊥平面BCD.13.如图;在四棱锥P-ABCD中;底面ABCD是边长为a的正方形;P A⊥平面ABCD;且P A=2AB.1求证:平面P AC⊥平面PBD;2求二面角B-PC-D的余弦值.解析:1证明:∵P A⊥平面ABCD;∴P A⊥BD.∵ABCD为正方形;∴AC⊥BD.∴BD⊥平面P AC;又BD在平面BPD内;∴平面P AC⊥平面BPD.2在平面BCP内作BN⊥PC;垂足为N;连结DN;∵Rt△PBC≌Rt△PDC;由BN⊥PC得DN⊥PC;∴∠BND为二面角B-PC-D的平面角;在△BND中;BN=DN=错误!a;BD=错误!a;∴cos∠BND=错误!=-错误!.14.如图;已知ABCD-A1B1C1D1是棱长为3的正方体;点E在AA1上;点F在CC1上;G在BB1上;且AE=FC1=B1G=1;H是B1C1的中点.1求证:E、B、F、D1四点共面;2求证:平面A1GH∥平面BED1F.证明:1连结FG.∵AE=B1G=1;∴BG=A1E=2;∴BG綊A1E;∴A1G綊BE.∵C1F綊B1G;∴四边形C1FGB1是平行四边形.∴FG綊C1B1綊D1A1;∴四边形A1GFD1是平行四边形.∴A1G綊D1F;∴D1F綊EB;故E、B、F、D1四点共面.2∵H是B1C1的中点;∴B1H=错误!.又B1G=1;∴错误!=错误!.又错误!=错误!;且∠FCB=∠GB1H=90°;∴△B1HG∽△CBF;∴∠B1GH=∠CFB=∠FBG;∴HG∥FB.又由1知A1G∥BE;且HG∩A1G=G;FB∩BE=B;∴平面A1GH∥平面BED1F.15.在三棱锥P-ABC中;P A⊥面ABC;△ABC为正三角形;D、E分别为BC、AC的中点;设AB=P A=2.1求证:平面PBE⊥平面P AC;2如何在BC上找一点F;使AD∥平面PEF;请说明理由;3对于2中的点F;求三棱锥B-PEF的体积.解析:1证明:∵P A⊥面ABC;BE面ABC;∴P A⊥BE.∵△ABC是正三角形;E为AC的中点;∴BE⊥AC;又P A与AC相交;∴BE⊥平面P AC;∴平面PBE⊥平面P AC.2解:取DC的中点F;则点F即为所求.∵E;F分别是AC;DC的中点;∴EF∥AD;又AD平面PEF;EF平面PEF;∴AD∥平面PEF.3解:V B-PEF=V P-BEF=错误!S△BEF·P A=错误!×错误!×错误!×错误!×2=错误!.16.2009·天津;19如图所示;在五面体ABCDEF中;F A⊥平面ABCD;AD∥BC∥FE;AB⊥AD;M为CE的中点;AF=AB=BC=FE=错误!AD.1求异面直线BF与DE所成的角的大小;2求证:平面AMD⊥平面CDE;3求二面角A-CD-E的余弦值.解答:1解:由题设知;BF∥CE;所以∠CED或其补角为异面直线BF与DE所成的角.设P为AD的中点;连结EP;PC.因为FE綊AP;所以F A綊EP.同理;AB綊PC.又F A⊥平面ABCD;所以EP⊥平面ABCD.而PC;AD都在平面ABCD内;故EP⊥PC;EP⊥AD.由AB⊥AD;可得PC⊥AD.设F A=a;则EP=PC=PD=a;CD=DE=EC=错误!a.故∠CED=60°.所以异面直线BF与DE所成的角的大小为60°.2证明:因为DC=DE且M为CE的中点;所以DM⊥CE.连结MP;则MP⊥CE.又MP∩DM=M;故CE⊥平面AMD.而CE平面CDE;所以平面AMD⊥平面CDE.3设Q为CD的中点;连结PQ;EQ.因为CE=DE;所以EQ⊥CD.因为PC=PD;所以PQ⊥CD;故∠EQP为二面角A-CD-E的平面角.由1可得;EP⊥PQ;EQ=错误!a;PQ=错误!a.于是在Rt△EPQ中;cos∠EQP=错误!=错误!.所以二面角A-CD-E的余弦值为错误!.13.2009·重庆如图所示;四棱锥P-ABCD 中;AB⊥AD;AD⊥DC;P A⊥底面ABCD;P A=AD=DC=错误!AB=1;M 为PC的中点;N点在AB上且AN=错误!NB.1求证:MN∥平面P AD;2求直线MN与平面PCB所成的角.解析:1证明:过点M作ME∥CD交PD于E点;连结AE.∵AN=错误!NB;∴AN=错误!AB=错误!DC=EM.又EM∥DC∥AB;∴EM綊AN;∴AEMN为平行四边形;∴MN∥AE;∴MN∥平面P AD.2解:过N点作NQ∥AP交BP于点Q;NF⊥CB于点F.连结QF;过N点作NH⊥QF于H;连结MH;易知QN⊥面ABCD;∴QN⊥BC;而NF⊥BC;∴BC⊥面QNF;∵BC⊥NH;而NH⊥QF;∴NH⊥平面PBC;∴∠NMH为直线MN与平面PCB所成的角.通过计算可得MN=AE=错误!;QN=错误!;NF=错误!错误!;∴NH=错误!=错误!=错误!;∴sin∠NMH=错误!=错误!;∴∠NMH=60°;∴直线MN与平面PCB所成的角为60°.14.2009·广西柳州三模如图所示;已知直平行六面体ABCD-A1B1C1D1中;AD⊥BD;AD=BD=a;E是CC1的中点;A1D⊥BE.1求证:A1D⊥平面BDE;2求二面角B-DE-C的大小.解析:1证明:在直平行六面体ABCD-A1B1C1D1中;∵AA1⊥平面ABCD;∴AA1⊥BD.又∵BD⊥AD;∴BD⊥平面ADD1A1;即BD⊥A1D.又∵A1D⊥BE且BE∩BD=B;∴A1D⊥平面BDE.2解:如图;连B1C;则B1C⊥BE;易证Rt△BCE∽Rt△B1BC;∴错误!=错误!;又∵E为CC1中点;∴BC2=错误!BB错误!.BB1=错误!BC=错误!a.取CD中点M;连结BM;则BM⊥平面CC1D1C;作MN⊥DE于N;连NB;由三垂线定理知:BN⊥DE;则∠BNM是二面角B-DE-C的平面角.在Rt△BDC中;BM=错误!=错误!a;Rt△CED中;易求得MN=错误!a;Rt△BMN中;tan∠BNM=错误!=错误!;则二面角B-DE-C的大小为arctan错误!.15.如图;已知正方体ABCD-A1B1C1D1中;E为AB的中点.1求直线B1C与DE所成的角的余弦值;2求证:平面EB1D⊥平面B1CD;3求二面角E-B1C-D的余弦值.解析:1连结A1D;则由A1D∥B1C知;B1C与DE所成的角即为A1D 与DE所成的角.连结A1E;由正方体ABCD-A1B1C1D1;可设其棱长为a;则A1D=错误!a;A1E=DE=错误!a;∴cos∠A1DE=错误!=错误!.∴直线B1C与DE所成角的余弦值是错误!.2证明取B1C的中点F;B1D的中点G;连结BF;EG;GF.∵CD⊥平面BCC1B1;且BF平面BCC1B1;∴DC⊥BF.又∵BF⊥B1C;CD∩B1C=C;∴BF⊥平面B1CD.又∵GF綊错误!CD;BE綊错误!CD;∴GF綊BE;∴四边形BFGE是平行四边形;∴BF∥GE;∴GE⊥平面B1CD.∵GE平面EB1D;∴平面EB1D⊥平面B1CD.3连结EF.∵CD⊥B1C;GF∥CD;∴GF⊥B1C.又∵GE⊥平面B1CD;∴EF⊥B1C;∴∠EFG是二面角E-B1C-D的平面角.设正方体的棱长为a;则在△EFG中;GF=错误!a;EF=错误!a;∴cos∠EFG=错误!=错误!;∴二面角E-B1C-D的余弦值为错误!.16.2009·全国Ⅱ;18如图所示;直三棱柱ABC-A1B1C1中;AB⊥AC;D、E分别为AA1、B1C的中点;DE⊥平面BCC1.1求证:AB=AC;2设二面角A-BD-C为60°;求B1C与平面BCD所成的角的大小.解析:1证明:取BC中点F;连结EF;则EF綊错误!B1B;从而EF綊DA.连结AF;则ADEF为平行四边形;从而AF∥DE.又DE⊥平面BCC1;故AF⊥平面BCC1;从而AF⊥BC;即AF为BC 的垂直平分线;所以AB=AC.2解:作AG⊥BD;垂足为G;连结CG.由三垂线定理知CG⊥BD;故∠AGC为二面角A-BD-C的平面角.由题设知;∠AGC=60°.设AC=2;则AG=错误!.又AB=2;BC=2错误!;故AF=错误!.由AB·AD =AG·BD得2AD=错误!·错误!;解得AD=错误!;故AD=AF.又AD⊥AF;所以四边形ADEF为正方形.因为BC⊥AF;BC⊥AD;AF∩AD=A;故BC⊥平面DEF;因此平面BCD⊥平面DEF.连结AE、DF;设AE∩DF=H;则EH⊥DF;EH⊥平面BCD.连结CH;则∠ECH为B1C与平面BCD所成的角.因ADEF为正方形;AD=错误!;故EH=1;又EC=错误!B1C=2;所以∠ECH=30°;即B1C与平面BCD所成的角为30°.13.在正四棱柱ABCD-A1B1C1D1中;底面边长为2错误!;侧棱长为4;E、F分别为棱AB、BC的中点.1求证:平面B1EF⊥平面BDD1B1;2求点D1到平面B1EF的距离d.分析:1可先证EF⊥平面BDD1B1.2用几何法或等积法求距离时;可由B1D1∥BD;将点进行转移:D1点到平面B1EF的距离是B点到它的距离的4倍;先求B点到平面B1EF的距离即可.解答:1证明:错误!EF⊥平面BDD1B1平面B1EF⊥平面BDD1B1.2解:解法一:连结EF交BD于G点.∵B1D1=4BG;且B1D1∥BG;∴D1点到平面B1EF的距离是B点到它的距离的4倍.利用等积法可求.由题意可知;EF=错误!AC=2;B1G=错误!.S△B1EF=错误!EF·B1G=错误!×2×错误!=错误!;S△BEF=错误!BE·BF=错误!×错误!×错误!=1.∵VB-B1EF=VB1-BEF;设B到面B1EF的距离为h1;则错误!×错误!×h1=错误!×1×4;∴h1=错误!.∴点D1到平面B1EF的距离为h=4h1=错误!.解法二:如图;在正方形BDD1B1的边BD上取一点G;使BG=错误!BD;连结B1G;过点D1作D1H⊥B1G于H;则D1H即为所求距离.可求得D1H=错误!直接法.14.如图直三棱柱ABC-A1B1C1中;侧棱CC1=2;∠BAC=90°;AB =AC=错误!;M是棱BC的中点;N是CC1中点.求:1二面角B1-AN-M的大小;2C1到平面AMN的距离.解析:1∵∠BAC=90°;AB=AC=错误!;M是棱BC的中点;∴AM⊥BC;BC=2;AM=1.∴AM⊥平面BCC1B1.∴平面AMN⊥平面BCC1B1.作B1H⊥MN于H;HR⊥AN于R;连结B1R;∴B1H⊥平面AMN.又由三垂线定理知;B1R⊥AN.∴∠B1RH是二面角B1-AN-M的平面角.由已知得AN=错误!;MN=错误!;B1M=错误!=B1N;则B1H=错误!;又Rt△AMN∽Rt△HRN;错误!=错误!;∴RH=错误!.∴B 1R =错误!;∴cos ∠B 1RH =错误!=错误!.∴二面角B 1-AN -M 的大小为arccos 错误!.2∵N 是CC 1中点;∴C 1到平面AMN 的距离等于C 到平面AMN 的距离.设C 到平面AMN 的距离为h ;由V C -AMN =V N -AMC得错误!×错误!·MN ·h =错误!×错误!AM ·MC .∴h =错误!.15.2009·北京海淀一模如图所示;四棱锥P -ABCD 中;P A ⊥平面ABCD ;底面ABCD 为直角梯形;且AB ∥CD ;∠BAD =90°;P A =AD =DC =2;AB =4.1求证:BC ⊥PC ;2求PB 与平面P AC 所成的角的正弦值;3求点A 到平面PBC 的距离.解析:1证明:如图;在直角梯形ABCD 中;∵AB ∥CD ;∠BAD =90°;AD =DC =2;∴∠ADC =90°;且AC =2错误!.取AB 的中点E ;连结CE ;由题意可知;四边形ABCD 为正方形;∴AE =CE =2.又∵BE =错误!AB =2.∴CE =错误!AB ;∴△ABC 为等腰直角三角形;∴AC ⊥BC .又∵P A ⊥平面ABCD ;且AC 为PC 在平面ABCD 内的射影; BC 平面ABCD ;由三垂线定理得;BC ⊥PC .2由1可知;BC ⊥PC ;BC ⊥AC ;PC ∩AC =C ;∴BC ⊥平面P AC .PC 是PB 在平面P AC 内的射影;∴∠CPB 是PB 与平面P AC 所成的角.又CB =2错误!;PB 2=P A 2+AB 2=20;PB =2错误!;∴sin ∠CPB =错误!=错误!;即PB 与平面P AC 所成角的正弦值为错误!.3由2可知;BC ⊥平面P AC ;BC 平面PBC ;∴平面PBC ⊥平面P AC .过A 点在平面P AC 内作AF ⊥PC 于F ;∴AF ⊥平面PBC ;∴AF 的长即为点A 到平面PBC 的距离.在直角三角形P AC中; P A=2;AC=2错误!;PC=2错误!;∴AF=错误!.即点A到平面PBC的距离为错误!.16.2009·吉林长春一模如图所示;四棱锥P-ABCD的底面是正方形;P A⊥底面ABCD;P A=2;∠PDA=45°;点E、F分别为棱AB、PD 的中点.1求证:AF∥平面PCE;2求二面角E-PD-C的大小;3求点A到平面PCE的距离.解析:1证明:如图取PC的中点G;连结FG、EG;∴FG为△PCD的中位线;∴FG=错误!CD且FG∥CD.又∵底面四边形ABCD是正方形;E为棱AB的中点;∴AE=错误!CD且AE∥CD;∴AE=FG且AE∥FG.∴四边形AEGF是平行四边形;∴AF∥EG.又EG平面PCE;AF平面PCE;∴AF∥平面PCE.2解:∵P A⊥底面ABCD;∴P A⊥AD;P A⊥CD.又AD⊥CD;P A∩AD=A;∴CD⊥平面P AD.又∵AF平面P AD;∴CD⊥AF.又P A=2;∠PDA=45°;∴P A=AD=2.∵F是PD的中点;∴AF⊥PD.又∵CD∩PD=D;∴AF⊥平面PCD.∵AF∥EG;∴EG⊥平面PCD.又GF⊥PD;连结EF;则∠GFE是二面角E-PD-C的平面角.在Rt△EGF中;EG=AF=错误!;GF=1;∴tan∠GFE=错误!=错误!.∴二面角E-PD-C的大小为arctan错误!.3设A到平面PCE的距离为h;由V A-PCE =V P-ACE;即错误!×错误!PC·EG·h=错误!P A·错误!AE·CB;得h=错误!;∴点A到平面PCE的距离为错误!.13.2009·陕西;18如图所示;在直三棱柱ABC-A1B1C1中;AB=1;AC=AA1=错误!;∠ABC=60°.1求证:AB⊥A1C;2求二面角A-A1C-B的大小.解析:1证明:∵三棱柱ABC-A1B1C1为直三棱柱;∴AB⊥AA1;在△ABC中;AB=1;AC=错误!;∠ABC=60°;由正弦定理得∠ACB=30°;∴∠BAC=90°;即AB⊥AC.∴AB⊥平面ACC1A1;又A1C平面ACC1A1;∴AB⊥A1C.2解:如图;作AD⊥A1C交A1C于D点;连结BD;由三垂线定理知BD⊥A1C;∴∠ADB为二面角A-A1C-B的平面角.在Rt△AA1C中;AD=错误!=错误!=错误!;在Rt△BAD中;tan∠ADB=错误!=错误!;∴∠ADB=arctan错误!;即二面角A-A1C-B的大小为arctan 错误!.14.如图;三棱柱ABC-A1B1C1的底面是边长为a的正三角形;侧面ABB1A1是菱形且垂直于底面;∠A1AB=60°;M是A1B1的中点.1求证:BM⊥AC;2求二面角B-B1C1-A1的正切值;3求三棱锥M-A1CB的体积.解析:1证明:∵ABB1A1是菱形;∠A1AB=60°△A1B1B是正三角形;BM⊥平面A1B1C1.错误!BM⊥AC.错误!BE⊥B1C1;∴∠BEM为所求二面角的平面角;△A1B1C1中;ME=MB1·sin60°=错误!a;Rt△BMB1中;MB=MB1·tan60°=错误!a;∴tan∠BEM=错误!=2;∴所求二面角的正切值是2.3VM-A1CB=错误!VB1-A1CB=错误!VA-A1CB=错误!VA1-ABC=错误!×错误!×错误!a2·错误!a=错误!a3.15.2009·广东汕头一模如图所示;已知△BCD中;∠BCD=90°;BC =CD=1;AB⊥平面BCD;∠ADB=60°;E、F分别是AC、AD上的动点;且错误!=错误!=λ0<λ<1.1求证:不论λ为何值;总有EF⊥平面ABC;2若λ=错误!;求三棱锥A-BEF的体积.解析:1证明:∵AB⊥平面BCD;∴AB⊥CD.又∵在△BCD中;∠BCD=90°;∴BC⊥CD.∵又AB∩BC=B;∴CD⊥平面ABC.又∵在△ACD中;E、F分别是AC、AD上的动点;且错误!=错误!=λ0<λ<1;∴不论λ为何值;都有EF∥CD;∴EF⊥平面ABC.2在△BCD中;∠BCD=90°;BC=CD=1;∴BD=错误!.又∵AB⊥平面BCD;∴AB⊥BC;AB⊥BD.又∵在Rt△ABD中;∠ADB=60°;∴AB=BD·tan60°=错误!;由1知EF⊥平面ABC;∴V A-BEF =V F-ABE=错误!S△ABE·EF=错误!×错误!S△ABC·EF=错误!×错误!×1×错误!×错误!=错误!.故三棱锥A-BEF的体积是错误!.16.在四棱锥P-ABCD中;侧面PDC是边长为2的正三角形;且与底面垂直;底面ABCD是面积为2错误!的菱形;∠ADC为菱形的锐角.1求证:P A⊥CD;2求二面角P-AB-D的大小;3求棱锥P-ABCD的侧面积;解析:1证明:如图所示;取CD的中点E;由PE⊥CD;得PE⊥平面ABCD;连结AC、AE.∵AD·CD·sin∠ADC=2错误!;AD=CD=2;∴sin∠ADC=错误!;即∠ADC=60°;∴△ADC为正三角形;∴CD⊥AE.∴CD⊥P A三垂线定理.2解:∵AB∥CD;∴AB⊥P A;AB⊥AE;∴∠P AE为二面角P-AB-D的平面角.在Rt△PEA中;PE=AE;∴∠P AE=45°.即二面角P-AB-D的大小为45°.3分别计算各侧面的面积:∵PD=DA=2;P A=错误!;∴cos∠PDA=错误!;sin∠PDA=错误!.S△PCD=错误!;S△P AB=错误!AB·P A=错误!·2·错误!·错误!=错误!;S△P AD=S△PBC=错误!PD·DA·sin∠PDA=错误!.∴S P=错误!+错误!+错误!.-ABCD侧13.把地球当作半径为R的球;地球上A、B两地都在北纬45°;A、B两点的球面距离是错误!R;A点在东经20°;求B点的位置.解析:如图;求B点的位置即求B点的经度;设B点在东经α;∵A、B两点的球面距离是错误!R.∴∠AOB=错误!;因此三角形AOB是等边三角形;∴AB=R;又∵∠AO1B=α-20°经度差问题转化为在△AO1B中借助AO1=BO1=AO cos45°=错误!R;求出∠AO1B=90°;则α=110°;同理:B点也可在西经70°;即B点在北纬45°东经110°或西经70°.14.在球心同侧有相距9cm的两个平行截面;它们的面积分别为49πcm2和400πcm2;求球的表面积和体积.解析:如图;两平行截面被球大圆所在平面截得的交线分别为AO1、BO2;则AO1∥BO2.若O1、O2分别为两截面圆的圆心;则由等腰三角形性质易知OO1⊥AO1;OO2⊥BO2;设球半径为R;∵πO2B2=49π;∴O2B=7cm;同理O1A=20cm.设OO1=x cm;则OO2=x+9cm.在Rt△OO1A中;R2=x2+202;在Rt△OO2B中;R2=x+92+72;∴x2+202=72+x+92;解得x=15cm.∴R=25cm;∴S球=2500πcm2;V球=错误!πR3=错误!πcm3.15.设A、B、C是半径为1的球面上的三点;B、C两点间的球面距离为错误!;点A与B、C两点间的球面距离均为错误!;O为球心;求:1∠AOB、∠BOC的大小;2球心O到截面ABC的距离.解析:1如图;因为球O的半径为1;B、C两点间的球面距离为错误!;点A与B、C两点间的球面距离均为错误!;所以∠BOC=错误!;∠AOB=∠AOC=错误!;2因为BC=1;AC=AB=错误!;所以由余弦定理得cos∠BAC=错误!;sin∠BAC=错误!;设截面圆的圆心为O1;连结AO1;则截面圆的半径r=AO1;由正弦定理得r=错误!=错误!;所以OO1=错误!=错误!.16.如图四棱锥A-BCDE中;AD⊥底面BCDE;AC⊥BC;AE⊥BE.1求证:A、B、C、D、E五点共球;2若∠CBE=90°;CE=错误!;AD=1;求B、D两点的球面距离.解析:1证明:取AB的中点P;连结PE;PC;PD;由题设条件知△AEB、△ADB、△ABC都是直角三角形.故PE=PD=PC=错误!AB=P A=PB.所以A、B、C、D、E五点在同一球面上.2解:由题意知四边形BCDE为矩形;所以BD=CE=错误!;在Rt△ADB中;AB=2;AD=1;∴∠DPB=120°;D、B的球面距离为错误!π.17.本小题满分10分如图;四棱锥S—ABCD的底面是正方形;SA⊥底面ABCD;E是SC上一点.1求证:平面EBD⊥平面SAC;2假设SA=4;AB=2;求点A到平面SBD的距离;解析:1∵正方形ABCD;∴BD⊥AC;又∵SA⊥平面ABCD;∴SA⊥BD;则BD⊥平面SAC;又BD平面BED;∴平面BED⊥平面SAC.2设AC∩BD=O;由三垂线定理得BD⊥SO.AO=错误!AC=错误!错误!AB=错误!·错误!·2=错误!;SA=4;则SO=错误!=错误!=3错误!;S△BSD=错误!BD·SO=错误!·2错误!·3错误!=6.设A到面BSD的距离为h;则V S-ABD=V A-BSD;即错误!S△ABD·SA=错误!S△BSD·h;解得h=错误!;即点A到平面SBD的距离为错误!.18.本小题满分12分如图;正四棱柱ABCD-A1B1C1D1中;AA1=2AB=4;点E在C1C上且C1E=3EC.1证明A1C⊥平面BED;2求二面角A1-DE-B的大小.解析:依题设知AB=2;CE=1;1证明:连结AC交BD于点F;则BD⊥AC.由三垂线定理知;BD⊥A1C.在平面A1CA内;连结EF交A1C于点G;由于错误!=错误!=2错误!;故Rt△A1AC∽Rt△FCE;∠AA1C=∠CFE;∠CFE与∠FCA1互余.于是A1C⊥EF.A1C与平面BED内两条相交直线BD、EF都垂直.所以A1C⊥平面BED.2作GH⊥DE;垂足为H;连结A1H.由三垂线定理知A1H⊥DE;故∠A1HG是二面角A1-DE-B的平面角.EF=错误!=错误!;CG=错误!=错误!.EG=错误!=错误!.错误!=错误!;GH=错误!×错误!=错误!.又A1C=错误!=2错误!;A1G=A1C-CG=错误!;tan∠A1HG=错误!=5错误!.所以二面角A1-DE-B的大小为arctan5错误!.19.本小题满分12分如图;四棱锥S-ABCD的底面是直角梯形;∠ABC=∠BCD=90°;AB=BC=SB=SC=2CD=2;侧面SBC⊥底面ABCD.1由SA的中点E作底面的垂线EH;试确定垂足H的位置;2求二面角E-BC-A的大小.解析:1作SO⊥BC于O;则SO平面SBC;又面SBC⊥底面ABCD;面SBC∩面ABCD=BC;∴SO⊥底面ABCD①又SO平面SAO;∴面SAO⊥底面ABCD;作EH⊥AO;∴EH⊥底面ABCD②即H为垂足;由①②知;EH∥SO;又E为SA的中点;∴H是AO的中点.2过H作HF⊥BC于F;连结EF;由1知EH⊥平面ABCD;∴EH⊥BC;又EH∩HF=H;∴BC⊥平面EFH;∴BC⊥EF;∴∠HFE为面EBC和底面ABCD所成二面角的平面角.在等边三角形SBC中;∵SO⊥BC;∴O为BC中点;又BC=2.∴SO=错误!=错误!;EH=错误!SO=错误!;又HF=错误!AB=1;∴在Rt△EHF中;tan∠HFE=错误!=错误!=错误!;∴∠HFE=arctan错误!.即二面角E-BC-A的大小为arctan错误!.20.本小题满分12分2010·唐山市高三摸底考试如图;在正四棱柱ABCD-A1B1C1D1中;AB=1;AA1=2;N是A1D的中点;M∈BB1;异面直线MN与A1A所成的角为90°.1求证:点M是BB1的中点;2求直线MN与平面ADD1A1所成角的大小;3求二面角A-MN-A1的大小.解析:1取AA1的中点P;连结PM;PN.∵N是A1D的中点;∴AA1⊥PN;又∵AA1⊥MN;MN∩PN=N;∴AA1⊥面PMN.∵PM面PMN;∴AA1⊥PM;∴PM∥AB;∴点M是BB1的中点.2由1知∠PNM即为MN与平面ADD1A1所成的角.在Rt△PMN中;易知PM=1;PN=错误!;∴tan∠PNM=错误!=2;∠PNM=arctan2.故MN与平面ADD1A1所成的角为arctan2.3∵N是A1D的中点;M是BB1的中点;∴A1N=AN;A1M=AM;又MN为公共边;∴△A1MN≌△AMN.在△AMN中;作AG⊥MN交MN于G;连结A1G;则∠A1GA即为二面角A-MN-A1的平面角.在△A1GA中;AA1=2;A1G=GA=错误!;∴cos∠A1GA=错误!=-错误!;∴∠A1GA=arccos-错误!;故二面角A-MN-A1的大小为arccos-错误!.21.2009·安徽;18本小题满分12分如图所示;四棱锥F-ABCD 的底面ABCD是菱形;其对角线AC=2;BD=错误!.AE、CF都与平面ABCD垂直;AE=1;CF=2.1求二面角B-AF-D的大小;2求四棱锥E-ABCD与四棱锥F-ABCD公共部分的体积.命题意图:本题考查空间位置关系;二面角平面角的作法以及空间几何体的体积计算等知识.考查利用综合法或向量法解决立体几何问题的能力.解答:1解:连接AC、BD交于菱形的中心O;过O作OG⊥AF;G为垂足;连接BG、DG.由BD⊥AC;BD⊥CF得BD⊥平面ACF;故BD⊥AF.于是AF⊥平面BGD;所以BG⊥AF;DG⊥AF;∠BGD为二面角B -AF-D的平面角.由FC⊥AC;FC=AC=2;得∠F AC=错误!;OG=错误!.由OB⊥OG;OB=OD=错误!;得∠BGD=2∠BGO=错误!.2解:连接EB、EC、ED;设直线AF与直线CE相交于点H;则四棱锥E-ABCD与四棱锥F-ABCD的公共部分为四棱锥H-ABCD.过H作HP⊥平面ABCD;P为垂足.因为EA⊥平面ABCD;FC⊥平面ABCD;所以平面ACEF⊥平面ABCD;从而P∈AC;HP⊥AC.由错误!+错误!=错误!+错误!=1;得HP=错误!.又因为S菱形ABCD=错误!AC·BD=错误!;故四棱锥H-ABCD的体积V=错误!S菱形ABCD·HP=错误!.22.2009·深圳调考一本小题满分12分如图所示;AB为圆O的直径;点E、F在圆O上;AB∥EF;矩形ABCD所在平面和圆O所在的平面互相垂直.已知AB=2;EF=1.1求证:平面DAF⊥平面CBF;2求直线AB与平面CBF所成角的大小;3当AD的长为何值时;二面角D-FE-B的大小为60°解析:1证明:∵平面ABCD⊥平面ABEF;CB⊥AB;平面ABCD∩平面ABEF=AB;∴CB⊥平面ABEF.∵AF平面ABEF;∴AF⊥CB;又∵AB为圆O的直径;∴AF⊥BF;∴AF⊥平面CBF.∵AF平面DAF;∴平面DAF⊥平面CBF.2解:根据1的证明;有AF⊥平面CBF;∴FB为AB在平面CBF上的射影;因此;∠ABF为直线AB与平面CBF所成的角.∵AB∥EF;∴四边形ABEF为等腰梯形;过点F作FH⊥AB;交AB于H.AB=2;EF=1;则AH=错误!=错误!.在Rt△AFB中;根据射影定理AF2=AH·AB;得AF=1;sin∠ABF=错误!=错误!;∴∠ABF=30°;∴直线AB与平面CBF所成角的大小为30°.3解:过点A作AM⊥EF;交EF的延长线于点M;连结DM.根据1的证明;DA⊥平面ABEF;则DM⊥EF;∴∠DMA为二面角D-FE-B的平面角;∠DMA=60°.在Rt△AFH中;∵AH=错误!;AF=1;∴FH=错误!.又∵四边形AMFH为矩形;∴MA=FH=错误!.∵AD=MA·tan∠DMA=错误!·错误!=错误!.因此;当AD的长为错误!时;二面角D-FE-B的大小为60°.。

高中数学立体几何经典题型练习题集(附有答案)

高中数学立体几何经典题型练习题集(附有答案)

高中数学立体几何经典题型练习题集学校:______姓名:_____班级:______考号:______一.单选题1.正三棱锥的底边长和高都是2,则此正三棱锥的斜高长度为()A.B.C.D.2.在棱长为1的正方体ABCD-A1B1C1D1中,若E,F,G分别为C1D1,AA1,BB1的中点,则空间四边形EFBG在正方体下底面ABCD上的射影面积为()A.1B.C.D.3.一个棱柱是正四棱柱的条件是()A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱4、如图,P是正方体ABCD-A1B1C1D1对角线AC1上一动点,设AP的长度为x,若△PBD的面积为f(x),则f(x)的图象大致是()A.B.C.D.5、如图所示,AB是圆O的直径,C是异于A,B两点的圆周上的任意一点,PA垂直于圆O 所在的平面,则△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是()A.1B.2C.3D.46、如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是棱A1B1、BB1、B1C1的中点,则下列结论中:①FG⊥BD;②B1D⊥面EFG;③面EFG∥面ACC1A1;④EF∥面CDD1C1.正确结论的序号是()A.①和②B.③和④C.①和③D.②和④7、三棱锥P-ABC,PC⊥面ABC,△PAC是等腰三角形,PA=4,AB⊥BC,CH⊥PB,垂足为H,D是PA的中点,则△CDH的面积最大时,CB的长是()A.B.C.D.8、正方体的直观图如图所示,则其展开图是()A.B.C.D.二.填空题(共__小题)9、如图所示,ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,AC=m,BD=n,则四边形EFGH的面积为______.10、如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,给出下列结论:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°;⑤直线PD 与平面PAB所成角的余弦值为.其中正确的有______(把所有正确的序号都填上).11.如图所示,三棱锥M,PA⊥底面ABC,∠ABC=90°,则此三棱锥P-ABC中直角三角形有______个.12、如图,正三棱柱ABC-A1B1C1的各棱长都等于2,D在AC1上,F为BB1中点,且FD⊥AC1,有下述结论(1)AC1⊥BC;(2)=1;(3)二面角F-AC1-C的大小为90°;(4)三棱锥D-ACF的体积为.正确的有______.13.各棱长为a的正三棱柱的六个顶点都在同一个球面上,则此球的表面积为______.14.一四棱锥被平行于底面的平面所截,若截面面积与底面面积之比为1:4,则此截面把一条侧棱分成的两段之比为______.15、如图所示正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F且EF=,给出下列五个结论①AC⊥BE②EF∥平面ABCD③异面直线AE,BF所成的角为60°④A1点到面BEF的距离为定值⑤三棱柱A-BEF的体积为定值其中正确的结论有:______(写出所有正确结论的编号)三.简答题(共__小题)16、如图,立体图形A-BCD的四个面分别为△ABC、△ACD、△ADB和△BCD,E、F、G分别是线段AB、AC、AD上的点,且满足AE:AB=AF:AC=AG:AD,求证:△EFG∽△BCD.17、如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC 的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N 的位置;若不存在,试说明理由.参考答案一.单选题(共__小题)1.正三棱锥的底边长和高都是2,则此正三棱锥的斜高长度为()A.B.C.D.答案:D解析:解:在正三棱锥中,顶点P在底面的射影为底面正三角形的中心O,延长A0到E,则E为BC的中点,连结PE,则PE为正三棱锥的斜高.∵正三棱锥的底边长和高都是2,∴AB=PO=2,即AE=,OE=,∴斜高PE==,故选:D.2、在棱长为1的正方体ABCD-A1B1C1D1中,若E,F,G分别为C1D1,AA1,BB1的中点,则空间四边形EFBG在正方体下底面ABCD上的射影面积为()A.1B.C.D.答案:B解析:解:过E点做EH垂直CD于H,连接EH,易得H即为E在平面ABCD上的射影,连接AH,BH,如下图所示则AH,BH,AB分别为FE,EG,FB在平面ABCD上的射影,又由G在平面ABCD上的射影为B,故△ABH即为空间四边形EFBG在正方体下底面ABCD上的射影∵S△ABH=S ABCD=故选B3.一个棱柱是正四棱柱的条件是()A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱答案:C解析:解:上、下底面都是正方形,且侧棱垂直于底面的棱柱叫做正四棱柱.故A和B错在有可能是斜棱柱,D错在上下底面有可能不是正方形,底面是菱形,且有一个顶点处的三条棱两两垂直能保证上、下底面都是正方形,且侧棱垂直于底面.故选C.4、如图,P是正方体ABCD-A1B1C1D1对角线AC1上一动点,设AP的长度为x,若△PBD的面积为f(x),则f(x)的图象大致是()A.B.C.D.答案:A解析:解:设正方体的棱长为1,连接AC交BD于O,连PO,则PO是等腰△PBD的高,故△PBD的面积为f(x)=BD×PO,在三角形PAO中,PO==,∴f(x)=××=,画出其图象,如图所示,对照选项,A正确.故选A.5、如图所示,AB是圆O的直径,C是异于A,B两点的圆周上的任意一点,PA垂直于圆O所在的平面,则△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是()A.1B.2C.3D.4答案:D解析:证明:∵AB是圆O的直径∴∠ACB=90°即BC⊥AC,三角形ABC是直角三角形又∵PA⊥圆O所在平面,∴△PAC,△PAB是直角三角形.且BC在这个平面内∴PA⊥BC 因此BC垂直于平面PAC中两条相交直线,∴BC⊥平面PAC,∴△PBC是直角三角形.从而△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是,4.故选D.6、如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是棱A1B1、BB1、B1C1的中点,则下列结论中:①FG⊥BD;②B1D⊥面EFG;③面EFG∥面ACC1A1;④EF∥面CDD1C1.正确结论的序号是()A.①和②B.③和④C.①和③D.②和④答案:D解析:解:如图连接A1C1、A1B、BC1、BD、B1D,因为E、F、G分别是棱A1B1、BB1、B1C1的中点对于①因为FG∥BC1,△BDC1是正三角形,FG⊥BD,不正确.对于②因为平面A1C1B∥平面EFG,并且B1D⊥平面A1C1B,所以B1D⊥面EFG,正确.③面EFG∥面ACC1A1;显然不正确.④EF∥平面CDD1C1内的D1C,所以EF∥面CDD1C1.正确.故选D7、三棱锥P-ABC,PC⊥面ABC,△PAC是等腰三角形,PA=4,AB⊥BC,CH⊥PB,垂足为H,D是PA的中点,则△CDH的面积最大时,CB的长是()A.B.C.D.答案:D解析:解:三棱锥P-ABC中,PC⊥面ABC,AB⊂平面ABC,∴PC⊥AB;又AB⊥BC,BC∩PC=C,∴AB⊥平面PBC;又CH⊂平面PBC,∴AB⊥CH,又CH⊥PB,PB∩AB=B,∴CH⊥平面PAB,又DH⊂平面PAB,∴CH⊥DH;又△PAC是等腰直角三角形,且PA=4,D是PA的中点,∴CD=PA=2,设CH=a,DH=b,则a2+b2=CD2=4,∴4=a2+b2≥2ab,即ab≤1,当且仅当a=b=时,“=”成立,此时△CDH的面积最大;在Rt△PBC,设BC=x,则PB===,∴PC•BC=PB•CH,即2•x=•;解得x=,∴CB的长是.故选:D.8、正方体的直观图如图所示,则其展开图是()A.B.C.D.答案:D解析:解:根据题意,可得对于A,展开图中的上下两边的正方形的对边中点连线应该呈左右方向显现,故A的图形不符合题意;对于B,展开图中最右边的“日”字形正方形的对边中点连线应该是上下方向呈现,且应该在含有圆形的正方形的左边放置,故B的图形不符合题意;对于C,展开图中最右边的正方形应该与含有圆形的正方形相邻,故C的图形不符合题意;对于D,沿如图的红线将正方体的侧面剪裁,展开可得如D项图的形状,故D的图形符合题意故选:D二.填空题(共__小题)9、如图所示,ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,AC=m,BD=n,则四边形EFGH的面积为______.答案:解析:解:由ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,可得四边形EFGH为矩形,且此矩形的长和宽分别为和,故四边形EFGH的面积为=,故答案为:.10、如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,给出下列结论:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°;⑤直线PD与平面PAB所成角的余弦值为.其中正确的有______(把所有正确的序号都填上).答案:①④⑤解析:解:对于①、由PA⊥平面ABC,AE⊂平面ABC,得PA⊥AE,又由正六边形的性质得AE⊥AB,PA∩AB=A,得AE⊥平面PAB,又PB⊂平面PAB,∴AE⊥PB,①正确;对于②、又平面PAB⊥平面ABC,所以平面ABC⊥平面PBC不成立,②错;对于③、由正六边形的性质得BC∥AD,又AD⊂平面PAD,∴BC∥平面PAD,∴直线BC∥平面PAE也不成立,③错;对于④、在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,∴④正确;对于⑤、由于DE∥AB,∴D到平面PAB的距离即为E到平面PAB的距离,即E到直线PA的距离,即EA,EA=AB,在Rt△PAD中,PA=AD=2AB,∴PD=2AB,∴直线PD与平面PAB所成角的正弦值为=,∴直线PD与平面PAB所成角的余弦值为=,∴⑤正确.故答案为:①④⑤.11.如图所示,三棱锥M,PA⊥底面ABC,∠ABC=90°,则此三棱锥P-ABC中直角三角形有______个.答案:4解析:解:由已知PA⊥底面ABC,∠ABC=90°,所以CB⊥PA,CB⊥AB,又PA∩AB=A,所以CB⊥平面PAB,所以CB⊥PB,所以此三棱锥P-ABC中直角三角形有△ABC,△ABP,△ACP,△PBC共有4个.故答案为:4.12、如图,正三棱柱ABC-A1B1C1的各棱长都等于2,D在AC1上,F为BB1中点,且FD⊥AC1,有下述结论(1)AC1⊥BC;(2)=1;(3)二面角F-AC1-C的大小为90°;(4)三棱锥D-ACF的体积为.正确的有______.答案:(2)(3)(4)解析:解:(1)连接AB1,则∠B1C1A即为BC和AC1所成的角,在三角形AB1C1中,B1C1=2,AB1=2,AC1=2,cos∠B1C1A==,故(1)错;(2)连接AF,C1F,则易得AF=FC1=,又FD⊥AC1,则AD=DC1,故(2)正确;(3)连接CD,则CD⊥AC1,且FD⊥AC1,则∠CDF为二面角F-AC1-C的平面角,CD=,CF=,DF===,即CD2+DF2=CF2,故二面角F-AC1-C的大小为90°,故(3)正确;(4)由于CD⊥AC1,且FD⊥AC1,则AD⊥平面CDF,则V D-ACF=V A-DCF=•AD•S△DCF=×××=.故(4)正确.故答案为:(2)(3)(4)13.各棱长为a的正三棱柱的六个顶点都在同一个球面上,则此球的表面积为______.答案:解析:解:∵正三棱柱的六个顶点都在同一个球面上,所以球心在上下底面中心的连线的中点上,AB=a,OA=R,在△OEA中,OE=,AE=,∵AO2=OE2+AE2,∴,∴球的表面积为4πR2=,故答案为.14.一四棱锥被平行于底面的平面所截,若截面面积与底面面积之比为1:4,则此截面把一条侧棱分成的两段之比为______.答案:1:1解析:解:根据题意,设截得小棱锥的侧棱长为l,原棱锥的侧棱长为L,∵截面与底面相似,且截面面积与底面面积之比为1:4,∴相似比为:==,∴截面把棱锥的一条侧棱分成的两段之比是l:(L-l)=1:1.故答案为:1:1.15、如图所示正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F且EF=,给出下列五个结论①AC⊥BE②EF∥平面ABCD③异面直线AE,BF所成的角为60°④A1点到面BEF的距离为定值⑤三棱柱A-BEF的体积为定值其中正确的结论有:______(写出所有正确结论的编号)答案:①②④⑤解析:解:①AC⊥BE,由题意及图形知,AC⊥面DD1B1B,故可得出AC⊥BE,此命题正确;②EF∥平面ABCD,由正方体ABCD-A1B1C1D1的两个底面平行,EF在其一面上,故EF与平面ABCD无公共点,故有EF∥平面ABCD,此命题正确;③由图知,当F与B1重合时,令上底面顶点为O,则此时两异面直线所成的角是∠A1AO,当E与D1重合时,此时点F与O重合,则两异面直线所成的角是∠OBC1,此二角不相等,故异面直线AE、BF所成的角不为定值,故不正确.④A1点到面DD1B1B距离是定值,所以A1点到面BEF的距离为定值,正确;⑤三棱锥A-BEF的体积为定值,由几何体的性质及图形知,三角形BEF的面积是定值,A点到面DD1B1B距离是定值,故可得三棱锥A-BEF的体积为定值,此命题正确.故答案为:①②④⑤.三.简答题(共__小题)16、如图,立体图形A-BCD的四个面分别为△ABC、△ACD、△ADB和△BCD,E、F、G分别是线段AB、AC、AD上的点,且满足AE:AB=AF:AC=AG:AD,求证:△EFG∽△BCD.答案:证明:在△ABD中,∵AE:AB=AG:AD,∴EG∥BD.同理,GF∥DC,EF∥BC.又∠GEF与∠DBC方向相同.∴∠GEF=∠DBC.同理,∠EGF=∠BDC.∴△EFG∽△BCD.17、如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N 的位置;若不存在,试说明理由.答案:解:(1)∵AB⊥平面BCD,∴AB⊥BC,AB⊥BD.∵△BCD是正三角形,且AB=BC=a,∴AD=AC=.设G为CD的中点,则CG=,AG=.∴,,.三棱锥D-ABC的表面积为.(2)取AC的中点H,∵AB=BC,∴BH⊥AC.∵AF=3FC,∴F为CH的中点.∵E为BC的中点,∴EF∥BH.则EF⊥AC.∵△BCD是正三角形,∴DE⊥BC.∵AB⊥平面BCD,∴AB⊥DE.∵AB∩BC=B,∴DE⊥平面ABC.∴DE⊥AC.∵DE∩EF=E,∴AC⊥平面DEF.(3)存在这样的点N,当CN=时,MN∥平面DEF.连CM,设CM∩DE=O,连OF.由条件知,O为△BCD的重心,CO=CM.∴当CF=CN时,MN∥OF.∴CN=.。

高中数学立体几何专项练习题及答案

高中数学立体几何专项练习题及答案

高中数学立体几何专项练习题及答案一、选择题1. 下面哪个选项不是描述柱体的特点?A. 体积恒定B. 底面形状不限C. 侧面是矩形D. 顶面和底面平行答案:A2. 如果一个四面体的一个顶点的对边垂直于底面,那么这个四面体是什么类型?A. 正方形四面体B. 倒立四面体C. 锥体D. 正方锥体答案:C3. 以下哪个选项正确描述了一个正方体的特点?A. 全部面都是正方形B. 12 条棱长度相同C. 8 个顶点D. 6 个面都是正方形答案:D4. 若长方体的高度是 6cm,底面积是 5cm²,底面对角线长为 a cm,那么 a 的值为多少?A. √11B. √29C. √31D. √41答案:C二、填空题1. 一个正方体的棱长为 4cm,它的体积是多少?答案:64cm³2. 一个球的表面积是100π cm²,那么它的半径是多少?答案:5cm3. 一个圆柱体的底面半径为 3cm,高度为 8cm,它的体积是多少?答案:72π cm³4. 一个圆锥的底面半径为 6cm,高度为 10cm,它的体积是多少?答案:120π cm³三、计算题1. 一个四棱锥的底面是边长为 5cm 的正方形,高度为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:5cm * 5cm = 25cm²再计算体积:25cm² * 8cm / 3 = 200cm³2. 一个圆柱体的底面直径为 12cm,高度为 15cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面半径:12cm / 2 = 6cm再计算底面积:π * 6cm * 6cm = 36π cm²最后计算体积:36π cm² * 15cm = 540π cm³3. 一个球的直径为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算半径:8cm / 2 = 4cm再计算体积:4/3 * π * 4cm * 4cm * 4cm = 268.08π cm³4. 一个圆锥的底面半径为 10cm,高度为 20cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:π * 10cm * 10cm = 100π cm²最后计算体积:100π cm² * 20cm / 3 = 2000π cm³四、解答题1. 若一个长方体的长度、宽度、高度分别为 a、b、c,它的表面积为多少?答案:单位为 cm²,计算过程如下:首先计算侧面积:2 * (a * b + a * c + b * c)再计算底面积:a * b最后计算表面积:2 * (a * b + a * c + b * c) + a * b2. 一个四棱锥的底面为边长为 a 的正三角形,高度为 h,求这个四棱锥的体积。

高中数学必修二第八章立体几何初步考点精题训练(带答案)

高中数学必修二第八章立体几何初步考点精题训练(带答案)

高中数学必修二第八章立体几何初步考点精题训练单选题1、南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m时,相应水面的面积为140.0km2;水位为海拔157.5m时,相应水面的面积为180.0km2,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m上升到157.5m时,增加的水量约为(√7≈2.65)()A.1.0×109m3B.1.2×109m3C.1.4×109m3D.1.6×109m3答案:C分析:根据题意只要求出棱台的高,即可利用棱台的体积公式求出.依题意可知棱台的高为MN=157.5−148.5=9(m),所以增加的水量即为棱台的体积V.棱台上底面积S=140.0km2=140×106m2,下底面积S′=180.0km2=180×106m2,∴V=13ℎ(S+S′+√SS′)=13×9×(140×106+180×106+√140×180×1012)=3×(320+60√7)×106≈(96+18×2.65)×107=1.437×109≈1.4×109(m3).故选:C.2、如图已知正方体ABCD−A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN//平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN//平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B1答案:A分析:由正方体间的垂直、平行关系,可证MN//AB,A1D⊥平面ABD1,即可得出结论.连AD1,在正方体ABCD−A1B1C1D1中,M是A1D的中点,所以M为AD1中点,又N是D1B的中点,所以MN//AB,MN⊄平面ABCD,AB⊂平面ABCD,所以MN//平面ABCD.因为AB不垂直BD,所以MN不垂直BD则MN不垂直平面BDD1B1,所以选项B,D不正确;在正方体ABCD−A1B1C1D1中,AD1⊥A1D,AB⊥平面AA1D1D,所以AB⊥A1D,AD1∩AB=A,所以A1D⊥平面ABD1,D1B⊂平面ABD1,所以A1D⊥D1B,且直线A1D,D1B是异面直线,所以选项C错误,选项A正确.故选:A.小提示:关键点点睛:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系.3、在正方体ABCD −A 1B 1C 1D 1中,三棱锥A −B 1CD 1的表面积为4√3,则正方体外接球的体积为( )A .4√3πB .√6πC .32√3πD .8√6π答案:B解析:根据三棱锥的表面积进一步求出正方体的棱长,最后求出正方体的外接球的半径,进一步求出结果. 解:设正方体的棱长为a ,则B 1D 1=AC =AB 1=AD 1=B 1C =D 1C =√2a ,由于三棱锥A −B 1CD 1的表面积为4√3,所以S =4S △AB 1C =4×12×√32(√2a)2=4√3所以a =√2所以正方体的外接球的半径为√(√2)2+(√2)2+(√2)22=√62, 所以正方体的外接球的体积为43π·(√62)3=√6π故选:B .小提示:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.4、已知三棱锥P −ABC ,其中PA ⊥平面ABC ,∠BAC =120°,PA =AB =AC =2,则该三棱锥外接球的表面积为( )A .12πB .16πC .20πD .24π答案:C分析:根据余弦定理、正弦定理,结合球的性质、球的表面积公式进行求解即可.根据题意设底面△ABC 的外心为G ,O 为球心,所以OG ⊥平面ABC ,因为PA ⊥平面ABC ,所以OG//PA ,设D 是PA 中点,因为OP =OA ,所以DO ⊥PA ,因为PA ⊥平面ABC ,AG ⊂平面ABC ,所以AG ⊥PA ,因此OD//AG ,因此四边形ODAG 是平行四边形,故OG =AD =12PA =1,由余弦定理,得BC =√AB 2+AC 2−2AB ⋅AC ⋅cos120°=√4+4−2×2×2×(−12)=2√3,由正弦定理,得2AG =√3√32⇒AG =2,所以该外接球的半径R 满足R 2=(OG )2+(AG )2=5⇒S =4πR 2=20π,故选:C .小提示:关键点睛:运用正弦定理、余弦定理是解题的关键.5、牟合方盖是由我国古代数学家刘徽首先发现并采用的一种用于计算球体体积的方法,该方法不直接给出球体的体积,而是先计算牟合方盖的体积.刘徽通过计算,“牟合方盖”的体积与球的体积关系为V 牟V 球=4π,并且推理出了“牟合方盖”的八分之一的体积计算公式,即V 牟8=r 3−V 方盖差,从而计算出V 球=43πr 3.如果记所有棱长都为r 的正四棱锥的体积为V ,则V 方差盖:V =( )A.√22B.1C.√2D.2√2答案:C分析:计算出V方盖差,V,即可得出结论.由题意,V方盖差=r3−18V牟=r3−18×4π×43×π×r3=13r3,所有棱长都为r的正四棱锥的体积为V正=13×r×r×r2−(√2r2)2=√26r3,∴V方盖差V正=13r3√2r36=√2,故选:C.6、如图,已知正方体的棱长为a,沿图1中对角面将它分割成两个部分,拼成如图2的四棱柱,则该四棱柱的全面积为()A.(8+2√2)a2B.(2+4√2)a2C.(4+2√2)a2D.(6−4√2)a2答案:C分析:拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,据此变化,进行求解. 由题意,拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,由于截面为矩形,长为√2a,宽为a,所以面积为√2a2,所以拼成的几何体的表面积为4a2+2√2a2=(4+2√2)a2.故选:C.7、如图所示的正方形SG1G2G3中,E , F分别是G1G2,G2G3的中点,现沿SE,SF,EF把这个正方形折成一个四面体,使G1,G2,G3重合为点G,则有()A.SG⊥平面EFG B.EG⊥平面SEFC.GF⊥平面SEF D.SG⊥平面SEF答案:A解析:根据正方形的特点,可得SG⊥FG,SG⊥EG,然后根据线面垂直的判定定理,可得结果. 由题意:SG⊥FG,SG⊥EG,FG∩EG=G,FG,EG⊂平面EFG所以SG⊥平面EFG正确,D不正确;.又若EG⊥平面SEF,则EG⊥EF,由平面图形可知显然不成立;同理GF⊥平面SEF不正确;故选:A小提示:本题主要考查线面垂直的判定定理,属基础题.8、如图,PA垂直于矩形ABCD所在的平面,则图中与平面PCD垂直的平面是()A.平面ABCD B.平面PBCC.平面PAD D.平面PCD答案:C分析:由线面垂直得到线线垂直,进而证明出线面垂直,面面垂直.因为PA⊥平面ABCD,CD⊂平面ABCD,所以PA⊥CD,由四边形ABCD为矩形得CD⊥AD,因为PA∩AD=A,所以CD⊥平面PAD.又CD⊂平面PCD,所以平面PCD⊥平面PAD.故选:C多选题9、沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上(细管长度忽略不下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的23计).假设该沙漏每秒钟漏下0.02cm3的沙,且细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆.以下结论正确的是()A.沙漏中的细沙体积为1024πcm381B.沙漏的体积是128πcm3C.细沙全部漏入下部后此锥形沙堆的高度约为2.4cmD.该沙漏的一个沙时大约是1565秒(π≈3.14)答案:AC解析:A.根据圆锥的体积公式直接计算出细沙的体积;B.根据圆锥的体积公式直接计算出沙漏的体积;C.根据等体积法计算出沙堆的高度;D.根据细沙体积以及沙时定义计算出沙时.A.根据圆锥的截面图可知:细沙在上部时,细沙的底面半径与圆锥的底面半径之比等于细沙的高与圆锥的高之比,所以细沙的底面半径r=23×4=83cm,所以体积V=13⋅πr2⋅2ℎ3=13⋅64π9⋅163=1024π81cm3B.沙漏的体积V=2×13×π×(ℎ2)2×ℎ=2×13×π×42×8=2563πcm3;C.设细沙流入下部后的高度为ℎ1,根据细沙体积不变可知:1024π81=13×(π(ℎ2)2)×ℎ1,所以1024π81=16π3ℎ1,所以ℎ1≈2.4cm;D.因为细沙的体积为1024π81cm3,沙漏每秒钟漏下0.02cm3的沙,所以一个沙时为:1024π810.02=1024×3.1481×50≈1985秒.故选:AC.小提示:该题考查圆锥体积有关的计算,涉及到新定义的问题,难度一般.解题的关键是对于圆锥这个几何体要有清晰的认识,同时要熟练掌握圆锥体积有关的计算公式.10、(多选题)在四棱锥A-BCDE中,底面四边形BCDE为梯形,BC∥DE.设CD,BE,AE,AD的中点分别为M,N,P,Q,则()A.PQ=1MN B.PQ∥MN2C.M,N,P,Q四点共面D.四边形MNPQ是梯形答案:BCD分析:根据中位线的性质,结合平行的性质逐个判定即可DE,且DE≠MN,由题意知PQ=12所以PQ≠1MN,故A不正确;又PQ∥DE,DE∥MN,2所以PQ∥MN,又PQ≠MN,所以B,C,D正确.故选:BCD11、给出以下关于斜二测直观图的结论,其中正确的是()A.水平放置的角的直观图一定是角B.相等的角在直观图中仍然相等C.相等的线段在直观图中仍然相等D.两条平行线段在直观图中仍是平行线段答案:AD分析:根据直观图和斜二测画法的规则,判断选项.水平放置的角的直观图一定是角,故A正确;角的大小在直观图中都会发生改变,有的线段在直观图中也会改变,比如正方形的直方图中,故BC错误;由斜二测画法规则可知,直观图保持线段的平行性,所以D正确.故选:AD填空题12、如图所示,P为平行四边形ABCD所在平面外一点,E为AD的中点,F为PC上一点,若PA//平面EBF,则PF=_______FC答案:12##0.5 分析:连接AC 交BE 于点M ,连接FM ,由线面平行的性质得线线平行,由平行线性得结论. 连接AC 交BE 于点M ,连接FM ,∵PA//平面EBF ,PA ⊂平面PAC ,平面PAC ∩平面EBF =EM ,∴PA//EM ,又AE//BC ,∴PF FC =AM MC =AE BC =12. 所以答案是:12. 13、已知一个圆锥的底面半径为6,其体积为30π则该圆锥的侧面积为________.答案:39π分析:利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案. ∵V =13π62⋅ℎ=30π∴ℎ=52∴l =√ℎ2+r 2=√(52)2+62=132 ∴S 侧=πrl =π×6×132=39π. 所以答案是:39π.14、如图,拿一张矩形纸片对折后略微展开,竖立在桌面上,折痕与桌面的关系是______.答案:垂直分析:根据给定条件,利用线面垂直的判定推理作答.令桌面所在的平面为α,折痕所在直线为l,纸片与桌面公共部分所在直线为a,b,如图,依题意有a∩b=A,因l⊥a,l⊥b,a,b⊂α,所以l⊥α,所以折痕与桌面垂直.所以答案是:垂直解答题15、如图,四棱锥P−ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.(1)证明:平面PAM⊥平面PBD;(2)若PD=DC=1,求四棱锥P−ABCD的体积.答案:(1)证明见解析;(2)√23.分析:(1)由PD⊥底面ABCD可得PD⊥AM,又PB⊥AM,由线面垂直的判定定理可得AM⊥平面PBD,再根据面面垂直的判定定理即可证出平面PAM⊥平面PBD;(2)由(1)可知,AM⊥BD,由平面知识可知,△DAB~△ABM,由相似比可求出AD,再根据四棱锥P−ABCD的体积公式即可求出.(1)因为PD⊥底面ABCD,AM⊂平面ABCD,所以PD⊥AM,又PB⊥AM,PB∩PD=P,所以AM⊥平面PBD,而AM⊂平面PAM,所以平面PAM⊥平面PBD.(2)[方法一]:相似三角形法由(1)可知AM⊥BD.于是△ABD∽△BMA,故ADAB =ABBM.因为BM=12BC,AD=BC,AB=1,所以12BC2=1,即BC=√2.故四棱锥P−ABCD的体积V=13AB⋅BC⋅PD=√23.[方法二]:平面直角坐标系垂直垂直法由(2)知AM⊥DB,所以k AM⋅k BD=−1.建立如图所示的平面直角坐标系,设BC =2a(a >0).因为DC =1,所以A(0,0),B(1,0),D(0,2a),M(1,a).从而k AM ⋅k BD =a−01−0×2a−00−1=a ×(−2a)=−2a 2=−1. 所以a =√22,即DA =√2.下同方法一.[方法三]【最优解】:空间直角坐标系法建立如图所示的空间直角坐标系D −xyz ,设|DA|=t ,所以D(0,0,0),C(0,1,0),P(0,0,1),A(t,0,0),B(t,1,0).所以M (t 2,1,0),PB ⃑⃑⃑⃑⃑ =(t,1,−1),AM ⃑⃑⃑⃑⃑⃑ =(−t 2,1,0).所以PB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =t ⋅(−t 2)+1×1+0×(−1)=−t 22+1=0. 所以t =√2,即|DA|=√2.下同方法一.[方法四]:空间向量法由PB ⊥AM ,得PB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.所以(PD⃑⃑⃑⃑⃑ +DA ⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ )⋅AM ⃑⃑⃑⃑⃑⃑ =0. 即PD ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +DA ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.又PD ⊥底面ABCD ,AM 在平面ABCD 内,因此PD ⊥AM ,所以PD ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.所以DA ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0,由于四边形ABCD 是矩形,根据数量积的几何意义,得−12|DA ⃑⃑⃑⃑⃑ |2+|AB ⃑⃑⃑⃑⃑ |2=0,即−12|BC ⃑⃑⃑⃑⃑ |2+1=0. 所以|BC⃑⃑⃑⃑⃑ |=√2,即BC =√2.下同方法一. 【整体点评】(2)方法一利用相似三角形求出求出矩形的另一个边长,从而求得该四棱锥的体积;方法二构建平面直角坐标系,利用直线垂直的条件得到矩形的另一个边长,从而求得该四棱锥的体积;方法三直接利用空间直角坐标系和空间向量的垂直的坐标运算求得矩形的另一个边长,为最常用的通性通法,为最优解;方法四利用空间向量转化求得矩形的另一边长.。

高中数学立体几何大题训练题含答案

高中数学立体几何大题训练题含答案

立几大题训练题一、解答题(共50题;共505分)1. ( 10分) 已知四棱锥S−ABCD中,四边形ABCD为梯形,∠BCD=∠ADC=∠SAD=90°,平面SAD⊥平面ABCD,E为线段AD的中点,AD=2BC=2CD.(1)证明:BD⊥平面SAB;(2)若SA=AD=2,求点E到平面SBD的距离.2. ( 10分) 如图,平面ABCD∩平面ABEF=AB,四边形ABCD和ABEF都是边长为2的正方形,点M,N分别是AF,AB的中点,二面角D−AB−F的大小为60°.(1)求证:MN//平面BCF;(2)求直线DE与平面BCF所成角的正弦值.3. ( 10分) 如图,四棱锥P-ABCD的底面是正方形,E为AB的中点,PD⊥CE,AE=1,PD=3,PC=√13(1)证明:AD⊥平面PCD.(2)求DA与平面PCE所成角的正弦值.4. ( 10分) 如图所示,直三棱柱ABC−A1B1C1的各棱长均相等,点E为AA1的中点.(1)证明:EB1⊥BC1;(2)求二面角C1−EB1−C的余弦值.AD,G是PB的中点,5. ( 10分) 已知在四棱锥P−ABCD中,AD//BC,AB=BC=CD=12ΔPAD是等边三角形,平面PAD⊥平面ABCD.(1)求证:CD⊥平面GAC;(2)求二面角P−AG−C的余弦值.6. ( 10分) 如图,多面体ABCE中,平面AEC⊥平面ABC,AC⊥BC,AE⊥CD四边形BCDE 为平行四边形.(1)证明:AE⊥EC;(2)若AE=EC=CB=√2,求二面角D−AC−E的余弦值.7. ( 10分) 如图,在三棱锥A−BCD中, △ABC是等边三角形, ∠BAD=∠BCD=90°,点P是AC 的中点,连接BP,DP.(1)证明:平面ACD⊥平面BDP;(2)若BD=√6,且二面角A−BD−C为120°,求直线AD与平面BCD所成角的正弦值.8. ( 10分) 如图,在四棱锥P−ABCD中,AP⊥平面PCD,AD//BC,AB⊥BC,AP=AB=AD,E为AD的中点,AC与BE相交于点O.BC=12(1)证明:PO⊥平面ABCD.(2)若OB=1,求点C到平面PAB的距离.9. ( 10分) 如图,在斜三棱柱ABC−A1B1C1中,平面ABC⊥平面A1ACC1,CC1=2,△ABC,△ACC1,均为正三角形,E为AB的中点.(1)证明: AC1//平面B1CE,(2)求直线AC1与平面B1BAA1所成角的正弦值.10. ( 10分) 如图,四棱锥P−ABCD中,底面ABCD是边长为2的正方形,平面PAB⊥平面ABCD,AP=PB,AP⊥PB,E为CP的中点.(1)求证:AP//平面BDE;(2)求点D到平面ACP的距离.11. ( 10分) 在三棱柱ABC−A1B1C1中,已知AB=AC=AA1=√5,BC=4,O为BC的中点,A1O⊥平面ABC(1)证明四边形BB1C1C为矩形;(2)求直线AA1与平面A1B1C所成角的余弦值.12. ( 10分) 如图,四棱锥P−ABCD的底面是正方形,PA⊥平面ABCD,AE⊥PD.(1)证明:AE⊥平面PCD;(2)若AP=AB,求二面角B−PC−D的余弦值.13. ( 10分) 在直角梯形ABCD(如图1),∠ABC=90°,BC//AD,AD=8,AB=BC=4,M为线段AD中点.将△ABC沿AC折起,使平面ABC⊥平面ACD,得到几何体B−ACD(如图2).(1)求证:CD⊥平面ABC;(2)求AB与平面BCM所成角θ的正弦值.14. ( 15分) 如图,四棱锥S−ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SD=1.(1)求证BC⊥SC;(2)求平面SBC与平面ABCD所成二面角的大小;(3)设棱SA的中点为M,求异面直线DM与SB所成角的大小.15. ( 10分) 已知菱形ABCD的边长为4, AC∩BD=O, ∠ABC=60°,将菱形ABCD沿对角线BD折起,使AC=a,得到三棱锥A−BCD,如图所示.⇒(1)当a=2√2时,求证: AO⊥平面BCD;(2)当二面角A−BD−C的大小为120°时,求直线AD与平面ABC所成的正切值.16. ( 10分) 在四棱锥P–ABCD中,AB//CD,CD=2AB.⇀=mAP⇀(m>0),且MN//平面PCD,求实数m的值;(1)设AC与BD相交于点M,AN(2)若AB=AD=DP,∠BAD=60°,PB=√2AD,且PD⊥AD,求二面角A−PC−B的余弦值.17. ( 10分) 如图,在四棱锥P−ABCD中,PA⊥平面ABCD,ABCD是正方形,E是CD中点,点F在BC上,且BF=3FC.(1)证明:EF⊥平面PAE;(2)若PA=AB=4,求点C到平面PEF的距离.18. ( 10分) 如图,在四棱锥P−ABCD中,PA⊥平面ABCD,ABCD是正方形,E是CD中点,点F在BC上,且BF=3FC.(1)证明EF⊥平面PAE;AB,求平面PAB与平面PEF所成二面角的正弦值.(2)若PA=5419. ( 10分) 如图(1),在平面五边形EADCB中,已知四边形ABCD为正方形,ΔEAB为正三角形.沿着AB将四边形ABCD折起得到四棱锥E−ABCD,使得平面ABCD⊥平面EAB,设F在线段AD上且满足DF=2AF,G在线段CF上且满足FG=CG,O为ΔECD的重心,如图(2).(1)求证:GO//平面ABE;(2)求直线CF与平面BCE所成角的正弦值.20. ( 10分) 如图所示,在矩形ABCD中,AB=4,AD=2,E是CD的中点,O为AE的中点,以AE为折痕将ΔADE向上折起,使D点折到P点,且PC=PB.(1)求证: PO⊥面ABCE;(2)求AC与面PAB所成角θ的正弦值.21. ( 10分) 如图,在以A,B,C,D,E,F为顶点的多面体中,四边形ACDF是菱形,∠FAC=600,AB//DE,BC//EF,AB=BC=3,AF=2√3,BF=√15(1)求证:平面ABC⊥平面ACDF(2)求平面AEF与平面ACE所成的锐二面角的余弦值22. ( 10分) 已知四棱锥E−ABCD,AB=3,BC=4,CD=12,AD=13,cos∠ADC= 12,EC⊥平面ABCD.13(1)求证:平面ABE⊥平面EBC;(2)当CE=60时,求直线AC和平面ADE所成角的正弦值.23. ( 10分) 如图,在四棱锥P−ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB//CD,PC⊥底面ABCD,AB=2AD=2CD=4,PC=2a,E是PB的中点.(1)求证:AC⊥平面PBC;,求直线PA与平面EAC所成角的正弦值.(2)若二面角P−AC−E的余弦值为√6324. ( 10分) 如图1,在等腰梯形ABF1F2中,两腰AF2=BF1=2,底边AB=6,F1F2=4,D,C是AB的三等分点,E是F1F2的中点.分别沿CE,DE将四边形BCEF1和ADEF2折起,使F1,F2重合于点F,得到如图2所示的几何体.在图2中,M,N分别为CD,EF的中点.(1)证明:MN⊥平面ABCD.(2)求直线CN与平面ABF所成角的正弦值.25. ( 15分) 如图,在四棱锥P一ABCD中,已知AB=BC=√5,AC=4,AD=DC=2√2,点Q为AC中点,PO⊥底面ABCD, PO=2,点M为PC的中点.(1)求直线PB与平面ADM所成角的正弦值;(2)求二面角D-AM-C的正弦值;(3)记棱PD的中点为N,若点Q在线段OP上,且NQ//平面ADM,求线段OQ的长.26. ( 10分) 如图,已知ΔABC为等边三角形,ΔABD为等腰直角三角形,AB⊥BD,平面ABC⊥平面ABD,点E与点D在平面ABC的同侧,且CE//BD,BD=2CE.点F为AD中点,连接EF.(1)求证:EF//平面ABC;(2)求二面角C−AE−D的余弦值.27. ( 10分) 如图,在四棱锥S−ABCD中,底面ABCD是直角梯形,AD//BC,AB⊥BC,ΔSAB 是等边三角形,侧面SAB⊥底面ABCD,AB=2√3,BC=3,AD=1,点M、点N分别在棱SB、棱CB上,BM=2MS,BN=2NC,点P是线段MN上的任意一点.(1)求证:AP//平面SCD;(2)求二面角S−CD−B的大小.28. ( 15分) 如图,四棱锥P−ABCD的底面是正方形,PA⊥底面ABCD,PA=AD=2,点M,N分别在棱PD,PC上,且PC⊥平面AMN.(1)求证:AM⊥PD;(2)求直线CD与平面AMN所成角的正弦值.(3)求二面角C−AM−N的余弦值29. ( 10分) 如图,四棱锥P−ABCD中, PD⊥底面ABCD,且底面ABCD为平行四边形,若∠DAB= 60°, AB=2, AD=1.(1)求证: PA⊥BD;(2)若∠PCD=45°,求点D到平面PBC的距离ℎ.30. ( 10分) 在长方体ABCD−A1B1C1D1中,底面ABCD是边长为2的正方形,E是AB的中点,F是BC的中点.(1)求证:EF//平面A1DC1;(2)若AA1=2√3,求平面A1DC1与平面B1EF所成二面角的正弦值.31. ( 10分) 如图,在四棱锥P−ABCD中,底面ABCD是矩形,侧棱PD⊥底面ABCD,且PD= CD=1,过棱PC的中点E,作EF⊥PB交PB于点F.(1)证明:PA//平面EDB;,求PA与面ABCD所成角的正弦值.(2)若面DEF与面ABCD所成二面角的大小为π332. ( 5分) 如图,在三棱柱ABC−A1B1C1中,AA1⊥平面ABC,D是AB的中点,BC=AC,AB=2DC=2√2,AA1=4.(Ⅰ)求证:BC1//平面A1CD;(Ⅱ)求平面BCC1B1与平面A1CD所成锐二面角的平面角的余弦值.33. ( 10分) 如图,在三棱柱ABC−A1B1C1中,AA1⊥平面ABC,点D是AB的中点,BC= AC,AB=2DC=2,AA1=√3.(1)求证:平面A1DC⊥平面ABB1A1;(2)求点A到平面A1DC的距离.34. ( 10分) 如图,在平行六面体ABCD﹣A1B1C1D1中,AA1=A1D,AB=BC,∠ABC=120°.(1)证明:AD⊥BA1;(2)若平面ADD1A1⊥平面ABCD,且A1D=AB,求直线BA1与平面A1B1CD所成角的正弦值.35. ( 10分) 如图,在四棱锥P−ABCD中, PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP= 4,AB=BC=2, M,N为线段PC,AD上一点不在端点.AD,求证:MN∥面PBA(1)当M为中点时,AN=14,若存在(2)当N为AD中点时,是否存在M,使得直线MN与平面PBC所成角的正弦值为2√55求出M的坐标,若不存在,说明理由.36. ( 10分) 如图,正方体ABCD−A1B1C1D1的棱长为2,E为棱CC1的中点.(1)求 AD 1 与 DB 所成角的大小;(2)求 AE 与平面 ABCD 所成角的正弦值.37. ( 20分 ) 如图, E 是以 AB 为直径的半圆 O 上异于 A,B 的点,矩形 ABCD 所在的平面垂直于半圆 O 所在的平面,且 AB =2 , AD =3(1)求证:平面 EAD ⊥ 平面 EBC ;(2)若 EB ⌢ 的长度为 π3,求二面角 A −DE −C 的正弦值. 38. ( 5分 ) 如图1,在直角梯形 ABCD 中,AB ∥CD , AB ⊥AD ,且 AB =AD =12CD =1 .现以 为一边向梯形外作正方形 ADEF ,然后沿边 AD 将正方形 ADEF 翻折,使平面 ADEF 与平面 ABCD 垂直,如图2.(Ⅰ)求证:BC ⊥平面DBE ;(Ⅱ)求点D 到平面BEC 的距离.39. ( 10分 ) 如图,扇形 AOB 的半径为 2 ,圆心角 ∠AOB =120∘ ,点 C 为弧 AB 上一点, PO ⊥ 平面 AOB 且 PO =√5 ,点 M ∈PB 且 BM =2MP , PA ∥平面 MOC .(1)求证:平面MOC⊥平面POB;(2)求平面POA和平面MOC所成二面角的正弦值的大小.40. ( 10分) 如图,已知四边形ABCD为等腰梯形,BDEF为正方形,平面BDEF⊥平面ABCD,AD//BC,AD=AB=1,∠ABC=60°.(1)求证:平面CDE⊥平面BDEF;(2)点M为线段EF上一动点,求BD与平面BCM所成角正弦值的取值范围.41. ( 10分) 如图,在四棱锥P-ABCD中,AD=2√3,AB=3,AP=√3,AD//BC,AD⊥平面PAB,∠APB=90°,点E满足PE⇀=23PA⇀+13PB⇀.(1)证明:PE⊥DC;(2)求二面角A-PD-E的余弦值.42. ( 10分) 在斜三棱柱ABC−A1B1C1中,侧面AC1⊥平面ABC,AA1=√2a,A1C=CA=AB=a,AB⊥AC,D是AA1的中点.(1)求证:CD⊥平面AB1;(2)在侧棱BB1上确定一点E,使得二面角E−A1C1−A的大小为π.343. ( 10分) 如图,在四棱锥P−ABCD中,侧面PAD⊥底面ABCD,底面ABCD为梯形,AB//CD,=2.∠ABC=∠BCD=90°,BC=CD=AB2(1)证明: BD⊥PD;(2)若△PAD为正三角形,求二面角A−PB−C的余弦值.44. ( 10分) 如图,已知四棱锥P−ABCD的底面为直角梯形,∠ADC为直角,AP⊥平面ABCD,BC:AD:CD=5:4:2,且CD=1.(1)求证:BP⊥AC;(2)若AP=CD,求二面角D−PC−B的余弦值.45. ( 10分) 如图,在四棱锥P−ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,AB=1, AM⊥PD于点M,连接BM.(1)求证:PD⊥BM;(2)求直线CD与平面ACM所成角的正弦值.BC=1,E是BC的中46. ( 10分) 如图所示1,已知四边形ABCD满足AD//BC,BA=AD=DC=12点.将△BAE沿着AE翻折成△B1AE,使平面B1AE⊥平面AECD,F为CD的中点,如图所示2.(1)求证:EF⊥平面AB1E;(2)求AE到平面CB1D的距离.47. ( 10分) 如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,∠BCD=135°,PA⊥平面ABCD,AB=AC=PA=2,E,F,M分别为线段BC,AD,PD的中点.(1)求证:直线EF⊥平面PAC;(2)求平面MEF与平面PBC所成二面角的正弦值.48. ( 5分) 如图,三棱柱A1B1C1−ABC中,BB1⊥平面ABC,AB⊥BC,AB=2,BC= 1,BB1=3,D是CC1的中点,E是AB的中点.(Ⅰ)证明:DE//平面C1BA1;(Ⅱ)F是线段CC1上一点,且直线AF与平面ABB1A1所成角的正弦值为1,求二面角F−3BA1−A的余弦值.49. ( 5分) 如图,在四棱锥P−ABCD中, PA⊥平面ABCD, AD⊥CD,AD//BC,BC=4,PA= AD=CD=2,点E为PC的中点.(I) 证明:DE//平面PAB;(II)求直线PB与平面PCD所成角的正弦值.50. ( 10分) 如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的一点.(1)求证:平面PAC⊥平面PBC;(2)若AB=2 , AC=PA=1,求直线PA与平面PBC所成角的正弦值.答案解析部分一、解答题1.【答案】(1)解:由题意知∠BCD=∠ADC=90°,BC//ED,且BC=CD=12AD=DE,所以四边形BCDE是正方形,连接CE,所以BD⊥CE,又因为BC//AE,BC=AE,所以四边形ABCE是平行四边形,所以CE//AB,则BD⊥AB.因为平面SAD⊥平面ABCD,∠SAD=90°,平面SAD∩平面ABCD=AD,故SA⊥平面ABCD.所以SA∩AB=A,所以SA⊥BD,又因为SA∩AB=A,则BD⊥平面SAB.(2)解:∵SA=AD=2,BE=DE=1,∴△BDE的面积为12,又由(1)知SA⊥平面ABCD,∴V S−BDE=13×12×2=13,又在RtΔSAB中,SA=2,AB=DB=√2,∴SB=√6,由(1)知BD⊥SB,∴ΔSBD的面积为12×√2×√6=√3,设点E到平面SBD的距离为ℎ,则13S△BDS⋅ℎ=13,即ℎ=√33.【考点】直线与平面垂直的判定,点、线、面间的距离计算【解析】【分析】(1)利用线面垂直的判定定理,即可证得BD⊥平面SAB.(2)由(1)知SA⊥平面ABCD,求得V S−BDE=13,再根据等体积法,即可求解点点E到平面SBD的距离.2.【答案】(1)证明:∵M,N分别是AF,AB的中点,∴MN∥BF.∵MN⊄平面BCF,BF⊂平面BCF,∴MN//平面BCF.(2)解:∵四边形ABCD和ABEF都是边长为2的正方形,∴DA⊥AB,FA⊥AB,∴∠DAF就是二面角D−AB−F的平面角,∴∠DAF=60°.连接DM,在△DAM中,DA=2,AM=1,∠DAM=60°,∴DM2=AM2+AD2−2AM⋅AD⋅cos60°=3,∴DM=√3.∴DM2+AM2=AD2,∴DM⊥AM.∵DA⊥AB,FA⊥AB,FA∩DA=A,∴AB ⊥ 平面 ADM , ∴AB ⊥DM .∴DM ⊥ 平面 ABEF .以点 M 为原点, MF , MG ( G 是 BE 中点), MD 所在直线分别为 x 轴, y 轴, z 轴建立如图空间直角坐标系,如图所示:则 D(0,0,√3) , E(1,2,0) , B(−1,2,0) , F(1,0,0) , A(−1,0,0) ,DE ⃗⃗⃗⃗⃗ =(1,2,−√3) , BF ⃗⃗⃗⃗⃗ =(2,−2,0) , BC ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ =(1,0,√3) .设平面 BCF 的法向量为 m⃗⃗ =(x,y,z) , 则 {m ⇀⋅BF ⇀=2x −2y =0m ⇀⋅BC⇀=x +√3z =0 ,取 m ⃗⃗ =(√3,√3,−1) . 设直线 DE 与平面 BCF 所成角为 θ ,则 sinθ=|m⃗⃗⃗ ⋅DE ⃗⃗⃗⃗⃗⃗ ||m ⃗⃗⃗ ||DE ⃗⃗⃗⃗⃗⃗ |=√427 ,∴ 直线 DE 与平面 BCF 所成角的正弦值为 √427. 【考点】直线与平面平行的判定,用空间向量求直线与平面的夹角【解析】【分析】(1)根据三角形的中位线,有 MN ∥BF ,再利用线面平行的判定定理证明.(2)根据点 M , N 分别是 AF , AB 的中点,二面角 D −AB −F 的大小为60°,证明 DM ⊥ 平面 ABEF ,然后以点 M 为原点, MF , MG ( G 是 BE 中点), MD 所在直线分别为 x 轴, y 轴, z 轴建立如图空间直角坐标系,再求得平面 BCF 的一个法向量,利用线面角的向量求法求解.3.【答案】 (1)证明:因为E 为AB 的中点, AE =1 ,所以 CD =AB =2 ,所以 CD 2+PD 2=PC 2 ,从而 PD ⊥CD .又 PD ⊥CE , CD ∩CE =C ,所以 PD ⊥ 底面ABCD , 所以 PD ⊥AD .因为四边形ABCD 是正方形,所以 AD ⊥CD .又 CD ∩PD =D ,所以 AD ⊥ 平面PCD.(2)解:以D 为坐标原点,建立空间直角坐标系 D −xyz ,如图所示,则 A(2,0,0) , P(0,0,3) , E(2,1,0) , C(0,2,0) ,所以 PE ⃗⃗⃗⃗⃗ =(2,1,−3) , EC ⃗⃗⃗⃗⃗ =(−2,1,0) , DA ⃗⃗⃗⃗⃗ =(2,0,0) .设平面PCE 的法向量为 n⃗ =(x,y,z) , 则 PE ⃗⃗⃗⃗⃗ ⋅n ⃗ =EC ⃗⃗⃗⃗⃗ ⋅n ⃗ =0 ,即 {2x +y −3z =0−2x +y =0 ,令 x =3 ,得 n ⃗ =(3,6,4) . cos〈n ⃗ ,DA ⃗⃗⃗⃗⃗ 〉=n ⃗ ⋅DA ⃗⃗⃗⃗⃗⃗ |n ⃗ ||DA ⃗⃗⃗⃗⃗⃗ |=3√6161 , 故DA 与平面PCE 所成角的正弦值为 3√6161 .【考点】直线与平面垂直的判定,用空间向量求直线与平面的夹角【解析】【分析】(1)通过证明 PD ⊥AD , AD ⊥CD 即可证明线面垂直;(2)建立空间直角坐标系,利用向量方法求解线面角的正弦值.4.【答案】 (1)证明:设 BC 1 与 CB 1 交点为 O ,连接 OE , BE .由题可知四边形 BCC 1B 1 为正方形,所以 BC 1⊥CB 1 ,且 O 为 BC 1 中点.又因 BE 2=AB 2+AE 2 , C 1E 2=A 1E 2+A 1C 12 ,所以 BE =C 1E ,所以 BC 1⊥OE .又因为 OE ∩CB 1=O ,所以 BC 1⊥ 平面 EB 1C .因为 EB 1⊂ 平面 EB 1C ,所以 BC 1⊥EB 1 .(2)解:取 AB 的中点 O ′ ,连接 O ′C , O ′C ⊥AB ,在平面 ABB 1A 1 过点 O ′ 内作 AB 的垂线,如图所示,建立空间直角坐标系 O ′−xyz .设 AB =2 ,则 E(0,−1,1) , B 1(0,1,2) , B(0,1,0) , C 1(−√3,0,2) .所以 EB 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,1) , EC 1⃗⃗⃗⃗⃗⃗⃗ =(−√3,1,1) .设平面 C 1EB 1 的一个法向量为 n ⃗ =(x,y,z) ,则 {n ⇀⋅EB1⇀=2y +z =0n ⇀⋅EC 1⇀=−√3x +y +z =0 ,令 y =√3 ,则 n ⃗ =(−1,√3,−2√3) . 由(1)可知平面 CEB 1 的一个法向量为 BC 1⃗⃗⃗⃗⃗⃗⃗ =(−√3,−1,2) , 则 |cos〈BC 1⃗⃗⃗⃗⃗⃗⃗ ,n⃗ 〉|=|n ⃗ ⋅BC 1⃗⃗⃗⃗⃗⃗⃗⃗ ||n ⃗ |⋅|BC 1⃗⃗⃗⃗⃗⃗⃗⃗ |=√3√3+1+4⋅√1+3+12=√64.由图可知二面角 C 1−EB 1−C 为锐角,所以其余弦值为 √64.【考点】空间中直线与直线之间的位置关系,用空间向量求平面间的夹角【解析】【分析】(1)通过证明 BC 1⊥ 平面 EB 1C 即可证得;(2)建立空间直角坐标系,利用向量求解.5.【答案】 (1)证明:取 AD 的中点为 O ,连结 OP , OC , OB ,设 OB 交 AC 于 H ,连结 GH . 因为 AD//BC , AB =BC =CD =12AD , 四边形 ABCO 与四边形 OBCD 均为菱形, ∴OB ⊥AC , OB//CD , CD ⊥AC , 因为 △PAD 为等边三角形, O 为 AD 中点, ∴PO ⊥AD ,因为平面 PAD ⊥ 平面 ABCD ,且平面 PAD ∩ 平面 ABCD =AD .PO ⊂ 平面 PAD 且 PO ⊥AD , ∴PO ⊥ 平面 ABCD 因为 CD ⊂ 平面 ABCD , ∴PO ⊥CD ,因为H , G 分别为 OB , PB 的中点, ∴GH//PO , ∴GH ⊥CD .又因为 GH ∩AC =H , AC,GH ⊂ 平面 GAC , ∴CD ⊥ 平面 GAC .(2)解:取 BC 的中点为 E ,以 O 为空间坐标原点,分别以 OE ⇀,OD ⇀,OP ⇀ 的方向为 x 轴、 y 轴、 z 轴的正方向,建立如图所示的空间直角坐标系 O −xyz .设 AD =4 ,则 P(0,0,2√3) , A(0,−2,0) , C(√3,1,0) , D(0,2,0) , G(√32,−12,√3)AP ⃗⃗⃗⃗⃗ =(0,2,2√3) , AG ⇀=(√32,32,√3) , 设平面 PAG 的一法向量 n →=(x,y,z) .由 {n ⇀⋅AP⇀=0n ⇀⋅AG ⇀=0 ⇒{2y +2√3z =0√32x +32y +√3z =0⇒{y =−√3z x =z .令 z =1 ,则 n ⃗ =(1,−√3,1) . 由(1)可知,平面 AGC 的一个法向量 CD ⃗⃗⃗⃗⃗ =(−√3,1,0) , cos〈n ⇀,CD⇀〉=n ⇀⋅CD ⇀|n⇀||CD ⇀|=−√155∴ 二面角 P −AG −C 的平面角的余弦值为 −√155.【考点】直线与平面垂直的判定,用空间向量求平面间的夹角【解析】【分析】(1)取 AD 的中点为 O ,连结 OP , OC , OB ,设 OB 交 AC 于 H ,连结 GH .证明 AC ⊥CD , GH ⊥CD ,即可证 CD ⊥ 平面 GAC ;(2)取 BC 的中点为 E ,以 O 为空间坐标原点,分别以 OE⇀,OD ⇀,OP ⇀ 的方向为 x 轴、 y 轴、 z 轴的正方向,建立如图所示的空间直角坐标系 O −xyz .设 AD =4 ,利用向量法求二面角 P −AG −C 的余弦值.6.【答案】 (1)解:因为平面 AEC ⊥ 平面 ABC ,交线为 AC ,又 AC ⊥BC , 所以 BC ⊥ 平面 AEC , ∴BC ⊥AE ,又 AE ⊥CD , CD ∩BC =C , 则 AE ⊥ 平面 BCDE , EC ⊂ 平面 BCDE , 所以, AE ⊥EC ;(2)解:取 AC 的中点 O , AB 的中点 F ,连接 OE , OF ,则 OE ⊥ 平面 ABC , OF ⊥ 平面 AEC ;以点 O 为坐标原点,分别以 OA , OF , OE 为 x 轴, y 轴, z 轴建立空间直角坐标系如图所示,已知 AE =EC =CB =√2 ,则 AC =2 , OE =1 , O(0,0,0) , A(1,0,0) , C(−1,0,0) , D(0,−√2,1) , 则 AC⃗⃗⃗⃗⃗ =(−2,0,0) , AD ⃗⃗⃗⃗⃗ =(−1,−√2,1) , 设平面 DAC 的一个法向量 m⃗⃗ =(x,y,z) , 由 {m ⇀⋅AC⇀=0,m ⇀⋅AD ⇀=0 得 {−2x =0,−x −√2y +z =0令 y =√2 ,则 x =0 , z =2 ,即 m ⃗⃗ =(0,√2,2) ;平面 ECA 的一个法向量为 n ⃗ =(0,1,0) ; cos〈m ⃗⃗ ,n ⃗ 〉=m⃗⃗⃗ ⋅n ⃗ |m ⃗⃗⃗ ||n ⃗ |=√2√2+4=√33.所以二面角 D −AC −E 的余弦值为 √33.【考点】空间中直线与直线之间的位置关系,用空间向量求平面间的夹角【解析】【分析】(1)先通过平面 AEC ⊥ 平面 ABC 得到 BC ⊥AE ,再结合 AE ⊥CD ,可得 AE ⊥ 平面 BCDE ,进而可得结论;(2)取 AC 的中点 O , AB 的中点 F ,连接 OE , OF ,以点 O 为坐标原点,分别以 OA , OF , OE 为 x 轴, y 轴, z 轴建立空间直角坐标系,求出平面 DAC 的一个法向量以及平面 ECA 的一个法向量,求这两个法向量的夹角即可得结果. 7.【答案】 (1)证明:因为 △ABC 是等边三角形, ∠BAD =∠BCD =90° , 所以 Rt △ABD ≅Rt △CBD ,可得 AD =CD . 因为点 P 是 AC 的中点,则 PD ⊥AC , PB ⊥AC , 因为 PD ∩PB =P , PD ⊂ 平面PBD, PB ⊂ 平面 PBD , 所以 AC ⊥ 平面 PBD ,因为 AC ⊂ 平面 ACD , 所以平面 ACD ⊥ 平面 BDP .(2)解:如图,作 CE ⊥BD ,垂足为 E 连接 AE .因为 Rt △ABD ⊆Rt △CBD ,所以 AE ⊥BD, AE =CE, ∠AEC 为二面角A-BD-C 的平面角. 由已知二面角 A −BD −C 为 120° ,知 ∠AEC =120° . 在等腰三角形 AEC 中,由余弦定理可得 AC =√3AE . 因为 △ABC 是等边三角形,则 AC =AB ,所以 AB =√3AE . 在 Rt △ABD 中,有 12AE ⋅BD =12AB ⋅AD ,得 BD =√3AD , 因为 BD =√6 ,所以 AD =√2 . 又 BD 2=AB 2+AD 2 ,所以 AB =2 . 则 AE =2√33, ED =√63.以 E 为坐标原点,以向量 EC ⃗⃗⃗⃗⃗ , ED ⃗⃗⃗⃗⃗ 的方向分别为 x 轴, y 轴的正方向, 以过点 E 垂直于平面 BCD 的直线为 z 轴,建立空间直角坐标系 E −xyz ,则 D(0,√63,0) , A(−√33,0,1) ,向量 AD ⃗⃗⃗⃗⃗ =(√33,√63,−1) ,平面 BCD 的一个法向量为 m⃗⃗ =(0,0,1) , 设直线 AD 与平面 BCD 所成的角为 θ , 则 cos〈m ⃗⃗ ,AD ⃗⃗⃗⃗⃗ 〉=m⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗⃗ |m⃗⃗⃗ ||AD ⃗⃗⃗⃗⃗⃗ |=√2×1=−√22, sinθ=|cos〈m ⃗⃗ ,AD⃗⃗⃗⃗⃗ 〉|=√22所以直线 AD 与平面 BCD 所成角的正弦值为 √22.【考点】平面与平面垂直的判定,直线与平面所成的角,二面角的平面角及求法【解析】【分析】(1)由 △ABC 是等边三角形, ∠BAD =∠BCD =90° ,得 AD =CD .再证明 PD ⊥AC , PB ⊥AC ,从而和证明 AC ⊥ 平面 PBD ,故平面 ACD ⊥ 平面 BDP 得证.(2)作 CE ⊥BD ,垂足为 E 连接 AE .由 Rt △ABD ⊆Rt △CBD ,证得 AE ⊥BD, AE =CE, 结合二面角 A −BD −C 为 120° ,可得 AB =2 , AE =2√33, ED =√63 .建立空间直角坐标系,求出点的坐标则 D(0,√63,0) , A(−√33,0,1) ,向量AD ⃗⃗⃗⃗⃗ =(√33,√63,−1) ,即平面 BCD 的一个法向量 m ⃗⃗ =(0,0,1) ,运用公式 cos〈m ⃗⃗ ,AD ⇀〉=m ⃗⃗⃗ ⋅AD ⇀|m⃗⃗⃗ ||AD ⇀| 和 sinθ=|cos〈m ⃗⃗ ,AD ⇀〉| ,即可得出直线 AD 与平面 BCD 所成角的正弦值. 8.【答案】 (1)证明:∵ AP ⊥ 平面 PCD ,∴ AP ⊥CD . ∵ AD//BC , BC =12AD ,∴四边形 BCDE 为平行四边形, ∴ BE//CD , ∴ AP ⊥BE .又∵ AB ⊥BC , AB =BC =12AD ,且 E 为 AD 的中点, ∴四边形 ABCE 为正方形,∴ BE ⊥AC .又 AP ∩AC =A ,∴ BE ⊥ 平面 APC ,则 BE ⊥PO . ∵ AP ⊥ 平面 PCD ,∴ AP ⊥PC ,又 AC =√2AB =√2AP , ∴ ΔPAC 为等腰直角三角形, O 为斜边 AC 上的中点, ∴ PO ⊥AC 且 AC ∩BE =O ,∴ PO ⊥ 平面 ABCD .(2)解:∵ OB =1 ,∴ PA =PB =AB =√2 . 设 C 到平面 PAB 的距离为 d , 由 V C−PAB =V P−ABC ,得 13×√34×(√2)2×d =13×12×(√2)2×1 ,解得 d =2√33.【考点】直线与平面垂直的判定,点、线、面间的距离计算【解析】【分析】(1)首项通过证明 AP ⊥CD,CD//BE ,证得 AP ⊥BE ,然后通过证明四边形 ABCE 是正方形证得 BE ⊥AC ,由此证得 BE ⊥ 平面 APC ,所以 BE ⊥PO .通过证明 ΔPAC 为等腰直角三角形证得 PO ⊥AC ,由此证得 PO ⊥ 平面 ABCD .(2)利用等体积法,由 V C−PAB =V P−ABC 列方程,解方程求得点 C 到平面 PAB 的距离.9.【答案】 (1)解:如图,连接 BC 1 ,交 B 1C 于点M ,连接ME ,则 ME//AC 1 . 因为 AC 1⊄ 平面 B 1CE , ME ⊂ 平面 B 1CE ,所以 AC 1// 平面 B 1CE .(2)解:设O 是AC 的中点,连接 OC 1 ,OB.因为 △ACC 1 为正三角形, 所以 OC 1⊥AC ,又平面 ABC ⊥ 平面 A 1ACC 1 ,平面 ABC ∩ 平面 A 1ACC 1=AC , 所以 OC 1⊥ 平面ABC.由已知得 AC =2 .如图,分别以射线OB ,OA , OC 1 的方向为x ,y ,z 轴的正方向,建立空间直角坐标系,则有 A(0,1,0) , B(√3,0,0) , C 1(0,0,√3) , A 1(0,2,√3) , 故 AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,−1,√3) , AB ⃗⃗⃗⃗⃗ =(√3,−1,0) , AA 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,√3) , 设平面 B 1BAA 1 的一个法向量为 m⃗⃗ =(x,y,z) ,则 {AB ⇀⋅m ⇀=0AA 1⇀⋅m ⇀=0 , 所以 {√3x −y =0y +√3z =0 令 x =1 ,则 m ⃗⃗ =(1,√3,−1) .设直线 AC 1 与平面 B 1BAA 1 所成的角为 θ , 则 sinθ=|AC⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ ||AC⃗⃗⃗⃗⃗1|⋅|m⃗⃗⃗ |=√32×5=√155,故直线 AC 1 与平面 B 1BAA 1 所成角的正弦值为 √155.【考点】直线与平面平行的判定,直线与平面所成的角【解析】【分析】(1)如图,连接 BC 1 ,交 B 1C 于点M ,连接ME ,则 ME//AC 1 ,再利用线面平行的判定定理,即可证明线面平行;(2)设O 是AC 的中点,连接 OC 1 ,OB ,分别以射线OB ,OA , OC 1 的方向为x ,y ,z 轴的正方向,建立空间直角坐标系,求出平面 B 1BAA 1 的一个法向量为 m ⃗⃗ =(1,√3,−1) ,设直线 AC 1 与平面 B 1BAA 1 所成的角为 θ ,代入公式 sinθ=|AC ⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ ||AC ⃗⃗⃗⃗⃗ 1|⋅|m⃗⃗⃗ | 运算,即可得答案.10.【答案】 (1)解:如图,连接 AC 交 BD 于 O ,连接 OE ,则 O 为 AC 的中点.又E为CP上的中点,所以OE//PA.又AP⊄平面BDE,OE⊂平面BDE,所以AP//平面BDE(2)解:如图,取AB的中点M,连接PM,因为AP⊥PB,AP=PB,所以PM⊥AB,PM=12AB=1,AP=PB=√2,又平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PM⊂平面PAB,所以PM⊥平面ABCD.同理可得BC⊥平面PAB,∵AP、BP⊂平面PAB,∴BC⊥AP,BC⊥BP. 又因为AP⊥BP,BC∩BP=B,所以AP⊥平面BCP,∵PC⊂平面BCP,则AP⊥PC,所以PC=√PB2+BC2=√6,所以SΔAPC=12AP⋅PC=12×√2×√6=√3,又SΔACD=12×2×2=2,设点D到平面ACP的距离为ℎ,由V D−APC=V P−ACD,得13⋅SΔAPC⋅ℎ=13⋅PM⋅SΔACD,所以ℎ=3=2√33,即点D到平面ACP的距离为2√33.【考点】直线与平面平行的判定,点、线、面间的距离计算【解析】【分析】(1)连接AC交BD于O,则O为AC的中点,利用中位线的性质可得出OE//PA,然后利用直线与平面平行的判定定理可证明出AP//平面BDE;(2)取AB的中点M,连接PM,利用面面垂直的性质定理可得出PM⊥平面ABCD,由此可计算出三棱锥P−ACD的体积,并计算出ΔAPC的面积,并设点D到平面ACP的距离为ℎ,由V P−ACD=13SΔACP⋅ℎ可计算出点D到平面ACP的距离的值.11.【答案】(1)解:连接AO,因为O为BC的中点,可得BC⊥AO,∵ A 1O ⊥ 平面 ABC , BC ⊂ 平面 ABC ,∴ A 1O ⊥BC , 又∵ AO ∩A 1O =O ,∴ BC ⊥ 平面 AA 1O ,∴ BC ⊥AA 1 , ∵ BB 1//AA 1 , ∴ BC ⊥BB 1 , 又∵四边形 BB 1C 1C 为平行四边形, ∴四边形 BB 1C 1C 为矩形;(2)解:如图,分别以 OA,OB,OA 1 所在直线为 x,y,z 轴,建立空间直角坐标系,则 A(1,0,0),B(0,2,0),C(0,−2,0),Rt △AOB 中, AO =√AB 2−BO 2=1 , Rt △AA 1O 中, A 1O =√AA 12−AO 2=2 ,A 1(0,0,2) ,∴ AA 1⃗⃗⃗⃗⃗⃗⃗ =(−1,0,2) , A 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,−2,−2) , A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ =(−1,2,0) ,设平面 A 1B 1C 的法向量是 n⃗ =(x,y,z) , 由 {n ⇀⋅AB⇀=0,n ⇀⋅A 1C ⇀=0, 得 {−x +2y =0,−2y −2z =0, 即 {x =2y,z =−y, ,可取 n ⃗ =(2,1,−1) , 设直线 AA 1 与平面 A 1B 1C 所成角为 θ ,则 θ∈[0,π2] ,sinθ=|cos <AA 1⃗⃗⃗⃗⃗⃗⃗ ,n ⃗ >| =|AA 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗ ||AA 1⃗⃗⃗⃗⃗⃗⃗⃗ |⋅|n ⃗ |=√5⋅√6=215√30 , ∵ θ∈[0,π2] ,∴ cosθ=√1−sin 2θ=√10515,即直线 AA 1 与平面 A 1B 1C 所成角的余弦值为 √10515.【考点】直线与平面所成的角【解析】【分析】(1)连接 AO ,可得 BC ⊥AO ,易证 A 1O ⊥BC ,则 BC ⊥ 平面 AA 1O ,从而可证 BC ⊥BB 1 ,由此即可得出结论;(2)以 OA,OB,OA 1 所在直线分别为 x,y,z 轴建立空间直角坐标系,利用法向量解决问题.12.【答案】 (1)证明:因为 PA ⊥ 平面 ABCD , CD ⊂ 平面 ABCD , 所以 PA ⊥CD ,因为底面 ABCD 是正方形,所以 AD ⊥CD , 又 PA ∩AD =A ,所以 CD ⊥ 平面 PAD , 因为 AE ⊂ 平面 PAD ,所以 CD ⊥AE ,又因为 AE ⊥PD,CD ∩PD =D , CD,PD ⊂ 平面 PCD , 所以 AE ⊥ 平面 PCD(2)解:因为 PA ⊥ 平面 ABCD ,底面 ABCD 为正方形,所以 PA ⊥AB,PA ⊥AD,AB ⊥AD ,以 A 为原点,分别以 AB 、AD 、AP 所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系 A −xyz (如图所示),设 PA =AB =1 ,则 A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0),P(0,0,1) , 因为 AE ⊥PD ,所以 E 为 PD 中点,所以 E(0,12,12) , 所以 PB ⃗⃗⃗⃗⃗ =(1,0,−1),PC ⃗⃗⃗⃗⃗ =(1,1,−1),AE ⃗⃗⃗⃗⃗ =(0,12,12) , 由(1)得 AE ⃗⃗⃗⃗⃗ =(0,12,12) 为平面 PCD 的一个法向量, 设平面 PBC 的一个法向量为 m⃗⃗ =(x,y,z) , 由 {PB ⇀⋅m ⃗⃗ =0PC ⇀⋅m ⃗⃗ =0 ,即 {x −z =0x +y −z =0 ,令 x =1 ,则 z =1,y =0 ,所以 m ⃗⃗ =(1,0,1) , 因此 cos〈m⃗⃗ ,AE ⃗⃗⃗⃗⃗ 〉=m⃗⃗⃗ ⋅AE ⃗⃗⃗⃗⃗ |m⃗⃗⃗ |⋅|AE ⃗⃗⃗⃗⃗ |=12√2×√12=12, 由图可知二面角 B −PC −D 的大小为钝角, 故二面角 B −PC −D 的余弦值为 −12【考点】直线与平面垂直的判定,用空间向量求平面间的夹角【解析】【分析】(1)由 PA ⊥ 平面 ABCD 及底面 ABCD 是正方形可证得 CD ⊥ 平面 PAD ,则 CD ⊥AE ,又由 AE ⊥PD ,即可求证;(2)以 A 为原点,分别以 AB 、AD 、AP 所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系 A −xyz ,由(1)可知 AE ⃗⃗⃗⃗⃗ 为平面 PCD 的一个法向量,求得平面 PBC 的一个法向量 m ⃗⃗ ,进而利用数量积求解即可13.【答案】 (1)解:由题设可知 AC =4√2 , CD =4√2 , AD =8 ∴ AD 2=CD 2+AC 2 ∴ CD ⊥AC又∵平面 ABC ⊥ 平面 ACD ,平面 ABC ∩ 平面 ACD =AC ∴ CD ⊥ 面 ABC .(2)解:法一、等体积法取 AC 的中点 O 连接 OB ,由题设可知 △ABC 为等腰直角三角形,所以 OB ⊥ 面 ACM ∵ V B−ACM =V A−BCM 且 V B−ACM =13S ACM ⋅BO =16√23而 S ΔBCM =4√3∴ A 到面 BCM 的距离 ℎ=4√63,所以 sinθ=ℎAB =√63.法二、向量法取 AC 的中点 O 连接 OB ,由题设可知 △ABC 为等腰直角三角形,所以 OB ⊥ 面 ACM ,连接 OM ,因为 M 、O 分别为 AB 和 AC 的中点,所以 OM//CD ,由(1)可知 OM ⊥AC ,故以 OM 、OC 、OB 所在直线为 x 轴、 y 轴、 z 轴建立空间直角坐标系,如图所示. 则 A(0,−2√2,0) , B(0,0,2√2) , C(0,2√2,0) , M(2√2,0,0) ∴ CB⃗⃗⃗⃗⃗ =(0,−2√2,2√2) CM ⃗⃗⃗⃗⃗⃗ =(2√2,−2√2,0) BA ⃗⃗⃗⃗⃗ =(0,−2√2,−2√2) ∴面 BCM 的一个法向量 n ⃗ =(1,1,1) ∴ sinθ=|BA⃗⃗⃗⃗⃗ ⋅n ⃗ ||BA ⃗⃗⃗⃗⃗ ||n⃗ |=√63【考点】直线与平面垂直的判定,直线与平面所成的角【解析】【分析】(1)通过计算结合勾股定理的逆定理可以证明 CD ⊥AC ,再根据面面垂直的性质定理进行证明即可;(2)法一、取 AC 的中点 O 连接 OB ,根据 V B−ACM =V A−BCM ,结合三棱锥的体积公式进行求解即可;法二、取 AC 的中点 O 连接 OB ,由题设可知 △ABC 为等腰直角三角形,所以 OB ⊥ 面 ACM ,连接 OM ,因为 M 、O 分别为 AB 和 AC 的中点,所以 OM//CD ,由(1)可知 OM ⊥AC ,故以 OM 、OC 、OB 所在直线为 x 轴、 y 轴、 z 轴建立空间直角坐标系,如图所示.运用向量法求解即可.14.【答案】 (1)证明:∵底面 ABCD 是正方形, ∴ BC ⊥CD ,∵ SD ⊥ 底面 ABCD , BC ⊂ 底面 ABCD ,∴ SD ⊥BC ,又 DC ∩SD =D , ∴ BC ⊥ 平面 SDC ,∵ SC ⊂ 平面 SDC ,∴ BC ⊥SC .(2)解:由(1)知 BC ⊥SC ,又 CD ⊥BC ,∴ ∠SCD 为所求二面角的平面角, 在 RtΔDSC 中,∵ SD =DC =1 ,∴ ∠SCD =45° .(3)解:取AB中点P,连结MP,DP,在ΔABS,由中位线定理得MP//SB,∴∠DMP或其补角是异面直线DM与SB所成角,∵MP=12SB=√32,DM=√22,DP=√1+14=√52,所以ΔDMP中,有DP2=MP2+DM2,∴∠DMP=90°.【考点】直线与平面垂直的判定,二面角的平面角及求法【解析】【分析】(1)根据题意,由线面垂直证线线垂直,再根据线面垂直的判定定理,证明线面垂直,再证线线垂直.(2)由(1)中线面垂直,可知所求二面角的平面角为∠SCD,根据题意可求角度.(3)利用中位线将异面直线平移,则∠DMP或其补角是异面直线DM与SB所成角,根据勾股定理,即可求解.15.【答案】(1)解:在△AOC中, OA=OC=2,AC=a=2√2,∴OA2+OC2=AC2∴∠AOC=90°,即AO⊥OC,∵AO⊥BD,且AO∩BD=O,∴AO⊥平面BCD(2)解:由(1)知, OC⊥OD,以O为原点, OC,OD所在的直线分别为x轴, y轴建立如图的空间直角坐标系O−xyz:则 Q(0,0,0), B(0,−2√3,0), C(2,0,0), D(0,2√3,0) . ∵AO ⊥BD,CO ⊥BD∴∠AOC 为二面角 A −BD −C 的平面角, ∴∠AOC =120° ∴ 点 A(−1,0,√3)AD⃗⃗⃗⃗⃗ =(1,2√3,−√3) , BA ⃗⃗⃗⃗⃗ =(−1,2√3,√3) , BC ⃗⃗⃗⃗⃗ =(2,2√3,0) 设平面 ABC 的法向量为 n⃗ =(x,y,z) ,则 ∴ {n ⃗ ⋅BC ⇀=0n ⃗ ⋅BA ⇀=0 故 {2x +2√3y =0x +2√3y +√3z =0 取 x =1 ,则 y =−√33,z =√3∴ n ⃗ =(1,−√33,√3)设直线 AD 与平面 ABC 所成的角为 θ , sinθ=|AD⃗⃗⃗⃗⃗⃗ ⋅n ⃗ ||AD ⃗⃗⃗⃗⃗⃗ ||n ⃗ |=4√133=√313 ∴cosθ=√1−sin 2θ=√1013 ∴tanθ=sinθcosθ=√310=√3010∴ 直线 AD 与平面 ABC 所成的正切值: √3010【考点】直线与平面垂直的判定,用空间向量求直线与平面的夹角,用空间向量求平面间的夹角 【解析】【分析】(1)根据线面垂直定义,即可求得答案.(2)由于平面 ABC 不是特殊的平面,故建系用法向量求解,以 O 为原点建系, OC,OD 所在的直线分别为 x 轴, y 轴,求出平面 ABC 的法向量 n ⃗ ,求解 AD ⃗⃗⃗⃗⃗ 和 n⃗ 的夹角,即可求得答案. 16.【答案】 (1)解:因为 AB//CD ,所以 AMMC =ABCD =12 ,即AM AC=13.因为 MN// 平面PCD , MN ⊂ 平面PAC ,平面 PAC ∩ 平面 PCD =PC , 所以 MN//PC . 所以 ANAP =AM AC=13 ,即 m =13(2)解:因为 AB =AD , ∠BAD =60° ,可知 △ABD 为等边三角形, 所以 BD =AD =PD ,又 BP =√2AD , 故 BP 2=PD 2+DB 2 ,所以 PD ⊥DB .由已知 PD ⊥AD , AD ∩BD =D ,所以 PD ⊥ 平面ABCD ,如图,以D 为坐标原点, DA ⃗⃗⃗⃗⃗ ,DP⃗⃗⃗⃗⃗ 的方向为x , y 轴的正方向建立空间直角坐标系,设 AB =1 ,则 AB =AD =DP =1 , CD =2 , 所以 A(1,0,0) , B(12,0,√32) , P(0,1,0) , C(−1,0,√3) ,则 PB ⃗⃗⃗⃗⃗ =(12,−1,√32) , PC ⃗⃗⃗⃗⃗ =(−1,−1,√3) , PA ⃗⃗⃗⃗⃗ =(1,−1,0) 设平面PBC 的一个法向量为 n 1⃗⃗⃗⃗ =(x 1,y 1,z 1) ,则有 {n 1⇀⋅PB⇀=0n 1⇀⋅PC ⇀=0 即 {x 1−2y 1+√3z 1=0x 1+y 1−√3z 1=0. 令 x 1=1 ,则 y 1=2,z 1=√3 ,即 n 1⃗⃗⃗⃗ =(1,2,√3) , 设平面APC 的一个法向量为 n 2⃗⃗⃗⃗ =(x 2,y 2,z 2) ,则有{n 2⇀⋅PA ⇀=0n 2⇀⋅PC ⇀=0,即 {x 2−y 2=0−x 2−y 2+√3z 2=0 令 x 2=y 2=√3 ,则 z 2=2 ,即 n 2⃗⃗⃗⃗ =(√3,√3,2) . 所以 cos <n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ >=n 1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ |n 1⃗⃗⃗⃗⃗ |⋅|n 2⃗⃗⃗⃗⃗ |=√32√2×√10=√154设二面角 A −PC −B 的平面角为 θ ,则 cosθ=√154【考点】向量的共线定理,直线与平面平行的性质,用空间向量求平面间的夹角 【解析】【分析】(1)由AB ∥CD , 得到AM AC=13 ,由MN ∥平面PCD , 得MN ∥PC , 从而 ANAP =AM AC=13,由此能实数m 的值;(2)由AB =AD , ∠BAD =60°,知△ABD 为等边三角形,推导出PD ⊥DB , PD ⊥AD , 从而PD ⊥平面ABCD , 以D 为坐标原点, DA ⃗⃗⃗⃗⃗ ,DP ⃗⃗⃗⃗⃗ 的方向为x , y 轴的正方向建立空间直角坐标系,由此能求出二面角B ﹣PC ﹣B 的余弦值.17.【答案】 (1)证明:因为 PA ⊥ 平面 ABCD , EF ⊂ 平面 ABCD ,故可得 EF ⊥PA ; 设底面正方形的边长为4,故可得 AE =√AD 2+DE 2=√16+4=2√5 , EF =√FC 2+CE 2=√1+4=√5 , AF =√AB 2+BF 2=√16+9=5 , 故在 △AFE 中,满足 AE 2+EF 2=AF 2 ,故可得 AE ⊥EF ; 又 PA,AE ⊂ 平面 PAE ,且 PA ∩AE =A , 则 EF ⊥ 平面 PAE ,即证.(2)解:因为 PA ⊥ 平面 ABCD ,故 PA 为三棱锥 P −EFC 底面上的高线.故可得V P−EFC=13S∆EFC×PA=13×12×1×2×4=43.在△PEF中,因为PE=√PA2+AE2=6,EF=√5,由(1)可知EF⊥平面PAE,又PE⊂平面PAE,故可得EF⊥PE,则S△PEF=12×EF×PE=3√5,设点C到平面PEF的距离为ℎ,故可得V P−EFC=V C−PEF=13×S∆PEF×ℎ=43,解得ℎ=4√515.即点C到平面PEF的距离为:4√515.【考点】直线与平面垂直的判定,点、线、面间的距离计算【解析】【分析】(1)根据PA⊥平面ABCD,可得EF⊥PN,再证EF⊥AE,即可由线线垂直推证线面垂直;(2)转换三棱锥顶点,用等体积法求点面距离即可.18.【答案】(1)证明:因为PA⊥平面ABCD,EF⊂平面ABCD,故可得EF⊥PA;设底面正方形的边长为4,故可得AE=√AD2+DE2=√16+4=2√5,EF=√FC2+CE2=√1+4=√5,AF=√AB2+BF2=√16+9=5,故在△AFE中,满足AE2+EF2=AF2,故可得AE⊥EF;又PA,AE⊂平面PAE,且PA∩AE=A,则EF⊥平面PAE,即证.(2)解:因为PA⊥平面ABCD, AB,AD⊂平面ABCD,故可得PA⊥AB,PA⊥AD,又底面ABCD为正方形,故可得AB⊥AD,故以A为坐标原点,以AB,AD,AP所在直线为x,y,z轴建立空间直角坐标系如下图所示:设AB=4,故可得A(0,0,0),P(0,0,5),B(4,0,0),E(2,4,0),F(4,3,0)设平面PEF的法向量为m⃗⃗ =(x,y,z),则{m⃗⃗ ⋅EF⇀=0m⃗⃗ ⋅PE⇀=0,则{2x−y=02x+4y−5z=0取y=2,则m⃗⃗ =(1,2,2).不妨取平面PAB的法向量n⃗=(0,1,0).则cos〈m⃗⃗ ,n⃗ 〉=m⃗⃗⃗ ⋅n⃗|m⃗⃗⃗ ||n⃗ |=√9×1=23.。

高中空间立体几何经典例题精选全文完整版

高中空间立体几何经典例题精选全文完整版

可编辑修改精选全文完整版立体几何一、选择题1.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是 ( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【答案】D2 2.(20XX 年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为( )A .1:2B .1:4C .1:8D .1:16【答案】C 【答案】A3 3.(20XX 年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A4 4.(20XX 年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 ( )A .1B .2C .2-12D .2+12【答案】C5.(20XX 年普通高等学校招生统一考试山东数学(理)试题(含答案))已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,底面是边长为3.若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为( )A.512πB .3πC.4πD.6π【答案】B6.(20XX年普通高等学校招生统一考试重庆数学(理)试题(含答案))某几何体的三视图如题()5图所示,则该几何体的体积为()A.5603B.5803C.200D.240【答案】C7.(20XX年高考江西卷(理))如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为,m n,那么m n+=()A.8 B.9 C.10 D.11【答案】A二、填空题8.(20XX年高考北京卷(理))如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为__________.1D1BPD1CCEBA1A【答案】2559.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ____________.【答案】1:2410.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某几何体的三视图如图所示,则该几何体的体积是____________.【答案】1616π-11.(20XX 年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π12.(20XX 年上海市春季高考数学试卷(含答案))在如图所示的正方体1111ABCD A B C D -中,异面直线1A B 与1B C 所成角的大小为_______AB C1A D EF1B 1C【答案】3π三、解答题13.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,AB是圆的直径,PA 垂直圆所在的平面,C 是圆上的点. (I)求证:PAC PBC ⊥平面平面;(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值D 1 C 1 B 1A 1D C AB14.(20XX 年上海市春季高考数学试卷(含答案))如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC 与1AA 所成角的大小为6π,求该三棱柱的体积.【答案】[解]因为1CC 1AA .所以1BC C ∠为异面直线1BC 与1AA .所成的角,即1BC C ∠=6π. 在Rt 1BC C ∆中,113tan 6233BC CC BC C =⋅∠==从而2333ABC S BC ∆==因此该三棱柱的体积为1336183ABC V S AA ∆=⋅==15.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))B 1 A 1C 1ACB如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.【答案】证明:(1)∵AB AS =,SB AF ⊥∴F 分别是SB 的中点 ∵E.F 分别是SA.SB 的中点 ∴EF ∥AB又∵EF ⊄平面ABC, AB ⊆平面ABC ∴EF ∥平面ABC 同理:FG ∥平面ABC又∵EF FG=F, EF.FG ⊆平面ABC ∴平面//EFG 平面ABC (2)∵平面⊥SAB 平面SBC 平面SAB 平面SBC =BC AF ⊆平面SAB AF ⊥SB∴AF ⊥平面SBC 又∵BC ⊆平面SBC ∴AF ⊥BC又∵BC AB ⊥, AB AF=A, AB.AF ⊆平面SAB ∴BC ⊥平面SAB 又∵SA ⊆平面SAB ∴BC ⊥SA16.(20XX 年高考上海卷(理))如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C,并求直线BC 1到平面D 1AC 的距离.C 11A【答案】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =,故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C; 直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯=而1AD C ∆中,11AC DC AD ==故132AD C S ∆= AB CSGFE所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23.17.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))如图1,在等腰直角三角形ABC中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE =O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '(Ⅰ) 证明:A O '⊥平面BCDE ; (Ⅱ) 求二面角A CD B '--的平面角的余弦值.【答案】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD=由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O =,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角. 结合图1可知,H 为AC 中点,故2OH =,从而2A H '== 所以cos OH A HO A H '∠=='所以二面角ACD B '--向量法:以O 点为原点,建立空间直角坐标系O -.CO BDEA CDOBE'A图1图2C DO BE'AH则(A ',()0,3,0C -,()1,2,0D -所以(CA '=,(1,DA '=- 设(),,n x y z =为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y ⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩,令1x =,得(1,1,n =- 由(Ⅰ)知,(OA '=为平面CDB 的一个法向量,所以3cos ,3n OA n OA n OA'⋅'===',即二面角A CD B '--的平面角的余弦值为5.18.(20XX年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱ABCD-A1B1C1D1中, 侧棱A1A⊥底面ABCD, AB//DC, AB⊥AD, AD = CD = 1, AA1 = AB = 2, E为棱AA1的中点.(Ⅰ) 证明B1C1⊥CE;(Ⅱ) 求二面角B1-CE-C1的正弦值.(Ⅲ) 设点M在线段C1E上, 且直线AM与平面ADD1A1所成角的正弦值为2, 求线段AM的长.6【答案】19.(20XX年高考陕西卷(理))如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,12AB AA==(Ⅰ) 证明: A1C⊥平面BB1D1D;(Ⅱ) 求平面OCB1与平面BB1D1D的夹角θ的大小.1A【答案】解:(Ⅰ) BDOAABCDBDABCDOA⊥∴⊂⊥11,,面且面;又因为,在正方形AB CD 中,BDCAACACAACABDAACOABDAC⊥⊂⊥=⋂⊥11111,,故面且面所以;且.在正方形AB CD中,AO = 1 . .111=∆OAOAART中,在OECAOCEAEDB1111111⊥为正方形,所以,则四边形的中点为设.,所以由以上三点得且,面面又OOBDDDBBODDBBBD=⋂⊂⊂111111E.E,DDBBCA111面⊥.(证毕)(Ⅱ) 建立直角坐标系统,使用向量解题.以O为原点,以OC为X轴正方向,以OB为Y轴正方向.则)1,0,1()1,1,1(),10(),1(,0,1,0111-=⇒CABACB,,,,)(.由(Ⅰ)知, 平面BB1D1D的一个法向量.0,0,1),1,1,1(),1,0,1(111)(==-==OCOBCAn设平面OCB1的法向量为,则0,0,2122=⋅=⋅OCnOBnn).1-,1,0(法向量2=n为解得其中一个21221||||||,cos|cos212111=⋅=⋅=><=nnnnnnθ.所以,平面OCB1与平面BB1D1D的夹角θ为3π1A。

高中数学立体几何高难度练习题及参考答案2023

高中数学立体几何高难度练习题及参考答案2023

高中数学立体几何高难度练习题及参考答案2023【题目1】已知立方体ABCDEFGH的棱长为a,M为AD的中点,N为BF的中点,P为MN的中点。

求证:四边形MNHP是一个矩形。

【解答1】根据题意,我们可以先求出MN的长度。

由于M为AD的中点,因此DM = a/2。

同理,BN = a/2。

根据勾股定理,可以得到三角形MND的斜边ND的长度:ND = √(MN² + DM²)= √(MN² + (a/2)²)根据三角形BNF的性质,可以得到BNF是一个等腰直角三角形,因此NF = BN = a/2。

同理,我们可以计算出FP的长度:FP = NF = a/2最后,我们可以比较四边形MNHP的对角线长度。

根据反证法,如果MNHP不是一个矩形,那么MN和HP的长度应该不相等,即MN ≠ HP。

假设MN > HP,即MN² > HP²由于HP = FP = a/2,我们可以得到:MN² > (a/2)²将MN²和(a/2)²的值代入,得到:(MN² + (a/2)²) > (a/2)²经过整理化简,可得:MN > a/2这与MN = a/2矛盾,因此假设成立。

同理,可以得出假设MN < HP亦不成立。

由以上推理可知,四边形MNHP是一个矩形。

证毕。

【题目2】在三棱柱ABC-A'B'C'中,已知AB = 3,BC = 4,CA = 5,且AA'垂直于平面ABCD。

求证:A'B'² = 4² + 3² + 5²。

【解答2】根据题意,我们可以利用勾股定理和垂直平面的性质来解答此题。

首先,考虑三角形ABC。

由已知条件可知,它是一个直角三角形,且AB = 3,BC = 4,CA = 5。

(完整)高中数学《立体几何》大题及答案解析.doc

(完整)高中数学《立体几何》大题及答案解析.doc

高中数学《立体几何》大题及答案解析( 理)1.( 2009 全国卷Ⅰ)如图,四棱锥S ABCD 中,底面 ABCD 为矩形, SD底面ABCD,AD2 ,DCo SD 2 ,点 M 在侧棱 SC 上,∠ABM=60。

(I )证明:M是侧棱SC的中点;求二面角 S AM B 的大小。

2.( 2009 全国卷Ⅱ)如图,直三棱柱DE ⊥平面 BCC 1(Ⅰ)证明: AB=AC 的角的大小ABC-A 1B1C1中, AB ⊥ AC,D 、E 分别为 AA 1、 B1C 的中点,(Ⅱ)设二面角A-BD-C 为 60°,求 B 1C 与平面 BCD 所成A 1 C1B1D EACB3. ( 2009浙江卷)如图,DC平面ABC,EB / / DC,AC BC EB 2DC 2 ,ACB 120o, P,Q 分别为 AE , AB 的中点.(I)证明: PQ / / 平面ACD;(II)求AD与平面 ABE 所成角的正弦值.4.( 2009 北京卷)如图,四棱锥P ABCD 的底面是正方形,PD 底面 ABCD ,点E在棱PB上.(Ⅰ)求证:平面AEC 平面 PDB ;(Ⅱ)当 PD2AB 且E为PB的中点时,求 AE 与平面 PDB 所成的角的大小.5.( 2009 江西卷)如图,在四棱锥P ABCD 中,底面 ABCD 是矩形, PA平面ABCD,PA AD 4 , AB 2 .以 BD 的中点 O 为球心、 BD 为直径的球面交PD 于点 M .(1)求证:平面ABM⊥平面PCD;(2)求直线PC与平面ABM所成的角;(3)求点O到平面ABM的距离.PMA DOBC6(. 2009 四川卷)如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ ABE 是等腰直角三角形,AB AE , FA FE , AEF 45 (I)求证: EF 平面 BCE ;( II )设线段 CD 、 AE 的中点分别为 P 、 M ,求证: PM ∥平面BCE ( III )求二面角 F BD A 的大小。

高中几何体试题及答案解析

高中几何体试题及答案解析

高中几何体试题及答案解析试题一:立体几何基础题题目:已知一个长方体的长、宽、高分别为a、b、c,求该长方体的体积。

解析:长方体的体积可以通过其三个维度的乘积来计算,即体积V = a × b × c。

答案:V = abc。

试题二:空间向量在立体几何中的应用题目:在空间直角坐标系中,点A(1, 0, 0),点B(0, 1, 0),点C(0, 0, 1),求三角形ABC的面积。

解析:空间直角坐标系中,三角形的面积可以通过向量叉乘来求解。

设向量AB = (-1, 1, 0),向量AC = (-1, 0, 1),向量AB与向量AC 的叉乘结果为向量AB × AC = (1, -1, 1)。

该向量的模即为三角形ABC的面积的两倍。

答案:三角形ABC的面积为√3。

试题三:圆锥体的体积计算题目:已知圆锥的底面半径为r,高为h,求圆锥的体积。

解析:圆锥的体积可以通过公式V = (1/3)πr²h来计算。

答案:V = (1/3)πr²h。

试题四:球体的表面积与体积题目:已知球体的半径为R,求球体的表面积和体积。

解析:球体的表面积可以通过公式A = 4πR²来计算,球体的体积可以通过公式V = (4/3)πR³来计算。

答案:球体的表面积A = 4πR²,球体的体积V = (4/3)πR³。

试题五:旋转体的体积题目:已知圆柱的底面半径为r,高为h,求圆柱的体积。

解析:圆柱的体积可以通过公式V = πr²h来计算。

答案:V = πr²h。

结束语:通过上述试题及答案解析,我们可以看到高中几何体的计算涉及体积、面积和表面积等概念,这些计算在数学和物理等多个领域都有广泛的应用。

掌握这些基础知识对于解决更复杂的几何问题至关重要。

希望这些试题和解析能够帮助学生加深对立体几何概念的理解,并在解题过程中培养空间想象能力。

高中数学立体几何多选题100附答案

高中数学立体几何多选题100附答案

高中数学立体几何多选题100附答案一、立体几何多选题1.如图,正方体1111ABCD A B C D -中的正四面体11A BDC -的棱长为2,则下列说法正确的是( )A .异面直线1AB 与1AD 所成的角是3πB .1BD ⊥平面11AC DC .平面1ACB 截正四面体11A BDC -所得截面面积为3D .正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23【答案】ABD 【分析】选项A ,利用正方体的结构特征找到异面直线所成的角;选项B ,根据正方体和正四面体的结构特征以及线面垂直的判定定理容易得证;选项C ,由图得平面1ACB 截正四面体11A BDC -所得截面面积为1ACB 面积的四分之一;选项D ,分别求出正方体的体对角线长和正四面体11A BDC -的高,然后判断数量关系即可得解. 【详解】A :正方体1111ABCD ABCD -中,易知11//AD BC ,异面直线1A B 与1AD 所成的角即直线1A B 与1BC 所成的角,即11A BC ∠,11A BC 为等边三角形,113A BC π∠=,正确;B :连接11B D ,1B B ⊥平面1111DC B A ,11A C ⊂平面1111D C B A ,即111AC B B ⊥,又1111AC B D ⊥,1111B B B D B ⋂=,有11A C ⊥平面11BDD B ,1BD ⊂平面11BDD B ,所以111BD AC ⊥,同理可证:11BD A D ⊥,1111AC A D A ⋂=,所以1BD ⊥平面11AC D ,正确;C :易知平面1ACB 截正四面体11A BDC -所得截面面积为134ACB S=,错误;D :易得正方体1111ABCD A B C D -()()()2222226++=2的正四面体11A BDC -,故正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23,正确. 故选:ABD. 【点睛】关键点点睛:利用正方体的性质,找异面直线所成角的平面角求其大小,根据线面垂直的判定证明1BD ⊥平面11AC D ,由正四面体的性质,结合几何图形确定截面的面积,并求高,即可判断C 、D 的正误.2.已知球O 为正方体1111ABCD A B C D -的内切球,平面11A C B 截球O 的面积为24π,下列命题中正确的有( )A .异面直线AC 与1BC 所成的角为60°B .1BD ⊥平面11AC B C .球O 的表面积为36πD .三棱锥111B AC B -的体积为288 【答案】AD 【分析】连接11A C ,1A B ,通过平移将AC 与1BC 所成角转化为11A C 与1BC 所成角可判断A ;通过反证法证明B ;由已知平面11A C B 截球O 的面积为24π求出正方体棱长,进而求出内切球的表面积可判断C ;利用等体积法可求得三棱锥111B AC B -的体积可判断D. 【详解】对于A ,连接11A C ,1A B ,由正方体1111ABCD A B C D -,可知11//A C AC ,11AC B ∴∠为异面直线AC 与1BC 所成的角,设正方体边长为a ,则1111AC A B BC ==,由等边三角形知1160A C B ∠=,即异面直线AC 与1BC 所成的角为60,故A 正确; 对于B ,假设1BD ⊥平面11A C B ,又1A B ⊂平面11A C B ,则11BD B A ⊥,设正方体边长为a ,则11A D a =,1A B =,1BD =,由勾股定理知111A D B A ⊥,与假设矛盾,假设不成立,故1BD 不垂直于平面11A C B ,故B 错误;对于C ,设正方体边长为a ,则11AC =,内切球半径为2a,设内切球的球心O 在面11A C B 上的投影为O ',由等边三角形性质可知O '为等边11A C B △的重心,则11123O A AC ='==,又1OA =,∴球心O 到面11A C B 的距离为12122232633a a a OA O A ⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭=-='-,又球心与截面圆心的连线垂直于截面,∴截面圆的半径为2236626a a a ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭-=,又截面圆的面积2624S a ππ⎛⎫= ⎪ ⎪⎝⎭=,解得12a =,则内切球半径为6,内切球表面积214644S ππ==⨯,故C 错误;对于D ,由等体积法知111111111111212122812383B A C B B A C B A C B V V S a --==⨯⨯=⨯⨯=,故D 正确; 故选:AD【点睛】关键点点睛:本题考查了正方体和它的内切球的几何结构特征,关键是想象出截面图的形状,从而求出正方体的棱长,进而求出内切球的表面积及三棱锥的体积,考查了空间想象能力,数形结合的思想,属于较难题.3.如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中,以顶点A 为端点的三条棱长都等于1,且它们彼此的夹角都是60,下列说法中正确的是( )A .()()2212AA AB ADAC ++=B .1A 在底面ABCD 上的射影是线段BD 的中点C .1AA 与平面ABCD 所成角大于45 D .1BD 与AC所成角的余弦值为3【答案】AC 【分析】对A ,分别计算()21++AA AB AD 和2AC ,进行判断;对B ,设BD 中点为O ,连接1A O ,假设1A 在底面ABCD 上的射影是线段BD 的中点,应得10⋅=O AB A ,计算10⋅≠O AB A ,即可判断1A 在底面ABCD 上的射影不是线段BD 的中点;对C ,计算11,,A A AC AC ,根据勾股定理逆定理判断得11⊥A A AC ,1AA 与平面ABCD 所成角为1A AC ∠,再计算1tan ∠A AC ;对D ,计算1,AC BD 以及1BD AC ⋅,再利用向量的夹角公式代入计算夹角的余弦值. 【详解】对A ,由题意,11111cos602⋅=⋅=⋅=⨯⨯=AA AB AA AD AD AB ,所以()2222111112*********++=+++⋅+⋅+⋅=+++⨯⨯=AA AB ADAA AB AD AA AB AB AD AA AD ,AC AB AD =+,所以()222221113=+=+⋅+=++=AC AB ADAB AB AD AD ,所以()()22126++==AA AB AD AC ,故A 正确;对B ,设BD 中点为O ,连接1A O ,1111111222=+=+=++AO A A AO A A AC A A AD AB ,若1A 在底面ABCD 上的射影是线段BD 的中点,则1A O ⊥平面ABCD ,则应10⋅=O AB A ,又因为21111111111110222222224⎛⎫⋅=++⋅=-⋅+⋅+=-+⨯+=≠ ⎪⎝⎭O AB A A AD AB AB AA AB AD AB AB A ,故B 错误;对D ,11,BD AD AA AB AC AB AD =+-=+,所以()()2211=2,=3=+-=+AD A B A AB AC AB AD D ()()2211111⋅=+-⋅+=⋅++⋅+⋅--⋅=AC AD AA AB AB AD AD AB ADAA AB AA AD AB AB AD BD,111cos ,2⋅<>===B AC D BD BD AC ACD 不正确;对C,112==AC BD ,在1A AC 中,111,===A A AC AC 22211+=A A AC AC ,所以11⊥A A AC ,所以1AA 与平面ABCD 所成角为1A AC ∠,又1tan 1∠=>A AC ,即145∠>A AC ,故C 正确;故选:AC【点睛】方法点睛:用向量方法解决立体几何问题,需要树立“基底”意识,利用基向量进行线性运算,要理解空间向量概念、性质、运算,注意和平面向量类比;同时对于立体几何中角的计算问题,往往可以利用空间向量法,利用向量的夹角公式求解.4.如图,直三棱柱11,ABC A B C -,ABC 为等腰直角三角形,AB BC ⊥,且12AC AA ==,E ,F 分别是AC ,11A C 的中点,D ,M 分别是1AA ,1BB 上的两个动点,则( )A .FM 与BD 一定是异面直线B .三棱锥D MEF -的体积为定值14C .直线11B C 与BD 所成角为2π D .若D 为1AA 中点,则四棱锥1D BB FE -的外接球体积为556【答案】CD 【分析】A 当特殊情况M 与B 重合有FM 与BD 相交且共面;B 根据线面垂直、面面垂直判定可证面1BEFB ⊥面11ACC A ,可知EMFS、D 到面1BEFB 的距离,可求D EMF V -;C 根据线面垂直的判定及性质即可确定11B C 与BD 所成角;D 由面面垂直、勾股、矩形性质等确定外接球半径,进而求体积,即可判断各项的正误. 【详解】A :当M 与B 重合时,FM 与BD 相交且共面,错误; B :由题意知:BE AC ⊥,AC EF ⊥且BEEF E =,则AC ⊥面1BEFB ,又AC ⊂面11ACC A ,面1BEFB ⋂面11ACC A EF =,所以面1BEFB ⊥面11ACC A ,又1121122EMFSEF BE =⋅⋅=⨯⨯=,D 到面1BEFB 的距离为1h =,所以1133D EMF EMFV h S-=⋅⋅=,错误; C :由AB BC ⊥,1BC B B ⊥,1B BAB B =,所以BC ⊥面11ABB A ,又11//BC B C ,即11B C ⊥面11ABB A ,而BD ⊂面11ABB A ,则11BD B C ⊥,正确;D :由B 中,面1BEFB ⊥面11ACC A ,即面DEF ⊥面1BEFB ,则D 到面1BEFB 的距离为1h =,又D 为1AA 中点,若1,BF EB 交点为O ,G 为EF 中点,连接,,OG GD OD ,则OG GD ⊥,故225OD OG GD =+=,由矩形的性质知:152OB OE OF OB ====,令四棱锥1D BB FE -的外接球半径为R ,则5R =,所以四棱锥1D BB FE -的外接球体积为354356V R π==,正确. 故选:CD. 【点睛】关键点点睛:利用线面、面面关系确定几何体的高,结合棱锥体积公式求体积,根据线面垂直、勾股定理及矩形性质确定外接球半径,结合球体体积公式求体积.5.在长方体1111ABCD A B C D -中,4AB BC ==,18AA =,点P 在线段11A C 上,M为AB 的中点,则( ) A .BD ⊥平面PACB .当P 为11AC 的中点时,四棱锥P ABCD -外接球半径为72C .三棱锥A PCD -体积为定值D .过点M 作长方体1111ABCD A B C D -的外接球截面,所得截面圆的面积的最小值为4π 【答案】ACD 【分析】利用线面垂直的判定定理可判断A 选项的正误;判断出四棱锥P ABCD -为正四棱锥,求出该四棱锥的外接球半径,可判断B 选项的正误;利用等体积法可判断C 选项的正误;计算出截面圆半径的最小值,求出截面圆面积的最小值,可判断D 选项的正误. 【详解】对于A 选项,因为AB BC =,所以,矩形ABCD 为正方形,所以,BD AC ⊥, 在长方体1111ABCD A B C D -中,1AA ⊥底面ABCD ,BD ⊂平面ABCD ,1BD AA ∴⊥,1AC AA A ⋂=,AC 、1AA ⊂平面PAC ,所以,BD ⊥平面PAC ,A 选项正确;对于B 选项,当点P 为11A C 的中点时,PA ===同理可得PB PC PD ===因为四边形ABCD 为正方形,所以,四棱锥P ABCD -为正四棱锥, 取AC 的中点N ,则PN 平面ABCD ,且四棱锥P ABCD -的外接球球心在直线PN上,设该四棱锥的外接球半径为R ,由几何关系可得222PN R AN R -+=, 即2288R R -+=,解得92R =,B 选项错误; 对于C 选项,2114822ACDSAD CD =⋅=⨯=, 三棱锥P ACD -的高为18AA =,因此,116433A PCD P ACD ACD V V S AA --==⋅=△,C 选项正确;对于D 选项,设长方体1111ABCD A B C D -的外接球球心为E ,则E 为1BD 的中点, 连接EN 、MN ,则1142EN DD ==,122MN AD ==, E 、N 分别为1BD 、BD 的中点,则1//EN DD , 1DD ⊥平面ABCD ,EN ∴⊥平面ABCD ,MN ⊂平面ABCD ,EN MN ∴⊥,EM ∴==过点M 作长方体1111ABCD A B C D -的外接球截面为平面α,点E 到平面α的距离为d ,直线EM 与平面α所成的角为θ,则sin 25sin 25d EM θθ==≤, 当且仅当2πθ=时,等号成立,长方体1111ABCD A B C D -的外接球半径为222126AB AD AA R ++'==,所以,截面圆的半径()()222226252r R d '=-≥-=,因此,截面圆面积的最小值为4π,D 选项正确.故选:ACD. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.6.如图,在棱长为2的正方体1111ABCD A B C D -,中,E 为棱1CC 上的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F ,B ,E ,G ,H 为过三点B ,E ,F 的平面BMN 与正方体1111ABCD A B C D -的棱的交点,则下列说法正确的是( )A .//HF BEB .三棱锥的体积14B BMN V -=C .直线MN 与平面11A B BA 所成的角为45︒D .11:1:3D G GC = 【答案】ABD 【分析】面面平行性质定理可得出A 正确;等体积法求得B 正确;直线MN 与平面11A B BA 所成的角为1B MN ∠,求其正切值不等于1即可得出C 错误;利用面面平行性质定理和中位线求出11,D G GC 长度即可得出D 正确. 【详解】解:对于A.在正方体1111ABCD A B C D -中平面11//ADA D 平面11BCB C , 又平面11ADA D 平面BMN HF =,平面11BCB C ⋂平面BMN BE =,有平面与平面平行的性质定理可得//HF BE ,故正确; 对于B.因为1:1:2A F FA =,所以111332B M A B ==, 又E 为棱1CC 上的中点,所以14B N =, 所以1111234432B BMN N B BM V V --⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭,故正确; 对于C.由题意及图形可判定直线MN 与平面11A B BA 所成的角为1B MN ∠, 结合B 选项可得1114tan 13B N B MN B M ∠==≠,故错误; 对于D.同A 选项证明方法一样可证的11//GC B M ,因为E 为棱1CC 上的中点,1C 为棱1B N 上的中点,所以1113=22GC B M = 所以11G=2D ,所以11:1:3D G GC =,故正确. 故选:ABD 【点睛】求体积的常用方法:(1)直接法:对于规则的几何体,利用相关公式直接计算;(2)等体积法:选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面可作为三棱锥的底面进行等体积变换;(3)割补法:首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算.7.如图,矩形ABCD 中, 22AB AD ==,E 为边AB 的中点.将ADE 沿直线DE 翻折成1A DE △(点1A 不落在底面BCDE 内),若M 在线段1A C 上(点M 与1A ,C 不重合),则在ADE 翻转过程中,以下命题正确的是( )A .存在某个位置,使1DE A C ⊥B .存在点M ,使得BM ⊥平面1A DC 成立C .存在点M ,使得//MB 平面1A DE 成立D .四棱锥1A BCDE -体积最大值为24 【答案】CD【分析】利用反证法可得A 、B 错误,取M 为1A C 的中点,取1A D 的中点为I ,连接,MI IE ,可证明//MB 平面1A DE ,当平面1A DE ⊥平面BCDE 时,四棱锥1A BCDE -体积最大值,利用公式可求得此时体积为24. 【详解】如图(1),取DE 的中点为F ,连接1,A F CF ,则45CDF ∠=︒,22DF =,故212254222222CF =+-⨯⨯=, 故222DC DF CF ≠+即2CFD π∠≠.若1CA DE ⊥,因为11,A D A E DF FE ==,故1A F DE ⊥,而111A F A C A ⋂=, 故DE ⊥平面1A FC ,因为CF ⊂平面1A FC ,故DE CF ⊥,矛盾,故A 错. 若BM ⊥平面1A DC ,因为DC ⊂平面1A DC ,故BM DC ⊥,因为DC CB ⊥,BM CB B ⋂=,故CD ⊥平面1A CB ,因为1AC ⊂平面1A CB ,故1CD A C ⊥,但1A D CD <,矛盾,故B 错. 当平面1A DE ⊥平面BCDE 时,四棱锥1A BCDE -体积最大值,由前述证明可知1A F DE ⊥,而平面1A DE 平面BCDE DE =,1A F ⊂平面1A DE ,故1A F ⊥平面BCDE ,因为1A DE △为等腰直角三角形,111A D A E ==,故122A F =, 又四边形BCDE 的面积为13211122⨯-⨯⨯=, 故此时体积为13223224⨯⨯=D 正确. 对于C ,如图(2),取M 为1A C 的中点,取1A D 的中点为I ,连接,MI IE , 则1//,2IM CD IM CD =,而1//,2BE CD BE CD =, 故//,IM BE IM BE =即四边形IEBM 为平行四边形, 故//IE BM ,因为IE ⊂平面1A DE ,BM ⊄平面1A DE ,故//MB 平面1A DE , 故C 正确.故选:CD.【点睛】本题考查立体几何中的折叠问题,注意对于折叠后点线面的位置的判断,若命题的不成立,往往需要利用反证法来处理,本题属于难题.8.已知正四棱柱1111ABCD A B C D -的底面边长为2,侧棱11AA =,P 为上底面1111D C B A 上的动点,给出下列四个结论中正确结论为( )A .若3PD =,则满足条件的P 点有且只有一个B .若3PD =,则点P 的轨迹是一段圆弧C .若PD ∥平面1ACB ,则DP 长的最小值为2D .若PD ∥平面1ACB ,且3PD =,则平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形的面积为94π 【答案】ABD【分析】 若3PD =,由于P 与1B 重合时3PD =,此时P 点唯一;()313PD =,,则12PD =P 的轨迹是一段圆弧;当P 为11A C 中点时,DP 有最小值为3=断C ;平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,其半径为32=,可得D . 【详解】如图:∵正四棱柱1111ABCD A B C D -的底面边长为2, ∴1122B D =,又侧棱11AA =,∴()2212213DB =+=,则P 与1B 重合时3PD =,此时P 点唯一,故A 正确; ∵()313PD =∈,,11DD =,则12PD =,即点P 的轨迹是一段圆弧,故B 正确; 连接1DA ,1DC ,可得平面11//A DC 平面1ACB ,则当P 为11A C 中点时,DP 有最小值为()22213+=,故C 错误;由C 知,平面BDP 即为平面11BDD B ,平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,其半径为2221322122++=,面积为94π,故D 正确.故选:ABD .【点睛】本题考查了立体几何综合,考查了学生空间想象,逻辑推理,转化划归,数学运算的能力,属于较难题.9.如图,1111ABCD A B C D -为正方体,下列结论中正确的是( )A .11A C ⊥平面11BB D DB .1BD ⊥平面1ACBC .1BD 与底面11BCC B 2D .过点1A 与异面直线AD 与1CB 成60角的直线有2条【答案】ABD【分析】由直线与平面垂直的判定判断A 与B ;求解1BD 与底面11BCC B 所成角的正切值判断C ;利用空间向量法可判断D .【详解】对于A 选项,如图,在正方体1111ABCD A B C D -中,1BB ⊥平面1111D C B A ,11A C ⊂平面1111D C B A ,则111BB A C ⊥,由于四边形1111D C B A 为正方形,则1111AC B D ⊥, 1111BB B D B =,因此,11A C ⊥平面11BB D D ,故A 正确;对于B 选项,在正方体1111ABCD A B C D -中,1DD ⊥平面ABCD ,AC ⊂平面ABCD ,1AC DD ∴⊥,因为四边形ABCD 为正方形,所以,AC BD ⊥,1D DD BD =,AC ∴⊥平面11BB D D , 1BD ⊂平面11BB D D ,1AC BD ∴⊥,同理可得11BD B C ⊥,1AC B C C =,1BD ∴⊥平面1ACB ,故B 正确; 对于C 选项,由11C D ⊥平面11BCC B ,得11C BD ∠为1BD 与平面11BCC B 所成角, 且111112tan 2C D C BD BC ∠==,故C 错误; 对于D 选项,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设正方体的棱长为1,则()1,0,0A 、()0,0,0D 、()0,1,0C 、()11,1,1B ,()1,0,0DA =,()11,0,1CB =,设过点1A 且与直线DA 、1CB 所成角的直线的方向向量为()1,,m y z =, 则221cos ,21DA mDA m DA m y z ⋅<>===⋅++,1122111cos ,221CB m z CB m CB m y z ⋅+<>===⋅⋅++, 整理可得2222341y z y z z ⎧+=⎨=++⎩,消去y 并整理得2210z z +-=,解得12z =-+或12z =--,由已知可得3z ≤,所以,12z =-+,可得22y =±,因此,过点1A 与异面直线AD 与1CB 成60角的直线有2条,D 选项正确.故选:ABD.【点睛】方法点睛:证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.10.如图所示,正方体ABCD A B C D ''''-的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线EF 的平面分别与棱BB ',DD '交于点M ,N ,以下四个命题中正确的是( )A .0MN EF ⋅=B .ME NE =C .四边形MENF 的面积最小值与最大值之比为2:3D .四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3【答案】ABD【分析】证明EF ⊥平面BDD B '',进而得EF MN ⊥,即可得A 选项正确;证明四边形MENF 为菱形即可得B 选项正确;由菱形性质得四边形MENF 的面积12S MN EF =⋅,再分别讨论MN 的最大值与最小值即可;根据割补法求解体积即可.【详解】对于A 选项,如图,连接BD ,B D '',MN .由题易得EF BD ⊥,EF BB '⊥,BD BB B '⋂=,所以EF ⊥平面BDD B '',又MN ⊂平面BDD B '',所以EF MN ⊥,因此0MN EF ⋅=,故A 正确.对于B 选项,由正方体性质得:平面''//BCC B 平面''ADD A ,平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =, 所以//MF EN ,同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形, 因此ME NE =,故B 正确.对于C 选项,由B 易得四边形MENF 的面积12S MN EF =⋅, 所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的面积S 最小,此时MN EF ==,即面积S 的最小值为1; 当点M ,N 分别与点B (或点B '),D (或D )重合时,四边形MENF 的面积S 最大,此时MN =,即面积S所以四边形MENF 的面积最小值与最大值之比为2C 不正确.对于D 选项,四棱锥A MENF -的体积1111336M AEF N AEF AEF V V V DB S --=+=⋅==△; 因为E ,F 分别是AA ',CC '的中点,所以BM D N '=,DN B M '=,于是被截面MENF 平分的两个多面体是完全相同的,则它们的体积也是相同的,因此多面体ABCD EMFN -的体积21122ABCD A B C D V V ''''-==正方体, 所以四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3,故D 正确. 故选:ABD .【点睛】本题考查立体几何与向量的综合、截面面积的最值、几何体的体积,考查空间思维能力与运算求解能力,是中档题.本题解题的关键在于证明四边形MENF 为菱形,利用割补法将四棱锥A MENF -的体积转化为三棱锥M AEF - 和N AEF -的体积之和,将多面体ABCD EMFN -的体积转化为正方体的体积的一半求解.。

高中数学立体几何经典题型专题训练试题(含答案)

高中数学立体几何经典题型专题训练试题(含答案)

高中数学立体几何经典题型专题训练试题姓名 班级 学号 得分说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分。

考试时间120分钟。

2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。

考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)评卷人得 分一.单选题(共10小题,每题3分,共30分)1、如图,在正方体中ABCD-A1B1C1D1,M为BC的中点,点N在四边形CDD1C1及其内部运动.⊥1C1,则N点的轨迹为( )若MN AA.线段B.圆的一部分C.椭圆的一部分D.双曲线的一部分2、如图,正方体ABCD-A1B1C1D1的棱长为1,过点A作平面A1BD的垂线,垂足为H,则以下命题中,错误的是( )A.点H是△A1BD的垂心B.直线AH与CD1的成角为900C.AH的延长线经过点C1D.直线AH与BB1的成角为4503、如图,正方体ABCD-A1B1C1D1中,点P为线段AD1上一动点,点Q为底面ABCD内(含边界)一动点,M为PQ的中点,点M构成的点集是一个空间几何体,则该几何体为( )A.棱柱B.棱锥C.棱台D.球4.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形5.用一个平面去截一个正方体,所得截面不可能是(1)钝角三角形;(2)直角三角形;(3)菱形;(4)正五边形;(5)正六边形.下述选项正确的是( )A.(1)(2)(5)B.(1)(2)(4)C.(2)(3)(4)D.(3)(4)(5)6、如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=,则下列结论中错误的是( )⊥A.AC BEB.A1C⊥平面AEFC.三棱锥A-BEF的体积为定值D.异面直线AE、BF所成的角为定值7.已知一个正六棱锥的体积为12,底面边长为2,则它的侧棱长为( )A.4B.C.D.28.一正四棱锥的高为2,侧棱与底面所成的角为45°,则这一正四棱锥的斜高等于()A.2B.C.2D.29、如图,正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,M为棱BB1的中点,则下列结论中错误的是( )A.D1O∥平面A1BC1B.D1O⊥平面AMCC.异面直线BC1与AC所成的角等于60°D.点B到平面AMC的距离为10.如图,E为正方体的棱AA1的中点,F为棱AB上的一点,且∠C1EF=90°,则AF:FB=()A.1:1B.1:2C.1:3D.1:4第Ⅱ卷(非选择题)评卷人得 分二.填空题(共14小题,每题3分,共42分)11、正方体ABCD-A1B1C1D1中,M,N分别是AA1和BB1的中点,G是BC上一点,使⊥,则∠D1NG=______.C1N MG12、已知如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为棱DD1,AB上的点(不含顶点).则下列说法正确的是______.①A1C⊥平面B1EF;②△B1EF在侧面上的正投影是面积为定值的三角形;③在平面A1B1C1D1内总存在与平面B1EF平行的直线;④平面B1EF与平面ABCD所成的二面角(锐角)的大小与点E位置有关,与点F位置无关;⑤当E,F分别为中点时,平面B1EF与棱AD交于点P,则三棱锥P-DEF的体积为.⊥,∠BAC=θ(0<θ≤),且13、如图,三棱锥A-BCD中,AB AD⊥,AC ADAB=AC=AD=2,E、F分别为AC、BD的中点,则EF的最大值为______.14、如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记,,那么M,N的大小关系是______.15.若空间四边形ABCD的两条对角线AC,BD的长分别为4,6,过AB的中点E且平行BD,AC的截面四边形的周长为______.⊥1D则EF和BD1的关系是______.16、正方体ABCD-A1B1C1D1中,EF AC⊥,EF A17、已知正方体AC1的棱长为1,点P是面AA1D1D的中心,点Q是面A1B1C1D1的对角线B1D1上一点,且PQ∥平面AA1B1B,则线段PQ的长为______.18、如图,正方体ABCD-A1B1C1D1中,E,F分别为棱DD1,AB上的点.已知下列判断:①A1C⊥平面B1EF;②△B1EF在侧面BCC1B1上的正投影是面积为定值的三角形;③在平面A1B1C1D1内总存在与平面B1EF平行的直线;④平面B1EF与平面ABCD所成的二面角(锐角)的大小与点E的位置有关,与点F的位置无关.其中正确结论的序号为______(写出所有正确结论的序号).19、如图,正方体ABCD-A1B1C1D1的棱长为4,E,F分别是棱CD、C1D1的中点,长为2的线段MN的一个端点M在线段EF上运动,另一个端点N在底面A1B1C1D1上运动,则线段MN 的中点P的轨迹(曲面)与二面角D-C1D1-B1所围成的几何体的体积为______.∈1,且AM=BN,有以下四个结论:20、如图,正方体ABCD-A1B1C1D1中,点M AB∈1,N BC⊥;①AA1MN∥;②A1C1MN③MN与面A1B1C1D1成0°角;④MN与A1C1是异面直线.其中正确结论的序号是______.21、在正方体ABCD-A1B1C1D1中,过对角线BD1的一个平面交AA1于点E,交CC1于F,①四边形BFD1E一定是平行四边形②四边形BFD1E有可能是正方形③四边形BFD1E在底面ABCD内的投影一定是正方形④四边形BFD1E点有可能垂直于平面BB1D以上结论正确的为______(写出所有正确结论的编号)22、如图,正方体ABCD-A1B1C1D1中,对角线BD1与过A1、D、C1的平面交于点M,则=______.23.设A是自然数集的一个非空子集,如果k2A∉,且A,那么k是A的一个“酷元”,⊆,且集合M中的两个元素都是“酷元”那么这样的结给定S={0,1,2,3,4,5},设M S合M有______个.24、如图,AC为圆O的直径,B为圆周上不与A、C重合的点,SA⊥圆O所在的平面,连接SB、SC、AB、BC,则图中直角三角形的个数是______.评卷人得 分三.简答题(共28分)25、四棱锥P-ABCD中,底面ABCD为菱形,且∠DAB=60°,点P为平面ABCD所在平面外的⊥.一点,若△PAD为等边三角形,求证:PB AD26、如图,设三棱锥S-ABC的三个侧棱与底面ABC所成的角都是60°,又∠BAC=60°,且⊥.SA BC(1)求证:S-ABC为正三棱锥;(2)已知SA=a,求S-ABC的全面积.27、如图,E、F、G、H分别是空间四边形ABCD四边上的中点.(1)若BD=2,AC=6,则EG2+HF2等于多少?(2)若AC与BD成30°的角,且AC=6,BD=4,则四边形EFGH的面积等于多少?28、已知三棱锥S-ABC的三条侧棱SA、SB、SC两两互相垂直且长度分别为a、b、c,设O 为S在底面ABC上的射影.求证:(1)O为△ABC的垂心;(2)O在△ABC内;(3)设SO=h,则++=.29.已知正三棱锥的高为1,底面边长为2,其内有一个球和该三棱锥的四个面都相切,求:(1)棱锥的全面积;(2)球的半径R.30、如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC 的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N 的位置;若不存在,试说明理由.参考答案评卷人得 分一.单选题(共__小题)1、如图,在正方体中ABCD-A1B1C1D1,M为BC的中点,点N在四边形CDD1C1及其内部运动.⊥1C1,则N点的轨迹为( )若MN AA.线段B.圆的一部分C.椭圆的一部分D.双曲线的一部分答案:A解析:解:正方体中ABCD-A1B1C1D1中,M为BC的中点,点N在四边形CDD1C1及其内部运动;如图所示,取CD、C1D1的中点Q、P,连接PQ,⊥1C1;当点N在线段PQ上时,MN A因为正方体ABCD-A1B1C1D1中,⊥1D1,连接B1D1,交A1C1于点O,∴B1D1A取B1C1的中点E,连接PE,则PE B∥1D1,⊥1C1;∴PE A∥1,又CC1⊥平面A1B1C1D1,PQ CC∴PQ⊥平面A1B1C1D1,∵A1C1⊂平面A1B1C1D1,⊥1C1;∴PQ A且PQ∩PE=P,∴A1C1⊥平面PQME,PQ⊂平面PQME,⊥;∴A1C1PQ∴N点的轨迹为线段PQ.故选:A.2、如图,正方体ABCD-A1B1C1D1的棱长为1,过点A作平面A1BD的垂线,垂足为H,则以下命题中,错误的是( )A.点H是△A1BD的垂心B.直线AH与CD1的成角为900C.AH的延长线经过点C1D.直线AH与BB1的成角为450答案:D解析:解:由ABCD-A1B1C1D1是正方体,得A-A1BD是一个正三棱锥,因此A点在平面A1BD上的射影H是三角形A1BD的中心,故A正确;⊥1B,又CD1A∥1B,可得直线AH与CD1的成角为90°,故B正确;∵AH⊥面A1BD,∴AH A连接AC1,由三垂线定理及线面垂直的判定可得AC1⊥面A1DB,再由过一点与已知平面垂直的直线有且只有一条可得AH与AC1重合,可得C正确;直线AH与BB1所成的角,即为AH与AA1所成的角,设为θ,由正方体棱长为1,可得正三棱锥的底面边长为,从而求得AH=,则cos,∴D错误.故选:D.3、如图,正方体ABCD-A1B1C1D1中,点P为线段AD1上一动点,点Q为底面ABCD内(含边界)一动点,M为PQ的中点,点M构成的点集是一个空间几何体,则该几何体为( )A.棱柱B.棱锥C.棱台D.球答案:A解析:解:∵Q点不能超过边界,若P点与A点重合,设AB中点E、AD中点F,移动Q点,则此时M点的轨迹为:以AE、AF为邻边的正方形;下面把P点从A点向上沿线段AD1移动,在移动过程中可得M点轨迹为正方形,…,最后当P点与D1点重合时,得到最后一个正方形,故所得几何体为棱柱,故选:A4.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形答案:A解析:解:棱柱的定义是,有两个面互相平行,其余各面都是四边形,相邻的公共边互相平行,有这些面围成的几何体是棱柱;可以判断A正确;B不正确,例如正六棱柱的相对侧面;C 不正确,只有直棱柱满足C的条件;D不正确,例如长方体.故选A5.用一个平面去截一个正方体,所得截面不可能是(1)钝角三角形;(2)直角三角形;(3)菱形;(4)正五边形;(5)正六边形.下述选项正确的是( )A.(1)(2)(5)B.(1)(2)(4)C.(2)(3)(4)D.(3)(4)(5)答案:B解析:解:如图所示截面为三角形ABC,OA=a,OB=b,OC=c,AC2=a2+c2,AB2=a2+b2,BC2=b2+c2∠=>0,∴cos CAB=∴∠CAB为锐角,同理∠ACB与∠ABC也为锐角,即△ABC为锐角三角形;如右图,取相对棱的中点,得到的四边形是菱形;正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,如图为正六边形;经过正方体的一个顶点去切就可得到5边形.但此时不可能是正五边形.故不可能是(1)(2)(4).故选:B.6、如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=,则下列结论中错误的是( )⊥A.AC BEB.A1C⊥平面AEFC.三棱锥A-BEF的体积为定值D.异面直线AE、BF所成的角为定值答案:D解析:解:∵AC⊥平面BB1D1D,又BE⊂平面BB1D1D,⊥.故A正确.∴AC BE∵EF垂直于直线AB1,AD1,∴A1C⊥平面AEF.故B正确.C中由于点B到直线B1D1的距离不变,故△BEF的面积为定值.又点A到平面BEF的距离为,故V A-BEF为定值.C正确当点E在D1处,F为D1B1的中点时,异面直线AE,BF所成的角是∠FBC1,当E在上底面的中心时,F在C1的位置,异面直线AE,BF所成的角是∠EAA1显然两个角不相等,D不正确.故选D.7.已知一个正六棱锥的体积为12,底面边长为2,则它的侧棱长为( )A.4B.C.D.2答案:A解析:解:由于正六棱锥可知底面是六个正三角形组成,∴底面积S=6×=6,∴体积V==12,∴h=,夺直角三角形SOB中,侧棱长为SB=.故选A.8.一正四棱锥的高为2,侧棱与底面所成的角为45°,则这一正四棱锥的斜高等于()A.2B.C.2D.2答案:C解析:解:如图PO⊥底面ABCD,连接OA,取AD的中点E,连接OE,PE,则PE为斜高.∠PAO为侧棱与底面所成的角,且为45°,在直角△PAO中,PO=2,AO=2,PA=4,在直角△AEO中,AE=2,故在直角△PEA中,PE==2.故选C.9、如图,正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,M为棱BB1的中点,则下列结论中错误的是( )A.D1O∥平面A1BC1B.D1O⊥平面AMCC.异面直线BC1与AC所成的角等于60°D.点B到平面AMC的距离为答案:D解析:解:如图,∥,连接B1D1,交A1C1于N,则可证明OD1BN由OD1⊄面A1BC1,BN⊂面A1BC1,可得D1O∥面A1BC1,A正确;⊥,由三垂线定理的逆定理可得OD1AC设正方体棱长为2,可求得OM2=3,,,⊥,由线面垂直的判定可得D1O⊥平面AMC,B正确;则,有OD1OM由正方体的面对角线相等得到△A1BC1为正三角形,即∠A1C1B=60°,∴异面直线BC1与AC所成的角等于60°,C正确;设点B到平面AMC的距离为d,正方体的棱长为2a,则,,由V B-AMC=V A-BCM,得,即,解得:d=,D错误.故选:D.10.如图,E为正方体的棱AA1的中点,F为棱AB上的一点,且∠C1EF=90°,则AF:FB=()A.1:1B.1:2C.1:3D.1:4答案:C解析:解:解:设正方体的棱长为:2,由题意可知C1E==3,∠C1EF=90°,所以设AF=x,12+x2+C1E2=22+22+(2-x)2,解得:x=,所以AF:FB=:=1:3;故选:C.评卷人得 分二.填空题(共__小题)11、正方体ABCD-A1B1C1D1中,M,N分别是AA1和BB1的中点,G是BC上一点,使⊥,则∠D1NG=______.C1N MG答案:90°解析:解:连接MN,∵M,N分别是AA1和BB1的中点,∥1D1,由正方体的几何特征可得MN C在正方体ABCD-A1B1C1D1中,D1C1⊥平面B1C1CB∵C1N⊂平面B1C1CB⊥1N∴D1C1C⊥1N∴MN C⊥,MN∩MG=M,MD1,MG⊂平面MNG又∵C1N MG∴C1N⊥平面MNG又∵NG⊂平面MNG⊥∴C1N NG故∠D1NG=90°故答案为:90°12、已知如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为棱DD1,AB上的点(不含顶点).则下列说法正确的是______.①A1C⊥平面B1EF;②△B1EF在侧面上的正投影是面积为定值的三角形;③在平面A1B1C1D1内总存在与平面B1EF平行的直线;④平面B1EF与平面ABCD所成的二面角(锐角)的大小与点E位置有关,与点F位置无关;⑤当E,F分别为中点时,平面B1EF与棱AD交于点P,则三棱锥P-DEF的体积为.答案:②③⑤解析:解:对于①A1C⊥平面B1EF,不一定成立,因为A1C⊥平面AC1D,而两个平面面B1EF与面AC1D不一定平行.对于②△B 1EF 在侧面BCC 1B 1上 的正投影是面积为定值的三角形,此是一个正确的结论,因为其投影三角形的一边是棱BB 1,而E 点在面上的投影到此棱BB 1的距离是定值,故正确;对于③在平面A 1B 1C 1D 1内总存在与平面B 1EF 平行的直线,此两平面相交,一个面内平行于两个平面的交线一定平行于另一个平面,此结论正确;对于④平面B 1EF 在平面ABCD 中的射影为△DFB ,面积为定值,但△B 1EF 的面积不定,故不正确;对于⑤由面面平行的性质定理可得EQ B ∥1F ,故D 1Q=,B 1Q PF ∥,故AP=,所以三棱锥P-DEF 的体积为,故正确故答案为:②③⑤.13、如图,三棱锥A-BCD 中,AB AD ⊥,AC AD ⊥,∠BAC=θ(0<θ≤),且AB=AC=AD=2,E 、F 分别为AC 、BD 的中点,则EF 的最大值为______.答案:解析:⊥,垂足为G,连接GE,解:过F作FG AB⊥,∵AD AB∥,∴G为AB的中点,∴AD FG∴FG=1,AG=1,∵E为AC的中点,∴AE=1,∠BAC=θ,∴EG=∵AD⊥平面ABC,∴FG⊥平面ABC,△中,EF===,在Rt FGE∵0,∴EF≤.故答案是.14、如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记,,那么M,N的大小关系是______.答案:M=N解析:解:根据平面中直角三角形的勾股定理类比得,S ABC△2=S PAB△2+S PBC△2+S PAC△2①,由等体积法得,∴②,①÷②整理得M=N.故答案为:M=N.15.若空间四边形ABCD的两条对角线AC,BD的长分别为4,6,过AB的中点E且平行BD,AC的截面四边形的周长为______.答案:10解析:解:设截面四边形为EFGH,F、G、H分别是BC、CD、DA的中点,∴EF=GH=2,FG=HE=3,∴周长为2×(2+3)=10.故答案为:10.16、正方体ABCD-A1B1C1D1中,EF AC⊥,EF A⊥1D则EF和BD1的关系是______.答案:平行解析:解:法一:根据图象可知:⊥,AC∩B1C=C,⊥1D,A1D B∥1C,B1C EFEF AC⊥,EF A∥.∴EF⊥面AB1C,而BD1⊥面AB1C,即BD1EF法二:建立以D1为原点的空间直角坐标系D1-xyz,且设正方形的边长为1所以就有D1(0,0,0),B(1,1,0),A1(1,0,0),D(0,0,1),A(1,0,1),C(0,1,1)所以=(-1,0,1),=(-1,1,0),=(-1,-1,1)⊥1,所以•=-1+1=0 所以A1D BD⊥1,•=1-1=0 所以AC BD所以BD1与A1D和AC都垂直又∵EF是AC、A1D的公共垂线,∥.∴BD1EF故答案为:平行.17、已知正方体AC1的棱长为1,点P是面AA1D1D的中心,点Q是面A1B1C1D1的对角线B1D1上一点,且PQ∥平面AA1B1B,则线段PQ的长为______.答案:解析:解:∵正方体AC1的棱长为1,点P是面AA1D1D的中心,点Q是面A1B1C1D1的对角线B1D1上一点,且PQ∥平面AA1B1B,连结AD1,AB1,∴由正方体的性质,得:AD1∩A1D=P,P是AD1的中点,∥1,PQ AB∴PQ=AB1==.故答案为:.18、如图,正方体ABCD-A1B1C1D1中,E,F分别为棱DD1,AB上的点.已知下列判断:①A 1C ⊥平面B 1EF ;②△B 1EF 在侧面BCC 1B 1上的正投影是面积为定值的三角形;③在平面A 1B 1C 1D 1内总存在与平面B 1EF 平行的直线;④平面B 1EF 与平面ABCD 所成的二面角(锐角)的大小与点E 的位置有关,与点F 的位置无关.其中正确结论的序号为______(写出所有正确结论的序号).答案:②③解析:解:若A 1C ⊥平面B 1EF ,则A 1C B ⊥1F ,由三垂线逆定理知:B 1F A ⊥1B ,又当F 与A 不重合时,B 1F 与A 1B 不垂直,∴①错误;∵E 在侧面BCC 1B 1上的投影在CC 1上,F 在侧面BCC 1B 1上的投影是B ,∴△B 1EF 在侧面BCC 1B 1上的正投影是三角形,三角形的面积S=×棱长×棱长为定值.∴②正确;设平面A 1B 1C 1D 1∩平面B 1EF=l ,∵平面A 1B 1C 1D 1内总存在与l 平行的直线,由线面平行的判定定理得与l 平行的直线,与平面B 1EF 平行,∴③正确;设E 与D 重合,F 位置变化,平面B 1EF 与平面ABCD 所成的二面角(锐角)的大小也在变化,∴④错误.故答案为:②③.19、如图,正方体ABCD-A 1B 1C 1D 1的棱长为4,E ,F 分别是棱CD 、C 1D 1的中点,长为2的线段MN 的一个端点M 在线段EF 上运动,另一个端点N 在底面A 1B 1C 1D 1上运动,则线段MN 的中点P 的轨迹(曲面)与二面角D-C 1D 1-B 1所围成的几何体的体积为______.答案:解析:解:依题意知|FP|=|MN|=1,因此点P的轨迹是以点F为球心、1为半径的球的.∴所求几何体的体积是×π×13=.故答案为:.∈1,且AM=BN,有以下四个结论:∈1,N BC20、如图,正方体ABCD-A1B1C1D1中,点M AB⊥;①AA1MN∥;②A1C1MN③MN与面A1B1C1D1成0°角;④MN与A1C1是异面直线.其中正确结论的序号是______.答案:①③解析:解:当M 为A ,N 为B ,排除②;当M 为B 1,N 为C 1,排除④.作MM′A ⊥1B 1于M′,作NN′B ⊥1C 1于N′,易证|MM′|=|NN′|,MM′NN′∥∴MN M′N′∥,由此知①③正确.故答案为:①③21、在正方体ABCD-A 1B 1C 1D 1中,过对角线BD 1的一个平面交AA 1于点E ,交CC 1于F ,①四边形BFD 1E 一定是平行四边形②四边形BFD 1E 有可能是正方形③四边形BFD 1E 在底面ABCD 内的投影一定是正方形④四边形BFD 1E 点有可能垂直于平面BB 1D以上结论正确的为______(写出所有正确结论的编号)答案:①③④解析:解:如图:①由平面BCB 1C 1∥平面ADA 1D 1,并且B 、E 、F 、D 1四点共面,∴ED 1BF ∥,同理可证,FD 1EB ∥,故四边形BFD 1E 一定是平行四边形,故①正确;②若BFD 1E 是正方形,有ED 1BE ⊥,这个与A 1D 1BE ⊥矛盾,故②错误;③由图得,BFD 1E 在底面ABCD 内的投影一定是正方形ABCD ,故③正确;④当点E 和F 分别是对应边的中点时,平面BFD 1E ⊥平面BB 1D 1,故④正确.故答案为:①③④.22、如图,正方体ABCD-A 1B 1C 1D 1中,对角线BD 1与过A 1、D 、C 1的平面交于点M ,则=______.答案:2解析:解:由正方体的性质可得:D 1B ⊥平面DA 1C 1,∴D 1M 是三棱锥D 1-A 1DC 1的高.不妨设正方体的棱长为1.∵=,∴=,解得D 1M==.∴=2.故答案为:2.∉,且A,那么k是A的一个“酷元”,23.设A是自然数集的一个非空子集,如果k2A⊆,且集合M中的两个元素都是“酷元”那么这样的结给定S={0,1,2,3,4,5},设M S合M有______个.答案:5解析:解:∵S={0,1,2,3,4,5},由题意可知:集合M不能含有0,1,也不能同时含有2,4故集合M可以是{2,3}、{2,5}、{3,5}、{3,4}、{4,5},共5个故答案为:524、如图,AC为圆O的直径,B为圆周上不与A、C重合的点,SA⊥圆O所在的平面,连接SB、SC、AB、BC,则图中直角三角形的个数是______.答案:4解析:解:题题意SA⊥圆O所在的平面,AC为圆O的直径,B为圆周上不与A、C重合的点,可得出AB,BC垂直由此两个关系可以证明出CB垂直于面SAB,由此可得△ADB,△SAC,△ABC,△SBC都是直角三角形故图中直角三角形的个数是4个故答案为:4.评卷人得 分三.简答题(共__小题)25、四棱锥P-ABCD中,底面ABCD为菱形,且∠DAB=60°,点P为平面ABCD所在平面外的⊥.一点,若△PAD为等边三角形,求证:PB AD答案:证明:如图,连结BD ,取AD 的中点E ,连结PE ,BE ;从而易知△ABD 也是等边三角形,又∵△PAD 为等边三角形,∴AD PE ⊥,AD BE ⊥,又∵PE∩BE=E ;故AD ⊥平面PBE ;故AD PB ⊥.解析:证明:如图,连结BD ,取AD 的中点E ,连结PE ,BE ;从而易知△ABD 也是等边三角形,又∵△PAD 为等边三角形,∴AD PE ⊥,AD BE ⊥,又∵PE∩BE=E ;故AD ⊥平面PBE ;故AD PB ⊥.26、如图,设三棱锥S-ABC 的三个侧棱与底面ABC 所成的角都是60°,又∠BAC=60°,且SA BC ⊥.(1)求证:S-ABC 为正三棱锥;(2)已知SA=a ,求S-ABC 的全面积.答案:(1)证明:正棱锥的定义中,底面是正多边形;顶点在底面上的射影是底面的中心,两个条件缺一不可.作三棱锥S-ABC 的高SO ,O 为垂足,连接AO 并延长交BC 于D .因为SA BC ⊥,所以AD BC ⊥.又侧棱与底面所成的角都相等,从而O 为△ABC 的外心,OD 为BC 的垂直平分线,所以AB=AC .又∠BAC=60°,故△ABC 为正三角形,且O 为其中心.所以S-ABC 为正三棱锥.(2)解:在Rt SAO △中,由于SA=a ,∠SAO=60°,所以SO=a ,AO=a .因O 为重心,所以AD=AO=a ,BC=2BD=2ADcot60°=a ,OD=AD=a .在Rt SOD △中,SD 2=SO 2+OD 2=(a )2+(a )2=,则SD=a .于是,(S S-ABC )全=•(a )2sin60°+3••a•a=a 2.解析:(1)证明:正棱锥的定义中,底面是正多边形;顶点在底面上的射影是底面的中心,两个条件缺一不可.作三棱锥S-ABC 的高SO ,O 为垂足,连接AO 并延长交BC 于D .因为SA BC ⊥,所以AD BC ⊥.又侧棱与底面所成的角都相等,从而O 为△ABC 的外心,OD 为BC 的垂直平分线,所以AB=AC .又∠BAC=60°,故△ABC 为正三角形,且O 为其中心.所以S-ABC 为正三棱锥.(2)解:在Rt SAO △中,由于SA=a ,∠SAO=60°,所以SO=a ,AO=a .因O 为重心,所以AD=AO=a ,BC=2BD=2ADcot60°=a ,OD=AD=a .在Rt SOD △中,SD 2=SO 2+OD 2=(a )2+(a )2=,则SD=a .于是,(S S-ABC )全=•(a )2sin60°+3••a•a=a 2.27、如图,E 、F 、G 、H 分别是空间四边形ABCD 四边上的中点.(1)若BD=2,AC=6,则EG 2+HF 2等于多少?(2)若AC 与BD 成30°的角,且AC=6,BD=4,则四边形EFGH 的面积等于多少?答案:解:(1)∵E 、F 、G 、H 分别是空间四边形ABCD 四边上的中点,∴EH BD ∥,且EH=BD ;FG BD ∥,且FG=BD ;∴EH FG ∥,且EH=FG ,∴四边形EFGH 是平行四边形;又BD=2,AC=6,∴EH=BD=1,EF=AC=3,在△EFG 和△HFG 中,由余弦定理得,EG 2=EF 2+FG 2-2EF•FG•cos EFG∠=32+12-2×3×1×cos EFG∠=10-6cos EFG ∠,HF 2=HG 2+FG 2-2HG•FG•cos FGH∠=32+12-2×3×1×cos (π-EFG ∠)=10+6cos EFG ∠,∴EG 2+HF 2=20;(2)∵AC 与BD 成30°的角,且EF AC ∥,FG BD ∥,∴∠EFG=30°,又AC=6,BD=4,∴EF=AC=3,FG=BD=2;∠.∴四边形EFGH的面积为S=EF•FG•sin EFG=3×2×sin30°=3解析:解:(1)∵E、F、G、H分别是空间四边形ABCD四边上的中点,∥,且EH=BD;∴EH BDFG BD∥,且FG=BD;∥,且EH=FG,∴EH FG∴四边形EFGH是平行四边形;又BD=2,AC=6,∴EH=BD=1,EF=AC=3,在△EFG和△HFG中,由余弦定理得,∠EG2=EF2+FG2-2EF•FG•cos EFG∠=32+12-2×3×1×cos EFG∠,=10-6cos EFG∠HF2=HG2+FG2-2HG•FG•cos FGH∠)=32+12-2×3×1×cos(π-EFG=10+6cos EFG∠,∴EG2+HF2=20;(2)∵AC 与BD 成30°的角,且EF AC ∥,FG BD ∥,∴∠EFG=30°,又AC=6,BD=4,∴EF=AC=3,FG=BD=2;∴四边形EFGH 的面积为S=EF•FG•sin EFG=3×2×sin30°=3∠.28、已知三棱锥S-ABC 的三条侧棱SA 、SB 、SC 两两互相垂直且长度分别为a 、b 、c ,设O 为S 在底面ABC 上的射影.求证:(1)O 为△ABC 的垂心;(2)O 在△ABC 内;(3)设SO=h ,则++=.答案:证明:(1)∵SA SB ⊥,SA SC ⊥,∴SA ⊥平面SBC ,BC ⊂平面SBC .∴SA BC ⊥.而AD 是SA 在平面ABC 上的射影,∴AD BC ⊥.同理可证AB CF ⊥,AC BE ⊥,故O 为△ABC 的垂心.(2)证明△ABC 为锐角三角形即可.不妨设a≥b≥c ,则底面三角形ABC 中,AB=为最大,从而∠ACB 为最大角.用余弦定理求得cos ACB=∠>0,∴∠ACB 为锐角,△ABC 为锐角三角形.故O 在△ABC 内.(3)SB•SC=BC•SD ,故SD=,=+,又SA•SD=AD•SO ,∴===+=++=.解析:证明:(1)∵SA SB ⊥,SA SC ⊥,∴SA ⊥平面SBC ,BC ⊂平面SBC .∴SA BC ⊥.而AD 是SA 在平面ABC 上的射影,∴AD BC ⊥.同理可证AB CF ⊥,AC BE ⊥,故O 为△ABC 的垂心.(2)证明△ABC 为锐角三角形即可.不妨设a≥b≥c ,则底面三角形ABC 中,AB=为最大,从而∠ACB 为最大角.用余弦定理求得cos ACB=∠>0,∴∠ACB 为锐角,△ABC 为锐角三角形.故O 在△ABC 内.(3)SB•SC=BC•SD ,故SD=,=+,又SA•SD=AD•SO ,∴===+=++=.29.已知正三棱锥的高为1,底面边长为2,其内有一个球和该三棱锥的四个面都相切,求:(1)棱锥的全面积;(2)球的半径R.答案:解:(1)设正三棱锥的底面中心为H,由题意知PH=1,边长BC=2,取BC中点E,连接HE、PE,则HE=S全=3×=9⊥于点G,(2)过O作OG PE∽△,且OG=OH=R,则△POG PEH∴,∴R=解析:解:(1)设正三棱锥的底面中心为H,由题意知PH=1,边长BC=2,取BC中点E,连接HE、PE,则HE=S全=3×=9⊥于点G,(2)过O作OG PE∽△,且OG=OH=R,则△POG PEH∴,∴R=30、如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC 的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC 的表面积;(2)求证AC ⊥平面DEF ;(3)若M 为BD 的中点,问AC 上是否存在一点N ,使MN ∥平面DEF ?若存在,说明点N 的位置;若不存在,试说明理由.答案:解:(1)∵AB ⊥平面BCD ,∴AB BC ⊥,AB BD ⊥.∵△BCD 是正三角形,且AB=BC=a ,∴AD=AC=.设G 为CD 的中点,则CG=,AG=.∴,,.三棱锥D-ABC 的表面积为.(2)取AC 的中点H ,∵AB=BC ,∴BH AC ⊥.∵AF=3FC ,∴F 为CH 的中点.∵E 为BC 的中点,∴EF BH ∥.则EF AC ⊥.∵△BCD 是正三角形,∴DE BC ⊥.∵AB ⊥平面BCD ,∴AB DE ⊥.∵AB∩BC=B ,∴DE ⊥平面ABC .∴DE AC ⊥.∵DE∩EF=E ,∴AC ⊥平面DEF .(3)存在这样的点N ,当CN=时,MN ∥平面DEF .连CM ,设CM∩DE=O ,连OF .由条件知,O 为△BCD 的重心,CO=CM .∴当CF=CN 时,MN OF ∥.∴CN=.解析:解:(1)∵AB ⊥平面BCD ,∴AB BC ⊥,AB BD ⊥.∵△BCD 是正三角形,且AB=BC=a ,∴AD=AC=.设G 为CD 的中点,则CG=,AG=.∴,,.三棱锥D-ABC 的表面积为.(2)取AC 的中点H ,∵AB=BC ,∴BH AC ⊥.∵AF=3FC ,∴F 为CH 的中点.∵E 为BC 的中点,∴EF BH ∥.则EF AC ⊥.∵△BCD 是正三角形,∴DE BC ⊥.∵AB ⊥平面BCD ,∴AB DE ⊥.∵AB∩BC=B ,∴DE ⊥平面ABC .∴DE AC ⊥.∵DE∩EF=E ,∴AC ⊥平面DEF .(3)存在这样的点N ,当CN=时,MN ∥平面DEF .连CM ,设CM∩DE=O ,连OF .由条件知,O 为△BCD 的重心,CO=CM .∴当CF=CN 时,MN OF ∥.∴CN=.。

2024届新高考数学大题精选30题--立体几何含答案

2024届新高考数学大题精选30题--立体几何含答案

大题立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,M是BC的中点,N是AB1的中点,P是B1C1的中点.(1)证明:MN⎳平面A1CP;(2)求点P到直线MN 的距离.2(2024·安徽合肥·二模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,M是侧棱PC的中点,侧面PAD为正三角形,侧面PAD⊥底面ABCD.(1)求三棱锥M-ABC的体积;(2)求AM与平面PBC所成角的正弦值.2024届新高考数学大题精选30题--立体几何3(2023·福建福州·模拟预测)如图,在三棱柱ABC-A1B1C1中,平面AA1C1C⊥平面ABC,AB= AC=BC=AA1=2,A1B=6.(1)设D为AC中点,证明:AC⊥平面A1DB;(2)求平面A1AB1与平面ACC1A1夹角的余弦值.4(2024·山西晋中·三模)如图,在六面体ABCDE中,BC=BD=6,EC⊥ED,且EC=ED= 2,AB平行于平面CDE,AE平行于平面BCD,AE⊥CD.(1)证明:平面ABE⊥平面CDE;(2)若点A到直线CD的距离为22,F为棱AE的中点,求平面BDF与平面BCD夹角的余弦值.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC-A1B1C1中,A1在平面ABC内的射影O在棱AC的中点处,P为棱A1B1(包含端点)上的动点.(1)求点P到平面ABC1的距离;(2)若AP⊥平面α,求直线BC1与平面α所成角的正弦值的取值范围.6(2024·重庆·模拟预测)在如图所示的四棱锥P-ABCD中,已知AB∥CD,∠BAD=90°,CD= 2AB,△PAB是正三角形,点M在侧棱PB上且使得PD⎳平面AMC.(1)证明:PM=2BM;(2)若侧面PAB⊥底面ABCD,CM与底面ABCD所成角的正切值为311,求二面角P-AC-B的余弦值.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.8(2024·重庆·模拟预测)如图,ACDE为菱形,AC=BC=2,∠ACB=120°,平面ACDE⊥平面ABC,点F在AB上,且AF=2FB,M,N分别在直线CD,AB上.(1)求证:CF⊥平面ACDE;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC=60°,MN为直线CD,AB的公垂线,求ANAF的值;(3)记直线BE与平面ABC所成角为α,若tanα>217,求平面BCD与平面CFD所成角余弦值的范围.9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.13(2024·广东广州·一模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,∠DCB=∠PCB=π4,点M,N分别为DP和AB的中点.(1)求证:MN⎳平面PBC;(2)求证:平面PBC⊥平面ABCD;(3)求CM与平面PAD所成角的正弦值.14(2024·广东梅州·二模)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,底面ABCD 为直角梯形,△PAD为等边三角形,AD⎳BC,AD⊥AB,AD=AB=2BC=2.(1)求证:AD⊥PC;(2)点N在棱PC上运动,求△ADN面积的最小值;(3)点M为PB的中点,在棱PC上找一点Q,使得AM⎳平面BDQ,求PQQC的值.15(2024·广东广州·模拟预测)如图所示,圆台O1O2的轴截面A1ACC1为等腰梯形,AC=2AA1= 2A1C1=4,B为底面圆周上异于A,C的点,且AB=BC,P是线段BC的中点.(1)求证:C1P⎳平面A1AB.(2)求平面A1AB与平面C1CB夹角的余弦值.16(2024·广东深圳·二模)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C⊥底面ABC,且AB= AC,A1B=A1C.(1)证明:AA1⊥平面ABC;(2)若AA1=BC=2,∠BAC=90°,求平面A1BC与平面A1BC1夹角的余弦值.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED ,求二面角P -EF -B 的正弦值.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC .(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.20(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.21(2024·山东济南·二模)如图,在四棱锥P-ABCD中,四边形ABCD为直角梯形,AB∥CD,∠DAB=∠PCB=60°,CD=1,AB=3,PC=23,平面PCB⊥平面ABCD,F为线段BC的中点,E为线段PF上一点.(1)证明:PF⊥AD;(2)当EF为何值时,直线BE与平面PAD夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD中,AB=2BC=4,∠ABC=60°,E为CD 的中点,将△ADE沿AE折起,连结BD,CD,且BD=4,如图2.(1)求证:图2中的平面ADE⊥平面ABCE;(2)在图2中,若点F在棱BD上,直线AF与平面ABCE所成的角的正弦值为3010,求点F到平面DEC 的距离.23(2024·福建·模拟预测)如图,在三棱锥P-ABC中,PA⊥PB,AB⊥BC,AB=3,BC=6,已知二面角P-AB-C的大小为θ,∠PAB=θ.(1)求点P到平面ABC的距离;(2)当三棱锥P-ABC的体积取得最大值时,求:(Ⅰ)二面角P-AB-C的余弦值;(Ⅱ)直线PC与平面PAB所成角.24(2024·浙江杭州·二模)如图,在多面体ABCDPQ中,底面ABCD是平行四边形,∠DAB=60°, BC=2PQ=4AB=4,M为BC的中点,PQ∥BC,PD⊥DC,QB⊥MD.(1)证明:∠ABQ=90°;(2)若多面体ABCDPQ的体积为152,求平面PCD与平面QAB夹角的余弦值.25(2024·浙江嘉兴·二模)在如图所示的几何体中,四边形ABCD为平行四边形,PA⊥平面ABCD,PA∥QD,BC=2AB=2PA=2,∠ABC=60°.(1)证明:平面PCD⊥平面PAC;(2)若PQ=22,求平面PCQ与平面DCQ夹角的余弦值.26(2024·浙江绍兴·二模)如图,在三棱锥P-ABC中,AB=4,AC=2,∠CAB=60°,BC⊥AP.(1)证明:平面ACP⊥平面ABC;(2)若PA=2,PB=4,求二面角P-AB-C的平面角的正切值.27(2024·河北沧州·一模)如图,在正三棱锥A -BCD 中,BC =CD =BD =4,点P 满足AP=λAC ,λ∈(0,1),过点P 作平面α分别与棱AB ,BD ,CD 交于Q ,S ,T 三点,且AD ⎳α,BC ⎳α.(1)证明:∀λ∈(0,1),四边形PQST 总是矩形;(2)若AC =4,求四棱锥C -PQST 体积的最大值.28(2024·湖北·二模)如图1.在菱形ABCD 中,∠ABC =120°,AB =4,AE =λAD ,AF =λAB(0<λ<1),沿EF 将△AEF 向上折起得到棱锥P -BCDEP .如图2所示,设二面角P -EF -B 的平面角为θ.(1)当λ为何值时,三棱锥P -BCD 和四棱锥P -BDEF 的体积之比为95(2)当θ为何值时,∀λ∈0,1 ,平面PEF 与平面PFB 的夹角φ的余弦值为5529(2024·湖北·模拟预测)空间中有一个平面α和两条直线m ,n ,其中m ,n 与α的交点分别为A ,B ,AB =1,设直线m 与n 之间的夹角为π3,(1)如图1,若直线m ,n 交于点C ,求点C 到平面α距离的最大值;(2)如图2,若直线m ,n 互为异面直线,直线m 上一点P 和直线n 上一点Q 满足PQ ⎳α,PQ ⊥n 且PQ ⊥m ,(i )求直线m ,n 与平面α的夹角之和;(ii )设PQ =d 0<d <1 ,求点P 到平面α距离的最大值关于d 的函数f d .30(2024·浙江绍兴·模拟预测)如图所示,四棱台ABCD -A 1B 1C 1D 1,底面ABCD 为一个菱形,且∠BAD =120°. 底面与顶面的对角线交点分别为O ,O 1. AB =2A 1B 1=2,BB 1=DD 1=392,AA 1与底面夹角余弦值为3737.(1)证明:OO 1⊥平面ABCD ;(2)现将顶面绕OO 1旋转θ角,旋转方向为自上而下看的逆时针方向. 此时使得底面与DC 1的夹角正弦值为64343,此时求θ的值(θ<90°);(3)求旋转后AA 1与BB 1的夹角余弦值.大题 立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,M 是BC 的中点,N 是AB 1的中点,P 是B 1C 1的中点.(1)证明:MN ⎳平面A 1CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析(2)3【分析】(1)建立如图空间直角坐标系A -xyz ,设平面A 1CP 的一个法向量为n=(x ,y ,z ),利用空间向量法证明MN ⋅n=0即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,AA 1⊥平面ABC ,∠BAC =60°,而AB ⊂平面ABC ,所以AA 1⊥AB ,在平面ABC 内过点A 作y 轴,使得AB ⊥y 轴,建立如图空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (1,3,0),A 1(0,0,2),B 1(2,0,2),得M 32,32,0,N (1,0,1),P 32,32,2,所以A 1C =(1,3,-2),A 1P =32,32,0 ,MN =-12,-32,1 ,设平面A1CP 的一个法向量为n=(x ,y ,z ),则n ⋅A 1C=x +3y -2z =0n ⋅A 1P =32x +32y =0,令x =1,得y =-3,z =-1,所以n=(1,-3,-1),所以MN ⋅n =-12×1+-32×(-3)+1×(-1)=0,又MN 不在平面A 1CP 内即MN ⎳平面A 1CP ;(2)如图,连接PM ,由(1)得PM =(0,0,-2),则MN ⋅PM =-2,MN =2,PM =2,所以点P 到直线MN 的距离为d =PM 2-MN ⋅PMPM2= 3.2(2024·安徽合肥·二模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,M 是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M -ABC 的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)3311.【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为32,进而由锥体体积公式求出答案;(2)证明出BO ⊥AD ,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为△PAD 是正三角形,所以PO ⊥AD .又因为平面PAD ⊥底面ABCD ,PO ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,且PO =3.又因为M 是PC 的中点,M 到平面ABCD 的距离为32,S △ABC =12×2×2×sin 2π3=3,所以三棱锥M -ABC 的体积为13×3×32=12.(2)连接BO ,BD ,因为∠BAD =π3,所以△ABD 为等边三角形,所以BO ⊥AD ,以O 为原点,OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则P 0,0,3 ,A 1,0,0 ,B 0,3,0 ,C -2,3,0 ,所以M -1,32,32 ,AM =-2,32,32,PB =0,3,-3 ,BC =-2,0,0 .设平面PBC 的法向量为n=x ,y ,z ,则PB ⋅n =0BC ⋅n =0,即3y -3z =0-2x =0 ,解得x =0,取z =1,则y =1,所以n=0,1,1 .设AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =AM ⋅nAM ⋅n=-2,32,32 ⋅0,1,14+34+34×1+1=3311.即AM 与平面PBC 所成角的正弦值为3311.3(2023·福建福州·模拟预测)如图,在三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C ⊥平面ABC ,AB =AC =BC =AA 1=2,A 1B =6.(1)设D 为AC 中点,证明:AC ⊥平面A 1DB ;(2)求平面A 1AB 1与平面ACC 1A 1夹角的余弦值.【答案】(1)证明见解析;(2)55【分析】(1)根据等边三角形的性质得出BD ⊥AC ,根据平面ACC 1A 1⊥平面ABC 得出BD ⊥平面ACC 1A 1,BD ⊥A 1D ,利用勾股定理得出AC ⊥A 1D ,从而证明AC ⊥平面A 1DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面A 1AB 1的法向量和平面ACC 1A 1的一个法向量,利用向量求平面A 1AB 1与平面ACC 1A 1的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且AB =AC =BC =2,所以在△ABC 中,有BD ⊥AC ,且BD =3,又平面ACC 1A 1⊥平面ABC ,且平面ACC 1A 1∩平面ABC =AC ,BD ⊂平面ABC ,所以BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,则BD ⊥A 1D ,由A 1B =6,BD =3,得A 1D =3,因为AD =1,AA 1=2,A 1D =3,所以由勾股定理,得AC ⊥A 1D ,又AC ⊥BD ,A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1DB ,所以AC ⊥平面A 1DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D -xyz ,可得A (1,0,0),A 1(0,0,3),B (0,3,0),则AA 1 =-1,0,3 ,AB=-1,3,0 ,设平面A 1AB 1的法向量为n=(x ,y ,z ),由n ⋅AA 1=-x +3z =0n ⋅AB=-x +3y =0,令x =3,得y =1,z =1,所以n=3,1,1 ,由(1)知,BD ⊥平面ACC 1A 1,所以平面ACC 1A 1的一个法向量为BD=(0,-3,0),记平面A 1AB 1与平面ACC 1A 1的夹角为α,则cos α=|n ⋅BD ||n ||BD |=35×3=55,所以平面A 1AB 1与平面ACC 1A 1夹角的余弦值为55.4(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC =BD =6,EC ⊥ED ,且EC =ED =2,AB 平行于平面CDE ,AE 平行于平面BCD ,AE ⊥CD .(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为22,F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析(2)10535【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接ME ,MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ∥ME .同理AE ∥MB ,所以四边形ABME 是平行四边形,故AE ∥MB ,AB ∥ME .因为CD ⊥AE ,AE ∥MB ,所以CD ⊥MB ,又BC =BD =6,所以M 为棱CD 的中点在△CDE 中,EC =ED ,MC =MD ,所以CD ⊥ME ,由于AB ∥ME ,故CD ⊥AB .而CD ⊥AE ,AB ∩AE =A ,AB ,AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面CDE .(2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD ⊥AM .而点A 到直线CD 的距离为22,故AM =2 2.在等腰直角三角形CDE 中,由EC =ED =2,得CD =2,MC =MD =ME =1.在等腰三角形BCD 中,由MC =MD =1,BC =BD =6,得BM = 5.在平行四边形ABME 中,AE =BM =5,AB =EM =1,AM =22,由余弦定理得cos ∠MEA =EM 2+AE 2-AM 22EM ·AE=-55,所以cos ∠BME =55,所以BE =BM 2+EM 2-2BM ·EM cos ∠BME =2.因为BE 2+ME 2=22+12=5 2=BM 2,所以BE ⊥ME .因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面CDE .如图,以E 为坐标原点,EC ,ED ,EB 分别为x ,y ,z 轴正方向,建立空间直角坐标系.则E 0,0,0 ,C 2,0,0 ,D 0,2,0 ,B 0,0,2 ,A -22,-22,2 ,F -24,-24,1.所以CD =-2,2,0 ,DB =0,-2,2 ,FB =24,24,1 .设平面BCD 的法向量为m=x 1,y 1,z 1 ,则m ⋅CD=0m ⋅DB =0,即-2x 1+2y 1=0-2y 1+2z 1=0 .则可取x 1=2,得m=2,2,2 .设平面BDF 的法向量为n =x 2,y 2,z 2 ,则n ⋅FB =0n ⋅DB=0,即24x 2+24y 2+z 2=0-2y 2+2z 2=0.取z 2=1,则n=-32,2,1 .设平面BDF 与平面BCD 的夹角为θ,则cos θ=m ⋅n m ⋅n =-3210×21=10535.所以平面BDF 与平面BCD 夹角的余弦值为10535.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC -A 1B 1C 1中,A 1在平面ABC 内的射影O 在棱AC 的中点处,P 为棱A 1B 1(包含端点)上的动点.(1)求点P 到平面ABC 1的距离;(2)若AP ⊥平面α,求直线BC 1与平面α所成角的正弦值的取值范围.【答案】(1)23913;(2)25,104.【分析】(1)以O 为原点建立空间直角坐标系,求出平面ABC 1的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,A 1O ⊥平面ABC ,OB ⊥AC (底面为正三角形),且A 1O =OB =3,以O 为原点,OB ,OC ,OA 1的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图,则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,0,3),C 1(0,2,3),AC 1 =(0,3,3),BC 1 =(-3,2,3),AA 1 =(0,1,3),由A 1B 1⎳AB ,A 1B 1⊄平面ABC 1,AB ⊂平面ABC 1,则A 1B 1⎳平面ABC 1,即点P 到平面ABC 1的距离等于点A 1到平面ABC 1的距离,设n =(x ,y ,z )为平面ABC 1的一个法向量,由n ⋅AC 1=3y +3z =0n ⋅BC 1=-3x +2y +3z =0,取z =3,得n=(1,-3,3),因此点A 1到平面ABC 1的距离d =|AA 1 ⋅n||n |=2313=23913,所以点P 到平面ABC 1的距离为23913.(2)设A 1P =λA 1B 1 ,λ∈[0,1],则AP =AA 1 +A 1P =AA 1 +λAB=(0,1,3)+λ(3,1,0)=(3λ,1+λ,3),由AP ⊥α,得AP为平面α的一个法向量,设直线BC 1与平面α所成角为θ,则sin θ=|cos ‹BC 1 ,AP ›|=|BC 1 ⋅AP||BC 1 ||AP |=|5-λ|10⋅3λ2+(1+λ)2+3=5-λ25⋅2λ2+λ+2,令t =5-λ,则λ=5-t ,t ∈[4,5],则sin θ=t 25⋅2(5-t )2+(5-t )+2=t25⋅2t 2-21t +57=125⋅2-21t+57t 2=125571t-7382+576,由t ∈[4,5],得1t ∈15,14 ,于是571t -738 2+576∈225,516,25⋅571t -738 2+576∈2105,52 ,则sin θ∈25,104,所以直线BC 1与平面α所成角的正弦值的取值范围是25,104.6(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB ∥CD ,∠BAD =90°,CD =2AB ,△PAB 是正三角形,点M 在侧棱PB 上且使得PD ⎳平面AMC .(1)证明:PM =2BM ;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD 所成角的正切值为311,求二面角P -AC -B 的余弦值.【答案】(1)证明见解析;(2)1010.【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB CD=EBED ,由线面平行的性质得PD ∥EM ,根据三角形相似可得EB ED =BM PM=12,即PM =2BM(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在△PAB 中过点M 作MF ∥PO 交AB 于点F ,得MF ⊥底面ABCD ,则∠MCF 为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG ⊥AC 于点G ,则∠PGO 是二面角P -AC -B 的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在△EAB 与△ECD 中,∵AB ∥CD ,∴AB CD=EBED ,由CD =2AB ,得ED =2EB ,又∵PD ⎳平面AMC ,而平面PBD ∩平面AMC =ME ,PD ⊂平面PBD ,∴PD ∥EM ,∴在△PBD 中,EB ED =BM PM=12,∴PM =2BM ;(2)设AB 的中点O ,在正△PAB 中,PO ⊥AB ,而侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在△PAB 中过点M 作MF ⎳PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴∠MCF 为CM 与底面ABCD 所成角,∴MF CF=311,设AB =6a ,则MF=3a,∴CF=11a,BF=MF3=a,则在直角梯形ABCD中,AF=5a,而CD=12a,则AD=11a2-12a-5a2=62a,在底面ABCD上过点O作OG⊥AC于点G,则∠PGO是二面角P-AC-B的平面角,易得OA=3a,AC=66a,在梯形ABCD中,由OAOG=ACAD⇒3aOG=66a62a,得OG=3a,在Rt△POG中,PG=30a,∴cos∠PGO=OGPG=1010.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取AB,CD的中点M,N,证得平面ADE⎳平面MNHG,得到AE⎳GH,再由平面ABG⎳平面CDEHG,证得AG⎳EH,得到平行四边形AGHE,得到GH=AE,求得HN=4,结合HN⊥平面ABCD,即可求解;(2)以点N为原点,建立空间直角坐标系,分别求得平面BFHG和平面AGHE的法向量n =(1,3,4)和m =(1,-3,4),结合向量的夹角公式,即可求解.【详解】(1)如图所示,取AB,CD的中点M,N,连接GM,MN,HN,因为GA=GB,可得GM⊥AB,又因为平面ABG⊥平面ABCD,且平面ABG∩平面ABCD=AB,GM⊂平面ABG,所以GM⊥平面ABCD,同理可得:HN⊥平面ABCD,因为ED⊥平面ABCD,所以ED⎳HN,又因为ED⊄平面MNHG,HN⊂平面MNHG,所以ED⎳平面MNHG,因为MN⎳AD,且AD⊄平面MNHG,MN⊂平面MNHG,所以AD⎳平面MNHG,又因为AD∩DE=D,且AD,DE⊂平面ADE,所以平面ADE⎳平面MNHG,因为平面AEHG与平面ADE和平面MNHG于AE,GH,可得AE⎳GH,又由GM⎳HN,AB⎳CD,且AB∩GM=M和CD∩HN=N,所以平面ABG⎳平面CDEHG,因为平面AEHG与平面ABG和平面CDEHF于AG,EH,所以AG⎳EH,可得四边形AGHE 为平行四边形,所以GH =AE ,因为AE =AD 2+DE 2=42+12=17,所以GH =17,在直角△AMG ,可得GM =GB 2-AB 22=52-42=3,在直角梯形GMNH 中,可得HN =3+17-42=4,因为HN ⊥平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以NM ,NC ,NH 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,-4,1),F (0,4,1),G (4,0,3),H (0,0,4),可得HE =(0,-4,-3),HF =(0,4,-3),HG=(4,0,-1),设平面BFHG 的法向量为n=(x ,y ,z ),则n ⋅HG=4x -z =0n ⋅HF=4y -3z =0,取z =4,可得x =1,y =3,所以n=(1,3,4),设平面AGHE 的法向量为m=(a ,b ,c ),则m ⋅HG=4a -c =0m ⋅HE=-4b -3c =0,取c =4,可得a =1,b =-3,所以m=(1,-3,4),则cos m ,n =m ⋅n m n=1-9+161+9+16⋅1+9+16=413,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8(2024·重庆·模拟预测)如图,ACDE 为菱形,AC =BC =2,∠ACB =120°,平面ACDE ⊥平面ABC ,点F 在AB 上,且AF =2FB ,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC =60°,MN 为直线CD ,AB 的公垂线,求ANAF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>217,求平面BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)AN AF=913(3)528,255 【分析】(1)先通过余弦定理及勾股定理得到CF ⊥AC ,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,利用向量的坐标运算根据MN ⋅CD =0MN ⋅AF =0,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>217列不等式求解.【详解】(1)AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos ∠ACB =12,AB =23,AF =2FB ,所以AF =433,CF=13CA +23CB ,CF 2=19CA 2+49CB 2+49CA ⋅CB =43,AC 2+CF 2=4+43=163=AF 2,则CF ⊥AC ,又因为平面ACDE ⊥平面ABC ,平面ACDE ∩平面ABC =AC ,CF ⊂面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,由∠EAC =60°,可得∠DCA =120°,DC =2,所以C 0,0,0 ,D -1,0,3 ,A 2,0,0 ,F 0,233,0 所以AF =-2,233,0 ,CD =-1,0,3 ,设AN =λAF =-2λ,233λ,0 ,则N 2-2λ,233λ,0 ,设CM =μCD ,则M -μ,0,3μ ,MN =2-2λ+μ,233λ,-3μ ,由题知,MN ⋅CD=0MN ⋅AF =0 ⇒2λ-2-μ-3μ=04λ-4-2μ+43λ=0 ,解得λ=913,μ=-213,故AN AF=913;(3)B -1,3,0 ,设∠EAC =θ,则E 2-2cos θ,0,2sin θ ,BE=3-2cos θ,-3,2sin θ ,可取平面ABC 的法向量n=0,0,1 ,则sin α=cos n ,BE=n ⋅BEn ⋅BE =2sin θ 3-2cos θ 2+3+4sin 2θ=sin θ4-3cos θ,cos α=4-3cos θ-sin 2θ4-3cos θ,则tan α=sin θ4-3cos θ-sin 2θ>217,整理得10cos 2θ-9cos θ+2<0,故cos θ∈25,12,CF =0,23,0,CD =-2cos θ,0,2sin θ ,CB =-1,3,0 ,记平面CDF 的法向量为n 1 =x ,y ,z ,则有n 1 ⋅CD =0n 1 ⋅CF =0 ⇒-2x cos θ+2z sin θ=023y =0,可得n 1=sin θ,0,cos θ ,记平面CBD 的法向量为n 2 =a ,b ,c ,则有n 2 ⋅CD=0n 2 ⋅CB =0 ⇒-2a cos θ+2c sin θ=0-a +3b =0,可得n 2=3sin θ,sin θ,3cos θ ,记平面BCD 与平面CFD 所成角为γ,则cos γ=cos n 1 ,n 2 =33+sin 2θ,cos θ∈25,12 ,所以sin 2θ∈34,2125 ,3+sin 2θ∈152,465 ,故cos γ=33+sin 2θ∈528,255 .9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .【答案】(1)证明见解析(2)∠MAD =45°【分析】(1)根据面面与线面垂直的性质可得BD ⊥AF ,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设∠MAD =α,AB =1,利用空间向量法求出二面角C -AM -E 的余弦值,建立方程1-sin αcos α1+sin 2α1+cos 2α=13,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF ⊥AB ,平面ABCD ∩平面ABEF =AB ,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD ⊥AF ,因为ABCD 是正方形,所以BD ⊥AC ,AC ,AF ⊂平面ACF ,AC ∩AF =A ,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设∠MAD =α,AB =1,则A 0,0,0 ,M cos α,sin α,0 ,C 1,0,1 ,E 0,1,1 ,故AM =cos α,sin α,0 ,AC =1,0,1 ,AE =0,1,1设平面AMC 的法向量为m =x 1,y 1,z 1 ,则m ⋅AC =0,m ⋅AM=0故x 1+z 1=0x 1cos α+y 1sin α=0,取x 1=sin α,则y 1=-cos α,z 1=-sin α所以m=sin α,-cos α,-sin α设平面AME 的法向量为n =x 2,y 2,z 2 ,n ⋅AE =0,n ⋅AM=0故y 2+z 2=0x 2cos α+y 2sin α=0,取x 2=sin α,则y 2=-cos α,z 2=cos α所以n=sin α,-cos α,cos α ,所以cos m ,n =1-sin αcos α1+sin 2α1+cos 2α,由已知得1-sin αcos α1+sin 2α1+cos 2α=13,化简得:2sin 22α-9sin2α+7=0,解得sin2α=1或sin2α=72(舍去)故α=45°,即∠MAD =45°.10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析(2)68585【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证DO 2⎳OO 1,进而可证矩形,即可根据线线平行以及平行的传递性求解.(2)建系,利用向量法,求解法向量n =1,-12,3 与方向向量DB =(-1,4,-3)的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,OO 1,O 1O 2,∵DA =DC ,O 为AC 中点,∴DO ⊥AC ,又平面DAC ⊥平面ABC ,且平面DAC ∩平面ABC =AC ,DO ⊂平面DAC ,∴DO ⊥平面ABC ,∴DO ⎳O 1O 2,DO =O 1O 2,故四边形DOO 1O 2为矩形,∴DO 2⎳OO 1,又O ,O 1分别是AC ,AB 的中点,∴OO 1⎳BC ,∴DO 2⎳BC ;(2)∵C 是圆O 1上异于A ,B 的点,且AB 为圆O 1的直径,∴BC ⊥AC ,∴OO 1⊥AC ,∴如图以O 为原点建立空间直角坐标系,由条件知DO =3,∴A (1,0,0),B (-1,4,0),C (-1,0,0),D (0,0,3),∴E -12,0,32 ,设F (x ,y ,z ),∴BF =(x +1,y -4,z ),FD=(-x ,-y ,3-z ),由BF =2FD ,得F -13,43,233 ,∴AF =-43,43,233 ,∴DB =(-1,4,-3),AE =-32,0,32 ,设平面AEF 法向量为n=(x 1,y 1,z 1),则n ⋅AE=-32x 1+32z 1=0n ⋅AF =-43x 1+43y 1+233z 1=0,取n =1,-12,3 ,设直线BD 与平面AEF 所成角为θ,则sin θ=|cos <n ,DB>|=625⋅172=68585∴直线BD 与平面AEF 所成角的正弦值为68585.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.【答案】(1)证明见解析(2)241391【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵A 1B 1=12AB ,∴AA 1 ⋅AB =AA 1 ⋅AD =22×22=2.∵D 1A =-12AD-AA 1∴D 1P =D 1A +AP =1-λ AB +12λ-12AD+λ-1 AA 1∴D 1P ⋅AC =1-λ AB +12λ-12AD +λ-1 AA 1 ⋅AB +AD =1-λ AB 2+12λ-12 AD2+λ-1 AB ⋅AA 1 +λ-1 AD ⋅AA 1=81-λ +812λ-12+4λ-1 =0.∴D 1P ⊥AC ,即D 1P ⊥AC .方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h ,则有 A 2,-2,0 ,B 2,2,0 ,C -2,2,0 ,D -2,-2,0 ,A 122,-22,h ,C 1-22,22,h ,D 1-22,-22,h ,M 0,2,0 ,AC =-22,22,0AP =1-λ 0,22,0 +12λ-22,0,0 +λ-22,22,0 =-322λ,22-322λ,λhD 1A =322,-22,-h ,D 1P =D 1A +AP =-322λ+322,-322λ+322,λh -h .故AC ⋅D 1P=0,所以D 1P ⊥AC .(2)设平面ABCD 的法向量为n=0,0,1 ,设平面AMC 1的法向量为m =x ,y ,z ,AM =-2,22,0 ,AC 1 =-322,322,h ,则有AM ⋅m=0AC 1 ⋅m=0 ,即-2x +22y =0-322x +322y +hz =0,令x =22h ,则m=22h ,2h ,3 .又题意可得cos m ,n =38h 2+2h 2+9=37,可得h =2.因为λ=23,经过计算可得P 0,0,43 ,D 1-22,-22,2 ,D 1P =2,2,43.将h =2代入,可得平面AMC 1的法向量m=42,22,3 .设直线DP 与平面AMC 1所成角的为θsin θ=cos DP ,m =8+4+42+2+16932+8+9=241391.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.【答案】(1)证明见详解(2)-22【分析】(1)连接BC 1,交B 1C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,△AA 1C 为等边三角形,故A 1E ⊥AC ,利用面面垂直的性质定理可证得A 1E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接BC 1,交B 1C 于点N ,连接NE ,因为侧面BCC 1B 1是平行四边形,所以N 为B 1C 的中点,又因为点E 为线段AC 的中点,所以NE ⎳AB 1,因为AB 1⊄面BEC 1,NE ⊂面BEC 1,所以AB 1⎳面BEC 1.(2)连接A 1C ,A 1E ,因为∠A 1AC =π3,AC =AA 1=2,所以△AA 1C 为等边三角形,A 1C =2,因为点E 为线段AC 的中点,所以A 1E ⊥AC ,因为侧面ACC 1A 1⊥底面ABC ,平面ACC 1A 1∩平面ABC =AC ,A 1E ⊂平面ACC 1A 1,所以A 1E ⊥底面ABC ,过点E 在底面ABC 内作EF ⊥AC ,如图以E 为坐标原点,分布以EF ,EC ,EA 1 的方向为x ,y ,z 轴正方向建立空间直角坐标系,则E 0,0,0 ,B 32,-12,0 ,C 10,2,3 ,所以EB =32,-12,0 ,EC 1 =0,2,3 ,设平面BEC 1的法向量为m=x ,y ,z ,则m ⋅EB =32x -12y =0m ⋅EC 1=2y +3z =0,令x =1,则y =3,z =-2,所以平面BEC 1的法向量为m=1,3,-2 ,又因为平面ABE 的法向量为n=0,0,1 ,则cos m ,n =-21+3+4=-22,经观察,二面角A -BE -C 1的平面角为钝角,所以二面角A -BE -C 1的余弦值为-22.13(2024·广东广州·一模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△DCP 是等边三角形,∠DCB =∠PCB =π4,点M ,N 分别为DP 和AB 的中点.(1)求证:MN ⎳平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)33.【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ ⊥BC 于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接ME ,BE ,由M 为DP 中点,N 为AB 中点,得ME ⎳DC ,ME =12DC ,又BN ⎳CD ,BN =12CD ,则ME ⎳BN ,ME =BN ,因此四边形BEMN 为平行四边形,于是MN ⎳BE ,而MN ⊄平面PBC ,BE ⊂平面PBC ,所以MN ⎳平面PBC .(2)过P 作PQ ⊥BC 于点Q ,连接DQ ,由∠DCB =∠PCB =π4,CD =PC ,QC =QC ,得△QCD ≌△QCP ,则∠DQC =∠PQC =π2,即DQ ⊥BC ,而PQ =DQ =2,PQ 2+DQ 2=4=PD 2,因此PQ ⊥DQ ,又DQ ∩BC =Q ,DQ ,BC ⊂平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线QC ,QD ,QP 两两垂直,以点Q 为原点,直线QC ,QD ,QP 分别为x ,y ,z 轴建立空间直角坐标系,则C (2,0,0),P (0,0,2),D (0,2,0),M 0,22,22,A (-2,2,0),CM =-2,22,22,AD =(2,0,0),DP =(0,-2,2),设平面PAD 的一个法向量n =(x ,y ,z ),则n ⋅AD=2x =0n ⋅DP=-2y +2z =0,令y =1,得n=(0,1,1),设CM 与平面PAD 所成角为θ,sin θ=|cos ‹CM ,n ›|=|CM ⋅n||CM ||n |=23⋅2=33,所以CM 与平面PAD 所成角的正弦值是33.14(2024·广东梅州·二模)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,△PAD 为等边三角形,AD ⎳BC ,AD ⊥AB ,AD =AB =2BC =2.(1)求证:AD ⊥PC ;(2)点N 在棱PC 上运动,求△ADN 面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得AM ⎳平面BDQ ,求PQQC的值.【答案】(1)证明见解析(2)2217(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH ⊥AD ,再由PH ⊥AD ,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到CG AG=12,再根据线面平行的性质得到CF FM =12,在△PBC 中,过点M 作MK ⎳PC ,即可得到MKCQ=2,最后由PQ =2MK 即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则AH ⎳BC 且AH =BC ,又AD ⊥AB ,所以四边形ABCH 为矩形,所以CH ⊥AD ,又△PAD 为等边三角形,所以PH ⊥AD ,PH ∩CH =H ,PH ,CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD ⊥PC .(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD ⊥HN ,所以S △ADH =12AD ⋅HN =HN ,要使△ADN 的面积最小,即要使HN 最小,当且仅当HN ⊥PC 时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH ⊥HC ,在Rt △HPC 中,CH =2,PH =3,所以PC =CH 2+PH 2=7,当HN ⊥PC 时HN =PH ⋅CH PC =237=2217,所以△ADN 面积的最小值为2217.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为AD ⎳BC 且AD =2BC =2,所以△CGB ∽△AGD ,所以CG AG =BC AD=12,因为AM ⎳平面BDQ ,又AM ⊂平面ACM ,平面BDQ ∩平面ACM =GF ,所以GF ⎳AM ,所以CF FM =CG AG=12,在△PBC 中,过点M 作MK ⎳PC ,则有MK CQ =MF CF=2,所以PQ =2MK ,所以PQ =2MK =4CQ ,即PQQC=415(2024·广东广州·模拟预测)如图所示,圆台O 1O 2的轴截面A 1ACC 1为等腰梯形,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点,且AB =BC ,P 是线段BC 的中点.(1)求证:C 1P ⎳平面A 1AB .(2)求平面A 1AB 与平面C 1CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接A 1H ,PH ,证明四边形A 1C 1PH 为平行四边形,进而得C 1P ⎳A 1H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接A1H ,PH ,如图所示,因为P 为BC 的中点,所以PH ⎳AC ,PH =12AC .在等腰梯形A 1ACC 1中,A 1C 1⎳AC ,A 1C 1=12AC ,所以HP ⎳A 1C 1,HP =A 1C 1,所以四边形A 1C 1PH 为平行四边形,所以C 1P ⎳A 1H ,又A 1H ⊂平面A 1AB ,C 1P ⊄平面A 1AB ,所以C 1P ⎳平面A 1AB .(2)因为AB =BC ,故O 2B ⊥AC ,以直线O 2A ,O 2B ,O 2O 1分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高为h =AA 21-AC -A 1C 122= 3.因为A 1C 1=12AC ,A 1C 1⎳AC ,。

高中数学立体几何试题及答案[1]

高中数学立体几何试题及答案[1]

立体几何专题训练一、选择题(每题5分,共60分)1.在一个几何体的三视图中,正视图和俯视图如右图,则相应的侧视图可以为( )2.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为( )3.(2011年高考湖南卷文科4)设图1是某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+ C.9122π+ D.9182π+4.某几何体的三视图如图所示,则它的体积是( )(A )283π-(B )83π- (C )82π- (D )23π5.一个正三棱柱的侧棱长和底面边长相等,体积为的三视图中的俯视图如右图所示.左视图是一个矩形.则这个矩形的面积是( )(A)4 (B)6.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是( )(A )1223,l l l l ⊥⊥⇒1l //2l (B )12l l ⊥,1l //3l ⇒32l l ⊥ (C )1l //2l //3l ⇒ 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面7.若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于 ( )B.2C.D.68.在空间,下列命题正确的是( ) A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行正视图侧视图俯视图 图19.一个几何体的三视图如图,该几何体的表面积是()(A)372 (B)360(C)292 (D)28010.设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为( ) (A)3πa2 (B)6πa2(C)12πa2 (D)24πa211.设球的体积为V1,它的内接正方体的体积为V2,下列说法中最合适的是( )A. V1比V2大约多一半B. V1比V2大约多两倍半C. V1比V2大约多一倍D. V1比V2大约多一倍半12.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是( )(A)3 (B)2 (C)1 (D)0二、填空题(每题4分,共16分)13.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于_____________.14.一个几何体的三视图如图所示,则这个几何体的体积为.15.已知四棱椎P ABCD-的底面是边长为6 的正方形,侧棱PA⊥底面ABCD,且8PA=,则该四棱椎的体积是。

(精选试题附答案)高中数学第八章立体几何初步知识总结例题

(精选试题附答案)高中数学第八章立体几何初步知识总结例题

(名师选题)(精选试题附答案)高中数学第八章立体几何初步知识总结例题单选题1、如图,在梯形ABCD 中,AB ∥DC 且AB =2DC ,点E 为线段BC 的靠近点C 的一个四等分点,点F 为线段AD 的中点,AE 与BF 交于点O ,且AO⃑⃑⃑⃑⃑ =xAB ⃑⃑⃑⃑⃑ +yBC ⃑⃑⃑⃑⃑ ,则x +y 的值为( )A .1B .57C .1417D .56答案:C分析:由向量的线性运算法则化简得到AO ⃑⃑⃑⃑⃑ ==(x −y 2)AB ⃑⃑⃑⃑⃑ +2yAF ⃑⃑⃑⃑⃑ 和BO ⃑⃑⃑⃑⃑ =(1−x)BA ⃑⃑⃑⃑⃑ +4y 3BE ⃑⃑⃑⃑⃑ ,结合B,O,F 三点共线和A,O,E 三点共线,得出2x +3y −2=0和3x −4y =0,联立方程组,即可求解.根据向量的线性运算法则,可得AO⃑⃑⃑⃑⃑ =xAB ⃑⃑⃑⃑⃑ +yBC ⃑⃑⃑⃑⃑ =xAB ⃑⃑⃑⃑⃑ +y(BA ⃑⃑⃑⃑⃑ +AC ⃑⃑⃑⃑⃑ ) =xAB⃑⃑⃑⃑⃑ −yAB ⃑⃑⃑⃑⃑ +yAC ⃑⃑⃑⃑⃑ =(x −y)AB ⃑⃑⃑⃑⃑ +y ⋅(AD ⃑⃑⃑⃑⃑ +DC ⃑⃑⃑⃑⃑ ) =(x −y)AB ⃑⃑⃑⃑⃑ +y ⋅(2AF ⃑⃑⃑⃑⃑ +12AB ⃑⃑⃑⃑⃑ )=(x −y)AB ⃑⃑⃑⃑⃑ +2yAF ⃑⃑⃑⃑⃑ +12yAB ⃑⃑⃑⃑⃑ =(x −y 2)AB ⃑⃑⃑⃑⃑ +2yAF ⃑⃑⃑⃑⃑ , 因为B,O,F 三点共线,可得x −y 2+2y =1,即2x +3y −2=0; 又由BO ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ +AO ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ +xAB ⃑⃑⃑⃑⃑ +yBC ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ −xBA ⃑⃑⃑⃑⃑ +y ⋅43BE ⃑⃑⃑⃑⃑ =(1−x)BA ⃑⃑⃑⃑⃑ +4y 3BE ⃑⃑⃑⃑⃑ , 因为A,O,E 三点共线,可得1−x +4y 3=1,即3x −4y =0,联立方程组{2x +3y −2=03x −4y =0,解得x =817,y =617,所以x +y =1417. 故选:C.2、紫砂壶是中国特有的手工陶土工艺品,经典的有西施壶,石瓢壶,潘壶等,其中石瓢壶的壶体可以近似看成一个圆台,如图给了一个石瓢壶的相关数据(单位:cm),那么该壶的容积约为()A.100cm3B.200cm3C.300cm3D.400cm3答案:B分析:根据题意可知圆台上底面半径为3,下底面半径为5,高为4,由圆台的结构可知该壶的容积为大圆锥的体积减去小圆锥的体积,设大圆锥的高为ℎ,所以ℎ−4ℎ=610,求出ℎ的值,最后利用圆锥的体积公式进行运算,即可求出结果.解:根据题意,可知石瓢壶的壶体可以近似看成一个圆台,圆台上底面半径为3,下底面半径为5,高为4,可知该壶的容积为大圆锥的体积减去小圆锥的体积,设大圆锥的高为ℎ,所以ℎ−4ℎ=610,解得:ℎ=10,则大圆锥的底面半径为5,高为10,小圆锥的底面半径为3,高为6,所以该壶的容积V=13×π×52×10−13×π×32×6=1963π≈200cm3.故选:B.3、在空间中,下列命题是真命题的是( )A .经过三个点有且只有一个平面B .平行于同一平面的两直线相互平行C .如果两个角的两条边分别对应平行,那么这两个角相等D .如果两个相交平面垂直于同一个平面,那么它们的交线也垂直于这个平面答案:D分析:由三点共线判断A ;由线面、线线位置关系判断B ;根据等角定理判断C ;由线面平行和垂直的判定以及性质判断D.当三点在一条直线上时,可以确定无数个平面,故A 错误;平行于同一平面的两直线可能相交,故B 错误;由等角定理可知,如果两个角的两条边分别对应平行,那么这两个角相等或互补,故C 错误;如果两个相交平面α,β垂直于同一个平面γ,且α∩β=l ,则在平面α、β内分别存在直线m,n 垂直于平面γ,由线面垂直的性质可知n //m ,再由线面平行的判定定理得m //β,由线面平行的性质得出m //l ,则l ⊥γ,故D 正确; 故选:D4、在△ABC 中,AB =1,AC =2,∠BAC =60°,P 是△ABC 的外接圆上的一点,若AP⃑⃑⃑⃑⃑ =mAB ⃑⃑⃑⃑⃑ + nAC ⃑⃑⃑⃑⃑ ,则m +n 的最小值是( )A .−1B .−12C .−13D .−16 答案:B分析:先解三角形得到△ABC 为直角三角形,建立直角坐标系,通过AP⃑⃑⃑⃑⃑ =mAB ⃑⃑⃑⃑⃑ + nAC ⃑⃑⃑⃑⃑ 表示出m +n ,借助三角函数求出最小值.由余弦定理得BC 2=AB 2+AC 2−2AB ⋅AC ⋅cos∠BAC = 1+4−2×1×2×cos 60∘=3,所以BC =√3,所以AB 2+BC 2=AC 2,所以AB ⊥BC .以AC 的中点为原点,建立如图所示的平面直角坐标系,易得A (-1,0),C (1,0),B (-12,√32),设P 的坐标为(cosθ,sinθ),所以AB ⃑⃑⃑⃑⃑ =(12,√32),AC ⃑⃑⃑⃑⃑ =(2,0),AP ⃑⃑⃑⃑⃑ = (cosθ+1,sinθ),又AP ⃑⃑⃑⃑⃑ =mAB ⃑⃑⃑⃑⃑ +nAC ⃑⃑⃑⃑⃑ ,所以(cosθ+1,sinθ)=m (12,√32)+ n (2,0)=(m 2+2n ,√32m),所以m =2√33sin θ,n =cos θ2+12−√36sin θ,所以m +n =2√33sin θ+cos θ2+12−√36sin θ =√32sin θ+cos θ2+12=sin (θ+π6)+12≥−1+12=−12,当且仅当sin (θ+π6)=−1时,等号成立.故选:B .5、如图是长方体被一平面所截得到的几何体,四边形EFGH 为截面,长方形ABCD 为底面,则四边形EFGH 的形状为( )A .梯形B .平行四边形C .可能是梯形也可能是平行四边形D .矩形答案:B解析:利用面面平行的性质判断EF 与GH 的平行、EH 与FG 平行.因为平面ABFE //平面CGHD ,且平面EFGH ∩平面ABFE =EF ,平面EFGH ∩平面CGHD =GH ,根据面面平行的性质可知EF //GH ,同理可证明EH //FG .所以四边形EFGH 为平行四边形.故选:B.小提示:本题考查长方体截面形状判断,考查面面平行的性质应用,较简单.6、已知正四棱锥的底面边长为6,侧棱长为5,则此棱锥的侧面积为( )A .6B .12C .24D .48答案:D分析:首先由勾股定理求出斜高,即可求出侧面积;解:正四棱锥的底面边长为6,侧棱长为5,则其斜高ℎ′=√52−(62)2=4,所以正四棱锥的侧面积S =12×4×6×4=48故选:D7、若直线a ⊥平面α,直线b ⊥平面α,则直线a 与直线b 的位置关系为( )A .异面B .相交C .平行D .平行或异面答案:C解析:利用线面垂直的性质定理进行判断.由于垂直于同一平面的两直线平行,故当直线a ⊥平面α,直线b ⊥平面α时,直线a 与直线b 平行.故选:C.8、下图是一个圆台的侧面展开图,若两个半圆的半径分别是1和2,则该圆台的体积是( )A .7√2π24B .7√3π24C .7√2π12D .7√3π12答案:B分析:先计算出上下底面的半径和面积,再求出圆台的高,按照圆台体积公式计算即可.如图,设上底面的半径为r ,下底面的半径为R ,高为ℎ,母线长为l ,则2πr =π⋅1,2πR =π⋅2,解得r =12,R =1,l =2−1=1,ℎ=√l 2−(R −r )2=√12−(12)2=√32, 设上底面面积为S ′=π⋅(12)2=π4,下底面面积为S =π⋅12=π,则体积为13(S +S ′+√SS ′)ℎ=13(π+π4+π2)⋅√32=7√3π24. 故选:B.9、下列说法正确的有( )①两个面平行且相似,其余各面都是梯形的多面体是棱台;②经过球面上不同的两点只能作一个大圆;③各侧面都是正方形的四棱柱一定是正方体;④圆锥的轴截面是等腰三角形.A .1个B .2个C .3个D .4个答案:A解析:根据棱台、球、正方体、圆锥的几何性质,分析判断,即可得答案.①中若两个底面平行且相似,其余各面都是梯形,并不能保证侧棱延长线会交于一点,所以①不正确; ②中若球面上不同的两点恰为球的某条直径的两个端点,则过此两点的大圆有无数个,所以②不正确; ③中底面不一定是正方形,所以③不正确;④中圆锥的母线长相等,所以轴截面是等腰三角形,所以④是正确的.故选:A10、如图,“蘑菇”形状的几何体是由半个球体和一个圆柱体组成,球的半径为2,圆柱的底面半径为1,高为3,则该几何体的表面积为()D.26πA.18πB.20πC.22π3答案:A分析:由题意可知该几何体的体积是由半球的表面积加上圆柱的侧面积,再加上圆的面积即可解:由题意得,球的半径R=2,圆柱的底面半径r=1,高ℎ=3,则该几何体的表面积为S=2πR2+πR2+2πrℎ=8π+4π+2π×1×3=18π故选:A.填空题11、如图,点P,Q,R,S分别在正方体的四条棱上,且是所在棱的中点,则直线PQ与RS是平行直线的图是________(填序号).答案:①②分析:根据正方体的结构特征,以及两直线的位置关系的判定方法,即可求解.根据正方体的结构特征,可得①②中RS 与PQ 均是平行直线,④中RS 和PQ 是相交直线,③中RS 和PQ 是是异面直线.所以答案是:①②.12、在正三棱锥S −ABC 中,AB =BC =CA =6,点D 是SA 的中点,若SB ⊥CD ,则该三棱锥外接球的表面积为___________.答案:54π分析:通过线面垂直的判定定理和性质可得出SA ,SB ,SC 两两垂直,则可求出外接球的半径,进而求出球的表面积.设△ABC 的中心为G ,连接SG ,BG ,∴SG ⊥平面ABC ,∵AC ⊂面ABC ,∴SG ⊥AC ,又AC ⊥BG ,BG ∩SG =G ,∴AC ⊥平面SBG ,∵SB ⊂平面SBG ,∴AC ⊥SB ,又SB ⊥CD ,AC ∩CD =C ,∴SB ⊥平面ACS .∵SA,SC ⊂平面ACS ,∴SB ⊥SA,SB ⊥SC ,∵S −ABC 为正三棱锥,∴SA ,SB ,SC 两两垂直,∴SA =SB =SC =3√2,故外接球直径为√(3√2)2+(3√2)2+(3√2)2=3√6,故三棱锥S −ABC 外接球的表面积为4π×(3√62)2=54π.所以答案是:54π.小提示:本题考查三棱锥的外接球问题,解题的关键是通过线面垂直的判定定理和性质可得出SA,SB,SC两两垂直,即可求出半径.13、一个圆锥的母线长为20,母线与轴的夹角为60∘,则圆锥的高为________.答案:10分析:利用圆锥的几何性质可求得该圆锥的高.由题意可知,该圆锥的高为ℎ=20cos60∘=10.所以答案是:10.14、已知a,b表示两条直线,α,β,γ表示三个不重合的平面,给出下列命题:①若α∩γ=a,β∩γ=b,且a//b,则α//β;②若a,b相交且都在α,β外,a//α,b//β,则α//β;③若a//α,a//β,则α//β;④若a⊂α,a//β,α∩β=b,则a//b.其中正确命题的序号是________.答案:④分析:根据线线、线面、面面之间的位置关系即可得出结果.解析:①错误,α与β也可能相交;②错误,α与β也可能相交;③错误,α与β也可能相交;④正确,由线面平行的性质定理可知.所以答案是:④15、如图,已知正三棱柱ABC—A′B′C′的底面边长为1cm,侧面积为9cm2,则一质点自点A出发,沿着三棱柱的侧面绕行一周到达点A′的最短路线的长为___________cm.答案:3√2分析:将三棱柱侧面展开如图,得到展开图的对角线即为最短距离,根据棱柱的侧面积求出高,再利用勾股定理计算可得.解:将正三棱柱ABC—A′B′C′沿侧棱展开,其侧面展开图如图所示,依题意AB=BC=AA1=1cm,由侧面积为9cm2,所以C△ABC⋅AA′=9,则AA′=3cm,依题意沿着三棱柱的侧面绕行一周到达点A′的最短路线为|AA′1|=√AA12+A1A1′2=√32+32=3√2cm;所以答案是:3√2解答题16、两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB且AM=FN,过点M作MH⊥AB于点H.求证:平面MNH∥平面BCE.答案:证明见解析分析:结合正方形性质可知MH//BC,即MH//平面BCE,同时AMAC =AHAB,又由条件可知FNBF=AMAC,即可判断NH//AF//BE,进而证明即可.证明:因为正方形ABCD中MH⊥AB,BC⊥AB,所以MH//BC,则AMAC =AHAB,因为BC⊂平面BCE,所以MH//平面BCE因为BF=AC,AM=FN,所以FNBF =AMAC,所以FNBF =AHAB,所以NH//AF//BE,因为BE⊂平面BCE,则NH//平面BCE因为MH⊂平面MNH,NH⊂平面MNH,MH∩NH=H,所以平面MNH//平面BCE17、如图,一个三棱柱的底面是边长为2的正三角形,侧棱CC1⊥底面ABC,CC1=3.有一只小虫从点A沿三个侧面爬到点A1,求小虫爬行的最短路程.答案:3√5分析:沿AA1将三棱柱的侧面展开,可得到矩形AA1D1D,计算出该矩形的对角线AD1的长,即为所求. 解:沿AA1将三棱柱的侧面展开,则展开后的图形是矩形AA1D1D,如下图所示:且AD=3×2=6,DD1=3,所以,小虫爬行的最短路程为AD1的长,且AD1=√AD2+DD12=3√5.18、某圆锥的侧面展开图的面积为12π,扇形的圆心角α[α∈(0,π)]的正切值为−√3,求圆锥的体积.答案:16√2π3分析:由扇形的面积公式与圆锥的体积公式求解设圆锥的底面圆半径为r,母线长为l,高为ℎ.由扇形的圆心角的正切值为−√3,得扇形的圆心角为2π3.因为扇形的面积为12π,所以12×2π3l2=12π,解得l=6.又圆锥底面周长为2πr=2π3l=4π,解得r=2,所以圆锥的高ℎ=√l2−r2=√62−22=4√2,所以圆锥的体积V=π3×22×4√2=16√2π3.19、如图,四棱锥P−ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.(1)证明:平面PAM⊥平面PBD;(2)若PD=DC=1,求四棱锥P−ABCD的体积.答案:(1)证明见解析;(2)√23.分析:(1)由PD⊥底面ABCD可得PD⊥AM,又PB⊥AM,由线面垂直的判定定理可得AM⊥平面PBD,再根据面面垂直的判定定理即可证出平面PAM⊥平面PBD;(2)由(1)可知,AM⊥BD,由平面知识可知,△DAB~△ABM,由相似比可求出AD,再根据四棱锥P−ABCD的体积公式即可求出.(1)因为PD⊥底面ABCD,AM⊂平面ABCD,所以PD⊥AM,又PB⊥AM,PB∩PD=P,所以AM⊥平面PBD,而AM⊂平面PAM,所以平面PAM⊥平面PBD.(2)[方法一]:相似三角形法由(1)可知AM⊥BD.于是△ABD∽△BMA,故ADAB =ABBM.因为BM=12BC,AD=BC,AB=1,所以12BC2=1,即BC=√2.故四棱锥P−ABCD的体积V=13AB⋅BC⋅PD=√23.[方法二]:平面直角坐标系垂直垂直法由(2)知AM ⊥DB ,所以k AM ⋅k BD =−1.建立如图所示的平面直角坐标系,设BC =2a(a >0).因为DC =1,所以A(0,0),B(1,0),D(0,2a),M(1,a).从而k AM ⋅k BD =a−01−0×2a−00−1=a ×(−2a)=−2a 2=−1.所以a =√22,即DA =√2.下同方法一.[方法三]【最优解】:空间直角坐标系法建立如图所示的空间直角坐标系D −xyz ,设|DA|=t ,所以D(0,0,0),C(0,1,0),P(0,0,1),A(t,0,0),B(t,1,0).所以M (t 2,1,0),PB ⃑⃑⃑⃑⃑ =(t,1,−1),AM ⃑⃑⃑⃑⃑⃑ =(−t 2,1,0). 所以PB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =t ⋅(−t 2)+1×1+0×(−1)=−t 22+1=0. 所以t =√2,即|DA|=√2.下同方法一.[方法四]:空间向量法由PB ⊥AM ,得PB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.所以(PD ⃑⃑⃑⃑⃑ +DA ⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ )⋅AM ⃑⃑⃑⃑⃑⃑ =0.即PD ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +DA ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.又PD ⊥底面ABCD ,AM 在平面ABCD 内,因此PD ⊥AM ,所以PD ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.所以DA ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0,由于四边形ABCD 是矩形,根据数量积的几何意义,得−12|DA ⃑⃑⃑⃑⃑ |2+|AB ⃑⃑⃑⃑⃑ |2=0,即−12|BC ⃑⃑⃑⃑⃑ |2+1=0. 所以|BC⃑⃑⃑⃑⃑ |=√2,即BC =√2.下同方法一. 【整体点评】(2)方法一利用相似三角形求出求出矩形的另一个边长,从而求得该四棱锥的体积;方法二构建平面直角坐标系,利用直线垂直的条件得到矩形的另一个边长,从而求得该四棱锥的体积;方法三直接利用空间直角坐标系和空间向量的垂直的坐标运算求得矩形的另一个边长,为最常用的通性通法,为最优解;方法四利用空间向量转化求得矩形的另一边长.。

(完整版)高中数学立体几何大题(有答案)

(完整版)高中数学立体几何大题(有答案)

1.(2014•山东)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.解答:证明:(Ⅰ)连接CE,则∵AD∥BC,BC=AD,E为线段AD的中点,∴四边形ABCE是平行四边形,BCDE是平行四边形,设AC∩BE=O,连接OF,则O是AC的中点,∵F为线段PC的中点,∴PA∥OF,∵PA⊄平面BEF,OF⊂平面BEF,∴AP∥平面BEF;(Ⅱ)∵BCDE是平行四边形,∴BE∥CD,∵AP⊥平面PCD,CD⊂平面PCD,∴AP⊥CD,∴BE⊥AP,∵AB=BC,四边形ABCE是平行四边形,∴四边形ABCE是菱形,∴BE⊥AC,∵AP∩AC=A,∴BE⊥平面PAC.3.(2014•湖北)在四棱锥P﹣ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.(Ⅰ)求证:BE∥平面PAD;(Ⅱ)求证:BC⊥平面PBD;(Ⅲ)设Q为侧棱PC上一点,,试确定λ的值,使得二面角Q﹣BD﹣P为45°.解答:解:(Ⅰ)取PD的中点F,连接EF,AF,∵E为PC中点,∴EF∥CD,且,在梯形ABCD中,AB∥CD,AB=1,∴EF∥AB,EF=AB,∴四边形ABEF为平行四边形,∴BE∥AF,∵BE⊄平面PAD,AF⊂平面PAD,∴BE∥平面PAD.(4分)(Ⅱ)∵平面PCD⊥底面ABCD,PD⊥CD,∴PD⊥平面ABCD,∴PD⊥AD.(5分)如图,以D为原点建立空间直角坐标系D﹣xyz.则A(1,0,0),B(1,1,0),C(0,2,0),P(0,0,1).(6分),,∴,BC⊥DB,(8分)又由PD⊥平面ABCD,可得PD⊥BC,∴BC⊥平面PBD.(9分)(Ⅲ)由(Ⅱ)知,平面PBD的法向量为,(10分)∵,,且λ∈(0,1)∴Q(0,2λ,1﹣λ),(11分)设平面QBD的法向量为=(a,b,c),,,由,,得,∴,(12分)∴,(13分)因λ∈(0,1),解得.(14分)4.(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.解答:证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.13.(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.16.(2010•深圳模拟)如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱S D⊥底面ABCD,E、F分别是AB、SC的中点(1)求证:EF∥平面SAD(2)设SD=2CD,求二面角A﹣EF﹣D的大小.解答:(1)如图,建立空间直角坐标系D﹣xyz.设A(a,0,0),S(0,0,b),则B(a,a,0),C(0,a,0),,.取SD的中点,则.平面SAD,EF⊄平面SAD,所以EF∥平面SAD.(2)不妨设A(1,0,0),则B(1,1,0),C(0,1,0),S(0,0,2),,.EF 中点,,,又,,所以向量和的夹角等于二面角A﹣EF﹣D的平面角..所以二面角A﹣EF﹣D的大小为.。

2024届高考数学专项立体几何大题含答案

2024届高考数学专项立体几何大题含答案

立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | (n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).2024届高考数学专项立体几何大题含答案模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.3(22·23·张家口·三模)如图,在三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,∠CBB1=60°,AB= BC=2,AC=AB1=2.(1)证明:平面ACB1⊥平面BB1C1C;(2)求平面ACC1A1与平面A1B1C1夹角的余弦值.4(22·23·湛江·二模)如图1,在五边形ABCDE中,四边形ABCE为正方形,CD⊥DE,CD=DE,如图2,将△ABE沿BE折起,使得A至A1处,且A1B⊥A1D.(1)证明:DE⊥平面A1BE;(2)求二面角C-A1E-D的余弦值.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.8(22·23下·温州·二模)已知三棱锥D-ABC中,△BCD是边长为3的正三角形,AB=AC=AD, AD与平面BCD所成角的余弦值为33.(1)求证:AD⊥BC;(2)求二面角D-AC-B的平面角的正弦值.9(22·23下·浙江·二模)如图,四面体ABCD,AD⊥CD,AD=CD,AC=2,AB=3,∠CAB=60°,E为AB上的点,且AC⊥DE,DE与平面ABC所成角为30°,(1)求三棱锥D-BCE的体积;(2)求二面角B-CD-E的余弦值.10(22·23下·襄阳·三模)如图,在三棱柱ABC-A1B1C1中,侧面BB1C1C为矩形,∠BAC=90°,AB= AC=2,AA1=4,A1在底面ABC的射影为BC的中点N,M为B1C1的中点.(1)求证:平面A1MNA⊥平面A1BC;(2)求平面A1B1BA与平面BB1C1C夹角的余弦值.11(22·23·唐山·二模)如图,在三棱柱ABC-A1B1C1中,△ABC是等边三角形,侧面ACC1A1⊥底面ABC,且AA1=AC,∠AA1C1=120°,M是CC1的中点.(1)证明:A1C⊥BM.(2)求二面角A1-BC-M的正弦值.12(22·23下·盐城·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成,点G为弧CD的中点,且C,E,D,G四点共面.(1)证明:平面BDF⊥平面BCG;(2)若平面BDF与平面ABG所成二面角的余弦值为155,且线段AB长度为2,求点G到直线DF的距离.13(22·23下·江苏·三模)如图,圆锥DO中,AE为底面圆O的直径,AE=AD,△ABC为底面圆O的内接正三角形,圆锥的高DO=18,点P为线段DO上一个动点.(1)当PO=36时,证明:PA⊥平面PBC;(2)当P点在什么位置时,直线PE和平面PBC所成角的正弦值最大.14(22·23下·镇江·三模)如图,四边形ABCD是边长为2的菱形,∠ABC=60°,四边形PACQ为矩形,PA=1,从下列三个条件中任选一个作为已知条件,并解答问题(如果选择多个条件分别解答,按第一个解答计分).①BP,DP与平面ABCD所成角相等;②三棱锥P-ABD体积为33;③cos∠BPA=55(1)平面PACQ⊥平面ABCD;(2)求二面角B-PQ-D的大小;(3)求点C到平面BPQ的距离.15(22·23下·江苏·一模)在三棱柱ABC -A 1B 1C 1中,平面A 1B 1BA ⊥平面ABC ,侧面A 1B 1BA 为菱形,∠ABB 1=π3,AB 1⊥AC ,AB =AC =2,E 是AC 的中点.(1)求证:A 1B ⊥平面AB 1C ;(2)点P 在线段A 1E 上(异于点A 1,E ),AP 与平面A 1BE 所成角为π4,求EP EA 1的值.16(22·23下·河北·三模)如图,四棱锥P -ABCD 的底面ABCD 是菱形,其对角线AC ,BD 交于点O ,且PO ⊥平面ABCD ,OC =1,OD =OP =2,M 是PD 的中点,N 是线段CD 上一动点.(1)当平面OMN ⎳平面PBC 时,试确定点N 的位置,并说明理由;(2)在(1)的前提下,点Q 在直线MN 上,以PQ 为直径的球的表面积为214π.以O 为原点,OC ,OD ,OP 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz ,求点Q 的坐标.17(22·23·汕头·三模)如图,圆台O1O2的轴截面为等腰梯形A1ACC1,AC=2AA1=2A1C1=4,B为底面圆周上异于A,C的点.(1)在平面BCC1内,过C1作一条直线与平面A1AB平行,并说明理由;(2)若四棱锥B-A1ACC1的体积为23,设平面A1AB∩平面C1CB=l,Q∈l,求CQ的最小值.18(19·20下·临沂·二模)如图①,在Rt△ABC中,B为直角,AB=BC=6,EF∥BC,AE=2,沿EF将△AEF折起,使∠AEB=π3,得到如图②的几何体,点D在线段AC上.(1)求证:平面AEF⊥平面ABC;(2)若AE⎳平面BDF,求直线AF与平面BDF所成角的正弦值.19(22·23下·广州·三模)如图,四棱锥P-ABCD的底面为正方形,AB=AP=2,PA⊥平面ABCD,E,F分别是线段PB,PD的中点,G是线段PC上的一点.(1)求证:平面EFG⊥平面PAC;(2)若直线AG与平面AEF所成角的正弦值为13,且G点不是线段PC的中点,求三棱锥E-ABG体积.20(22·23下·长沙·一模)斜三棱柱ABC-A1B1C1的各棱长都为2,∠A1AB=60°,点A1在下底面ABC 的投影为AB的中点O.(1)在棱BB1(含端点)上是否存在一点D使A1D⊥AC1若存在,求出BD的长;若不存在,请说明理由;(2)求点A1到平面BCC1B1的距离.21(22·23下·长沙·三模)如图,三棱台ABC -A 1B 1C 1,AB ⊥BC ,AC ⊥BB 1,平面ABB 1A 1⊥平面ABC ,AB =6,BC =4,BB 1=2,AC 1与A 1C 相交于点D ,AE =2EB,且DE ∥平面BCC 1B 1.(1)求三棱锥C -A 1B 1C 1的体积;(2)平面A 1B 1C 与平面ABC 所成角为α,CC 1与平面A 1B 1C 所成角为β,求证:α+β=π4.22(22·23·衡水·一模)如图所示,A ,B ,C ,D 四点共面,其中∠BAD =∠ADC =90°,AB =12AD ,点P ,Q 在平面ABCD 的同侧,且PA ⊥平面ABCD ,CQ ⊥平面ABCD .(1)若直线l ⊂平面PAB ,求证:l ⎳平面CDQ ;(2)若PQ ⎳AC ,∠ABP =∠DAC =45°,平面BPQ ∩平面CDQ =m ,求锐二面角B -m -C 的余弦值.23(22·23下·湖北·三模)已知平行六面体(底面是平行四边形的四棱柱)ABCD-A1B1C1D1的各条棱长均为2,且有∠AA1D1=∠AA1B1=∠D1A1B1=60°.(1)求证:平面AA1C1C⊥平面A1B1C1D1;(2)求直线B1D与平面AA1C1C所成角的正弦值.24(22·23下·武汉·三模)如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,E为线段PB的中点,F为线段BC上的动点.(1)求证:平面AEF⊥平面PBC;(2)求平面AEF与平面PDC夹角的最小值.25(22·23下·黄冈·三模)如图1,在四边形ABCD中,BC⊥CD,AE∥CD,AE=BE=2CD=2,CE =3.将四边形AECD沿AE折起,使得BC=3,得到如图2所示的几何体.(1)若G为AB的中点,证明:DG⊥平面ABE;(2)若F为BE上一动点,且二面角B-AD-F的余弦值为63,求EFEB的值.26(22·23·德州·三模)图1是直角梯形ABCD,AB⎳CD,∠D=90°,AD=3,AB=2,CD=3,四边形ABCE为平行四边形,以BE为折痕将△BCE折起,使点C到达C1的位置,且AC1=6,如图2.(1)求证:平面BC1E⊥平面ABED;(2)在线段BE上存在点P使得PA与平面ABC1的正弦值为365,求平面BAC1与PAC1所成角的余弦值.27(22·23·山东·二模)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⎳CD,AB⊥BC,PA =AB=BC=2,CD=4.(1)证明:AD⊥PC;(2)若M为线段PB的靠近B点的四等分点,判断直线AM与平面PDC是否相交?如果相交,求出P到交点H的距离,如果不相交,说明理由.28(22·23·黄山·三模)如图,在直角梯形ABCD中,AD⎳BC,AD⊥CD,四边形CDEF为平行四边形,对角线CE和DF相交于点H,平面CDEF⊥平面ABCD,BC=2AD,∠DCF=60°,G是线段BE上一动点(不含端点).(1)当点G为线段BE的中点时,证明:AG⎳平面CDEF;(2)若AD=1,CD=DE=2,且直线DG与平面CDEF成45°角,求二面角E-DG-F的正弦值.29(22·23·菏泽·三模)已知在直三棱柱ABC-A1B1C1中,其中AA1=2AC=4,AB=BC,F为BB1的中点,点E是CC1上靠近C1的四等分点,A1F与底面ABC所成角的余弦值为2 2.(1)求证:平面AFC⊥平面A1EF;(2)在线段A1F上是否存在一点N,使得平面AFC与平面NB1C1所成的锐二面角的余弦值为277,若存在,确定点N的位置,若不存在,请说明理由.30(22·23·福州·三模)如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=2,AB=AC=1,将△PAB绕着PA逆时针旋转π3到△PAD的位置,得到如图所示的组合体,M为PD的中点.(1)当∠BAC为何值时,该组合体的体积最大,并求出最大值;(2)当PC⎳平面MAB时,求直线PC与平面PBD所成角的正弦值.31(22·23·福州·二模)如图1,在△ABC 中,AB =AC =2,∠BAC =2π3,E 为BC 的中点,F 为AB 上一点,且EF ⊥AB .将△BEF 沿EF 翻折到△B EF 的位置,如图2.(1)当AB =2时,证明:平面B AE ⊥平面ABC ;(2)已知二面角B -EF -A 的大小为π4,棱AC 上是否存在点M ,使得直线B E 与平面B MF 所成角的正弦值为1010?若存在,确定M 的位置;若不存在,请说明理由.32(22·23·三明·三模)如图,平面五边形ABCDE 由等边三角形ADE 与直角梯形ABCD 组成,其中AD ∥BC ,AD ⊥DC ,AD =2BC =2,CD =3,将△ADE 沿AD 折起,使点E 到达点M 的位置,且BM =a .(1)当a =6时,证明AD ⊥BM 并求四棱锥M -ABCD 的体积;(2)已知点P 为棱CM 上靠近点C 的三等分点,当a =3时,求平面PBD 与平面ABCD 夹角的余弦值.33(22·23·宁德·一模)如图①在平行四边形ABCD 中,AE ⊥DC ,AD =4,AB =3,∠ADE =60°,将△ADE 沿AE 折起,使平面ADE ⊥平面ABCE ,得到图②所示几何体.(1)若M 为BD 的中点,求四棱锥M -ABCE 的体积V M -ABCE ;(2)在线段DB 上,是否存在一点M ,使得平面MAC 与平面ABCE 所成锐二面角的余弦值为235,如果存在,求出DMDB的值,如果不存在,说明理由.34(22·23·龙岩·二模)三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,AB =AC =2,侧面A 1ACC 1为矩形,∠A 1AB =2π3,三棱锥C 1-ABC 的体积为233.(1)求侧棱AA 1的长;(2)侧棱CC 1上是否存在点E ,使得直线AE 与平面A 1BC 所成角的正弦值为55?若存在,求出线段C 1E 的长;若不存在,请说明理由.35(22·23下·浙江·二模)如图,在多面体ABC-A1B1C1中,AA1⎳BB1⎳CC1,AA1⊥平面A1B1C1,△A1B1C1为等边三角形,A1B1=BB1=2,AA1=3,CC1=1,点M是AC的中点.(1)若点G是△A1B1C1的重心,证明;点G在平面BB1M内;(2)求二面角B1-BM-C1的正弦值.36(22·23下·浙江·三模)如图,三棱台ABC-A1B1C1中,A1C1=4,AC=6,D为线段AC上靠近C的三等分点.(1)线段BC上是否存在点E,使得A1B⎳平面C1DE,若不存在,请说明理由;若存在,请求出BEBC的值;(2)若A1A=AB=4,∠A1AC=∠BAC=π3,点A1到平面ABC的距离为3,且点A1在底面ABC的射影落在△ABC内部,求直线B1D与平面ACC1A1所成角的正弦值.37(22·23下·苏州·三模)如图,在三棱锥P-ABC中,△ABC是边长为62的等边三角形,且PA= PB=PC=6,PD⊥平面ABC,垂足为D,DE⊥平面PAB,垂足为E,连接PE并延长交AB于点G.(1)求二面角P-AB-C的余弦值;(2)在平面PAC内找一点F,使得EF⊥平面PAC,说明作法及理由,并求四面体PDEF的体积.38(22·23·沧州·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成.C,E,D,G在同一平面内,且CG=DG.(1)证明:平面BFD⊥平面BCG;(2)若直线GC与平面ABG所成角的正弦值为105,求平面BFD与平面ABG所成角的余弦值.39(23·24上·永州·一模)如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,侧面PAD为正三角形,且AD=2AB=4,M、N分别为PD、BC的中点,H在线段PC上,且PC=3PH.(1)求证:MN⎳平面PAB;(2)当AM⊥PC时,求平面AMN与平面HMN的夹角的余弦值.40(22·23·潍坊·三模)如图,P为圆锥的顶点,O是圆锥底面的圆心,AC为底面直径,△ABD为底面圆O的内接正三角形,且边长为3,点E在母线PC上,且AE=3,CE=1.(1)求证:PO∥平面BDE;(2)求证:平面BED⊥平面ABD(3)若点M为线段PO上的动点.当直线DM与平面ABE所成角的正弦值最大时,求此时点M到平面ABE的距离.立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | (n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.【答案】(1)393(2)34【分析】(1)在△ABC 中,用余弦定理可得到AC =23,在△ABE 中,用余弦定理可得BE =233,即可求得DE =DB 2+BE 2=393;(2)以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立空间直角坐标系,求出平面CDE 与平面BDE 的法向量,即可求解【详解】(1)因为在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,在△ABC 中,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ⋅BC=22+22-AC 22×2×2=-12,解得AC =23,则AE =13AC =233,在△ABE 中,由余弦定理得cos ∠BAE =AB 2+AE 2-BE 22AB ⋅AE =22+233 2-BE 22×2×233=32,解得BE =233,又AC =BB =23,所以BD =12BB =3,因为BB ⊥平面ABC ,BE ⊂平面ABC ,所以BB ⊥BE ,在直角三角形DBE 中,DE =DB 2+BE 2=(3)2+233 2=393;(2)因为AE =BE =233,所以∠ABE =∠BAE =30°,则∠CBE =∠ABC -∠ABE =120°-30°=90°,则BE ,BC ,BB 两两互相垂直,以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立如下图所示的空间直角坐标系:设平面CDE 的法向量为n =x ,y ,z ,由n ⋅CD =x ,y ,z ⋅0,-2,3 =-2y +3z =0n ⋅CE =x ,y ,z ⋅233,-2,0 =233x -2y =0 ,得z =233y x =3y,令y =3,得平面CDE 的一个法向量为n =3,3,2 ;平面BDE 的一个法向量为m =0,1,0 .设平面CDE 与平面BDE 夹角的大小为θ,则cos θ=m ⋅n m n =0,1,0 ⋅3,3,2 1×4=34,故平面CDE 与平面BDE 夹角的余弦值为34.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.【答案】(1)证明见解析(2)63【分析】(1)由线面垂直的性质定理和判定定理即可证明;(2)法一:由分析可知,∠EBH 就是直线BE 与平面ABC 所成的线面角,设∠AFD =α,当α<90°时,O 与D 重合,可得A ,E 两点重合,不符合题意,当α>90°时,求出EH ,BE ,即可得出答案;法二:建立空间直角坐标系,求出直线BE 的方向向量与平面ABC 的法向量,由线面角的向量公式代入即可得出答案.【详解】(1)设F 为BC 中点,连接AF ,EF ,则由△ABC 为正三角形,得AF ⊥BC ;DE ⊥平面BCD ,且△BCD 为等腰直角三角形,计算可得:BE =CE =2,∴EF ⊥BC .EF ∩AF =F ,EF ,AF ⊂面AEF ,于是BC ⊥面AEF ,AE ⊂面AEF ,从而BC ⊥AE .(2)法一:由(1)可知,过点E 作EH ⊥AF ,垂足为H ,则∠EBH 就是直线BE 与平面ABC 所成的线面角.当AE ⎳平面BCD 时,可得A 到平面BCD 的距离为 2.设∠AFD =α,所以AF ⋅sin α=2,可得sin α=63,当α<90°时,cos α=33,不妨设A 在底面BCD 射影为O ,则FO =1,此时O 与D 重合,可得A ,E 两点重合,不符合题意,舍去;当α>90°时,FO =1,此时O 在DF 的延长线上,作EH ⊥AF ,由于AODE 为矩形,可得AE =DO =2,AE ∥OD ,可得sin ∠EAH =63,可得EH =263.于是sin ∠EBH =EH BE=63.法二:建立如图坐标系,可得F 0,0,0 ,B 1,0,0 ,C -1,0,0 ,D 0,1,0 ,E 0,1,2 ,A 0,a ,b由AF =3,解得a 2+b 2=3,又∵AE ⎳平面BCD ,令n =0,0,1 ,可得AB ⋅n =0,解得b =2,a =±1.当a =1时A ,E 重合,所以a =-1,此时A 0,-1,2 .不妨设平面ABC 的法向量为m =x ,y ,z ,则CB ⋅m =0CA ⋅m =0代入得x -y +2z =02x =0 ,令z =1,则y =2,所以m =0,2,1 .由于BE =-1,1,2 ,不妨设所成角为θ,则sin θ=∣cos BE ,m |=63.3(22·23·张家口·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,∠CBB 1=60°,AB =BC =2,AC =AB 1=2.(1)证明:平面ACB 1⊥平面BB 1C 1C ;(2)求平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值.【答案】(1)证明见解析;(2)57.【分析】(1)利用面面垂直的判定定理进行证明;(2)利用垂直关系建立空间直角坐标系,用向量法进行求解.【详解】(1)如图,连接BC 1,交B 1C 于O ,连接AO .因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为BC 1的中点.又AC =AB 1=2,故AO ⊥B 1C .又AB =BC =2,且∠CBB 1=60°,所以CO =1,BO =3,所以AO =AC 2-CO 2=1.又AB =2,所以AB 2=BO 2+AO 2,所以AO ⊥BO .因为BO ,CB 1⊂平面BB 1C 1C ,BO ∩CB 1=O ,所以AO ⊥平面BB 1C 1C .又AO ⊂平面ACB 1,所以平面ACB 1⊥平面BB 1C 1C .(2)由(1)知,OA ,OB ,OB 1两两互相垂直,因此以O 为坐标原点,OB ,OB 1,OA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O -xyz ,则A (0,0,1),B (3,0,0),C (0,-1,0),C 1(-3,0,0).故CC 1 =(-3,1,0),CA =(0,1,1),CB =(3,1,0).设n =(x 1,y 1,z 1)为平面ACC 1A 1的一个法向量,则有n ⋅CC 1 =0n ⋅CA =0 ,即-3x 1+y 1=0y 1+z 1=0 ,令x 1=1,则n =(1,3,-3).设m =(x 2,y 2,z 2)为平面ABC 的一个法向量,则有m ⋅CA =0m ⋅CB =0,即y 2+z 2=03x 2+y 2=0 ,令x 2=1,则m =(1,-3,3).因为平面A 1B 1C 1∥平面ABC ,所以m =(1,-3,3)也是平面A 1B 1C 1的一个法向量.所以cos <n ,m > =n ⋅m n m=1-3-3 7×7=57.所以平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值57. 4(22·23·湛江·二模)如图1,在五边形ABCDE 中,四边形ABCE 为正方形,CD ⊥DE ,CD =DE ,如图2,将△ABE 沿BE 折起,使得A 至A 1处,且A 1B ⊥A 1D .(1)证明:DE ⊥平面A 1BE ;(2)求二面角C -A 1E -D 的余弦值.【答案】(1)证明见解析(2)63【分析】(1)由已知易得DE ⊥BE ,即可证明线面垂直;(2)建立空间直角坐标系,用坐标公式法求解即可.【详解】(1)由题意得∠BEC =∠CED =π4,∠BED =π2,DE ⊥BE ,又A 1B ⊥A 1D ,A 1E ∩A 1D =A 1,A 1E ,A 1D ⊂面A 1ED ,所以A 1B ⊥面A 1ED ,又DE ⊂面A 1ED ,则DE ⊥A 1B ,又DE ⊥BE ,A 1B ∩BE =B ,A 1B ⊂平面A 1BE ,BE ⊂平面A 1BE ,所以DE ⊥平面A 1BE .(2)取BE 的中点O ,可知BE =2CD ,OE =CD ,由DE ⊥BE ,且CD ⊥DE 可得OE ⎳CD ,所以四边形OCDE 是平行四边形,所以CO ∥DE ,则CO ⊥平面A 1BE ,设BE =2,以点O 为坐标原点,OB ,OC ,OA 1所在直线为坐标轴建立空间直角坐标系,如图,则A 1(0,0,1),E (-1,0,0),B (1,0,0),C (0,1,0),D (-1,1,0),EA 1 =(1,0,1),EC =(1,1,0),ED =(0,1,0),设平面A 1EC 的一个法向量为n 1 =(x 1,y 1,z 1),则n 1 ⋅EA 1 =0n 1 ⋅EC =0 ,即x 1+z 1=0x 1+y 1=0 ,取x 1=1,则n 1 =(1,-1,-1),设平面A 1ED 的一个法向量为n 2 =(x 2,y 2,z 2),则n 2 ⋅E 1A =0n 2 ⋅ED =0 ,即x 2+z 2=0y 2=0 ,取x 2=1,则n 2 =(1,0,-1),所以cos n 1 ,n 2 =n 1 ⋅n 2 n 1 n 2=63,由图可知,二面角C -A 1E -D 为锐角,所以面角C -A 1E -D 的余弦值为63.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.【答案】(1)CF =1(2)8517【分析】(1)记AC 中点为M ,连接DM 、BM ,依题意可得DM ⊥AC ,根据面面垂直的性质得到DM ⊥平面ABC ,如图建立空间直角坐标系,求出平面CDE 的法向量,设F a ,0,0 ,a ∈2,-2 ,依题意可得BF ⋅n =0求出a 的值,即可得解;(2)依题意点F 与点M 重合,利用空间向量法计算可得.【详解】(1)记AC 中点为M ,连接DM 、BM ,△ACD 为正三角形,AC =4,则DM ⊥AC ,且DM =2 3.所以DM ⊥平面ABC ,又△ABC 为正三角形,所以BM ⊥AC ,所以BM =23,如图建立空间直角坐标系,则B 0,23,0 ,C -2,0,0 ,D 0,0,23 ,E 0,23,3 ,所以CD =2,0,23 ,CE =2,23,3 ,设平面CDE 的法向量为n =x ,y ,z ,则n ⋅CD =2x +23z =0n ⋅CE =2x +23y +3z =0,令x =3,则z =-3,y =-32,则n =3,-32,-3 ,设F a ,0,0 ,a ∈-2,2 ,则BF =a ,-23,0 ,因为BF ⎳平面CDE ,所以BF ⋅n =3a +-23 ×-32+0×-3 =0,解得a =-1,所以F 为CM 的中点,此时CF =1.(2)若F 是AC 的中点,则点F 与点M 重合,则平面FDE 的一个法向量可以为m =1,0,0 ,设二面角F -DE -C 为θ,显然二面角为锐角,则cos θ=m ⋅n m ⋅n=332+-32 2+-3 2=651,所以sin θ=1-cos 2θ=1-651 2=8517,所以二面角F -DE -C 的正弦值为8517.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.【答案】(1)22(2)3010【分析】(1)作出辅助线,找到符合要求的PQ ,并利用垂径定理得到最小值;(2)在第一问基础上,得到当PQ 取得最小值时,SA ⊥PQ ,并建立空间直角坐标系,利用空间向量求解线面角.【详解】(1)过点M 作MH ⎳SB 交AB 于点H ,过点H 作PQ ⊥AB ,此时满足SB ⎳平面PMQ ,由平面几何知识易知,PQ =2r 2-d 2,当弦心距d 最大时,d =OH ,弦长最短,即PQ 取得最小值,因为AM =2MS ,AS =3,所以AH =2HB ,因为AC ⊥BC ,AC =BC =322,由勾股定理得AB =322⋅2=3,故AH =2,HB =1,连接OQ ,则OQ =32,由勾股定理得HQ =OQ 2-OH 2=94-14=2,所以PQ =2HQ =22;(2)连接OS ,则OS ⊥平面ACB ,因为PQ ⊂平面ACB ,故OS ⊥PQ ,而SA ⊥PQ ,OS ∩SA =S ,所以PQ ⊥平面AOS ,即有PQ ⊥AB .以O 为坐标原点,过点O 且平行PQ 的直线为x 轴,OB 所在直线为y 轴,OS 所在直线为z 轴,建立空间直角坐标系,则P -2,12,0 ,Q 2,12,0 ,B 0,32,0 ,C 32,0,0 ,M 0,-12,3 ,设平面BCM 的法向量为m =x ,y ,z ,则m ⋅CB =x ,y ,z ⋅-32,32,0 =-32x +32y =0m ⋅MB =x ,y ,z ⋅0,2,-3 =2y -3z =0,令x =1,则y =1,z =233,故m =1,1,233,设直线PQ 与平面BCM 所成角的大小为θ,则sin θ=cos PQ ,m =PQ ⋅m PQ ⋅m =22,0,0 ⋅1,1,233 22×1+1+43=3010.故直线PQ与平面BCM所成角的正弦值为30 10.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.【答案】(1)证明见解析(2)1510【分析】(1)由等腰三角形的性质可得AM⊥PD,由面面垂直的性质可得CD⊥平面PAD,则CD⊥AM,所以由线面垂直的判定可得AM⊥平面PCD,从而可得结论;(2)以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,利用空间向量求解即可.【详解】(1)证明:因为PA=AD,点M是PD的中点,所以AM⊥PD.因为PA⊥平面ABCD,PA⊂平面PAD,所以平面PAD⊥平面ABCD,因为四边形ABCD为矩形,所以CD⊥AD,因为平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD,所以CD⊥AM,因为PD∩CD=D,PD,CD⊂平面PCD,所以AM⊥平面PCD,因为PC⊂平面PCD,所以AM⊥PC.(2)解:由题意可得AB,AD,AP两两垂直,设AB=1,如图,以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2),22所以AM =0,22,22 ,AC =1,2,0 ,设平面ACM 的法向量为n =x ,y ,z ,则AM ⋅n =22y +22z =0AC ⋅n =x +2y =0,令y =-1可得x =2,z =1,所以平面ACM 的一个法向量n =2,-1,1 .PC =1,2,-2 ,设N x N ,y N ,z N ,PN =λPC =λ,2λ,-2λ (0<λ<1),即x N ,y N ,z N -2 =λ,2λ,-2λ ,所以N λ,2λ,2-2λ .又O 12,22,0 ,ON =OA =32,所以λ-12 2+2λ-22 2+(2-2λ)2=34,化简得5λ2-7λ+2=0,解得λ=25或λ=1(舍去).所以AN =25,225,325,设直线AN 与平面ACM 所成的角为θ,则sin θ=n ⋅AN n ⋅AN=3252+1+1×425+825+1825=1510,所以直线AN 与平面ACM 所成角的正弦值为1510.8(22·23下·温州·二模)已知三棱锥D -ABC 中,△BCD 是边长为3的正三角形,AB =AC =AD ,AD 与平面BCD 所成角的余弦值为33.(1)求证:AD ⊥BC ;(2)求二面角D -AC -B 的平面角的正弦值.【答案】(1)证明见解析(2)223【分析】(1)取BC 的中点E ,连接AE ,DE ,证明BC ⊥平面ADE ,即可得证;(2)取正三角形BCD 的中心O ,连接OA ,从而可得OA ⊥平面BCD ,则∠ODA 即为AD 与平面BCD 所成角的平面角,进而可得AB =AC =AD =3,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,解△BDH 即可得解.【详解】(1)取BC 的中点E ,连接AE ,DE ,因为△BCD 是边长为3的正三角形,所以DE ⊥BC ,又AE ∩DE =E ,AE ,DE ⊂平面ADE ,所以BC ⊥平面ADE ,因为AD ⊂平面ADE ,所以AD ⊥BC ;(2)取正三角形BCD 的中心O ,连接OA ,则点O 在DE 上,且OD =23DE ,由AB =AC =AD ,△BCD 是正三角形,得三棱锥A -BCD 为正三棱锥,则OA ⊥平面BCD ,故∠ODA 即为AD 与平面BCD 所成角的平面角,又AD 与平面BCD 所成角的余弦值为33,所以OD AD =3×32×23AD=33,即AB =AC =AD =3,即三棱锥A -BCD 是正四面体,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,在△BDH 中,BH =DH =332,BD =3,则cos ∠BHD =BH 2+DH 2-BD 22⋅BH ⋅DH =274+274-92×332×332=13,所以sin ∠BHD =1-cos 2∠BHD =223,所以二面角D -AC -B 的平面角的正弦值223.9(22·23下·浙江·二模)如图,四面体ABCD ,AD ⊥CD ,AD =CD ,AC =2,AB =3,∠CAB =60°,E 为AB 上的点,且AC ⊥DE ,DE 与平面ABC 所成角为30°,(1)求三棱锥D -BCE 的体积;(2)求二面角B -CD -E 的余弦值.【答案】(1)答案见解析;(2)答案见解析.【分析】(1)取AC 中点F ,可证明AC ⊥平面DEF ,得平面ABC ⊥平面DEF ,DE 在平面ABC 内的射影就是直线EF ,∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,由正弦定理求得∠FDE ,有两个解,在∠FDE =60°时可证DF ⊥平面ABC ,在∠FDE =120°时,取FE 中点H 证明DH ⊥平面ABC ,然后由棱锥体积公式计算体积;(2)建立如图所示的空间直角坐标系,用空间向量法求二面角.【详解】(1)取AC 中点F ,连接FE ,FD ,因为AD =CD ,所以DF ⊥AC ,又AC ⊥DE ,DE ∩DF =D ,DE ,DF ⊂平面DEF ,所以AC ⊥平面DEF ,而FE ⊂平面DEF ,所以AC ⊥FE ,由AC ⊥平面DEF ,AC ⊂平面ABC 得平面ABC ⊥平面DEF ,因此DE 在平面ABC 内的射影就是直线EF ,所以∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,AD =CD ,AC =2,因此DF =12AC =1,在△DEF 中,由正弦定理EF sin ∠FDE =DF sin ∠DEF 得1sin30°=3sin ∠FDE ,sin ∠FDE =32,∠FDE 为△DEF 内角,所以∠FDE =60°或120°,S △ABC =12AB ×AC ×sin ∠BAC =12×3×2×sin60°=333,S △CBE =BE BAS △ABC =3-23×332=32,若∠FDE =60°,则∠DFE =90°,即DF ⊥FE ,AC ∩FE =F ,AC ,FE ⊂平面ABC ,所以DF ⊥平面ABC ,V D -BCE =13S △BCE ⋅DF =13×32×1=36;若∠FDE =120°,则∠DFE =30°,DF =DE =1,取EF 中点H ,连接DH ,则DH ⊥EF ,因为平面ABC ⊥平面DEF ,平面ABC ∩平面DEF =EF ,而DH ⊂平面DEF ,所以DH ⊥平面ABC ,DH =DF sin ∠DFE =1×sin30°=12,所以V D -BCE =13S △BCE ⋅DF =13×32×12=312;(2)若∠FDE =60°,以FA ,FE ,FD 为x ,y ,z 轴建立如图所示的空间直角坐标系F -xyz ,则D (0,0,1),C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =(1,0,1),CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-33,即m =(33,-1,-33),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+955×7=19385385,所以二面角B -CD -E 的余弦值是19385;若∠FDE =120°,以FA 为x 轴,FE 为y 轴,过F 且平行于HD 的直线为z 轴建立如图所示的空间直角坐标系F -xyz ,FH =12FE =32,则D 0,32,12 ,C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =1,32,12 ,CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+32y 1+12z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-53,即m =(33,-1,-53),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+32y 2+12z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+15103×7=25721721,所以二面角B -CD -E 的余弦值是25721721.10(22·23下·襄阳·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为矩形,∠BAC =90°,AB =AC =2,AA 1=4,A 1在底面ABC 的射影为BC 的中点N ,M 为B 1C 1的中点.(1)求证:平面A 1MNA ⊥平面A 1BC ;(2)求平面A 1B 1BA 与平面BB 1C 1C 夹角的余弦值.【答案】(1)证明见解析(2)23015【分析】(1)利用线面垂直和面面垂直的判定定理证明;(2)利用空间向量的坐标运算求面面夹角的余弦值.【详解】(1)如图,∵A 1N ⊥面ABC ,连AN ,则AN ⊥A 1N ,又AB =AC =2,∴AN ⊥BC ,又AN ∩BC =N ,A 1N ⊂面A 1BC ,BC ⊂面A 1BC ,于是AN ⊥面A 1BC ,又AN ⊂面A 1MN ,,所以面A 1BC ⊥面A 1MNA .(2)由(1)可得,以NA ,NB ,NA 1 为x ,y ,z 轴,建系如图,∠BAC =90°,AB =AC =2,BC =22则A (2,0,0),B (0,2,0),C (0,-2,0),因为AA 1=4,AN =2,所以A 1N =14,则A 1(0,0,14),因为NB 1 =NB +BB 1 =NB +AA 1 =0,2,0 +-2,0,14 =-2,2,14 ,所以B 1-2,2,14 ,设平面A 1BB 1的一个法向量为m =(x ,y ,z ),因为A 1B =(0,2,-14),B 1B =(2,0,-14),所以A 1B ⋅m =2y -14z =0B 1B ⋅m =2x -14z =0 ,令y =7,则x =7,z =1,所以m =(7,7,1),设平面BCC 1B 1的一个法向量为n =(a ,b ,c ),因为BC =(0,-22,0),BB 1 =(-2,0,14),所以BC ⋅n =-22b =0BB 1 ⋅n =-2a +14c =0,令a =7,则b =0,c =1,所以n =(7,0,1),设平面A 1BB 1与平面BCC 1B 1夹角为θ,则cos θ=cos <m ,n >=m ⋅n m n=7+0+17+7+1×7+0+1=23015,所以平面A 1BB 1与平面BCC 1B 1夹角的余弦值为23015.11(22·23·唐山·二模)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 是等边三角形,侧面ACC 1A 1⊥底面ABC ,且AA 1=AC ,∠AA 1C 1=120°,M 是CC 1的中点.(1)证明:A 1C ⊥BM .(2)求二面角A 1-BC -M 的正弦值.【答案】(1)证明见解析(2)45【分析】(1)根据菱形的性质、结合面面垂直的性质,线面垂直的判定定理进行证明即可;(2)建立空间直角坐标系,运用空间向量夹角公式进行求解即sk .【详解】(1)取AC 的中点O ,连接OM ,OB ,AC 1.在三棱柱ABC -A 1B 1C 1中,由AA 1=AC ,得四边形ACC 1A 1为菱形,所以A 1C ⊥AC 1,易知OM ∥AC 1,则A 1C ⊥OM .由△ABC 是等边三角形,知OB ⊥AC ,又平面ACC 1A 1⊥平面ABC ,平面ACC 1A 1∩平面ABC =AC ,OB ⊂平面ABC ,知OB ⊥平面ACC 1A 1,则OB ⊥A 1C ,又OB ∩OM =O ,OB ,OM ⊂平面OBM ,得A 1C ⊥平面OBM ,又BM ⊂平面OBM ,故A 1C ⊥BM ..(2)连接OA 1,因为侧面ACC 1A 1为菱形,∠AA 1C 1=120°,则∠A 1AC =60°,则△A 1AC 为等边三角形,所以A 1O ⊥AC ,又由(1)易知OA 1,OB ,AC 两两垂直,故以O 为坐标原点,分别以OB ,OC ,OA 1 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系.不妨设AB =2,则O 0,0,0 ,B 3,0,0 ,C 0,1,0 ,A 10,0,3 ,C 10,2,3 ,BA 1 =-3,0,3 ,BC =-3,1,0 ,CC 1 =0,1,3 ,。

高中数学必修二第八章立体几何初步典型例题(带答案)

高中数学必修二第八章立体几何初步典型例题(带答案)

高中数学必修二第八章立体几何初步典型例题单选题1、如图,△A′B′C′是水平放置的△ABC的直观图,其中B′C′=C′A′=2,A′B′,A′C′分别与x′轴,y′轴平行,则BC=()A.2B.2√2C.4D.2√6答案:D分析:先确定△A′B′C′是等腰直角三角形,求出A′B′,再确定原图△ABC的形状,进而求出BC.由题意可知△A′B′C′是等腰直角三角形,A′B′=2√2,其原图形是Rt△ABC,AB=A′B′=2√2,AC=2A′C′=4,∠BAC=90°,则BC=√8+16=2√6,故选:D.2、如图直角△O′A′B′是一个平面图形的直观图,斜边O′B′=4,则原平面图形的面积是()A.8√2B.4√2C.4D.√2答案:A解析:根据斜二测画法规则可求原平面图形三角形的两条直角边长度,利用三角形的面积公式即可求解.由题意可知△O′A′B′为等腰直角三角形,O′B′=4,则O′A′=2√2,所以原图形中,OB=4,OA=4√2,×4×4√2=8√2.故原平面图形的面积为12故选:A3、正方体中,点P,O,R,S是其所在棱的中点,则PQ与RS是异面直线的图形是()A.B.C.D.答案:C分析:对于A,B,D,利用两平行线确定一个平面可以证明直线PQ与RS共面,对于C,利用异面直线的定义推理判断作答.对于A,在正方体ABCD−A1B1C1D1中,连接AC,A1C1,则AC//A1C1,如图,因为点P,Q,R,S是其所在棱的中点,则有PQ//AC,RS//A1C1,因此PQ//RS,则直线PQ与RS共面,A错误;对于B,在正方体ABCD−A1B1C1D1中,连接AC,QS,PR,如图,因为点P,Q,R,S是其所在棱的中点,有AP//CR且AP=CR,则四边形APRC为平行四边形,即有AC//PR,又QS//AC,因此QS//PR,直线PQ与RS共面,B错误;对于C,在正方体ABCD−A1B1C1D1中,如图,因为点P,Q,R,S是其所在棱的中点,有RS//BB1,而BB1⊂平面ABB1A1,RS⊄平面ABB1A1,则RS//平面ABB1A1,PQ⊂平面ABB1A1,则直线PQ与RS无公共点,又直线PQ与直线BB1相交,于是得直线PQ与RS不平行,则直线PQ与RS是异面直线,C正确;对于D,在正方体ABCD−A1B1C1D1中,连接A1B,D1C,PS,QR,如图,因为A1D1//BC且A1D1=BC,则四边形A1D1CB为平行四边形,有A1B//D1C,因为点P,Q,R,S是其所在棱的中点,有PS//A1B,QR//D1C,则PS//QR,直线PQ与RS共面,D错误.故选:C4、下面四个选项中一定能得出平面α/⁄平面β的是()A.存在一条直线a,a//α,a//βB.存在一条直线a,a⊂α,a//βC.存在两条平行直线a,b,a⊂α,b⊂β,a//β,b//αD.存在两条异面直线a,b,a⊂α,b⊂β,a//β,b//α答案:D分析:对于A,B,C,举出符合条件的特例即可判断;对于D,过直线a作平面γ∩β=c,再证c//α即可. 如图,ABCD−A1B1C1D1是长方体,平面ABCD为平面α,平面ABB1A1为平面β,对于A,直线C1D1为直线a,显然a//α,a//β,而α与β相交,A不正确;对于B,直线CD为直线a,显然a⊂α,a//β,而α与β相交,B不正确;对于C,直线CD为直线a,直线A1B1为直线b,显然a⊂α,b⊂β,a//β,b//α,而α与β相交,C不正确;对于D,因a,b是异面直线,且a⊂α,b⊂β,过直线a作平面γ∩β=c,如图,则c//a,并且直线c与b必相交,而c⊄α,于是得c//α,又b//α,即β内有两条相交直线都平行于平面α,⁄平面β.因此,平面α/故选:D5、某正方体被截去部分后得到的空间几何体的三视图如图所示,则该空间几何体的体积为()A .132B .223C .152D .233答案:C分析:根据几何体的三视图,可知该几何体是棱长为2的正方体截去两个小三棱锥,根据三棱锥的体积公式即可求解.解:根据几何体的三视图,该空间几何体是棱长为2的正方体截去两个小三棱锥,由图示可知,该空间几何体体积为V =23−(13×12×12×1+13×12×12×2)=152,故选:C.6、已知圆锥的母线长为3,其侧面展开图是一个圆心角为2π3的扇形,则该圆锥的体积为( ) A .√23πB .2√23πC .πD .√2π 答案:B分析:根据弧长计算公式,求得底面圆半径以及圆锥的高,即可求得圆锥的体积.设圆锥的底面圆半径为r ,故可得2πr =2π3×3,解得r =1,设圆锥的高为ℎ,则ℎ=√32−12=2√2,则圆锥的体积V =13×πr 2×ℎ=13×π×2√2=2√23π. 故选:B.7、已知正四棱锥的底面边长为6,侧棱长为5,则此棱锥的侧面积为( )A .6B .12C .24D .48答案:D分析:首先由勾股定理求出斜高,即可求出侧面积;解:正四棱锥的底面边长为6,侧棱长为5,则其斜高ℎ′=√52−(62)2=4,所以正四棱锥的侧面积S =12×4×6×4=48故选:D8、已知三棱锥P −ABC ,其中PA ⊥平面ABC ,∠BAC =120°,PA =AB =AC =2,则该三棱锥外接球的表面积为( )A .12πB .16πC .20πD .24π答案:C分析:根据余弦定理、正弦定理,结合球的性质、球的表面积公式进行求解即可.根据题意设底面△ABC 的外心为G ,O 为球心,所以OG ⊥平面ABC ,因为PA ⊥平面ABC ,所以OG//PA ,设D 是PA 中点,因为OP =OA ,所以DO ⊥PA ,因为PA ⊥平面ABC ,AG ⊂平面ABC ,所以AG ⊥PA ,因此OD//AG ,因此四边形ODAG 是平行四边形,故OG =AD =12PA =1, 由余弦定理,得BC =√AB 2+AC 2−2AB ⋅AC ⋅cos120°=√4+4−2×2×2×(−12)=2√3,由正弦定理,得2AG =√3√32⇒AG =2,所以该外接球的半径R 满足R 2=(OG )2+(AG )2=5⇒S =4πR 2=20π,故选:C .小提示:关键点睛:运用正弦定理、余弦定理是解题的关键.多选题9、(多选)下列说法中正确的是()A.若直线l与平面α不平行,则l与α相交B.直线l在平面外是指直线和平面平行C.如果直线l经过平面α内一点P,又经过平面α外一点Q,那么直线l与平面α相交D.如果直线a∥b,且a与平面α相交于点P,那么直线b必与平面α相交答案:CD分析:由线面直线的位置关系逐一判断即可求解.若直线l与平面α不平行,则l与α相交或l⊂α,所以A不正确.若l⊄α,则l//α或l与α相交,所以B不正确.由线面直线的位置关系可知,C、D正确.故选:CD10、如图,长方体ABCD−A1B1C1D1中,AB=BC=1,AA1=2,M为AA1的中点,过B1M作长方体的截面α交棱CC1于N,则()A.截面α可能为六边形B .存在点N ,使得BN ⊥截面αC .若截面α为平行四边形,则1≤CN ≤2D .当N 与C 重合时,截面面积为3√64答案:CD分析:利用点N 的位置不同得到的截面α的形状判断选项A ,C ,利用线面垂直的判定定理分析选项B ,利用平面几何知识求相应的量结合梯形的面积公式求得截面的面积,从而可判断选项D .长方体ABCD −A 1B 1C 1D 1中,AB =BC =1,AA 1=2,M 为AA 1的中点,过B 1M 作长方体的截面α交棱CC 1于N , 设N 0为CC 1的中点,根据点N 的位置的变化分析可得:当1≤CN ≤2时,截面α为平行四边形,当0<CN <1时,截面α为五边形,当CN =0时,即点N 与点C 重合时,截面α为梯形,故A 不正确,C 正确;设BN ⊥截面α,因为B 1M ⊂面α,所以BN ⊥B 1M ,所以N 只能与C 重合才能使BN ⊥B 1M ,因为BN 不垂直平面B 1CQM ,故此时不成立,故B 不正确;因为当点N 与点C 重合时,截面α为梯形,如下图所示:过M 作MH 垂直于B 1C 于H ,设梯形的高为ℎ,MH =x ,则由平面几何知识得:ℎ2=(√2)2−x 2=(√52)2−(√52−x)2,解得x =2√55,ℎ=√305,所以截面α的面积为:12×(√5+√52)×ℎ=12×3√52×√305=3√64,故D 正确;故选:CD .小提示:关键点睛:本题考查长方体的截面的形状,关键在于分析动点在不同的位置时,截面的形状,运用线面平行的判定定理和平面几何知识求得截面的面积.11、在棱长为2的正方体ABCD−A1B1C1D1中,点P是正方体的棱上一点,|PB|+|PC1|=λ,则()A.λ=2时,满足条件的点P的个数为1B.λ=4时,满足条件的点P的个数为4C.λ=4√2时,满足条件的点P的个数为2D.若满足|PB|+|PC1|=λ的点P的个数为6,则λ的取值范围为(2√2,4)答案:BC分析:根据各棱上的点P到B,C1两点距离之和对选项进行逐一分析,由此确定正确选项.设E,F分别是C1D1,AB的中点,|BD1|=√22+(2√2)2=2√3,|BE|=|C1F|=√12+(2√2)2=3,|A1C1|=|A1B|=2√2.由于|BC1|=2√2,所以|PB|+|PC1|=λ≥2√2,所以A选项错误.λ=4,满足|PB|+|PC1|=4的点为B1,C,E,F共4个,所以B选项正确.λ=4√2,满足|PB|+|PC1|=4√2的点为A1,D共2个,所以C选项正确.当P在正方形ADD1A1(不包括A,D,D1,A1)上运动时,λ∈(2+2√3,4√2),此时棱A1B1与棱CD上,也存在点使λ∈(2+2√3,4√2).所以当λ∈(2+2√3,4√2)时,满足|PB|+|PC1|=λ的点P的个数为6,所以D选项错误.故选:BC填空题12、已知A、B、C、D四点不共面,且AB//平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG是______四边形.答案:平行分析:由题,平面ABD∩平面α=FH,结合AB//平面α可得AB//FH,同理可得四边形EFHG另外三边与AB,CD的位置关系,即可得到答案.由题,平面ABD∩平面α=FH,因为AB//平面α,所以AB//FH,又平面ABC∩平面α=EG,所以AB//EG,则FH//EG,同理GH//CD//EF,所以四边形EFHG是平行四边形,所以答案是:平行13、如图已知A是△BCD所在平面外一点,AD=BC,E、F分别是AB、CD的中点,若异面直线AD与BC所成角的大小为π3,则AD与EF所成角的大小为___________.答案:π3或π6分析:取AC的中点G,连接EG,GF,则∠EGF=π3或∠EGF=2π3,分别分析这两种情况下∠GFE的大小即为AD与EF所成角.解:如图所示:取AC的中点G,连接EG,GF,则EG//BC,GF//AD,所以∠EGF为异面直线AD与BC所成角或其补角.因为AD=BC,所以EG=GF,当∠EGF=π3时,△EGF为等边三角形,∠GFE=π3,即AD与EF所成角的大小为π3;当∠EGF=2π3时,EG=GF,△EGF为等腰三角形,∠GFE=π6,即AD与EF所成角的大小为π6.所以答案是:π3或π6.14、已知三棱柱ABC −A 1B 1C 1中,棱长均为2,顶点A 1在底面ABC 上的射影恰为AB 的中点D ,E 为AC 的中点,则直线BE 与直线AB 1所成角的余弦值为________.答案:34分析:根据三棱柱性质与题中的中点条件,可将所求直线BE 与直线AB 1所成角的余弦值转化为求直线GB 1与直线AB 1所成角的余弦值,那么就要通过多次转化最终求得△AGB 1中三边长,然后直接在△AGB 1中运用余弦定理即可.如图,取A 1C 1中点G ,连接B 1G,AG,AE,DE,GE ,由三棱柱的性质易证得GE //BB 1,GE =BB 1,所以四边形GEBB 1为平行四边形,所以GB 1//BE ,所以下面即求直线GB 1与直线AB 1所成角的余弦值.由题意知,A 1D ⊥平面ABC ,因为AB,DE ⊂平面ABC ,所以A 1D ⊥AB,A 1D ⊥DE ,在Rt △AA 1D 中,AA 1=2,AD =12AB =1,∠A 1DA =90°,求得A 1D =√3,∠A 1AD =60°. 所以在菱形AA 1B 1B 中,AB 1=2ABcos30°=2√3.在Rt △A 1DE 中,∠A 1DE =90°,A 1D =√3,DE =12BC =1,求得A 1E =2. 所以在△A 1AE 中,根据余弦定理得cos∠A 1AE =AA 12+AE 2−A1E 22AE⋅AA 1=14,所以cos∠AA 1G =cos(π−∠A 1AE)=−14.在△A 1AG 中根据余弦定理得AG 2=AA 12+A 1G 2−2AA 1⋅A 1Gcos∠AA 1G,AG =√6.在△AGB 1中,AG =√6,AB 1=2√3,GB 1=√3,根据余弦定理得cos∠GB 1A =GB 12+AB12−AG 22GB 1⋅AB 1=34,所以直线GB 1与直线AB 1所成角的余弦值为34,即直线BE 与直线AB 1所成角的余弦值为34. 故答案为:34解答题15、在空间四边形ABCD中,AB=CD,点M、N分别为BD、AC的中点.(1)若直线AB与MN所成角为60°,求直线AB与CD所成角的大小;(2)若直线AB与CD所成角为θ,求直线AB与MN所成角的大小.答案:(1)60°(2)θ2或π−θ2分析:根据异面直线所成角的定义,借助平行关系作出平行直线,从而找到异面直线所成角(或补角)即可求解.(1)如图,取AD的中点为P,连接PM、PN.因为点M、N分别为BD、AC的中点,所以PM//AB,PN//CD,且PM=12AB,PN=12CD,所以,∠MPN为直线AB与CD所成的角(或补角),∠PMN为直线AB与MN所成的角(或补角). 又AB=CD,所以PM=PN,即△PMN为等腰三角形.直线AB与MN所成角为60°,即∠PMN=60°,则∠MPN=180°−2×60°=60°.所以,直线AB与CD所成的角为60°.(2)(2)若直线AB与CD所成的角为θ,则∠MPN=θ或∠MPN=π−θ.若∠MPN=θ,则∠PMN=π−∠MPN2=π−θ2,即直线AB与MN所成角为π−θ2;若∠MPN=π−θ,则∠PMN=π−∠MPN2=θ2,即直线AB与MN所成角为θ2.综上所述,直线AB与MN所成的角为θ2或π−θ2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(2014•山东)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,P C的中点.(Ⅰ)求证:AP∥平面BEF;
(Ⅱ)求证:BE⊥平面PAC.
BC=
形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求证:BE∥平面PAD;
(Ⅱ)求证:BC⊥平面PBD;
(Ⅲ)设Q为侧棱PC上一点,,试确定λ的值,使得二面角Q﹣BD﹣P为45°.
中点,∴EF∥CD,且


的法向量为,,解得
4.(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:
(1)直线PA∥平面DEF;
(2)平面BDE⊥平面ABC.
PA=3
BC=4
13.(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:
(1)平面ADE⊥平面BCC1B1;
(2)直线A1F∥平面ADE.
AB、SC的中点
(1)求证:EF∥平面SAD
(2)设SD=2CD,求二面角A﹣EF﹣D的大小.

的中点,则
,,

所以向量的夹角等于二面角的平面角.
的大小为。

相关文档
最新文档