传感器与信号调理电路(精选)

合集下载

电子称重传感器及信号调理电路

电子称重传感器及信号调理电路

电子称重传感器及信号调理电路燕山大学课程设计说明书题目:精密四应变片称重传感器信号调理电路设计学院(系):电气工程学院年级专业: XX学号: XX学生姓名: XX指导教师: XX教师职称: XX燕山大学课程设计(论文)任务书院(系):基层教学单位:学号Xx学生姓名Xx专业(班级)Xx设计题目精密四应变片称重传感器信号调理电路设计设计技术参数设计要求工作量工作计划参考资料指导教师签字基层教学单位主任签字说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。

月日燕山大学课程设计评审意见表指导教师评语:成绩:指导教师:年月日答辩小组评语:成绩:组长:年月日课程设计总成绩:答辩小组成员签字:年月日目录第1章摘要 (1)第2章引言 (2)第3章基本原理 (3)第4章参数设计及运算 (5)4.1 结构设计 (5)4.2 电容设计与计算 (8)4.3 其他参数的计算 (10)4.4 测量电路的设计 (12)第5章误差分析 (14)第6章结论 (16)心得体会……………………………………………… (17)参考文献 (18)第1章摘要在分析重力传感器信号特性的基础上,模块化地设计了称重传感器信号的调理电路并对其进行了仿真实验。

结果表明:电路能实时、准确地处理信号,且工作稳定,可靠,重复性好,抗干扰能力强,可实现精密测量的目的。

第2章引言随着现代数据采集系统的不断发展,对高精度信号调理技术的要求也越来越高。

由于传感器输出的信号往往存在温漂、信号比较小及非线性等问题,因此它的信号通常不能被控制元件直接接收,这样一来,信号调理电路就成为数据采集系统中不可缺少的一部分,并且其电路设计的优化程度直接关系到数据采集系统的精度和稳定性。

在称重传感器信号检测中,检测精度受到诸多因素的影响,其中电桥激励电压源的精度和稳定度是影响信号精确度的重要因素之一。

电桥输出与激励电压成正比,因此,激励电压出现任何漂移都将导致电桥输出出现相应的漂移。

霍尔型传感器信号调理电路的设计

霍尔型传感器信号调理电路的设计

霍尔型传感器信号调理电路的设计【摘要】所谓信号调理就是通过电子元器件的有机组合,对传感器输出的信号进行调节、变换和整理的过程。

信号调理电路的具体设计需要综合考虑数据采集的目的、现场环境及控制系统的算法设计等各种因素。

本文论述了霍尔型电压、电流传感器信号的调理电路的具体实现方法,并应用试验方法验证了电路的可靠性等有关特征参数。

【关键词】传感器;信号调理;放大器;电路设计;霍尔当代社会中在工业控制等方面,经常要将电流、电压、温度、湿度等模拟量转换成数字量,然后在微处理器内作进一步运算和处理,完成相应的数据存储、数据传输和数据输出,达到分析和控制的目的。

模拟量的采集一般使用传感器来将它们转换为电气量来进行处理。

然而传感器送出的信号往往不能满足处理器输入信号的要求,这就需要我们设计相应的信号调理电路来把这种不合要求的信号变换为符合处理器输入信号要求的信号。

此电路设计的优化程度如何,直接关系到微处理器采集到的信号的准确程度。

霍尔型电压、电流传感器具有结构简单、体积小、坚固、频率响应宽、动态范围大、无触点、使用寿命长、可靠性高、易微型化和集成化等优点,在测量技术、自动化技术和信息处理等新技术领域得到广泛的应用。

本文就其输出信号特点设计了相应的信号调理电路,并且通过实验验证了所设计电路的可行性及可靠性。

1 霍尔型传感器霍尔传感器是一种磁传感器。

用它可以检测磁场及其变化,可在各种与磁场有关的场合中使用。

它采用双电源供电,可采集电压、电流等电气信号,输出信号可以是电压信号,也可以是电流信号。

本文以LV28-P型霍尔电压传感器为例说明霍尔型传感器输出信号调理电路的设计过程。

传感器LV 28-P的原边与副边之间是绝缘的,主要用于测量直流、交流电压和脉冲电压。

其各参数指标如下:1)电参数IP N:原边额定有效值电流10mA IS N:副边额定有效值电流25mAKN:转换率2500:1000 VC:电源电压(±5%)±15V2)精度-动态参数XG:总精度@IP N,TA = 25℃±0.6 %IO T :IO 的温漂:0℃~+25℃± 0.2mA+25℃~70℃± 0.3mATr:响应时间@90% of VPmax 40μs。

信号调理电路

信号调理电路

信号调理电路信号调理电路就是信号处理电路,把模拟信号变换为用于数据采集、控制过程、执行计算显示读出或其他目的的数字信号。

是指利用内部的电路,如滤波器、转换器、放大器等来改变输入的讯号类型并输出。

在实际应用中工业信号有些是高压,过流,浪涌等,不能被系统正确识别,必须调整理清。

信号调理电路原理信号调理电路往往是把来自传感器的模拟信号变换为用于数据采集、控制过程、执行计算显示读出和其他目的的数字信号。

模拟传感器可测量很多物理量,如温度、压力、力、流量、运动、位置、PH、光强等。

但是传感器信号不能直接转换为数字数据,因为传感器输出是相当小的电压、电流或变化,因此,在变换为数字数据之前必须进行调理。

调理就是放大,缓冲或定标模拟信号,使其适合于模/数转换器(ADC)的输入。

然后,ADC对模拟信号进行数字化,并把数字信号送到微控制器或其他数字器件,以便用于系统的数据处理。

信号调理电路技术1.放大放大器提高输入信号电平以更好地匹配模拟-数字转换器(ADC)的范围,从而提高测量精度和灵敏度。

此外,使用放置在更接近信号源或转换器的外部信号调理装置,可以通过在信号被环境噪声影响之前提高信号电平来提高测量的信号-噪声比。

2.衰减衰减,即与放大相反的过程,在电压(即将被数字化的)超过数字化仪输入范围时是十分必要的。

这种形式的信号调理降低了输入信号的幅度,从而经调理的信号处于ADC范围之内。

衰减对于测量高电压是十分必要的。

3.隔离隔离的信号调理设备通过使用变压器、光或电容性的耦合技术,无需物理连接即可将信号从它的源传输至测量设备。

除了切断接地回路之外,隔离也阻隔了高电压浪涌以及较高的共模电压,从而既保护了操作人员也保护了昂贵的测量设备。

4.多路复用通过多路复用技术,一个测量系统可以不间断地将多路信号传输至一个单一的数字化仪,从而提供了一种节省成本的方式来极大地扩大系统通道数量。

多路复用对于任何高通道数的应用是十分必要的。

5.过滤滤波器在一定的频率范围内去处不希望的噪声。

信号调理电路

信号调理电路
滤波一词起源于通信理论,它是从含有干扰的接收信号中提取有用信号的一种技术。“接收信号”相当于被 观测的随机过程,“有用信号”相当于被估计的随机过程。例如用雷达跟踪飞机,测得的飞机位置的数据中,含 有测量误差及其他随机干扰,如何利用这些数据尽可能准确地估计出飞机在每一时刻的位置、速度、加速度等, 并预测飞机未来的位置,就是一个滤波与预测问题。这类问题在电子技术、航天科学、控制工程及其他科学技术 部门中都是大量存在的。历史上最早考虑的是维纳滤波,后来R.E.卡尔曼和R.S.布西于20世纪60年代提出了卡尔 曼滤波。现对一般的非线性滤波问题的研究相当活跃。
与传统无线电不同,软件无线电要求尽可能地以数字形式处理无线信号,因此必须将A/D和D/A转换器尽可 能地向天线端推移,这就对A/D和D/A转换器的性能提出了更高的要求。主要体现在两个方面。
(1)采样速率。依据采样定理,A/D转换器的抽样频率fs应大于2Wa(Wa为被采样信号的带宽)。在实际中, 由于A/D转换器件的非线性、量化噪声、失真及接收机噪声等因素的影响,一般选取fs>2.5Wa。
(2)分辨率。采样值的位数的选取需要满足一定的动态范围及数字部分处理精度的要求,一般分辨率80dB 的动态范围要求下不能低于12位。
谢谢观看
信号调理电路
把模拟信号变换为用于数据采集、控制过程、执行计算显示读出或 其他目的的数字信号的电路
01 简介
目录
02 信号调理
03 调理技术组成
04 信号滤波
05 信号隔离
06 模数转换
基本信息
信号调理电路(signal conditioning circuit)是指把模拟信号变换为用于数据采集、控制过程、执行计 算显示读出或其他目的的数字信号的电路。

第3章 电感式传感器及其信号调理

第3章 电感式传感器及其信号调理



当铁芯位于中间位置时,M M M ,E =0 铁芯向上位移时,M M M M M M ,
1 2

s
1
2
Es


2 jM E p Rp jLp
1

铁芯向下位移时,M
Es

M M

M 2 M M,
2 jM E p Rp jLp
3.1 自感式传感器 3.1.1 单线圈自感传感器
自感式传感器亦称变隙式自感传感器或变磁 阻式自感传感器,根据铁芯线圈磁路气隙的改变, 引起磁路磁阻的改变,从而改变线圈自感的大小。 气隙参数的改变可通过改变气隙长度和改变 气隙截面积两种方式实现。传感器线圈分单线圈 和双线圈两种。
图3-1单线圈变气隙式长度自感传感器
s
Us

j (M 2 M1 ) E p j (M 2 M1 ) E p RL RL RL ( Rs1 Rs 2 ) j ( L1 L2 ) Rp jLp RL Rs jLs Rp jLp



根据(3-19)画出差动变压器频率特性如图313。

3) 采用补偿电路,为常采用的零点残余电压补偿 电路原理图。消除零点残余电压的补偿电路有四 种: ①附加串联电阻以消除基波同相成分; ②附加并联电阻以消除基波正交成分; ③附加并联电容。改变相移,补偿高次谐波分量; ④附加反馈绕组和反馈电容,以补偿基波及高次谐 波分量。串联电阻的阻值很小,为0.5-5Ω ,并 联电阻的阻值为数十到数百千欧;并联电容的数 值在数百PF范围。实际数值通常由实验来确定。
U i L U0 4 L0
采用差动结构能带来的好处: 理论上消除了零位输出,衔铁所受电磁力平衡; 灵敏度提高一倍; 线性度得到改善(高次项能部分相互抵消); 差动形式可减弱或消除温度、电源变化及外界干 扰等共模干扰的影响。因为这些干扰是以相同的 方向、相同的幅度作用在两个线圈上的,所引起 的自感变化的大小和符号相同,而信号调理电路 实质上是将两个线圈自感的差值转换为电信号。

传感器信号调理电路

传感器信号调理电路

传感器信号调理电路传感器信号调理电路信号调理往往是把来自传感器的模拟信号变换为用于数据采集、控制过程、执行计算显示读出和其他目的的数字信号。

模拟传感器可测量很多物理量,如温度、压力、力、流量、运动、位置、PH、光强等。

通常,传感器信号不能直接转换为数字数据,这是因为传感器输出是相当小的电压、电流或电阻变化,因此,在变换为数字数据之前必须进行调理。

调理就是放大,缓冲或定标模拟信号,使其适合于模/数转换器(ADC)的输入。

然后,ADC对模拟信号进行数字化,并把数字信号送到微控制器或其他数字器件,以便用于系统的数据处理。

此链路工作的关键是选择运放,运放要正确地接口被测的各种类型传感器。

然后,设计人员必须选择ADC。

ADC应具有处理来自输入电路信号的能力,并能产生满足数据采集系统分辨率、精度和取样率的数字输出。

传感器传感器根据所测物理量的类型可分类为:测量温度的热电偶、电阻温度检测器(RTD)、热敏电阻;测量压力或力的应变片;测量溶液酸碱值的PH电极;用于光电子测量光强的PIN光电二极管等等。

传感器可进一步分类为有源或无源。

有源传感器需要一个外部激励源(电压或电流源),而无源传感器不用激励而产生自己本身的电压。

通常的有源传感器是RTD、热敏电阻、应变片,而热电偶和PIN二极管是无源传感器。

为了确定与传感器接口的放大器所必须具备的性能指标,设计人员必须考虑传感器如下的主要性能指标:·源阻抗——高的源阻抗大于100KΩ——低的源阻抗小于100Ω·输出信号电平——高信号电平大于500mV满标——低信号电平大于100mV满标·动态范围在传感器的激励范围产生一个可测量的输出信号。

它取决于所用传感器类型。

放大器功用放大器除提供dc信号增益外,还缓冲和定标送到ADC之前的传感器输入。

放大器有两个关键职责。

一个是根据传感器特性为传感器提供合适的接口。

另一个职责是根据所呈现的负载接口ADC。

信号调理电路工作原理

信号调理电路工作原理

信号调理电路工作原理一、引言信号调理电路是指对输入信号进行处理和调整,使其能够适应后续电路的工作要求。

它是电子系统中非常重要的一部分,能够对信号进行放大、滤波、增益控制等操作,以保证信号在传输过程中的稳定性和准确性。

本文将从信号调理电路的基本原理、常见的调理方法以及应用案例等方面进行介绍。

二、信号调理电路的基本原理信号调理电路的基本原理是通过对输入信号进行各种操作,以使得信号能够适应后续电路的工作要求。

其核心思想是根据输入信号的特点和要求,选择合适的电路结构和参数,对信号进行放大、滤波、增益控制等处理,以达到信号传输的目的。

三、常见的信号调理方法1. 放大放大是信号调理电路中最常见的操作之一。

通过放大电路,可以将输入信号的幅度增大,以增强信号的强度和稳定性。

常见的放大电路有运算放大器、差分放大器等。

2. 滤波滤波是对信号进行频率选择性处理的方法。

通过滤波电路,可以去除输入信号中的杂波和干扰信号,保留需要的有效信号。

常见的滤波电路有低通滤波器、高通滤波器、带通滤波器等。

3. 增益控制增益控制是调节信号放大倍数的方法。

通过增益控制电路,可以根据需要调整信号的放大倍数,以满足不同信号传输要求。

常见的增益控制电路有可变增益放大器、自动增益控制器等。

4. 去噪去噪是对输入信号中的噪声进行消除或减弱的方法。

通过去噪电路,可以提高信号的信噪比,使得信号更加清晰和可靠。

常见的去噪电路有降噪滤波器、自适应滤波器等。

四、信号调理电路的应用案例1. 传感器信号调理在传感器应用中,信号调理电路起到了至关重要的作用。

传感器常常输出微弱的信号,需要通过信号调理电路进行放大和滤波,以提高信号的可靠性和准确性。

2. 通信系统中的信号调理在通信系统中,信号调理电路用于对输入信号进行放大、滤波和增益控制等处理。

通过信号调理电路,可以保证信号在传输过程中的稳定性和完整性,提高通信质量。

3. 生物医学信号调理生物医学领域中的信号调理电路常常用于对生物信号进行处理和分析。

传感器信号调理电路

传感器信号调理电路
(2)响应速度 实时动态检测要求传感器电路有良好的频率特性、较
高的响应速度。
(3)可调整性 能以同一电路适应不同的同类传感器,即要求电路
的量程或增益可调,且可调范围大、操作方便。同时 希望电路有简单的数据处理功能。 (4)可靠性
传感器电路的可靠性必须满足使用要求。电路可靠 性的基础是元器件的可靠性。元器件可靠性相同的情 况下,电路元器件越多可靠性越低,因此,简化电路结 构是提高可靠性的有效办法。 (5)经济性
1)基本电桥
很多情况下需用测量电桥测电阻值的微弱变化量。
基本测量电桥为惠斯通电桥。采用恒压源供电。其输出
可灵敏反映出桥臂电阻的变化量,不含初始分量,输出
电压为:
UB
uO
R3
R4 R4
U
B
R1
R2 R2
U
B
UB
R1R4 R2 R3 (R1 R2 )( R3 R4 )
R3
R1
+ uO -
R4
R2
uO
U B
R R
UB
该电路适于不能实现差动的情况。 R R
R
R +US
-US R R
uO
双臂电桥的线性化电路
3)降低引线电阻对电桥的影响
一般,电阻桥正常工作时的电阻变化非常小,例如
金属应变计的电阻变化一般不到1%。若电桥引线很长, 引线阻值和温漂会给电桥带来明显误差。
(1)示例
下图为单臂350Ω应变桥,应变计Rx满量程时电阻变化 为1%即3.5Ω。应变计经30米双绞铜线接入电桥电路,组
电桥类型与特点: 类型:直流和交流
交流桥的特点:对传输线电容很敏感,平衡调节 难,通频带受载频限制而较窄,传输电缆不宜过长。

512变抗式传感器信号调节电路

512变抗式传感器信号调节电路

VA= Ve (C1 - C2)/ (C1 + C2 + C3) 根据例4.2的结果
C3
CAC
0
wh d
C1
CAB
0
wh d
h 2
z L
h
2q
C2
CAB'
0
wh d
h 2
z L
h
2q
第五章 变抗式传感器的信号调节
图E4.2差动电容式传感器
图5E.1用于图4.2的差动电容式传感器的 信号调节电路
Vp=Vs *Zp/(Zp+Zs)
5.17
运放的输出为:
Vo/Vs= (Zp/(Zp+Zs))((Z2+Z1)/Zs)/(1+1/(Ad β)) 5.18
要求Zp足够高才能不影响放大器的线性。
放大器的阻抗
集成电路放大器的交流阻抗远低于直流值,这是由 于输入电容所造成的。在1MHz上,3pF的输入电容的阻 抗为50KΩ。电路布线、连接电缆会进一步降低这个值。
(c)有电阻臂和 差动传感器的交流电桥,以降 低线性为代价,使灵敏度提高一倍。
§5-2 交流电桥
§5-2-1 灵敏度和线性
第五章 变抗式传感器的信号调节
图5.4布卢姆莱因(Blunlein)电桥或变压器电桥:由于对地的寄生电容的影响,电 容电桥一般采用变压器电桥。(a)利用变压器。(b)利用自耦变压器。(c)传感器 屏蔽线的连接。(d)与检测器相连的电桥的等效电路。
图5.1(a)所示电路将恒流源方法用在平板电容极板 间距离变化的电容位移传感器上,电容按下式规律 变化时:
Cx= εA /(d+z) = εA / [d(1+x)]
= C0 / (1+x) 式中 x=z/d 如果将R忽略不计,则输出电压为

信号调理电路

信号调理电路

1.信号调理电路信号调理电路是接口板的重要组成部分,信号精度决定了系统控制性能的优劣。

如果直接采用DSP2812的采样模块进行设计存在以下缺点:只能接收0~3V 的单极性信号输入,对于交流信号需要另外设计限幅抬压电路;同一排序器内各通道串扰严重;12位的转换精度难以满足高性能系统的要求。

综合考虑后,本文选用合众达的DSP2812M电力应用控制板,其AD输入范围为-10V至+10V,12路16位高精度外扩A/D模块能够很好满足用户对采样的需求。

为了最大程度地让信号无失真地进行传输,我们采用的传感器均为电流型,下图为接口电路板上的信号调理电路图。

为了最大限度利用控制板采样电压为正负10V,电流信号由取样电阻转换成电压信号后,经过稳压管(保证输入电压小于10V,保护AD芯片),再加一级运放将电压信号放大至10V后,输入2812控制板,这样既能很好利用开发板也能提高采样精度和准确度。

a)负载电流取样电路原理图b)APF输出电流取样电路原理图c)APF直流侧电压取样电路原理图反向比例运算放大电路放大倍数A=120/1/R R u u i +=RC 滤波电路的时间常数τ=RC=10k ⨯0.1⨯10-6=1ms 。

2.保护电路系统工作过程中,由于外部原因造成逆变模块直流侧电压的抬高甚至电压的飙升,进而影响到系统的补偿性能,甚至危及系统的安全。

同时,如果逆变器的输出补偿电流大于所要补偿的电流值造成过补,也会对整个系统的补偿性能和安全带来危害。

为确保上述状况发生后装置的安全,设置了大功率逆变模块过压过流保护电路,其原理图如图4.13所示a )直流侧电压过压保护检测电路b )APF 输出电流过流保护检测电路图4.13 保护电路原理图电压电流信号经电流传感器和电压传感器及取样电路一并转化为输入信号在-10V 到+10V 的电压信号,考虑到采用有效值芯片的成本较高,该论文选择使用整流电路将传感器检测的三路APF 电流信号进行整流后变换成一直流电压信号,后端接一大电容平波,再与LM393比较器芯片进行比较,如果任何一路电流、电压值超过安全设定则保护电路驱动继电器跳闸。

电子称重传感器及信号调理电路

电子称重传感器及信号调理电路

电子称重传感器及信号调理电路燕山大学课程设计说明书题目:精密四应变片称重传感器信号调理电路设计学院(系):电气工程学院年级专业: XX学号: XX学生姓名: XX指导教师: XX教师职称: XX燕山大学课程设计(论文)任务书院(系):基层教学单位:说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。

月日燕山大学课程设计评审意见表目录第1章摘要 (1)第2章引言 (2)第3章基本原理 (3)第4章参数设计及运算 (5)4.1 结构设计 (5)4.2 电容设计与计算 (8)4.3 其他参数的计算 (10)4.4 测量电路的设计 (12)第5章误差分析 (14)第6章结论 (16)心得体会……………………………………………… (17)参考文献 (18)第1章摘要在分析重力传感器信号特性的基础上,模块化地设计了称重传感器信号的调理电路并对其进行了仿真实验。

结果表明:电路能实时、准确地处理信号,且工作稳定,可靠,重复性好,抗干扰能力强,可实现精密测量的目的。

第2章引言随着现代数据采集系统的不断发展,对高精度信号调理技术的要求也越来越高。

由于传感器输出的信号往往存在温漂、信号比较小及非线性等问题,因此它的信号通常不能被控制元件直接接收,这样一来,信号调理电路就成为数据采集系统中不可缺少的一部分,并且其电路设计的优化程度直接关系到数据采集系统的精度和稳定性。

在称重传感器信号检测中,检测精度受到诸多因素的影响,其中电桥激励电压源的精度和稳定度是影响信号精确度的重要因素之一。

电桥输出与激励电压成正比,因此,激励电压出现任何漂移都将导致电桥输出出现相应的漂移。

并且现场工作环境恶劣,可能存在粉尘、振动、噪声以及电磁干扰等,称重传感器输出的几百微伏至几十毫伏信号极易受到干扰。

所以研究抗干扰能力强、实时性好的信号变送和传输技术对保证检测精度具有重要意义。

第3章电路结构设计3.1 信号处理电路的要求分析测量电阻有两种简单的方法:一种是在电阻上通过恒定电流,并测量电阻两端的电压,这需要精密电流源和精密电压表。

信号调理电路

信号调理电路

3.6 信号调理电路由传感器直接输出的信号一般是非常微弱的,不能直接被测量电路所利用,所以要根据不同形式的传感器采取不同的方式对信号进行处理,例如对微弱的信号放大、滤波、变换等等,最终将传感器最初的输出信号调理成能被测量电路所利用的信号。

3.6.1 仪器放大器仪器放大器(或称数据放大器)是用于测量两个输入端信号之差的集成模块,其放大增益可设定。

仪表放大器具有输入阻抗高、失调和温漂小、增益稳定、输出阻抗低等特点,主要用于作热电偶、应变电桥、分流器及生物传感器的接口电路,这种放大器能够将叠加在大共模电压上的小的差模信号进行前置放大。

仪表放大器的增益可任意设定,一般有两种方法,一是通过数字量直接控制,另一种是通过外部电位器调节,目前有各种型号的仪器放大器可供选择使用。

仪表放大器的功能框图如图3.6.1所示。

图3.6.1仪表放大器有它自己参考端,这些参考端均于地线相连,可以驱动以地为参考的负载。

此外仪表放大器的输入地和输出地都汇集在一点,该点又与电源地相连,这样可以减小电路中接地环路电阻,从而减少因接地电阻带来的影响。

下面以AD620为例介绍其典型应用。

AD620是低成本仪表放大器,用户仅通过外接一个电阻,就可以在1~1000倍的增益范围内任意设置放大倍数。

该器件具有宽的供电电源范围±2.3V~±18V ,较低的功耗(≤1.3mA ),输入失调电压小于50μV ,输入失调电压温漂小于0.6μV/℃,具有低的噪声输入。

其管脚排列如图3.6.2所示。

G REFOUT +Vcc R图 3.6.21、8脚是外接电阻端子,以调节放大倍数;7、4脚是正、负电源端子;2、3脚是输入电压端;6脚是输出电压端;5脚是参考端,若该端接地,则6脚输出为对地之间的电压。

AD620仪表放大器的放大倍数表达式为:14.49+=GR kG 1 基本放大器电路图3.6.3是AD620组成的基本放大器,根据放大倍数的要求,可以决定出电阻R G 的值。

信号调理电路的原理、功能

信号调理电路的原理、功能

什么是信号调理?信号调理电路的原理,信号调理模块的功能[导读] 信号调理电路往往是把来自传感器的模拟信号变换为用于数据采集、控制过程、执行计算显示读出和其他目的的数字信号。

模拟传感器可测量很多物理量,如温度、压力、力、流量、运动、位置、PH、光强等。

但是传感器信号不能直接转换为数字数据,因为传感器输出是相当小的电压、电流或变化,因此,在变换为数字数据之前必须进行调理。

信号调理电路原理信号调理电路往往是把来自传感器的模拟信号变换为用于数据采集、控制过程、执行计算显示读出和其他目的的数字信号。

模拟传感器可测量很多物理量,如温度、压力、力、流量、运动、位置、PH、光强等。

但是传感器信号不能直接转换为数字数据,因为传感器输出是相当小的电压、电流或变化,因此,在变换为数字数据之前必须进行调理。

调理就是放大,缓冲或定标模拟信号,使其适合于模/数转换器(ADC)的输入。

然后,ADC对模拟信号进行数字化,并把数字信号送到微控制器或其他数字器件,以便用于系统的数据处理。

信号调理电路技术1.放大放大器提高输入信号电平以更好地匹配模拟-数字转换器(ADC)的范围,从而提高测量精度和灵敏度。

此外,使用放置在更接近信号源或转换器的外部信号调理装置,可以通过在信号被环境噪声影响之前提高信号电平来提高测量的信号-噪声比。

2.衰减衰减,即与放大相反的过程,在电压(即将被数字化的)超过数字化仪输入范围时是十分必要的。

这种形式的信号调理降低了输入信号的幅度,从而经调理的信号处于ADC范围之内。

衰减对于测量高电压是十分必要的。

3.隔离隔离的信号调理设备通过使用变压器、光或电容性的耦合技术,无需物理连接即可将信号从它的源传输至测量设备。

除了切断接地回路之外,隔离也阻隔了高电压浪涌以及较高的共模电压,从而既保护了操作人员也保护了昂贵的测量设备。

4.多路复用通过多路复用技术,一个测量系统可以不间断地将多路信号传输至一个单一的数字化仪,从而提供了一种节省成本的方式来极大地扩大系统通道数量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档