初中数学七年级下册知识点及公式总结大全(人教版)

合集下载

七年级数学下册(人教版)全册笔记 超详细

七年级数学下册(人教版)全册笔记 超详细

七年级数学下册(人教版)全册笔记超详细第一章分数1.1 分数的引入- 分数的概念:分数是整数与整数之间的比值关系。

- 分子和分母:分数的分子表示分数的份数,分母表示每份的份数。

- 分数的意义:分数表示一个数比整数大,但比下一个整数小。

1.2 分数的性质- 分数的大小比较:分数的分母相同,分子大的分数大;分数的分子相同,分母小的分数大。

- 分数的约分:分子和分母同时除以一个相同的数,得到的分数与原分数相等。

1.3 分数的加减运算- 分数的加法:分母相同,分子相加;分母不同,通分后分子相加。

- 分数的减法:分母相同,分子相减;分母不同,通分后分子相减。

1.4 分数的乘除运算- 分数的乘法:分子相乘,分母相乘。

- 分数的除法:将除数倒置后变成乘法。

第二章小数2.1 小数的引入- 小数的概念:小数是整数与整数之间的比值关系,但分子是整数,分母是10的幂次。

2.2 小数与分数的关系- 小数转分数:小数的数字部分作为分子,根据小数位数确定分母的幂次。

- 分数转小数:分子除以分母得到小数。

2.3 小数的加减运算- 小数的加法:小数部分相加,整数部分相加。

- 小数的减法:小数部分相减,整数部分相减。

2.4 小数的乘除运算- 小数的乘法:小数部分相乘,整数部分相乘。

- 小数的除法:将被除数的小数点移动与除数对齐,然后按整数除法进行计算。

第三章平方根3.1 平方根的引入- 平方根的概念:平方根是一个数的平方等于另一个数的运算。

3.2 平方根的性质- 平方根的符号:非负数的平方根为正数。

- 平方根的大小比较:对于非负数,平方根越大,被开方数越大。

3.3 平方根的计算- 尝试法计算平方根:通过试探和逼近的方法计算一个数的平方根。

3.4 平方根的运算- 平方根的加减运算:分别计算两个数的平方根,然后进行加减运算。

- 平方根的乘除运算:分别计算两个数的平方根,然后进行乘除运算。

以上是《七年级数学下册(人教版)全册笔记》的内容概要。

七年级下册数学知识点总结人教版

七年级下册数学知识点总结人教版

七年级下册数学知识点总结人教版七年级下册数学知识点总结(人教版)一、实数1. 有理数和无理数的概念- 有理数:整数和分数统称为有理数,包括正整数、负整数、正分数、负分数和零。

- 无理数:不能表示为分数形式的实数,如√2、π等。

2. 实数的运算- 加法:同号相加,异号相减,取绝对值大的数的符号。

- 减法:减去一个数等于加上它的相反数。

- 乘法:正数与正数得正,负数与负数得正,正数与负数得负。

- 除法:除以一个数等于乘以它的倒数。

- 乘方:求一个数的幂。

3. 算术平方根和平方根- 算术平方根:一个数的平方根中最大的正数。

- 平方根:一个数的平方根有两个,一个正数和一个负数。

4. 实数的性质和比较大小- 性质:实数的加法、减法、乘法、除法和乘方的性质。

- 比较大小:正实数大于零,负实数小于零,正实数大于所有负实数。

二、代数1. 代数式- 单项式:只含有乘法运算的代数式。

- 多项式:由若干个单项式相加或相减组成的代数式。

2. 代数式的运算- 加法和减法:合并同类项。

- 乘法:单项式与单项式相乘,多项式与单项式相乘。

- 除法:多项式除以单项式。

3. 因式分解- 提公因式法:找出多项式中所有项共有的因子。

- 公式法:使用平方差公式、完全平方公式等进行分解。

4. 代数方程- 一元一次方程:只含有一个未知数,且未知数的最高次数为1的方程。

- 二元一次方程组:含有两个未知数,每个未知数的次数都为1的方程组。

5. 不等式- 不等式的性质:包括加法、减法、乘法和除法的性质。

- 解一元一次不等式:通过移项、合并同类项、系数化为1等步骤求解。

三、几何1. 平面图形- 点、线、面的基本性质。

- 直线、射线、线段的定义和性质。

- 角的定义、分类和性质,包括邻角、对顶角、同位角等。

2. 三角形- 三角形的基本性质和分类,如等边三角形、等腰三角形和直角三角形。

- 三角形的内角和定理:三角形内角和为180度。

- 三角形的外角性质:一个三角形的外角等于其不相邻的两个内角的和。

七年级下学期数学全部知识点 人教版

七年级下学期数学全部知识点 人教版

七年级下学期数学全部知识点人教版本文档汇总了七年级下学期数学人教版教材中的全部知识点。

单元一:有理数- 1.1 有理数的概念和表示方法- 1.2 有理数的比较和大小- 1.3 有理数的运算(加减乘除)- 1.4 有理数的乘方- 1.5 有理数的混合运算- 1.6 有理数的应用问题单元二:代数初步- 2.1 代数学的基本概念- 2.2 代数式的解法与应用- 2.3 代数式的运算- 2.4 一元一次方程的解法- 2.5 一元一次方程的应用- 2.6 一元一次方程的列式和双方程的解法单元三:平面图形的认识- 3.1 点、线、线段、直线、射线、角的认识- 3.2 三角形的分类- 3.3 三角形的性质与判定- 3.4 四边形的分类- 3.5 四边形的性质与判定- 3.6 平行四边形与菱形的性质与判断单元四:数据的选择和处理- 4.1 统计调查和数据的收集- 4.2 数据的整理和分析- 4.3 统计图的应用- 4.4 数据的概率和预测单元五:立体图形的认识- 5.1 点、线、面、体的认识- 5.2 立体图形的展开图和正视图- 5.3 立体图形的正面图和俯视图- 5.4 立体图形的性质与判定- 5.5 球的认识和性质单元六:数学应用题- 6.1 平均数与加权平均数- 6.2 常量与变量- 6.3 直接与间接概关系- 6.4 几何图形与尺寸的关系- 6.5 面积与周长的关系- 6.6 数据处理与解题方法以上是七年级下学期数学人教版教材中的全部知识点。

请学生们根据教材进行研究和复,加强对数学知识的掌握和运用。

人教版七年级数学下册知识点大全-七年级下册必考点

人教版七年级数学下册知识点大全-七年级下册必考点

人教版七年级数学下册知识点大全第五章相交线与平行线5.1.1相交线1、如果两条直线只有一个公共点,就说这两条直线相交,该公共点叫做两直线的交点。

2、如果两个角有一个公共边,并且它们的另一边互为反向延长线,那么这两个角互为邻补角。

性质:邻补角互补。

(两条直线相交有4对邻补角。

)3、如果两个角的顶点相同,并且两边互为反向延长线,那么这两个角互为对顶角。

性质:对顶角相等。

(两条直线相交,有2对对顶角。

)5.1.2垂线4、当两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。

其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

5、由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段。

(要找垂线段,先把点来看。

过点画垂线,点足垂线段。

)6、垂线段是垂线上的一部分,它是线段,一端是一个点,另一端是垂足。

7、垂线画法:①放:放直尺,直尺的一边要与已知直线重合;②靠:靠三角板,把三角板的一直角边靠在直尺上;③移:移动三角板到已知点;④画线:沿着三角板的另一直角边画出垂线.8、垂线性质1:过一点有且只有一条直线与已知直线垂直。

9、过一点画已知线段(或射线)的垂线,就是画这条线段(或射线)所在直线的垂线.10、连接直线外一点与直线上各点的所有线段中,垂线段最短。

(垂线段最短.)11、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

5.1.3同位角、同旁内角、内错角12、同位角:如果两个角都在被截的两条直线的同方向,并且都在截线的同侧,即它们的位置相同,这样的一对角叫做同位角。

形如字母“F”。

13、内错角:如果两个角分别在被截的两条直线之间(内),并且分别在截线的两侧(错),这样的一对角叫做内错角。

形如字母“Z”。

14、同旁内角:如果两个角都在被截直线之间(内),并且都在截线的同侧(同旁),这样的一对角叫做同旁内角。

形如字母“U”。

5.2.1平行线15、在同一平面内,不相交的两条直线叫做平行线,记作:a∥b。

初中数学人教版七年级下册知识点及公式整理汇总 -回复

初中数学人教版七年级下册知识点及公式整理汇总 -回复

初中数学人教版七年级下册知识点及公式整理汇总-回复
初中数学人教版七年级下册涉及的知识点及公式整理如下:
有理数:
1. 有理数:凡能写成形式的数,都是有理数。

正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

2. 数轴:数轴是规定了原点、正方向、单位长度的一条直线。

3. 相反数:只有符号不同的两个数互为相反数,0的相反数还是0。

4. 绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;(2)绝对值可表示为:∣x∣或∣x∣=a(a≥0)。

二元一次方程组:
1. 方程组:有几个方程组成的一组方程叫做方程组。

2. 二元一次方程组:如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。

3. 二元一次方程组的解:二元一次方程的公共解叫二元一次方程组的解。

4. 解法:(1)代入消元法:把二元一次方程中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

(2)加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。

(3)消除常数法:当两个方程的常数项相同或相反时,把这两个方程相减
或相加,消去常数,得出两个未知数间的关系,再代入其中一个方程求解。

请注意,这只是一部分知识点的整理汇总,初中数学人教版七年级下册还有其他知识点和公式需要掌握。

如需更详细、完整的知识点及公式整理汇总,建议查阅数学教材或者询问数学老师。

2024年人教版七年级数学知识点总结(2篇)

2024年人教版七年级数学知识点总结(2篇)

2024年人教版七年级数学知识点总结一、有理数1. 有理数的概念:有理数是可以表示为两个整数的比值的数。

2. 有理数的分类:整数、分数、零。

3. 有理数的表示形式及比较大小:分数、小数、整数。

二、整数1. 整数的概念:由整数可以用整数1表示,包含正整数、负整数和零。

2. 整数的运算:加法、减法、乘法、除法的运算法则。

3. 知识点:正负整数的加减法、乘法及除法的运算规则。

三、分数1. 分数的概念:分母为0的数除外,一个不能化为整数的数叫分数。

2. 分数的基本概念:分子、分母、真分数、假分数和带分数。

3. 分数的化简和等值分数:化简分数的方法,等分数的概念。

4. 分数的加减法:同分母的分数相加减,异分母的分数相加减。

5. 分数的乘法:分数与整数相乘,分数之间相乘。

6. 分数的除法:分数与整数相除,分数之间相除。

四、小数1. 小数的概念:有限小数和无限循环小数。

2. 小数的读法和写法:小数的读法,小数的书写规则。

3. 小数的四则运算:小数的加减法,小数的乘法,小数的除法。

4. 小数与分数的相互转换:小数转分数,分数转小数。

五、实数1. 实数的定义:有理数和无理数的统称。

2. 无理数的概念:不能表示为两个整数之比的数,如根号2,根号3等。

六、代数式与方程式1. 代数式的概念:用字母表示数的式子。

2. 方程式的概念:含有等号的代数式叫做方程式。

3. 一元一次方程的解:方程的根、方程的解集。

4. 一元一次方程的应用:利用一元一次方程解决实际问题。

七、比例与百分数1. 比例的概念:两个含有比的式子叫做比例。

2. 比例的性质:比例的基本性质、相等比例的性质。

3. 比例的计算:已知两个相等比例的三个量中的任意两个量,可以求出第三个量。

4. 百分数的概念:以百分号表示的数。

5. 百分数与分数、小数的相互转换。

6. 增长量和减少量的计算:已知原数和增长量(减少量)之比和增长率(减少率),可以求出增加量(减少量)。

八、平面图形的初步认识1. 二维图形的分类:几何图形、点、线段、直线、角、多边形、平行四边形、正方形、长方形、正三角形、等腰三角形。

人教版七年级下数学知识点归纳总结(全)-七下数学学习总结(最新最全)

人教版七年级下数学知识点归纳总结(全)-七下数学学习总结(最新最全)

第五章相交线与平行线平面内,点与直线之间的位置关系分为两种:①点在线上②点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种:①相交②平行一、相交线1、两条直线相交,有且只有一个交点。

(反之,若两条直线只有一个交点,则这两条直线相交。

)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。

邻补角互补。

要注意区分互为邻补角与互为补角的异同。

对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。

对顶角相等。

注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。

反过来亦成立。

②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。

例如:判断对错:因为∠ABC +∠DBC = 180°,所以∠DBC是邻补角。

()相等的两个角互为对顶角。

()2、垂直是两直线相交的特殊情况。

注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。

垂足:两条互相垂直的直线的交点叫垂足。

垂直时,一定要用直角符号表示出来。

过一点有且只有一条直线与已知直线垂直。

(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。

垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。

垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。

垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。

(或说直角三角形中,斜边大于直角边。

)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。

注:距离指的是垂线段的长度,而不是这条垂线段的本身。

所以,如果在判断时,若没有“长度”两字,则是错误的。

4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。

注意:要熟练地认识并找出这三种角:①根据三种角的概念来区分②借助模型来区分,即:同位角——F型,内错角——Z型,同旁内角——U型。

人教版七年级下册数学知识点总结

人教版七年级下册数学知识点总结

人教版七年级下册数学知识点总结
本文档是对人教版七年级下册数学知识点的总结,旨在帮助同学们复和掌握相关知识。

下面是对各单元的重点内容概述:
第1单元有理数
- 正数、负数、零的概念及表示方法
- 有理数的加法、减法、乘法和除法运算
- 有理数的大小比较
第2单元字母代数与实数
- 字母的概念及表示方法
- 字母的加法、减法、乘法和除法运算
- 实数的概念及表示方法
- 实数的加法、减法、乘法和除法运算
第3单元计算与估算
- 进一法、舍去法和四舍五入法- 各种算式的口算和运算
第4单元一次函数
- 函数的概念
- 函数的图象与函数的关系
- 一次函数的图象特点
- 一次函数的方程和解
第5单元平行线和相交线
- 平行线的概念
- 平行线的判定方法
- 垂直线的概念
- 垂直线的判定方法
- 相交线和四线合一
第6单元面积
- 二维图形的面积概念
- 三角形、矩形、平行四边形和梯形的面积计算公式
第7单元体积
- 三维图形的体积概念
- 长方体、正方体和圆柱体的体积计算公式
第8单元数据的收集与分类
- 统计调查和数据的收集
- 数据的整理和展示
- 数据的分析和归纳
以上是人教版七年级下册数学课程的主要知识点总结,希望对同学们的学习有所帮助。

如有疑问,欢迎向老师请教。

人教版七年级数学下册各章节知识点梳理

人教版七年级数学下册各章节知识点梳理

人教版七年级数学下册各章节知识点梳理人教版数学七年级下知识点梳理第五章相交线与平行线知识点5.1 相交线相交线是指两条直线相交所形成的4个角。

其中,相邻的两个角叫做邻补角,它们共用一条边,另一条边互为反向延长线,邻补角互补;相对的两个角叫做对顶角,它们的两条边互为反向延长线,对顶角相等。

垂线是指两条直线相交成直角的情况。

其中,垂直是指两条直线相交成直角,垂线是垂直的特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

两条垂线的交点叫垂足。

过一点有且只有一条直线与已知直线垂直。

点到直线的距离是指直线外一点到这条直线的垂线段的长度,连接直线外一点与直线上各点的所有线段中,垂线段最短。

两条直线被第三条直线所截形成8个角。

其中,同位角是指在两条直线的同一旁,第三条直线的同一侧;内错角是指在两条直线内部,位于第三条直线两侧;同旁内角是指在两条直线内部,位于第三条直线同侧。

5.2 平行线及其判定平行线是指两条直线不相交。

互相平行的两条直线,互为平行线。

经过直线外一点,有且只有一条直线与这条直线平行。

如果两条直线平行于同一直线,那么它们互相平行。

如果两条平行线被第三条直线所截,同位角相等,则这两条直线平行;如果内错角相等,则这两条直线平行。

3.如果一条直线与两条平行直线相交,且同旁内角互补,则这条直线与平行直线平行。

(同旁内角互补,两直线平行)推论:在同一平面内,如果两条直线垂直于同一条直线,则这两条直线平行。

5.3 平行线的性质一) 平行线的性质1.如果两条平行线被一条直线所截,那么同位角相等。

(两直线平行,同位角相等)2.如果两条平行线被一条直线所截,那么内错角相等。

(两直线平行,内错角相等)3.如果两条平行线被一条直线所截,且同旁内角互补,则这两条直线平行。

(两直线平行,同旁内角相等)二) 命题、定理、证明1.命题是判断一件事情的语句。

2.每个命题由题设和结论两部分组成,通常写成“如果。

那么。

”的形式。

人教版初一七年级数学下册知识点归纳汇总(打印版)

人教版初一七年级数学下册知识点归纳汇总(打印版)

人教版初一七年级数学下册知识点归纳汇总(打印版)本文介绍了相交线和平行线的相关概念和性质。

相交线部分:当两条直线相交时,会形成四个角。

其中,有公共顶点但没有公共边的两个角叫做对顶角,有公共顶点且有一条公共边的两个角叫做临补角,临补角互补,对顶角相等。

同时,相交线还会形成同位角、内错角和同旁内角等不同位置的角。

当两条直线相交成直角时,它们互相垂直。

其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

垂线有两个性质,即过一点有且只有一条直线与已知直线垂直,直线外一点与直线上各点连接的所有线段中,垂线段最短。

平行线部分:在同一个平面内,不相交的两条直线叫做平行线,用符号“∥”表示。

平行线有两个重要的公理和两个定理来判定平行线的关系。

平行公理指出,经过直线外一点,有且只有一条直线与这条直线平行。

而同位角相等、内错角相等和同旁内角互补则是判定平行线的三个定理。

需要注意的是,平行线是无限延伸的,无论怎样延伸也不相交。

是由两条垂直于彼此的数轴组成的,分别称为x轴和y轴,它们的交点称为原点O。

在平面直角坐标系中,每个点都可以用一个有序数对(x,y)来表示,其中x表示该点在x轴上的坐标,y表示该点在y轴上的坐标。

2、坐标轴和象限x轴和y轴分别被分成正半轴和负半轴,它们的交点O称为原点。

根据坐标轴的正方向和原点的位置,平面被分成四个部分,称为第一象限、第二象限、第三象限和第四象限。

在第一象限中,x轴和y轴的坐标值均为正数;在第二象限中,x轴的坐标值为负数,y轴的坐标值为正数;在第三象限中,x轴和y轴的坐标值均为负数;在第四象限中,x轴的坐标值为正数,y轴的坐标值为负数。

3、距离公式在平面直角坐标系中,两点之间的距离可以用勾股定理来计算,即d=sqrt((x2-x1)^2+(y2-y1)^2),其中d表示两点之间的距离,(x1,y1)和(x2,y2)分别表示两点的坐标。

4、中点公式在平面直角坐标系中,两点的中点坐标可以用中点公式来计算,即((x1+x2)/2,(y1+y2)/2),其中(x1,y1)和(x2,y2)分别表示两点的坐标。

(完整版)人教版七年级下册数学知识点总结大全

(完整版)人教版七年级下册数学知识点总结大全

(完整版)人教版七年级下册数学知识点总结大全直角三角形- 定义:有一个角为直角(90度)的三角形。

- 勾股定理:直角三角形斜边的平方等于两腿的平方和。

- 特殊直角三角形:45-45-90度三角形和30-60-90度三角形。

圆- 定义:平面上到一个固定点的距离等于定长的点的集合。

- 元素:圆心、半径、直径、弦、弧、扇形、切线等。

- 四大关系:- 半径和弦垂直- 弦长的一半与半径的乘积等于斜边的一半与半径的乘积- 外接角等于弧对应的圆心角- 弧度与角度之间的换算关系比例与相似- 定义:表示两个或多个有对应关系的数之间的比值关系。

- 比例定理:若a/b = c/d,则a、b、c、d成比例。

- 三线一比例:三角形内部的三条连线和三角形外部的三条平行线与三角形的腰成比例。

- 相似三角形:对应角相等,对应边成比例的三角形。

科学计数法- 定义:一种简便表示极大或极小数的方法。

- 标准形式:数字部分在1到9之间,指数为整数。

- 运算法则:运算时先计算系数的乘除,再计算指数的加减。

二次根式- 定义:含有根号并且被根号包围的代数式。

- 平方根:一个数的平方等于该数。

- 二次根式的运算:相加减后化简、乘除法则。

分式- 定义:由整数与整数或整数代数式的比例组成的式子。

- 分式的性质:分母不能等于0,分子分母互质,分子分母都是整数等。

- 分式的运算:加减乘除、化简、倒数。

线性方程- 定义:等式中含有未知数的方程。

- 解方程:找到使等式成立的未知数的值。

- 一次方程:未知数的次数为1。

- 解一元一次方程:转化为等价方程,通过逆向运算得到未知数的值。

平行线与直线的交角- 定义:两条平行线与直线的交角为对应角或同位角。

- 绳分线定理:直线与两平行线相交时,对应角相等,内错角之和等于180度。

随机事件与概率- 定义:随机试验的可能结果称为随机事件。

- 基本事件与必然事件:基本事件是随机试验的单个结果,必然事件是一定发生的事件。

- 概率的计算:概率等于有利事件数除以可能事件总数。

2019年人教版七年级数学下册知识点大全(含概念、公式、实用)

2019年人教版七年级数学下册知识点大全(含概念、公式、实用)

第一章:整式的运算单项式式多项式同底数幂的乘法 幂的乘方 积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式 一、单项式1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:(1)代数式化简。

(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。

人教版初一数学下册知识点

人教版初一数学下册知识点

人教版初一数学下册知识点1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类3.三角形的三边关系:三角形任一两边的和大于第三边,任一两边的差大于第三边。

4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5.中线:在三角形中,相连接一个顶点和它的对边中点的线段叫作三角形的中线。

6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

7.高线、中线、角平分线的意义和作法8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

9.三角形内角和定理:三角形三个内角的和等同于°推论1直角三角形的两个锐角互余;推断2三角形的一个外角等同于和它不相连的两个内角和;推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和就是外角和的一半。

10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

11.三角形外角的性质(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;(2)三角形的一个外角等同于与它不相连的两个内角和;(3)三角形的一个外角大于与它不相邻的任一内角;(4)三角形的外角和就是°。

12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

13.多边形的内角:多边形相连两边共同组成的角叫作它的内角。

14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

15.多边形的对角线:相连接多边形不相连的两个顶点的线段,叫作多边形的对角线。

16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。

多边形还可以分为正多边形和非正多边形。

正多边形各边相等且各内角相等。

17.正多边形:在平面内,各个角都成正比,各条边都成正比的多边形叫作正多边形。

初中数学人教版七年级下册知识点及公式整理汇总 -回复

初中数学人教版七年级下册知识点及公式整理汇总 -回复

初中数学人教版七年级下册知识点及公式整理汇总 -回复初中数学人教版七年级下册的知识点及公式整理如下:
一、有理数
1.有理数的概念
2.正数、负数的比较和大小关系
3.绝对值的概念及求解
4.有理数的加法和减法
5.有理数的乘法和除法
6.有理数的混合运算
7.小数和分数的相互转化
二、代数式与等式
1.代数式的概念和常见形式
2.算式与代数式的关系
3.字母的意义和代数式的运算
4.等式的概念和性质
5.解一元一次方程(一)
6.解一元一次方程(二)
7.列方程解应用问题
三、平面坐标系
1.平面直角坐标系的概念和基本性质
2.点的坐标
3.图形的平移和旋转
4.坐标系与代数式
四、图形的认识
1.直线和角的基本概念
2.线段的比较和作图
3.线段的延长线和中点
4.角的分类和计数
5.平行线、垂直线和相交线
6.平行线和垂直线的性质
五、面积和体积
1.面积的概念和计算
2.平行四边形的面积
3.三角形的面积
4.长方形和正方形的面积
5.梯形的面积
6.圆的面积
7.体积的概念和计算
六、一次函数
1.函数的概念和函数值
2.一次函数的概念和函数图象
3.一次函数的性质和表示
七、数列
1.数列的概念和表示
2.等差数列及其前n项和
3.等比数列及其前n项和
以上是初中数学人教版七年级下册的主要知识点和公式,希望对你有所帮助。

(完整版)人教版七年级下册数学必背公式

(完整版)人教版七年级下册数学必背公式

完整版)人教版七年级下册数学必背公式一、代数式基本运算1.加减法运算法则:加法法则:$a + b = b + a$减法法则:$a - b ≠ b - a$2.乘法法则:乘法交换律:$a \times b = b \times a$乘法结合律:$(a \times b) \times c = a \times (b \times c)$分配律:$a \times (b + c) = a \times b + a \times c$3.除法法则:除法的定义:$a \div b = \frac{a}{b}$4.乘方法则:幂的乘法法则:$a^{m+n} = a^m \times a^n$幂的除法法则:$a^{m-n} = \frac{a^m}{a^n}$乘方的乘法法则:$(a \times b)^n = a^n \times b^n$5.公式:二次根式公式:$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$二、平面几何1.直角三角形:勾股定理:直角三角形斜边的平方等于两直角边平方和。

c^2 = a^2 + b^2$2.圆的计算:面积公式:$S = \pi r^2$周长公式:$C = 2\pi r$3.三角形计算:面积公式:$S = \frac{1}{2} \times 底边 \times 高$三角形内角和:三角形内角和等于180°。

angle A + \angle B + \angle C = 180°$三、数与式1.百分数与小数的相互转换:百分数转小数:将百分数除以100,如:25% = 0.25小数转百分数:将小数乘以100加上%符号,如:0.5 = 50%2.比例计算:比例:两个同类事物的对应关系。

比例的性质:比例中的两个比例项互相乘积相等。

3.线性方程组:一元一次方程:$ax + b = 0$,其中$a ≠ 0$两个一元一次方程的解:求解两个方程,找出使两个方程同时成立的值。

初一人教版七年级下册数学完全平方公式

初一人教版七年级下册数学完全平方公式

初一人教版七年级下册数学完全平方公式知识点归纳总结一、完全平方公式的概念完全平方公式是数学中一种重要的恒等式,它描述了一个二次多项式如何表示为一个平方的形式。

具体地说,完全平方公式是形如a²±2ab+b²=(a±b)²的等式。

其中,a和b 是任意实数或代数式,它们可以是数字、字母、单项式或多项式。

二、完全平方公式的定义完全平方公式可以定义为:一个二次多项式,如果它可以表示为(a±b)²的形式,则称该二次多项式为完全平方公式。

其中,a和b可以是任意实数或代数式。

三、完全平方公式的性质唯一性:对于给定的a和b,完全平方公式(a±b)²是唯一的。

这意味着没有其他形式的二次多项式可以表示为完全平方。

展开性:完全平方公式可以展开为a²±2ab+b²的形式。

这是完全平方公式的一个重要性质,它允许我们将一个看似复杂的二次多项式简化为一个更简单的形式。

对称性:完全平方公式具有对称性,即(a+b)²=(b+a)²和(a-b)²=(b-a)²。

这意味着在完全平方公式中,a和b的位置可以互换而不影响公式的值。

四、完全平方公式的特点平方项:完全平方公式的第一项和最后一项都是平方项,即a²和b²。

这两项代表了公式中的主要部分,它们决定了公式的整体形状。

乘积项:完全平方公式的中间项是a和b的乘积的两倍,即±2ab。

这项是公式中的关键部分,它连接了平方项并使整个公式成为一个整体。

正负号:完全平方公式中的正负号取决于中间项是正是负。

如果中间项是正数,则公式为(a+b)²;如果中间项是负数,则公式为(a-b)²。

五、完全平方公式的规律二次项和一次项的关系:在完全平方公式中,二次项(a ²)和一次项(±2ab)之间存在密切的关系。

七年级下册数学公式大全总结

七年级下册数学公式大全总结

七年级下册数学公式大全总结一、整式的运算。

1. 同底数幂相乘。

- 公式:a^m· a^n=a^m + n(m,n都是正整数)- 例如:2^3·2^4=2^3 + 4=2^72. 幂的乘方。

- 公式:(a^m)^n=a^mn(m,n都是正整数)- 例如:(3^2)^3=3^2×3=3^63. 积的乘方。

- 公式:(ab)^n=a^nb^n(n是正整数)- 例如:(2×3)^2=2^2×3^2=4×9 = 364. 同底数幂相除。

- 公式:a^m÷ a^n=a^m - n(a≠0,m,n都是正整数,且m>n)- 例如:5^6÷5^3=5^6 - 3=5^35. 单项式乘以单项式。

- 法则:把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

- 例如:2x^2·3x^3=(2×3)(x^2· x^3) = 6x^56. 单项式乘以多项式。

- 公式:m(a + b+c)=ma+mb + mc- 例如:2x(x + 3y - 1)=2x^2+6xy-2x7. 多项式乘以多项式。

- 公式:(a + b)(m + n)=am+an+bm+bn- 例如:(x + 2)(x + 3)=x^2+3x+2x + 6=x^2+5x + 68. 平方差公式。

- 公式:(a + b)(a - b)=a^2-b^2- 例如:(3 + 2)(3 - 2)=3^2-2^2=9 - 4 = 59. 完全平方公式。

- (a + b)^2=a^2+2ab + b^2- 例如:(x+1)^2=x^2+2x + 1- (a - b)^2=a^2-2ab + b^2- 例如:(x - 2)^2=x^2-4x + 4二、相交线与平行线。

1. 余角和补角。

- 若两角之和为90^∘,则这两个角互余,∠1+∠2 = 90^∘,∠1与∠2互余。

七年级下册人教版数学知识点归纳

七年级下册人教版数学知识点归纳

七年级下册人教版数学知识点归纳本文将对七年级下册人教版数学的知识点进行详细归纳,包括代数与方程、图形与变换、数据与概率等几个主要章节。

一、代数与方程1.一元一次方程-解一元一次方程的基本方法:移项、合并同类项、整理得到最简形式。

-利用等式的性质解方程:加减法相消、等式交换律、等式传递律等。

-方程的应用:根据实际问题建立方程并解答。

2.一元一次方程组-解一元一次方程组的基本方法:消元法、代入法。

-方程组的应用:根据实际问题建立方程组并解答。

3.平方根与开方-定义和性质:平方根的定义、非负实数的平方根、开方的性质等。

-计算与应用:求平方根的计算、应用于实际问题中。

4.整式与分式-整式的定义和运算:常数、变量、系数、次数等概念;整式的加减乘除。

-分式的定义和运算:有理数的概念;分式的加减乘除。

5.线性方程与线性不等式-线性方程与线性不等式的关系:线性方程的解集与线性不等式的解集。

-解线性不等式的基本方法:正负法、图像法、代入法等。

二、图形与变换1.平面图形的认识-几何图形的分类:点、直线、线段、射线、角、多边形等。

-基本图形的性质:平行四边形、矩形、正方形、三角形等基本图形的性质。

2.平面坐标系与直角坐标系-平面坐标系:横坐标和纵坐标的定义,点的坐标表示。

-直角坐标系:x轴、y轴、原点、象限的概念。

3.图形的相似与全等-相似图形的判定:对应角相等,对应边成比例。

-全等图形的判定:对应边相等,对应角相等。

4.初中常见几何命题证明-平行线之间的性质:同位角、内错角、同旁内角等。

-三角形之间的性质:三角形内角和为180°,等腰三角形的性质等。

三、数据与概率1.数据的收集和整理-数据的收集方法:观察法、测量法、调查法等。

-数据的整理与分析:频数表、频数直方图、频数折线图等。

2.概率的初步认识-随机事件与样本空间:随机事件的定义,样本空间的概念。

-概率的计算:频率与概率的关系,计算概率的基本方法。

3.一维数据的统计与分析-数据的中心趋势:平均数、中位数、众数的计算与应用。

数学公式初一下册人教版

数学公式初一下册人教版

数学公式初一下册人教版一、整数运算1. 加法整数加法是指将两个整数相加,即将两个数的绝对值相加,再根据其正负确定结果的正负。

其中,加法的性质包括交换律、结合律和零元素。

加法的交换律:对于任意整数a和b,a + b = b + a。

加法的结合律:对于任意整数a、b和c,(a + b) + c = a + (b + c)。

加法的零元素:对于任意整数a,a + 0 = 0 + a = a。

2. 减法整数减法是指将两个整数相减,即将减数的相反数加到被减数上。

同样地,减法的结果也由两个数的正负决定。

3. 乘法整数乘法是指将两个整数相乘,即将两个数的绝对值相乘,再根据其正负确定结果的正负。

乘法的性质包括交换律、结合律、分配律和单位元素。

乘法的交换律:对于任意整数a和b,a × b = b × a。

乘法的结合律:对于任意整数a、b和c,(a × b) × c = a × (b × c)。

乘法的分配律:对于任意整数a、b和c,a × (b + c) = a × b + a × c。

乘法的单位元素:对于任意整数a,a × 1 = 1 × a = a。

4. 除法整数除法是指将被除数除以除数,得到商和余数。

在整数除法中,如果除数不能整除被除数,则余数为除数与被除数之间的差,商为整除得到的商。

二、一元一次方程一元一次方程是指只含有一个未知数的一次方程。

它的一般形式为:ax + b = 0,其中a和b为已知系数。

求解一元一次方程的步骤如下:1.将方程转化为标准形式:ax + b = 0。

2.通过移项,将方程化为ax = -b的形式。

3.通过除以a,得到x = -b/a。

4.求得方程的解x。

三、比例与比例方程1. 比例比例是指两个量之间的相对大小关系。

在比例中,将两个相对关系的量用比例符号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学(下)知识点
1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

4.平行线:在同一平面内,永不相交的两条直线叫做平行线。

5.同位角、内错角、同旁内角:
同旁内角:∠4与∠5、∠3与∠6像这样的一对角叫做同旁内角。

6.命题:判断一件事情的语句叫命题。

7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

9.对顶角的性质:对顶角相等。

10.垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

11.
平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

12.
平行线的性质:
性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

13.平行线的判定:
判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角互补,两直线平行。

第六章平面直角坐标系
一.知识框架
二.知识概念
1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)
2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点
为平面直角坐标系的原点。

4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。

5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。

注意:坐标轴上的点不在任何一个象限内。

第七章三角形
一.知识框架
二.知识概念
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

6.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

7.多边形的内角:多边形相邻两边组成的角叫做它的内角。

8.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

9.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

10.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

11.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

12.公式与性质
三角形的内角和:三角形的内角和为180°;
三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

多边形内角和公式:n边形的内角和等于(n-2)·180°
多边形的外角和:多边形的内角和为360°。

多边形对角线的条数:从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)
第八章二元一次方程组
一.知识结构图
二、知识概念
1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次。

方程,一般形式是ax+by=c(a≠0,b≠0)。

2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。

3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。

4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组的解。

5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。

6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。

7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。

第九章不等式与不等式组
一.知识框架
二、知识概念
1.用符号“<”“>”“≤ ”“≥”“≠”表示大小关系的式子叫做不等式。

2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

5.一元一次不等式组:一。

般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组
7.不等式的性质:
不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。

不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

第十章数据的收集、整理与描述
一.知识框架
1.全面调查:考察全体对象的调查方式叫做全面调查。

2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。

3.总体:要考察的全体对象称为总体。

4.个体:组成总体的每一个考察对象称为个体。

5.样本:被抽取的所有个体组成一个样本。

6.样本容量:样本中个体的数目称为样本容量。

7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。

8.频率:频数与数据总数的比为频率。

9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。

相关文档
最新文档