人教版七年级下册数学总复习讲义
人教版七年级数学下册考点及典型题型总复习
人教版七年级数学下册考点及典型题型总复习2 七年级数学人教版下学期期末总复习资料第五章 相交线与平行线一、知识回顾: 1、 如果A ∠与B ∠是对顶角,则其关系是: 2、 如果C∠与D∠是邻补角,则其关系是: 如果α∠与β∠互为余角,则其关系是 ⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩定义_____________________________1 过一点____________________2 垂直性质 2 连接直线外一点与直线上各点的所有线段中,___________最短3、点到直线距离是:__________________两点间的距离是:_________________两平行线间的距离是指:_____________________________________________4、在同一平面内,两条直线的位置关系有_____种,它们是_____________5、平行公理是指:_________________________ 如果两条直线都与第三条直线平行,那么_________________________________6、平行线的判定方法有:①、 ②、__________________________________ ③、___________________________________7、平行线的性质有:①、___________________________________②、___________________________________③、___________________________________ 8、命题是指____________________________每一个命题都可以写成_______________的形式,“对顶角相等”的题设是_______________________,结论是___________ 9、平移:①定义:把一个图形整体沿着某一_____移动_______,图形的这种移动,叫做平移变换,简称平移②图形平移方向不一定是水平的③平移后得到的新图形与原图形的_________和________完全相同④新图形中的每一点与原图形中的对应点的连线段________且_________3 BEDAC F 87654321DCBA二、练习:1、如图1,直线a ,b 相交于点O ,若∠1等于40°,则∠2等于( )A .50°B .60°C .140° D .160° 2、如图2,已知AB ∥CD ,∠A =70°,则∠1的度数是( ) A .70° B .100° C .110° D .130°3、已知:如图3,AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠ 与2∠的关系一定成立的是( )A .相等B .互余 C.互补 D .互为对顶角图 1 图 2 图34、如图4,AB DE ∥,65E ∠=,则B C ∠+∠=( )A .135B .115C .36D .65图 4 图 5图65、如图5,小明从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是( ) A .右转80° B .左转80° C .右转100°D .左转100°6、如图6,如果AB ∥CD ,那么下面说法错误的是( )A .∠3=∠7;B .∠2=∠6C 、∠3+∠4+∠5+∠6=1800D 、∠4=∠87、如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30,那么这两个角是( )A .42138、;B . 都是10;C .42138、或4210、;D BAC 1ab 1 2OA B C DEF 2 1 O4 a b M P N123AB C a b 123A BED . 以上都不对8、下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中( )A .①、②是正确的命题;B .②、③是正确命题;C .①、③是正确命题 ;D .以上结论皆错 9、下列语句错误的是( )A .连接两点的线段的长度叫做两点间的距离;B .两条直线平行,同旁内角互补C .若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D .平移变换中,各组对应点连成两线段平行且相等 10、如图7,a b ∥,M N ,分别在a b ,上,P 为两平行线间一点,那么123∠+∠+∠=( ) A .180 B .270 C .360 D .540图711、如图8,直线a b ∥,直线c 与a b , 相交.若170∠=,则2_____∠=.图8 图9图1012、如图9,已知170,270,360,∠=︒∠=︒∠=︒则4∠=______︒. 13、如图10,已知AB ∥CD ,BE 平分∠ABC ,∠CDE =150°,则∠C =______14、如图11,已知a b ∥,170∠=,2∠图11 图12 图1315、如图12所示,请写出能判定CE ∥AB 的一个条件 .12 bacba c d1 23 4 BCDE5 16、如图13,已知AB CD //,∠α17、推理填空:(每空1分,共12分) 如图: ① 若∠1=∠2,则 ∥( ) 若∠DAB+∠ABC=1800,则∥ ( )②当 ∥ 时,∠ C+∠ABC=1800( )当 ∥ 时,∠3=∠C ( )18、如图,∠1=30°,AB ⊥CD ,垂足为O ,EF 经过点O .求∠2、∠3的度数.19、已知:如图AB ∥CD ,EF 交AB 于G ,交CD于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=500,求:∠BHF 的度数.20、观察如图所示中的各图,寻找对顶角(不含平角):(1)如图a ,图中共有___对对顶角;(2)如图b ,图中共有___对对顶角; (3)如图c ,图中共有___对对顶角. (4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成多少对对顶角?21、已知,如图,CD ⊥AB ,GF ⊥AB ,∠B =∠ADE ,试说明∠1=∠2.HGFEDCBA BA ABCDO123EFF21GEDCB A第六章平面直角坐标系一、知识回顾:1、平面直角坐标系:在平面内画两条___________、____________的数轴,组成平面直角坐标系2、平面直角坐标系中点的特点:①坐标的符号特征:第一象限(),++,第二象限(),第三象限()第四象限()已知坐标平面内的点A(m,n)在第四象限,那么点(n,m)在第____象限②坐标轴上的点的特征:x轴上的点______为0,y轴上的点______为0;如果点P(),a b在x轴上,则b=___;如果点P(),a b在y轴上,则a=______如果点P()5,2a a+-在y轴上,则a=__ __,P的坐标为()当a=__时,点P(),1a a-在横轴上,P点坐标为()如果点P(),m n满足0mn=,那么点P必定在__ __轴上③象限角平分线上的点的特征:一三象限角平分线上的点___________________;二四象限角平分线上的点______________________;如果点P(),a b在一三象限的角平分线上,则a=_ ____;如果点P(),a b在二四象限的角平分线上,则a=____ _如果点P(),a b在原点,则a=___ __=__ __已知点A(3,29)b b-++在第二象限的角平分线上,则b= ______④平行于坐标轴的点的特征:平行于x轴的直线上的所有点的______坐标相同,平行于y轴的直线上的所有点的______坐标相同如果点A(),3a-,点B()2,b且AB//x轴,则_______如果点A()2,m,点B(),6n-且AB//y轴,则_______ 3、点P(),x y到x轴的距离为_______,到y轴的距离为______,到原点的距离为____________;4、点P(),a b-到,x y轴的距离分别为___ __和_6___5、点A()2,3--到x轴的距离为_ _,到y轴的距离为_ _点B()7,0-到x轴的距离为_ _,到y轴的距离为__ __点P()2,5x y-到x轴的距离为_ _,到y轴的距离为_ _点P到x轴的距离为2,到y轴的距离为5,则P点的坐标为___________________________4、对称点的特征:①关于x轴对称点的特点_______不变,______互为相反数②关于y轴对称点的特点_______不变,______互为相反数③关于原点对称点的特点_______、______互为相反数点A(1,2)-关于y轴对称点的坐标是______,关于原点对称的点坐标是______,关于x轴对称点的坐标是______点M(),2x y-与点N()3,x y+关于原点对称,则______,______x y==5、平面直角坐标系中点的平移规律:左右移动点的_____坐标变化,(向右移动____________,向左移动____________),上下移动点的______坐标变化(向上移动____________,向下移动____________)把点A(4,3)向右平移两个单位,再向下平移三个单位得到的点坐标是_________将点P(4,5)-先向____平移___单位,再向____平移___单位就可得到点()/2,3P-6、平面直角坐标系中图形平移规律:图形中每一个点平移规律都相同:左右移动点的_____坐标变化,(向右移动____________,向左移动____________),上下移动点的______坐标变化(向上移动____________,向下移动____________)已知ABC中任意一点P(2,2)-经过平移后得到的对应点1(3,5)P,原三角形三点坐标是A(2,3)-,B(4,2)--,C()1,1-问平移后三点坐标分别为_______________________________二、练习:1.已知点P(3a-8,a-1).78 (1) 点P 在x 轴上,则P 点坐标为 ; (2) 点P 在第二象限,并且a 为整数,则P 点坐标为 ;(3) Q 点坐标为(3,-6),并且直线PQ ∥x 轴,则P 点坐标为 . 2.如图的棋盘中,若“帅” 位于点(1,-2)上, “相”位于点(3,-2)上, 则“炮”位于点___ 上.3.点)1,2(A 关于x 轴的对称点'A 的坐标是 ;点)3,2(B 关于y 轴的对称点'B 的坐标是 ;点)2,1(-C 关于坐标原点的对称点'C 的坐标是 . 4.已知点P 在第四象限,且到x 轴距离为52,到y 轴距离为2,则点P 的坐标为_____.5.已知点P 到x 轴距离为52,到y 轴距离为2,则点P 的坐标为 . 6. 已知),(111y x P ,),(122y x P ,21x x≠,则⊥21P P 轴,21P P ∥ 轴;7.把点),(b a P 向右平移两个单位,得到点),2('b a P +,再把点'P 向上平移三个单位,得到点''P ,则''P 的坐标是 ;8.在矩形ABCD 中,A (-4,1),B (0,1),C (0,3),则D 点的坐标为 ;9.线段AB 的长度为3且平行与x 轴,已知点A 的坐标为(2,-5),则点B 的坐标为_____.10.线段AB 的两个端点坐标为A (1,3)、B(2,7),线段CD 的两个端点坐标为C (2,-4)、D(3,0),则线段AB 与线段CD 的关系是( ) A.平行且相等但相等 D. 三、解答题: 1.已知:如图,)3,1(-A ,)0,2(-B ,)2,2(C ,求△ABC 的面积.2.已知:)0,4(A ,),3(y B ,点C 在x 轴上,5=AC .⑴ 求点C 的坐标; ⑵ 若10=∆ABCS,求点B 的坐标.xy O1AC1B第1题图93.已知:四边形ABCD 各顶点坐标为A(-4,-2),B(4,-2),C(3,1),D(0,3).(1)在平面直角坐标系中画出四边形ABCD ; (2)求四边形ABCD 的面积.(3)如果把原来的四边形ABCD 各个顶点横坐标减2,纵坐标加3,所得图形的面积是多少?4. 已知:)1,0(A ,)0,2(B ,)3,4(C .⑴ 求△ABC 的面积;⑵ 设点P 在坐标轴上,且△ABP 与△ABC 的面积相等, 求点P 的坐标.5.如图,是某野生动物园的平面示意图. 建立适当的直角坐标系,写出各地点的坐标,并求金鱼馆与熊猫馆的实际距离.6.如图,平移坐标系中的△ABC的位置,再将111C B A ∆向右平移3画出222C B A ∆,并求出△ABC 到22B A ∆10第七章三角形 一、知识回顾:⎧⎪⎨⎪⎩⎧⎨⎩⎧⎪⎨⎪⎩定义:由不在______三条线段______所组三角形 成的图形表示方法:_________________________三角形两边之和_____第三边三角形三边关系三角形两边之差_____第三边中线________________三角形的三条重要线段高线________________三角形角平分线____________内角和__三角形的内角和与外角和多边形⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎩⎪⎪⎪⎩⎪⎪⎪⎪⎩__________1________外角性质2________外角和____________三角形面积:______________________________三角形具有____性,四边形__________性多边形定义_______________________________多边形n 边形内角和为__________多⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎩⎧⎪⎪⎨⎪⎪⎩⎩边形外角和为____从n 边形一个顶点可作出_____条对角线定义:__________________________________能用一图形镶嵌地面的有_________________平面镶嵌能用两种正多边形镶嵌地面的有_____和___________和_______;_______和_____________⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪二、练习:1.一个三角形的三个内角中()A 、至少有一个钝角B 、至少有一个直角C 、至多有一个锐角D、至少有两个锐角2.下列长度的三条线段,不能组成三角形的是()A、a+1,a+2,a+3(a>0)B、3a,5a,2a+1(a>0)C、三条线段之比为1:2:3D、5cm,6cm,10cm3.下列说法中错误的是()A、一个三角形中至少有一个角不少于60°B、三角形的中线不可能在三角形的外部C、直角三角形只有一条高D、三角形的中线把三角形的面积平均分成相等的两部分4.图中有三角形的个数为()A、4个B、6个C、8个D、10个5.如图,点P有△ABC内,则下列叙述正确的是()A、︒=︒yx B、x°>y°C、x°<y°D、不能确定6.已知,如图,AB∥CD,∠A=700,∠B=400,则∠ACD=()A、550B、700C、400D、11007.下列图形中具有稳定性有()A、2个B、3个C、4个D、5个8.一个多边形内角和是10800,则这个多边形的边数为()第(4)题EDCBA(1)(2)(3)(4)(5)(6)第(6)题DCBA第(5)题Py0x0CBAA、 6B、7C、8D、99.如图所示,已知△ABC为直角三角形,∠C=90,若烟图中虚线剪去∠C,则∠1+∠2 等于()A、90°B、135°C、270°D、315°第(9)题第(10)题10. 如图所示,在△ABC中,CD、BE分别是AB、AC边上的高,并且CD、BE交于,点P,若∠A=500 ,则∠BPC等于()A、90°B、130°C、270°D、315°11.用正三角形和正方形能够铺满地面,每个顶点周围有______个正三角形和_____个正方形。
人教版七年级下册数学《平面直角坐标系》研讨说课教学复习课件
(-3,6) (3,6)
(-3,0) (3,0)
建系的技巧
由上得知,建立的平面直角坐标系不同,则各点的坐标也 不同.你认为怎样建立直角坐标系才比较适当? 可以容易确定图形上点的方式, 就是恰当的建系方式. 例如以正方形的两条边所 在的直线为坐标轴, 建立平面直角坐标系.
知识回顾
数轴上的点可以用一个实数表示,这个实数叫做这个点的坐标. 例如点A的坐标为_-_4___,点B的坐标为_2___. 反之,已知数轴上点的坐标,这个点的位置就确定了.你能再 数轴上找到-3表示的点么?
知识回顾
在数轴上已知点能说出它的坐标,由坐标能在数轴上找到对 应点的位置.那么数轴上的点与坐标有怎样的关系? 数轴上的点与坐标是“一一对应”的.也就是说,在数轴上 每一个点都可以用一个坐标来表示,任何一个坐标都可以在 数轴上找到唯一确定的点.
(-,-)
(+,-)
G(-5,-4)
E (5,-4)
D (-7,-5)
H (3,-5)
各个象限点坐标的符号特点
点的位置 在第一象限 在第二象限 在第三象限 在第四象限
点的坐标的符号特点 (+,+) (-,+) (-,-) (+,-)
例题 请你根据下列各点的坐标判定它们分别在第几象限或在什
么坐标轴上? A(-5,2)
y
5
第二象限 4 3 Ⅱ2
第一象限 Ⅰ
1O
-4 -3 -2 -1
Ⅲ -1 -2
第三象限 -3
1234 x Ⅳ
第四象限
-4
点的位置 横坐标符 号
人教版七年级下册数学总复习教学内容
<<<<<<精品资料》》》》》七年级下学期数学知识梳理第五章相交线与平行线一、知识结构图相交线相交线垂线同位角、内错角、同旁内角平行线平行线及其判定平行线的判定平行线的性质平行线的性质命题、定理平移二、知识定义邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面内,不相交的两条直线叫做平行线。
同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
命题:判断一件事情的语句叫命题。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
三、定理与性质对顶角的性质:对顶角相等。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的判定:<<<<<<精品资料》》》》》<<<<<<精品资料》》》》》ED CBA判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
四、经典例题例1 如图,直线AB,CD,EF 相交于点O ,∠AOE=54°,∠EOD=90°,求∠EOB ,∠COB 的度数。
人教版七年级下册数学《用坐标表示平移》说课教学复习课件
B(3,1) 1
A(3,4) A(3,4)
向下平移5个单位
向下平移b个单位 b >0
C(3,-1) (3,4-b)
A(3,4)
B
2345
C
总结规律 2
图形平移与点的坐标变化间的关系
2、上、下平移:(b>0)
原图形上的点(x,y) , 向上平移b个单位 (x,y+b) 原图形上的点(x,y) , 向下平移b个单位 (x,y-b)
y
6
A1 (-1,4)5
C1 (-4,3)
4
3
2
B1 (-3,1) 1
- - -3 -2 -1 0 54
1
2
3
C (2,3)
A (5,4)
`
B (3,1)
1 2 3 4 5 6x
C2 (2,-2) A2 (5,-1)
B 2(3,-4)
总结规律
(1)左、右平移: 原图形上的点(x,y) , 原图形上的点(x,y) ,
课堂小结
(1)左、右平移: 原图形上的点(x,y) 原图形上的点(x,y) (2)上、下平移: 原图形上的点(x,y) 原图形上的点(x,y)
向右平移a个单位(a>0) (x+a,y) 向左平移a个单位(a>0) (x-a,y)
向上平移b个单位 b>0 向下平移b个单位 b>0
(x,y+b) (x,y-b)
【例3】(2015•钦州)在平面直角坐标系中,将点A(x,y)向 左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2) 重合,则点A的坐标是( D ). A.(2,5) B.(-8,5) C.(-8,-1) D.(2,-1)
人教版七年级下册数学期末考复习专题05一元一次不等式及不等式组(知识点串讲)(解析版)
专题05 一元一次不等式及不等式组知识框架重难突破一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
2.一元一次不等式的解及解集(1)使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。
(2) 一元一次不等式的所有解组成的集合是一元一次不等式的解集。
(3)解集在数轴上表示3、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a <(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
备注:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x 解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!)移 项,得 23663-+≤-x x (移项,每一项要变号;但符号不改变)a a a a < > ≤ ≥合并同类项,得 73≤-x (计算要正确)系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了) 例1.(2019·湖南广益实验中学初一期中)下列不等式中,是一元一次不等式的是( )A .1x >3B .x 2<1C .x +2y >0D .x <2x +1【答案】D【解析】解:A 、1x 是分式,因此1x>3不是一元一次不等式,故此选项不合题意; B 、x 2是2次,因此x 2<1不是一元一次不等式,故此选项不合题意;C 、x +2y >0含有2个未知数,因此不是一元一次不等式,故此选项不合题意;D 、x <2x +1是一元一次不等式,故此选项符合题意;故选:D .练习1.(2018·六安市裕安中学初一期中)下列不等式中,一元一次不等式有( )①2x 32x +> ②130x -> ③ x 32y -> ④x 15ππ-≥ ⑤ 3y 3>- A .1 个B .2 个C .3 个D .4 个 【答案】B【解析】详解:①不是,因为最高次数是2;②不是,因为是分式;③不是,因为有两个未知数;④是;⑤是.综上,只有2个是一元一次不等式.故选B .例2.(2019·洋县教育局初二期中)若437m x -+≤是关于x 的一元一次不等式,则m =__________.【答案】3【解析】解:∵437m x -+≤是关于x 的一元一次不等式,∴4-m =1,∴m=3,故答案为:3.练习1.(2019·山东省初二期中)已知12(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±3【答案】A【解析】根据题意|m|﹣3=1且m+4≠0解得:|m|=4,m≠﹣4所以m=4.故选:A.例3.(2018·浙江省初二期中)一元一次不等式2(x﹣1)≥3x﹣3的解在数轴上表示为()A.B.C.D.【答案】B【解析】解: 2(x﹣1)≥3x﹣3去括号, 得2x-2≥3x-3,移项, 合并同类项, 得-x≥-1,得:x≤1故在数轴上表示为:故选B.练习1.(2020·万杰朝阳学校初一期中)如图,张小雨把不等式3x>2x-3的解集表示在数轴上,则阴影部分盖住的数字是____.【答案】-3【解析】由3x>2x-3,解得:x>-3,∴阴影部分盖住的数字是:-3.故答案是:-3.例4.(2020·监利县新沟新建中学初一期中)解不等式:14232-+->-x x . 【答案】x <−2【解析】解:去分母:2(x −1)−3(x +4)>−12,去括号:2x −2−3x −12>−12,合并同类项:−x >2,系数化1:x <−2. 练习1.(2018·福建省永春第二中学初一期中)解不等式3(21)x +<13(43)x --,并把解集在数轴上表示出来.【答案】x <2,数轴见解析【解析】去括号,得 6x +3<13-4+3x ,移项,得 6x -3x <13-4-3,即3x <6,两边同除以3,得x <2,在数轴上表示不等式的解集如下:例5.(2019·重庆市凤鸣山中学初一期中)关于x 的不等式22x a -+≥的解集如图所示,则a 的值是( )A .0B .2C .2-D .4- 【答案】A【解析】解:解不等式22x a -+≥,得22a x- ,∵由数轴得到解集为x ≤-1, ∴212a -=- ,解得:a =0. 故选:A .练习1.(2019·陕西省初二期中)不等式-4x -k ≤0的负整数解是-1,-2,那么k 的取值范围是( ) A .812k ≤<B .812k <≤C .23k ≤<D .23k <≤ 【答案】A【解析】解:∵-4x -k ≤0,∴x ≥-4k , ∵不等式的负整数解是-1,-2,∴-3<-4k ≤-2, 解得:8≤k <12,故选:A .二、一元一次不等式组1、一元一次不等式组定义: 含有同一个未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
人教版七年级数学下册第9章。一元一次不等式组 知识点专题复习讲义
人教版七年级数学下册第9章。
一元一次不等式组知识点专题复习讲义一元一次不等式组知识点专题复讲义一、知识梳理1.知识结构图概念基本性质不等式的解法不等式的定义不等式的解集一元一次不等式的解法实际应用一元一次不等式组的解法二、知识点回顾1.不等式不等式是由不等号连接起来的式子。
常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”。
2.不等式的解与解集不等式的解是使不等式成立的未知数的值。
不等式的解集是一个含有未知数的不等式的解的全体。
解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
3.不等式的基本性质1) 不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
4.一元一次不等式一元一次不等式只含有一个未知数,且未知数的次数是1.系数不等于的不等式叫做一元一次不等式。
其标准形式为:ax+b<或ax+b≤,ax+b>或ax+b≥0(a≠0)。
5.解一元一次不等式的一般步骤1) 去分母;2) 去括号;3) 移项;4) 合并同类项;5) 化系数为1.删除格式错误的段落。
对于每段话,进行小幅度的改写,使其更加通顺易懂。
解一元一次不等式和解一元一次方程类似。
不同的是,一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变。
这是解不等式时最容易出错的地方。
例如,解不等式:-2/3x-1≤1/3解:去分母,得(3x-1)-2(3x-1)≤2(不要漏乘!每一项都得乘)去括号,得3x-3-6x+2≤2(注意符号,不要漏乘!)移项,得3x-6x≤2+3-1(移项要变号)合并同类项,得-3x≤4(计算要正确)系数化为1,得x≥-4/3(同除负,不等号方向要改变,分子分母别颠倒了)一元一次不等式组是含有相同未知数的几个一元一次不等式所组成的不等式组。
人教版七年级数学下册第8章《二元一次方程组》复习课件公开课(31张)
把 y 11 代入③得 15
x 11 4, x 9
5
5
4(3y+4)+3y-5 =0
解得: y 11 15
x
9 5
,
y
11 15
2.已知 3ay+5b3x与-5a2xb2-4y是同类项,求x、y的值。
解:由已知得
y 5 2x
3x 2 4y
小明求得正确解是
y
2,小马因看错
Байду номын сангаас
系数 c
解得xy
2 3
,求
a, b, c的值.
成为有数学素养的高素质人才 拓展解题技能、提升数学思想
熟练掌握基本计算、方法
夯实基础
3.阅读下列解题过程:
解方程组 23x+17y=63①
17x+23y=57②
解:①+②,得:40x+40y=120
即:x+y=3③ ①-②,得:6x-6y=6
即:x-y=1 ④ ③+④得:2x=4 ∴x=2 ③-④得:2y=2 ∴y=1
请你运用以上 解法解方程组 2010x+2011y =201 2011x+2010y=201
∴ x=2
y=1
x y 3
1.知 y z 4 ,则 x y z 6 。
ax by 10
2.解关于x, y 的方程组 cx 7 y 4 ,小明求得正确解是
a
x
y
3 ,小马因看错系数
2
2
,b 2
人教版七年级下册数学《消元―解二元一次方程组》二元一次方程组说课教学课件复习(第2课时加减法)
加减消元法的实际应用
问题2 如何设未知数?列出怎样的方程组? 2(2x+5y)=3.6,
依题意得: 5(3x+2y)=8.
问题3 如何解这个方程组?
加减消元法的实际应用 2(2x+5y)=3.6, 5(3x+2y)=8.
解:化简得: 4x+10y=3.6,① 15x+10y=8.②
② - ①,消y得11x=4.4, 解得x=0.4,
消元—解二元一次方程组 加减法
课件
教学目标
会用加减消元法解简单的二元一次方程组.
理解解二元一次方程组的思路是“消元”, 经历由未知向 已知转化的过程,体会化归思想. 会用二元一次方程组表示简单实际问题中的数量关系,并 用加减消元法解决它.
能选择适当方法解二元一次方程组.
教学重点 用加减消元法解简单的二元一次方程组. 用二元一次方程组解简单的实际问题.
(4)2(3y-3)=6x+4.
复习巩固 2.用代入法解下列方程组:
y=x+3, (1)
7x+5y=9;
3s-t=5, (2)
5s+2t=15;
3x+4y=16, (3)
5x-6y=33;
4(x-y-1)=3(1-y)-2, (4)
复习巩固 3.用加减法解下列方程组:
3u+2t=7, (1)
6u-2t=11;
教学难点
用二元一次方程组解简单的实际问题.
思考 根据等式性质填空: (1)若a=b,那么a±c=___b_±_c___. 思考:若a=b,c=d,那么a+c=b+d吗? (2)若a=b,那么ac=__b_c__.
思考 x+y=10,①
人教版七年级下册数学《有序数对》平面直角坐标系说课研讨教学复习课件
3.北京某地位于东经116.4°,北纬39.9°,如果约定“经度在前,
纬度在后”,那么我们可以用有序数对 (116.4°,39.9°) 表
示北京该地的位置;仿照此表示方法,珠海某地(位于东经
113.6°,北纬22.3°)的位置可以表示 (113.6°,22.3°)
为
.
精典范例
4.【例1】如果电影票上的“4排3座”记作(4,3),那么6排8座可 记作 (6,8) ,(8,6)表示 8 排 6 座.
探究新知 知识点 1 有序数对的概念
问题1 同学们都有去影剧院看电影的经历,你怎么找到 自己的座位?
根据入场卷上的“排数”和“号数”便可以准 确地“对号入座”. 追问 在只有一层的电影院内,确定一个座位一般需要 几个数据?
答:两个数据:排数和号数.
探究新知
问题2 你若发现一本书某页有一处印刷错误,怎样告诉其他同 学这一处的位置?
位置为 (2,5) ,点C 的位置为 (4,4) ,点D和点E的位置
分别为(6,3)
, (2,3)
.
7.【例4】(人教7下P65改编)如图,点A表示3街与5大道的十字 路口,点B表示5街与3大道的十字路口,如果用 (3,5)→(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那 么你能用同样的方法写出由A到B的其他几条路径吗?(写出 三条)
人教版 数学 七年级 下册
7.1 平面直角坐标系
7.1.1 有序数对
课件
导入新知
小华母女俩周末去电影院,买了两张票,座位号分别是 7排5号和5排7号.怎样才能既快又准地找到座位?
学习目标
3. 通过有序数对表示物体的位置,培养学生的符 号感和抽象思维能力,并增强数学应用意识. 2. 结合实例进一步体会有序数对的意义,并会 用有序数对表示物体的位置. 1. 了解有序数对的概念.
人教版初一数学下册:《二元一次方程组》全章复习与巩固(提高)知识讲解
《二元一次方程组》全章复习与巩固(提高)知识讲解【学习目标】1.了解二元一次方程组及其解的有关概念;2.掌握消元法(代入或加减消元法)解二元一次方程组的方法;3.理解和掌握方程组与实际问题的联系以及方程组的解;4.掌握二元一次方程组在解决实际问题中的简单应用;5.通过对二元一次方程组的应用,培养应用数学的理念. 【知识网络】【要点梳理】要点一、二元一次方程组的相关概念 1. 二元一次方程的定义定义:方程中含有两个未知数(一般用x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式. 2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 要点诠释:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧b a==y x 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩. 要点诠释:(1)它的一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 不同时为零).(2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组.(3)符号“{”表示同时满足,相当于“且”的意思.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释:(1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.(2)方程组的解要用大括号联立;(3)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组⎩⎨⎧=+=+6252y x y x 无解,而方程组⎩⎨⎧-=+-=+2221y x y x 的解有无数个.要点二、二元一次方程组的解法1.解二元一次方程组的思想转化消元一元一次方程二元一次方程组2.解二元一次方程组的基本方法:代入消元法和加减消元法 (1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式; ②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程; ③解这个一元一次方程,求出x (或y )的值;④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解.要点诠释:(1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比较容易的方程变形;(2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程; (3)要善于分析方程的特点,寻找简便的解法.如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法.整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率.(2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式; ②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值; ⑤将两个未知数的值用“{”联立在一起即可.要点诠释:当方程组中有一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用加减消元法较简单.要点三、实际问题与二元一次方程组要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去; (2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组. 要点四、三元一次方程组1.定义:含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程;含有三个相同的求知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.412,325,51,x y z x y z x y z +-=⎧⎪++=-⎨⎪-+=⎩ 273,31,34a b a c b c +=⎧⎪-=⎨⎪-+=⎩等都是三元一次方程组. 要点诠释:理解三元一次方程组的定义时,要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)如果三个一元一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组. 2.三元一次方程组的解法解三元一次方程组的基本思想仍是消元,一般的,应利用代入法或加减法消去一个未知数,从而化三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.解三元一次方程组的一般步骤是:(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组; (2)解这个二元一次方程组,求出两个未知数的值; (3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值; (5)将求得的三个未知数的值用“{”合写在一起. 要点诠释: (1)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求比较简单的解法. (2)要检验求得的未知数的值是不是原方程组的解,将所求得的一组未知数的值分别代入原方程组里的每一个方程中,看每个方程的左右两边是否相等,若相等,则是原方程组的解,只要有一个方程的左、右两边不相等就不是原方程组的解. 3. 三元一次方程组的应用列三元一次方程组解应用题的一般步骤:(1)弄清题意和题目中的数量关系,用字母(如x ,y ,z )表示题目中的两个(或三个)未知数;(2)找出能够表达应用题全部含义的相等关系;(3)根据这些相等关系列出需要的代数式,从而列出方程并组成方程组; (4)解这个方程组,求出未知数的值; (5)写出答案(包括单位名称). 要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去. (2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一. (3)一般来说,设几个未知数,就应列出几个方程并组成方程组. 【典型例题】类型一、二元一次方程组的相关概念1.在下列方程中,只有一个解的是( )A . 1330x y x y +=⎧⎨+=⎩ B . 1332x y x y +=⎧⎨+=-⎩ C . 1334x y x y +=⎧⎨-=⎩ D . 1333x y x y +=⎧⎨+=⎩【思路点拨】逐一求每个选项中方程组的解,便得出正确答案 【答案】C .【解析】选项A 、B 、D 中,将方程1x y +=,两边同乘以3得333x y +=,从而可以判断A 、B 选项中的两个二元一次方程矛盾,所以无解;而D 中两个方程实际是一个二元一次方程,所以有无数组解,排除法得正确答案为C. 【总结升华】在111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 均不为零),(1)当121222a a c a b c =≠时,方程组无解;(2)当121222a a c a b c ==,方程组有无数组解; (3)当1222a a ab ≠,方程组有唯一解. 举一反三:【高清课堂:二元一次方程组章节复习409413 例1(3)】 【变式1】若关于x 、y 的方程()12mm x y ++=是二元一次方程,则m = .【答案】1.【变式2】已知方程组531x y ax y b -=⎧⎨+=-⎩有无数多个解,则a 、b 的值等于 .【答案】a =﹣3,b =﹣14.类型二、二元一次方程组的解法2. (黄冈调考)解方程组2()5335()322x y y x y y ⎧-+=⎪⎪⎨⎪--=-⎪⎩①②【思路点拨】本题结构比较复杂,一般应先化简,再消元.仔细观察题目,不难发现,方程组中的每一个方程都含有(x -y ),因此可以把(x -y )看作一个整体,消去(x -y )可得到一个关于y 的一元一次方程.【答案与解析】解:由①×9得:6(x -y )+9y =45 ③ ②×4得:6(x -y )-10y =-12 ④ ③-④得:19y =57, 解得y =3.把y =3代入①,得x =6.所以原方程组的解是63x y =⎧⎨=⎩.【总结升华】本题巧妙运用整体法求解方程组,显然比加减法或代入法要简单,在平时求方程组的解时,要善于发现方程组的特点,运用整体法求解会收到事半功倍的效果. 举一反三:【变式】(换元思想)解方程组16105610x y x yx y x y +-⎧+=⎪⎪⎨+-⎪-=⎪⎩【答案】 解:设6x y m +=,10x yn -=. 则原方程组可化为15m n m n +=⎧⎨-=⎩,解得32m n =⎧⎨=-⎩.所以36210x y x y +⎧=⎪⎪⎨-⎪=-⎪⎩ 即1820x y x y +=⎧⎨-=-⎩.∴ 119x y =-⎧⎨=⎩.3.(2015•江都市模拟)小明和小文解一个二元一次组小明正确解得小文因抄错了c ,解得已知小文除抄错了c 外没有发生其他错误,求a+b+c的值. 【思路点拨】把代入方程组第一个方程求出c 的值,将x 与y 的两对值代入第二个方程求出a 与b 的值,即可求出a+b+c 的值.【答案与解析】 解:把代入cx ﹣3y=﹣2,得c+3=﹣2,解得:c=﹣5, 把与分别代入ax+by=2,得,解得:,则a+b+c=2+﹣5=3﹣5=﹣2.【总结升华】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.举一反三:【变式】已知二元一次方程组⎪⎪⎩⎪⎪⎨⎧=+=+175194y x y x 的解为a x =,b y =,则=-b a .【答案】11.类型三、实际问题与二元一次方程组4.用8块相同的长方形地砖拼成一块矩形地面,地砖的拼放方式及相关数据如图所示,求每块地砖的长与宽.60cm【思路点拨】初看这道题目中没有提供任何相等关系,但是题目提供的图形隐含着矩形两条宽相等,两条长相等,我们设每个小长方形的长为x ,宽为y ,就可以列出一个关于x 、y 的二元一次方程组. 【答案与解析】解:设每块地砖的长为xc m 与宽为ycm ,根据题意得:6023x y x x y +=⎧⎨=+⎩,解得:4515x y =⎧⎨=⎩ 答:每块地砖长为45cm ,宽为15cm【总结升华】有些题目的相等关系不是直接给我们的,这就需要我们仔细阅读题目,设法提炼出题目中隐含的相等关系.举一反三:【变式】如图,长方形ABCD 中放置9个形状、大小都相同的小长方形(尺寸如图),求图中阴影部分的面积.【答案】解:设每个小长方形的长为x ,宽为y ,根据题意得:422(2)37x y x y y +=⎧⎨+-=⎩,解得103x y =⎧⎨=⎩所以阴影部分的面积为:22(73)922(79)910382y xy +-=+-⨯⨯=. 答:图中阴影部分的面积为82.5.(龙岩)已知:用2辆A 型车和1辆B 型车载满货物一次可运货10吨;用1辆A 型车和2辆B 型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物. 根据以上信息,解答下列问题:(1)1辆A 型车和1辆车B 型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金100元/次,B 型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费. 【答案与解析】【总结升华】本题实际上是求二元一次方程组的正整数. 举一反三:【变式1】甲、乙两班学生到集市上购买苹果,价格如下:甲班分两次共购买苹果70千克(第二次多于第一次),共付出189元,而乙班则一次购买苹果70千克。
人教版七年级下册数学《实际问题与二元一次方程组》二元一次方程组教学说课复习课件
合作探究 类型一 行程问题
1. A 地至 B 地的航线长 9 750 km,一架飞机从 A 地顺风飞往 B 地需 12.5 h,它逆风飞行同样的航线需 13 h,求飞机无风时的平均速度与风速.
等量关系: 速度 × 时间 = 路程.
顺风速度 = 无风速度 + 风速. 逆风速度 = 无风速度 - 风速.
工作量 = 工作效率 × 工作时间, 各部分劳动量之和 = 总量.
典例精析
解:设甲每天做 x 个零件,乙每天做 y 个零件. 由题意,列方程组 4x+( 8 x y)=840, 4 y ( 9 x y)=840.
解这个方程组,得 x 50, y 30.
答:甲每天做 50 个零件,乙每天做 30 个零件.
解:设有 x m3 的木材生产桌面,y m3 的木材生产桌腿. 根据题意,得 x y 10, 50x : 300 y 1: 4.
解这个方程,得 x=6, y=4.
答:有 6 m3 的木材生产桌面,4 m3 的木材生产桌腿.
课堂总结
二元一次方 程组应用
和差倍分问题 盈亏问题 配套问题
实际问题与二元一次方程组
200 m
解这个方程组,得 x 120,
D
F
C
y 80.
答:过长方形土地的长边上离
100 m
100x
100y
一端120 m处,作这条边的垂线,
把这块土地分成两块长方形土地.
A
xm
较大一块土地种甲种作物,较小一块土地种乙种作物.
E ym B
典例精析
② 种植方案为:甲、乙两种作物的种植区域分别为长方形AFEB
E
把这块土地分成两块长方形土地.
A
200y
人教版七年级下册数学《用坐标表示地理位置》平面直角坐标系说课教学复习课件
随堂练习
3.如图表示点A的位置,正确的是( D ) A.距离O点3 km的地方 B.在O点东偏北40°的方向上 C.在O点北偏东40°方向,距O点3 km的地方 D.在O点北偏东50°方向,距O点3 km的地方
随堂练习
4.如图,是创星中学的平面示意图,其中宿舍楼暂未标注,已知宿舍 楼在教学楼的北偏东约30°的方向,与教学楼实际距离约为200 m, 试借助刻度尺和量角器,测量图中四点位置,能比较准确地表示该宿 舍楼位置的是( D ) A.点A B.点B C.点C D.点D
长度,所得坐标为(__1__,__5__)_____。
回顾②
①将△ABC三个顶点横坐 标减去6,得到A1,B1,C1, 连接这3点,得到 △A1B1C1;
②将△ABC三个顶点纵 坐标减去5,得到 A2,B2,C2,连接这3点,得 到△A2B2C2.
我们知道△A1B1C1可以 看作是△ABC向左平移6 个单位得到的同 样,△A2B2C2可以看作是 △ABC向下平移5个单位 得到的。
7.2.1 用坐标表示地理位置
课件
学习目标
1.掌握建立适当的平面直角坐标系,描述物体位置的方法. 2.会结合具体情境灵活运用多种方式确定物体的位置.
新课导入
不管出差办事,还是出去旅游, 人们都愿意带上一幅地图,它给人们 出行带来了很大的方便.
这是北京市地图的一部分.
思考:你能用平面直角坐标系确定图中建筑的位置吗?
总结规律
图形平移与点的坐标变化间的关系
(1)左、右平移:
原图形上的点(x,y) ,
向右平移a个单位(x+a,y )
原图形上的点(x,y) ,
向左平移a个单位(x-a,y )
左右平移,纵坐标不变,横坐标变化(左减右加) (2)上、下平移:
人教版七年级下册数学《平行线及其判定》期末复习讲义(含知识点和习题)
第五章《相交线与平行线》期末复习讲义5.2平行线及其判定【知识回顾】一.平行线1.定义:在同一平面内,__________的两条直线叫做平行线2.要点剖析(1):平行线的特征:在同一平面内;是直线;没有公共点。
(2)在同一平面内,不重合的两条直线的位置关系只有相交和平行两种,重合的直线视为一条直线。
(3)平行线是指的两条直线的位置关系,两条射线或线段平行,是指的它们所在的直线平行。
二.平行线的画法1.“一落”把三角尺的一边落在已知直线上2.“二靠”用直尺紧靠三角尺的另一边3.“三推”把三角尺沿着直尺推到三角尺的一边刚好过已知点的位置4.“四画”沿三角尺过已知点的边画直线三.平行公理及其推论1.平行公理:经过直线外一点,_________一条直线与这条直线平行2.平行公理的推论:如果两条直线都与_________直线平行,那么这两条直线也互相平行四.平行线的判定1.同位角相等,两直线_________2.内错角相等,两直线_________3.同旁内角互补,两直线___________4.在同一平面内,垂直于_______________的两条直线互相平行题型拓展题型1 平行公理及其推论的应用例1:1.如图,取一张长方形的硬纸板ABCD,将硬纸板ABCD对折使CD与AB重合,EF 为折痕.把长方形ABEF平放在桌面上,另一个面CDEF无论怎么改变位置,总有CD∥AB存在,你知道为什么吗?例2:2.如图,取一张长方形的硬纸片ABCD对折,MN是折痕,把ABNM平摊在桌面上,另一个面CDMN不论怎样改变位置,总有MN∥∥.因此∥.题型2 综合运用各种判定方法判定两条直线平行例1:3.如图,∠1=47°,∠2=133°,∠D=47°,那么BC与DE平行吗?AB与CD呢?为什么?例2:4.阅读下面的推理过程,在括号内填上推理的依据,如图:因为∠1+∠2=180°,∠2+∠4=180°(已知)所以∠1=∠4,()所以a∥c.()又因为∠2+∠3=180°(已知)∠3=∠6()所以∠2+∠6=180°,()所以a∥b.()所以b∥c.()题型3 平行线判定的开放探究题例1:5.如图,∠A=60°,∠1=60°,∠2=120°,猜想图中哪些直线平行,并证明.例2:6.如图,直线a,b被c所截,∠1=50°,若要a∥b,则需增加条件(填图中某角的度数);依据是.题型4 平行线的判定在实际生活中的应用例1:7.如图所示,给你两块同样的三角板和一根直尺(直尺比桌子长),请你设计一个方案,检验桌子的相对边缘线是否平行?例2:8.在铺设铁轨时,两条直轨必须是互相平行的,如图,已经知道∠2是直角,那么再度量图中已标出的哪个角,就可以判断两条直线是否平行?为什么?课后提高训练9.下列说法错误的是()A.平行于同一条直线的两直线平行B.两直线平行,同旁内角互补C.对顶角相等D.同位角相等10.如图,下面哪个条件不能判断AC∥EF的是()A.∠1=∠2B.∠4=∠C C.∠1+∠3=180°D.∠3+∠C=180°11.如图,平面内有五条直线l1、l2、l3、l4、l5,根据所标角度,下列说法正确的是()A.l1∥l2B.l2∥l3C.l1∥l3D.l4∥l512.如图,在下列条件中,能判断AB∥CD的是()A.∠1=∠4B.∠BAD=∠BCDC.∠BAD+∠ADC=180°D.∠2=∠313.如图所示,下列推理正确的是()A.∵∠1=∠4(已知)∴AB∥CD(内错角相等,两直线平行)B.∵∠2=∠3(已知)∴AE∥DF(内错角相等,两直线平行)C.∵∠1=∠3(已知)∴AB∥DF(内错角相等,两直线平行)D.∵∠2=∠2(已知)∴AE∥DC(内错角相等,两直线平行)14.下列说法中正确的个数为()①过一点有且只有一条直线与已知直线垂直②两条直线被第三条直线所截,同位角相等③经过两点有一条直线,并且只有一条直线④在同一平面内,不重合的两条直线不是平行就是相交A.1个B.2个C.3个D.4个15.如图,下列能判定AB∥CD的条件有(填序号)①∠B+∠BCD=180°;②∠2=∠3;③∠1=∠4;④∠B=∠5;⑤∠D=∠5.16.如图,要使BE∥DF,需补充一个条件,你认为这个条件应该是(填一个条件即可).17.一副三角板按如图所示叠放在一起,其中点C、D重合,若固三角板定ABC,改变三角板AED的位置(其中A点位置始终不变),当∠CAD=时,ED∥AC.18.如图,直线a、b被直线c所截,现给出的下列四个条件:①∠4=∠7;②∠2=∠5;③∠2+∠3=180°;④∠2=∠7.其中能判定a∥b的条件的序号是.19.已知:∠A=∠C=120°,∠AEF=∠CEF=60°,求证:AB∥CD.20.如图,若∠1=42°,∠2=53°,∠3=85°,则直线l1与l2平行吗?判断并说明理由.21.如图,已知CD⊥AD于点D,DA⊥AB于点A,∠1=∠2,试说明DF∥AE.解:因为CD⊥AD(已知),所以∠CDA=90°().同理∠DAB=90°.所以∠CDA=∠DAB=90°().即∠1+∠3=∠2+∠4=90°.因为∠1=∠2(已知),所以∠3=∠4().所以DF∥AE().22.完成下列证明过程,并在括号内填上依据.如图,点E在AB上,点F在CD上,∠1=∠2,∠B=∠C,求证AB∥CD.证明:∵∠1=∠2(已知),∠1=∠4(),∴∠2=∠4(等量代换),∴().∴∠3=∠C().又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD().参考答案与解析1.解:∵四边形FECD是矩形,∴CD∥EF;又∵四边形ABEF是矩形,∴AB∥EF,∴CD∥AB.2.解:∵长方形的硬纸片ABCD对折,MN是折痕,∴MN∥AB,MN∥CD,即MN∥AB∥CD,∴AB∥CD(平行于同一直线的两条直线互相平行).故各空依次填AB、CD、AB、CD.3.解:BC∥DE,AB∥CD.理由如下:∵∠1=47°,∠2=133°,而∠ABC=∠1=47°,∴∠ABC+∠2=180°,∴AB∥CD;∵∠2=133°,∴∠BCD=180°﹣133°=47°,而∠D=47°,∴∠BCD=∠D,∴BC∥DE.4.解:因为∠1+∠2=180°,∠2+∠4=180°(已知),所以∠1=∠4,(同角的补角相等)所以a∥c.(内错角相等,两直线平行)又因为∠2+∠3=180°(已知)∠3=∠6(对顶角相等)所以∠2+∠6=180°,(等量代换)所以a∥b.(同旁内角互补,两直线平行)所以b∥c.(平行于同一条直线的两条直线平行).故答案为:同角的补角相等;内错角相等,两直线平行;对顶角相等;等量代换;同旁内角互补,两直线平行;平行于同一条直线的两条直线平行.5.解:如图,∵∠A=60°,∠1=60°,∴∠A=∠1,∴DE∥AC.又∵∠A=60°,∠2=120°,∴∠A+∠2=180°,∴EF∥AB.6.解:∵∠3=50°,1=50°,∴∠1=∠3,∴a∥b(同位角相等,两直线平行).故答案为:∠3=50°;同位角相等;两直线平行.7.解:(1)将直尺放在桌面上,使其与桌面一组对边相交;(2)将三角板一边贴近直尺,斜边贴近桌面边缘;(3)使另一个三角形同样方法放置,如果相符合说明对边平行,原理如图所示,若∠1=∠2则a∥b,再检查另一组对边是否平行.8.解:①通过度量∠3的度数,若满足∠2+∠3=180°,根据同旁内角互补,两直线平行,就可以验证这个结论;②通过度量∠4的度数,若满足∠2=∠4,根据同位角相等,两直线平行,就可以验证这个结论;③通过度量∠5的度数,若满足∠2=∠5,根据内错角相等,两直线平行,就可以验证这个结论.9. D10.C11.D12.C13.B14.B15.解:选项①中∵∠B+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),所以正确;选项②中,∵∠2=∠3,∴AD∥BC(内错角相等,两直线平行),所以错误;选项③中,∵∠1=∠4,∴AB∥CD(内错角相等,两直线平行),所以正确;选项④中,∵∠B=∠5,∴AB∥CD(同位角相等,两直线平行),所以正确;选项⑤中,∠D=∠5,∴AD∥BC(内错角相等,两直线平行),所以错误;故答案为:①③④.16.解:添加条件为:∠D=∠COE.理由如下:∵∠D=∠COE,∴BE∥DE(同位角相等,两直线平行).故答案为:∠D=∠COE(答案不唯一).17.解:如图所示:当ED∥AC时,∠CAD=∠D=30°;如图所示,当ED∥AC时,∠E=∠EAC=60°,∴∠CAD=60°+90°=150°;故答案为:30°或150°.18.解:当∠4=∠7时,a∥b,故①正确;当∠2=∠5时,无法证明a∥b,故②错误;当∠2+∠3=180°时,无法证明a∥b,故③错误;当∠2=∠7时,a∥b,故④正确;故答案为:①④.19.证明:∵∠A=∠C=120°,∠AEF=∠CEF=60°,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴AB∥EF,CD∥EF,∴AB∥CD.20.解:直线l1与l2平行,理由:∵∠1=∠4,∠2=∠5,∠1=42°,∠2=53°,∴∠4=42°,∠5=53°,又∵∠3=85°,∴∠3+∠5=85°+53°=138°,∴∠3+∠5+∠4=138°+42°=180°,∴l1∥l2(同旁内角互补,两直线平行).21.解:因为CD⊥AD(已知),所以∠CDA=90°(垂直的定义),同理∠DAB=90°.所以∠CDA=∠DAB=90°(等量代换),即∠1+∠3=∠2+∠4=90°.因为∠1=∠2(已知),所以∠3=∠4(等式的性质1),所以DF∥AE(内错角相等,两直线平行).22.证明:∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=∠4(等量代换),∴CE∥BF(同位角相等,两直线平行).∴∠3=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:对顶角相等;CE∥BF;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行.。
人教版七年级下册数学期末总复习课件
1
1
变式:已知9 13和9 13的小数部分分别为a和b
6、设a和b互为相反数,c和d互为负倒数,x的绝对值为 5,
4 5 则代数式x (a b cd)x ( a b 3 cd) ___________
2
1 4. m-27 + n-8=0,则 m- n =______
14、 如图4,∠1= ∠2, ∠C= ∠D, 求证: ∠A= ∠F 15、 如图5,∠D= ∠E, ∠ABE= ∠D+ ∠E, BC是∠ABE的平分线, 求证:BC∥DE
16、如图,已知AB∥CD,请猜想各个图中∠AMC 与∠MAB、 ∠MCD的关系
第六章实数的复习
?
本章知识结 构图 开平方
复习回顾
把下列各数填在相应的大括号内: 5 1, , , 3.14, 0 , 3. 3 3 3, 3, 7
tan30 ,
.
……};
0
cos600 ,
3
64,
2.1010010001
整数集合:{
-1,0,3 64
5 分数集合:{ ……}; , 3.14, 3. 3 3 3 , cos60° 7 5 3.14,0,3. 3 3 3 ,cos60°, 3 64 有理数集合:{ -1,, …}; 7
当方程中出现立方时,一般都有一个解
选择题
1、代数式 a a 1 a 2的最小值是( B )
1 2
A.0 B. C.0 D.不存在
2
2、若
m
m,则实数m在数轴上的对应点一定在(
C)
A.原点左侧 B.原点右侧 C.原点或原点左侧 D.原点或原点右侧
3、若式子 ( 4-a) 是一个实数,则满足这个条件的a的值有(B )
人教版七年级下册数学《命题、定理、证明》说课教学复习课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
2、理解几何命题的组成,能够区分命题的题设和结论两部分,并能将命题
改成“如果…那么…”的形式。
3、会判断一些命题的真假。
重点
明确命题的含义
难点
能正确区分真假命题,能找出一个命题的题设和结论。
我们发现5-6所举的命题都是错误的。
就是说,如果题设成立,不能保证结论一定成立,这样的命题叫做假命题。
如何说明一个命题是假命题:只需要举出一个反例即可。
平行线性质知识点回顾
平行线性质1
两直线平行,同位角相等
平行线性质2
两直线平行,内错角相等
平行线性质3
两直线平行,同旁内角互补
还记得平行线性质的推理过程吗?
情景思考
前面,我们学过一些对某一件事情做出判断的语句,例如:
1.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
2.两条平行线被第三条直线所截,同旁内角互补。
3.对顶角相等。
4.等式两边加同一个数,结果仍是等式。
分析下面的句子,它们有什么特点?
命题的概念
命题的概念:像这样判断一件事情的语句,叫做命题。
注意:
证明的每一步推理都要有根据,不能“想当然”.
典例精析
例2 已知:b∥c, a⊥b .
求证:a⊥c.
b
c
1
2
a
证明: ∵ a ⊥b(已知)
∴ ∠1=90°(垂直的定义)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章相交线与平行线1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧)内错角Z(在两条直线内部,位于第三条直线两侧)同旁内角U(在两条直线内部,位于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。
其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
5、垂直三要素:垂直关系,垂直记号,垂足6、垂直公理:过一点有且只有一条直线与已知直线垂直。
7、垂线段最短。
8、点到直线的距离:直线外一点到这条直线的垂线段的长度。
9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
如果,那么10、平行线的判定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角互补,两直线平行。
11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
12、平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
13、平面上不相重合的两条直线之间的位置关系为或14、平移:①平移前后的两个图形形状大小不变,位置改变。
②对应点的线段平行且相等。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
15、命题:判断一件事情的语句叫命题。
命题分为题设和结论两部分;题设是如果后面的,结论是那么后面的。
命题分为真命题和假命题两种;定理是经过推理证实的真命题。
用尺规作线段和角1.关于尺规作图:尺规作图是指只用圆规和没有刻度的直尺来作图。
2.关于尺规的功能直尺的功能是:在两点间连接一条线段;将线段向两方向延长。
圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。
第六章实数一、实数的概念及分类1、实数的分类2、无理数(1)开方开不尽的数,如32,7等;π+8等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3(3)有特定结构的数,如0.1010010001…等;二、实数的倒数、相反数和绝对值实数与数轴上点的关系:每一个无理数都可以用数轴上的一个点表示出来,数轴上的点有些表示有理数,有些表示无理数,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。
三、平方根、算数平方根和立方根1、平方根(1)平方根的定义:如果一个数x的平方等于a,那么这个数x就叫做a的平方根.即:如果a2,那么x叫做a的平方根.x(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。
(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算(5)符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根; 正数a 的负的平方根可用-a 表示.2、算术平方根(1)算术平方根的定义: 一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式a x =2 (x≥0)中,规定a x =。
(2)a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。
(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。
(4)正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥0(5)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。
3、立方根(1)立方根的定义:如果一个数x 的立方等于a ,这个数叫做a 的立方根(也叫做三次方根),即如果3x a =,那么x 叫做a 的立方根(2)一个数a a”,其中a叫被开方数,3叫根指数,不能省略,若省略表示平方。
(3)一个正数有一个正的立方根;0有一个立方根,是它本身;一个负数有一个负的立方根;任何数都有唯一的立方根。
(4)利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的)=>。
a(5)33a-,这说明三次根号内的负号可以移到根号外面。
=a-第七章平面直角坐标系1、对应关系:平面直角坐标系内的点与有序实数对一一对应。
2、平面内两条互相垂直、原点重合组成的数轴组成平面直角坐标系。
水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴为y 轴或纵轴,取向上为正方向;两个坐标轴的交点为平面直角坐标系的原点。
坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数分别叫点P的横坐标和纵坐标。
象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。
坐标轴上的点不在任何一个象限3、三大规律(1)平移规律:点的平移规律左右平移→纵坐标不变,横坐标左减右加;上下平移→横坐标不变,纵坐标上加下减。
图形的平移规律找特殊点(2)对称规律关于x轴对称→横坐标不变,纵坐标互为相反数;关于y轴对称→横坐标互为相反数,纵坐标不变;关于原点对称→横纵坐标都互为相反数。
(3)位置规律各象限点的坐标符号:(注意:坐标轴上的点不属于任何一个象限)特征坐标:x轴上→纵坐标为0;y轴上→横坐标为0;第一、三象限夹角平分线上→横纵坐标相等;常见的类型有:分配问题、追及问题、顺流逆流、药物配制、行程问题顺流逆流公式:第九章不等式与不等式组不等式的解:使不等式成立的未知数的值,叫做不等式的解。
不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
1、不等式:含有“>”、“<”、“≥”、“≤”、“≠”的式子2、一元一次不等式:一个未知数,未知数的次数是1的不等式3、不等式的性质:①不等式两边加(或减)同一个数(或式子),不等号的方向改变。
②不等式两边乘(或除以)同一个正数,不等号的方向不变。
③不等式两边乘(或除以)同一负数,不等号的方向改变。
4、不等式的解法:步骤:去分母,去括号,移项,合并同类项,系数化为一;注意:去分母与系数化为一要特别小心,因为要在不等式两端同时乘或除以某一个数,要考虑不等号的方向是否发生改变的问题。
5、不等式组的解:“大大取大”,“小小取小”,“大小小大中间找”,“大大小小找不了”。
6、不等式组的解集的确定方法(a>b):自己将表格补充完整:抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。
总体:要考察的全体对象称为总体。
个体:组成总体的每一个考察对象称为个体。
样本:被抽取的所有个体组成一个样本。
样本容量:样本中个体的数目称为样本容量。
频数:一般地,我们称落在不同小组中的数据个数为该组的频数。
频率:频数与数据总数的比为频率。
组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。
1、数据处理一般包括收集数据、整理数据、描述数据和分析数据等过程。
(1)通过调查收集数据的一般步骤:①明确调查问题②确定调查对象③选择调查方法④展开调查⑤记录结果⑥得出结论(2)收集数据常用的方法:①民意调查:如投票选举②实地调查:如现场进行观察、收集、统计数据③媒体调查:报纸、电视、电话、网络等调查都是媒体调查。
2、数据的表示方法:(1)统计表:直观地反映数据的分布规律(2)折线图:反映数据的变化趋势(3)条形图:反映每个项目的具体数据(4)扇形图:反映各部分在总体中所占的百分比(5)频数分布直方图:直观形象地反映频数分布情况 6)频数分布折线图:在频数分布直方图的基础上,取每一个长方形上边的中点,和左右频数为零与直方图相距半个组距的两个点3、调查方式:(1)全面调查,优点是可靠,、真实;(2)抽样调查,优点是省时、省力,减少破坏性;随机抽样调查具有广泛性和代表性。
4、总体和样本:(1)总体:要考察的所有对象(2)个体:组成总体的每一个考察对象(3)样本:从总体中抽出的所有实际被调查的对象组成一个样本。
(4)样本容量:样本中给个体的数目5、组距:每个小组两个端点之间的距离6、画直方图的一般步骤:(1)计算最大值与最小值的差;(2)决定组距与组数,先根据数据个数确定组距,再计算组数,注意无论整除与否,组数总是比商的整数位数多1;(3)确定分点,并分组;(4)列频数分布表;(5)绘制频数分布直方图。