(完整版)全等三角形的判定与性质专题训练
三角形全等的判定方法5种例题+练习全面
教学内容全等三角形的判定教学目标掌握全等三角形的判定方法重点全等三角形的判定探索三角形全等的条件(5种)1边角边(重点)两边及其夹角分别分别相等的两个三角形全等,可以简写成“边角边”或“SAS”.注:必须是两边及其夹角,不能是两边和其中一边的对角.原因:如图:在A ABC和A ABD中,/ A= / A,AB=AB,BC=BD,显然这两个三角形不全等.A例 1 如图,AC=AD, / CAB= / DAB,求证:A ACB义A ADB.AD例 2 如图,在四边形 ABCD 中,AD〃BC, / ABC= /DCB, AB=DC, AE=DF 求证:BF=CE.例3.(1)如图①,根据“SAS",如果BD=CE, =,那么即可判定4BDC24CEB; (2)如图②,已知BC=EC, NBCE二ACD,要使4ABC2△口£&则应添加的一个条件为例4. 如图,已知AD=AE,N1=N2, BD=CE,则有4ABD2,理由是△ABE义,理由是.例5.如图,在4ABC和4DEF中,如果AB=DE, BC=EF,只要找出N=N 或〃,就可得到4ABC2△DEF.A D例6.如图,已知AB〃DE, AB=DE, BF=CE,求证:4ABC24口£艮例 7.如图,点B 在线段AD 上,BC〃DE, AB=ED, BC=DB. 求证:NA二NE 例8.如图,点E, F 在BC 上,BE=CF, AB=DC, NB=NC.求证: NA=ND.2.角边角两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例1.如图,在4ABC中,点D是BC的中点,作射线AD,线段AD及其延长线上分别取点E, F,连接CE,BF.添加一个条件,使得4BDF24CDE,你添加的条件是:.(不添加辅助线)例2. 如图,已知人口平分/8人&且N ABD=N ACD,则由“AAS”可直接判定△^A.B例 3.如图,在 RtA ABC 中,N ACB=90°, BC=2cm, CD^AB,在AC 上取一点E,使EC二BC, 过点E作EF^AC交CD的延长线于点F,若EF=5cm,那么AE=cm.例4.如图,AD〃BC,N ABC的角平分线BP与/8人口的角平分线AP相交于点P,作PE L AB于点E.若PE=2,则两平行线AD与BC间的距离为.例 5.如图,已知EC=AC, ZBCE=ZDCA, NA=NE.求证:BC=DC.例6.如图,在4ABC中,D是BC边上的点(不与B, C重合),F, E分别是AD及其延长线上的点,CF〃BE.请你添加一个条件,使4BDE24CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是:;(2)证明:例7.如图,A在DE上,F在AB上,且BC=DC,N1=N2=N3,则DE的长等于()A. DCB. BCC. ABD. AE+AC【基础训练】1 .如图,已知 AB = DC,NABC=NDCB,则有4ABC2,理由是;且有2 .如图,已知AD=AE,N1 = N2, BD = CE,则有4ABD2,理由是;△ ABF /,理由是.3 .如图,在4ABC 和ABAD 中,因为 AB = BA,NABC=NBAD, =,根 据“SAS”可以得到4ABC2ABAD.4 .如图,要用“SAS”证4ABC2AADE,若AB=AD, AC=AE,则还需条件( ).5 .如图,OA=OB, OC = OD,NO=50°,N D = 35°,则NAEC 等于( ).A. 60°B. 50°C. 45°D. 30°A.NB = ND C.N1 = N2 BNC=NED.N3 = N4(第4皿(第56.如图,如果AE=CF, AD〃BC, AD = CB,那么^ADF和ACBE全等吗?请说明理由.律f题)7.如图,已知AD与BC相交于点O,NCAB = NDBA, AC = BD.求证: (1)NC=ND;(2)AAOC^ABOD.C第T题)8.如图,AACD和4BCE都是等腰直角三角形,NACD=NBCE=90°, AE交DC于F, BD分别交CE、AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.(第8题)9.如图,在4ABC 中,AB=AC, AD 平分/BAC.求证:NDBC=NDCB.(第KJ题)10.如图,4ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE〃BC.(第门题)角角边两角分别相等且其中一组等角的对边相等的两个三角形全等,可以简写成“角角边”或“AAS”. 例1、如图,在4ABC中,N ABC=45°, H是高AD和高BE的交点,试说明BH=AC.例 2、如图,N ACB=90°, AC二BC, BE±CE, AD±CE 于 D, AD=2.5cm, DE=1.7cm. 求BE的长.例3、如图,在4ABC中,AC±BC, CE±AB于E, AF平分/CAB交CE于点F,过F作FD〃 BC交AB于点D.求证:AC=AD.例 3.如图,AD 平分/BAC, DEXAB 于 E, DFXAC 于 F,且 DB二DC,求证:EB=FC例4.如图,在4ABC中,D是BC的中点,DELAB, DFXAC,垂足分别是E, F, BE=CF. 求证:AD 是4ABC的角平分线.例5.如图,在4ABC中,AB二CB,N ABC=90°, D为AB延长线上的一点,点E在BC 边上,连接 AE, DE, DC, AE二CD.求证:NBAE二NBCD.例6.如图,D是BC上一点,DEL AB, DF±AC, E, F分别为垂足,且AE=AF.(1)AAED与4AFD全等吗?为什么?(2)AD平分/BAC吗?为什么?例 7.如图,已知 ACLBC, BDLAD, BC 与 AD 交于 O, AC=BD.试说明:ZOAB=ZOBA.例8.如图,NACB 和/ADB都是直角,BC二BD, E是AB上任意一点.求证:CE=DE.例 9.如图,已知RtAABC^RtAADE,ZABC=Z ADE=90°, BC 与 DE 相交于点 F, CD, EB.连接(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.例10.如图,在四边形ABCD中,AC 平分/BAD,并且CB=CD.求/ABC+NADC的度数.例11. (1)如图①,A, E, F, C四点在一条直线上,AE二CF,过点E, F分别作DELAC, 8尸,八0连接BD交AC于点G,若AB二CD,试说明FG=EG.(2)若将4DCE沿AC方向移动变为如图②的图形,(1)中其他条件不变,上述结论是否仍成立?请说明理由.B BD D①. ②课后练习:1.如图,点C在线段AB的延长线上,AD = AE, BD = BE, CD = CE,则图中共有对全等三角形,它们是2.如图,若AB = CD, AC=BD,则可用“SSS”证 23.如图,已知 AB = DC, BE=CF,若要利用“SSS”得到4ABE2△DCF,还需增加的一个条件是.i第3题)(第-I题)4.如图所示是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若想固定其形状不变,需要加钉一根木条,可钉在().A. AE 上B. EF 上C. CF 上D. AC 上5.如图,已知E、C两点在线段BF上,BE=CF, AB=DE, AC=DF.求证:AABC2A DEF.& E C F(第三⑦6.如图,在4ABC和4DCB中,AC与BD相交于点O, AB=DC, AC=BD.(1)求证:4ABC 2ADCB;(2)AOBC的形状是.(直接写出结论,不需证明)<第6题)7、如图,在口ABCD中,点E、F分别是AD、BC的中点,AC 与EF相交于点O.(1)过点B作AC的平行线BG,延长EF交BG于点H;(2)在(1)的图中,找出一个与4BFH全等的三角形,并证明你的结论.8、如图,已知BD±AB, DC,AC,垂足分别为点B、C, CD=BD, AD 平分/BAC吗,为什么?9.如图,四边形ABCD是正方形,点G是BC上的任意一点,DELAG于E, BF#DE,交 AG于F.那NAF与BF+EF相等吗?请说明理由.B G C10.如图,BD、CE分别是4ABC的边AC和边AB上的高,如果BD = CE,试证明AB = AC.11.如图,在RtAABC和RtABAD中,AB为斜边,AC=BD, BC、AD相交于点E (1)请说明AE=BE 的理由;(2)若N AEC=45°, AC = 1,求 CE 的长.12.如图,在4ABC中,D是BC的中点,DELAB, DFLAC,垂足分别是点E、F, BE= CF.(1)图中有几对全等的三角形?请一一列出;(2)选择一对你认为全等的三角形进行证明.4练习21.如图,已知NB = NDEF, AB=DE,要证明△ ABC2△DEF.(1)若以“ASA”为依据,还缺条件;(2)若以“AAS”为依据,还缺条件£(第1期】《第2题)2.如图,已知AD平分/BAC,且NABD=NACD,则由“AAS”可直接判定△2 △.3.如图,已知AB=AC,要根据“ASA”得到以BE2AACD,应增加一个条件是 _______________(第3 (第4(第54.如图,点P是/AOB的平分线OC上的一点,PD±OA, PE LOB,垂足分别为点D、E, 则图中有对全等三角形,它们分别是.5.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是().A.带①去B.带②去C.带③去D.带①和②去6.如图,已知AC平分/8八口,/1 = /2, AB与AD相等吗?请说明理由.C£第67.如图,点B、E、F、C在同一直线上,已知NA=ND, 需要补充的一个条件是.(写出一个即可)NB = NC,要使4ABF 2ADCE,8.如图,在4ABC中,N ABC=45°, H是高AD和高BE的交点,试说明BH=AC.A9.如图,已知点A、D、B、E在同一条直线上,且AD=BE,NA=NFDE,则AABC2A DEF.请你判断上面这个判断是否正确,如果正确,请给出说明;如果不正确,请添加一个适当条件使它成为正确的判断,并加以说明.10.已知:如图,AB=AE,N1 = N2,NB = NE.求证:BC=ED.21。
(完整版)全等三角形判定综合练习题
全等三角形判定练习题1、如图(1):AD ⊥BC ,垂足为D ,BD =CD 。
求证:△ABD ≌△ACD2、如图(2):AC ∥EF ,AC =EF ,AE =BD 。
求证:△ABC ≌△EDF 。
3、 如图(3):DF =CE ,AD =BC ,∠D =∠C 。
求证:△AED ≌△BFC 。
FE (图2)DCBAFEDC(图1)DCBA4、 如图(4):AB =AC ,AD =AE ,AB ⊥AC ,AD ⊥AE .求证:(1)∠B =∠C ,(2)BD =CE5、如图(5):AB ⊥BD ,ED ⊥BD ,AB =CD ,BC =DE 。
求证:AC ⊥CE 。
E(图4)DCBAE(图5)DCBA6、如图(6):CG =CF ,BC =DC ,AB =ED ,点A 、B 、C 、D 、E 在同一直线上。
求证:(1)AF =EG ,(2)BF ∥DG .7、如图(7):AC ⊥BC ,BM 平分∠ABC 且交AC 于点M 、N 是AB 的中点且BN =BC 。
求证:(1)MN 平分∠AMB ,(2)∠A =∠CBM 。
GFE(图6)DC BANM(图7)CBA8、如图(8):A 、B 、C 、D 四点在同一直线上,AC =DB ,BE ∥CF ,AE ∥DF 。
求证:△ABE ≌△DCF 。
9、如图(9)AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE =CF 。
求证:AM 是△ABC 的中线。
FE(图8)DC B AMFE(图9)CBA10、如图(10)∠BAC =∠DAE ,∠ABD =∠ACE ,BD =CE . 求证:AB =AC 。
11、如图(11)在△ABC 和△DBC 中,∠1=∠2,∠3=∠4,P 是BC 上任一点。
求证:PA =PD .12、如图(12)AB ∥CD ,OA =OD ,点F 、D 、O 、A 、E 在同一直线上,AE =DF . 求证:EB ∥CF 。
(完整)全等三角形的判定专题
全等三角形的判定证明专题一、全等三角形的性质①全等三角形的对应边相等.②全等三角形的对应角相等。
二、全等三角形的判定定理①角边角公理:有两角和它们的夹边对应相等的两个三角形全等(ASA)。
②边角边公理:有两边和它们的夹角对应相等的两个三角形全等(SAS)。
③边边边公理:有三边对应相等的两个三角形全等(SSS)。
④角角边定理:有两个角和其中一个角的对边对应相等的两个三角形全等(AAS)。
三、一般思考方法1、已知两边对应相等—1。
第三边;2。
夹角;3。
直角2、一角及邻边对应相等—1。
角的另一边;2.边的另一角;3。
边的对角3、一角及对边对应相等—1.另一角4、两角相等-1。
夹边;2。
一已知角的对边第一部分简单证明例题分析例1:已知:如图AC=BD,∠CAB=∠DBA.求证:∠CAD=∠DBC。
例2:已知:AB=CD,AB∥DC,求证:△ABC≌△CDB例3:已知:在△ABC中,AD为BC边上的中线,CE⊥AD,BF⊥AD.求证:CE=BF例4.已知:如图AB=AC,AD=AE,BE和CD相交于G。
求证:AG平分∠BAC.例5:已知:△ABC中,D、E、F分别是AB、AC、BC上的点,连结DE、EF,∠ADE=∠EFC,∠AED=∠ACB,DE=FC.求证:△ADE≌△EFC例6:已知:△ABC是等边三角形,∠GAB=∠HBC=∠DCA,∠GBA=∠HCB=∠DAC。
求证:△ABG≌△BCH≌△CAD。
自我检测1、已知:△ABC中,AB=AC,D、E分别为AB、AC的中点。
求证:∠ABE=∠ACD.2、已知:AB=DC,AC=BD ,AC 交BD 于E.求证:AE=DE.3、已知:如图,AB=CD ,BE=DF ,AF=EC.求证:BF=DE4、如图,在△ABE 中,AB =AE ,AD =AC ,∠BAD =∠EAC , BC 、DE 交于点O. 求证:(1) △ABC ≌△AED ; (2) OB =OE 。
全等三角形的性质及判定练习题
全等三角形的性质及判定练习题(1)1:下列说法,正确的是( )A.全等图形的面积相等B.面积相等的两个图形是全等形C.形状相同的两个图形是全等形D.周长相等的两个图形是全等形2:如图1,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD=7cm ,DM=5cm ,∠DAM=39°,则AN =____cm ,NM =____cm ,NAB ∠= .3:如图2,已知ABC ADE ∆≅∆,AB AD =,BC DE =,那么与BAE ∠相等的角是 .4:如图3,ABC ADE ∆≅∆,则AB= ,∠E= _.若∠BAE=120°,∠BAD=40°,则∠BAC= .5:如图,在ABC ∆中,::2:5:11A B ACB ∠∠∠=,若将ACB ∆绕点C 逆时针旋转,使旋转前后的//A B C ∆中的顶点/B 在原三角形的边AC 的延长线上,求/BCA ∠的度数.图4EDCBA图2 图3MDAN BC图1BFADCE6:如图1,,,AE DB BC EF BC ==∥EF .求证:ABC DEF ∆≅∆7:已知.,,AB DF AC DE BE CF ===,求证:AB ∥DF图1ADCFBEAED B8:如图,AC=DF ,AC//DF ,AE=DB ,求证:BC//EF9:如图, AD=EB,AC ∥DF ,BC ∥EF .求证:ABC DEF ∆≅∆10:如图,在△ABC 中, M 在BC 上, D 在AM 上, AB AC =,DB DC =.问BM CM =吗?说明理由.11:如图, △ABC, AD 是它的角平分线,且BD CD =,ED 、DF 分别垂直于AB 、AC ,垂足为E 、F ,请说明BE CF =.12:已知:如图 , CE ∞AB 于E , BF ∞CD 于F , 且BF=CE13:已知:如图,∠A=∠D=90°,AC ,BD 交于O ,AC=BD.求证:OB=OC .14:如图,AB AC =,AD AE =,EAD BAC ∠=∠.求证:△ABD ≌△ACE15:已知如图,AE =AC,AB =AD,∠EAB =∠CAD,试说明:∠B =∠D16:如图,BDA CEA ∠=∠,AE AD =.求证:AB AC =17:如图, △ABC 是等腰三角形,,AD BE 分别是,BAC ABC ∠∠的角平分线, △ABD 和△BAE 全等吗?请说明你的理由.18:已知:如图 , AB=AC , AD=AE , 求证:△OBD ≌△OCE全等三角形的性质及判定练习题(2)第一部分:选择题2.如图,已知AC和BD相交于O,且BO=DO,AO=CO,下列判断正确的是()A.只能证明△AOB≌△COD B.只能证明△AOD≌△COBC.只能证明△AOB≌△COB D.能证明△AOB≌△COD和△AOD≌△COB2题4.如图,已知MB=ND,∠MBA=∠NDC,下列不能判定△ABM≌△CDN的条件是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN5.如图,已知0A=OB,OC=0D,下列结论中:①∠A=∠B;②DE=CE;③连OE,则0E平分∠0,正确的是( )A.①② B.②③C.①③D.①②③6.已知△ABC的六个元素,下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙第三部分:填空题1.如图,△ABC ≌△AED ,∠BAC=25°,∠B=35°,AB=3cm ,BC=1cm ,则∠E= , ∠ ADE= ;线段DE= cm ,AE= cm .2.已知ABC DEF ∆≅∆,若ABC ∆的周长为32,8AB =,12BC =,则DE = ,DF = . 第四部分:解答题1.如图,已知ABC AED ∆≅∆,AE AB =,AD AC =,20D E ︒∠-∠=,60BAC ︒∠=.求C ∠的度数.2.如图,已知AB=DE ,AF=DC ,BE=CF ,求证:∠A=∠D.3.已知:AB=CD ,AD=BC.试说明∠A=∠C.(公共边)ED CBABEDCAADB EFC DAO4.如图,在四边形ABCD中,已知BD平分∠ABC,∠A+∠C=180o,试说明AD=CD.。
2022年《直角三角形全等的判定》专题练习(附答案)
1.3 直角三角形全等的判定一、选择题(本大题共8小题)1. 在以下条件中,不能判定两个直角三角形全等的是( )2. 如下图,AB=CD,AE⊥BD于点E,CF⊥BD于点F,AE=CF,那么图中全等的三角形有( )第2题图第5题图第6题图3.以下说法中正确的选项是〔〕A.a,b,c是三角形的三边长,那么a2+b2=c2B.在直角三角形中,两边长和的平方等于第三边长的平方C.在Rt△ABC中,假设∠C=90°,那么三角形对应的三边满足a2+b2=c2D.在Rt△ABC中,假设∠A=90°,那么三角形对应的三边满足a2+b2=c24. 在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,∠A=∠B′,AB=B′A,那么以下结论中正确的选项是〔〕A. AC=A′C′B.BC=B′C′C.AC=B′C′D.∠A=∠A′5. 如下图,△ABC中,AB=AC,AD⊥BC交D点,E、F分别是DB、DC的中点,那么图中全等三角形的对数是〔〕6. 如图,在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,那么△BCE的面积等于〔〕A.10 B.7 C.5 D. 47. 在△ABC和△DEF中,∠A=∠D=90°,那么以下条件中不能判定△ABC和△DEF全等的是( )A.AB=DE,AC=DFB.AC=EF,BC=DFC.AB=DE,BC=EFD.∠C=∠F,BC=EF8. 如图,在Rt△ABC的斜边BC上截取CD=CA,过点D作DE⊥BC交AB于点E,那么有( )A.DE=DBB.DE=AEC.AE=BED.AE=BD第8题图第9题图二、填空题(本大题共4小题)9. :如图,AE⊥BC,DF⊥BC,垂足分别为E、F,AE=DF,AB=DC,那么△ABE≌△__________.10. 如图,BD⊥AE于点B,C是BD上一点,且BC=BE,要使Rt△ABC≌Rt△DBE,应补充的条件是∠A=∠D或__________或__________或__________.第10题图第11题图11. 如图,△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,假设根据“HL〞判定,还需要加一个条件__________.12. :如图,AB=CD,DE⊥AC于点E,BF⊥AC于点F,且DE=BF,∠D=60°,那么∠A=__________.三、计算题(本大题共4小题)13. :如图△ABC中,BD⊥AC,CE⊥AB,BD、CE交于O点,且BD=CE求证:OB=OC.14. :Rt△ABC中,∠ACB是直角,D是AB上一点,BD=BC,过D作AB的垂线交AC于E,求证:CD⊥BE15. 如图:在△ABC中,∠C=90° AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:〔1〕CF=EB.〔2〕AB=AF+2EB.16. 如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)假设CD=2,求AD的长.参考答案:一、选择题(本大题共8小题)1.A2. D3. C4. C5. D6. B7. B8. C二、填空题(本大题共6小题)9.分析:根据直角三角形全等的条件HL判定即可。
(完整版)全等三角形的判定常考典型例题及练习
(完整版)全等三角形的判定常考典型例题及练习-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN全等三角形的判定一、知识点复习 ①“边角边”定理:两边和它们的夹角对应相等的两个三角形全等。
(SAS )图形分析:书写格式: 在△ABC 和△DEF 中⎪⎩⎪⎨⎧=∠=∠=EFBC E B DEAB∴△ABC ≌△DEF (SAS )②“角边角”定理:两角和它们的夹边对应相等的两个三角形全等。
(ASA)图形分析:书写格式: 在△ABC 和△DEF 中 ⎪⎩⎪⎨⎧∠=∠=∠=∠FC EF BC EB∴△ABC ≌△DEF(ASA)③“角角边”定理:两个角和其中一个角的对边对应相等的两个三角形全等。
(AAS )图形分析:书写格式:在△ABC 和△DEF 中⎪⎩⎪⎨⎧=∠=∠∠=∠EFBC F C EB∴△ABC ≌△DEF(AAS)④“边边边”定理:三边对应相等的两个三角形全等。
(SSS )图形分析:书写格式: 在△ABC 和△DEF 中 ⎪⎩⎪⎨⎧===EF BC DF AC DE AB∴△ABC ≌△DEF(AAS)⑤“斜边、直角边”定理:斜边和一条直角边对应相等的两个直角三角形全等。
(HL )图形分析:书写格式:在△ABC 和△DEF 中 ⎩⎨⎧==DF AC DE AB ∴△ABC ≌△DEF (HL )一个三角形共有三条边与三个角,你是否想到这样一问题了:除了上述四种识别法,还有其他的三角形全等识别法吗比如说“SSA ”、“AAA ”能成为判定两个三角形全等的条件吗两个三角形中对应相等的元素 两个三角形是否全等反例 SSA⨯AAA⨯二、常考典型例题分析第一部分:基础巩固1.下列条件,不能使两个三角形全等的是( )A.两边一角对应相等 B.两角一边对应相等 C.直角边和一个锐角对应相等 D.三边对应相等2.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙4.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE5.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD6.如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线OC,作法用得的三角形全等的判定方法是()A.SAS B.SSS C.ASA D.HL第二部分:考点讲解考点1:利用“SAS ”判定两个三角形全等1.如图,A 、D 、F 、B 在同一直线上,AD=BF ,AE=BC ,且AE ∥BC .求证:△AEF ≌△BCD .2.如图,AB=AC ,AD=AE ,∠BAC=∠DAE .求证:△ABD ≌△ACE .考点2:利用“SAS ”的判定方法解与全等三角形性质有关的综合问题3.已知:如图,A 、F 、C 、D 四点在一直线上,AF=CD ,AB ∥DE ,且AB=DE ,求证:FEC CBF ∠=∠考点3:利用“SAS ”判定三角形全等解决实际问题 4.有一座小山,现要在小山A 、B 的两端开一条隧道,施工队要知道A 、B 两端的距离,于是先在平地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到D ,使CD=CA ,连接BC 并延长到E ,使CE=CB ,连接DE ,那么量出DE 的长,就是A 、B 的距离,你能说说其中的道理吗?考点4:利用“ASA”判定两个三角形全等5.如图,已知AB=AD,∠B=∠D,∠1=∠2,求证:△AEC≌△ADE.6.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;考点6:利用“ASA”与全等三角形的性质解决问题:7.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC考点7:利用“SSS”证明两个三角形全等8.如图,A、D、B、E四点顺次在同一条直线上,AC=DF,BC=EF,AD=BE,求证:△ABC≌△EDF.考点8:利用全等三角形证明线段(或角)相等9.如图,AE=DF,AC=DB,CE=BF.求证:∠A=∠D.考点9:利用“AAS”证明两个三角形全等10.如图,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,求证:△ABD≌△ACE.考点10:利用“AAS”与全等三角形的性质求证边相等11.(2017秋?娄星区期末)已知:如图所示,△ABC中,∠ABC=45°,高AE与高BD交于点M,BE=4,EM=3.(1)求证:BM=AC;(2)求△ABC的面积.考点11:利用“HL”证明两三角形全等12.如图,在△ABC中,D是BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF。
2024年中考全等三角形的性质与判定专题训练
E B C A DF 2024年中考全等三角形的性质与判定专题训练1.如图,AB =AD ,CB =CD .求证:∠B =∠D .2.如图,点A 、E 、B 、D 在同一条直线上,AE=DB ,AC=DF ,AC ∥DF.请探索BC 与EF 有怎样的位置关系?并说明理由。
3.如图,点B 、D 、C 、F 在同一直线,AB =EF ,∠B =∠F ,BD =CF ,试说明△ABC ≌△EFD .4. 如图,点E ,F 在线段BD 上,已知AF ⊥BD ,CE ⊥BD ,AD=CB ,DE=BF .求证:△AFD ≌△CEB .5.如图,已知线段AC,BD相交于点E,AE=DE,BE=CE.(1)求证:△ABE≌△DCE;(2)当AB=5时,求CD的长.6.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.7.如图,在矩形ABCD中,点E,F在对角线BD上.请添加一个条件,使得结论“AE=CF”成立,并加以证明.8.如图,已知点E在AB上,点C在AD,AB=AC,AD=AE。
求证:BE=CD。
9.如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF求证:(1) △ABC≌△DEF(2)AB∥DE9.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.11.如图,已知点B,C,D,E在一条直线上,AB∥FC,AB=FC,BC=DE.求证:AD∥FE.12.如图,∠A =∠D =90°,AC =DB ,AC 、DB 相交于点O .求证:AB =CD .13.已知:如图,AE 和BD 相交于点,,C AC EC BC DC ==;求证:.AB ED =14.已知如图:点C E B F ,,,在同一直线上,∠C=∠F,AC DF =, BF CE =.求证:DEF ABC ∆≅∆。
15.如图,AD∥BC,点E 是CD 的中点,BE 的延长线与AD 的延长线交于点F .则△BCE 和△FDE 全等吗?为什么?A FB EC D16.如图,为一块直角三角板,将CA绕点C顺时针旋转,使得点A落在边AB上的点D处.(1)过点C作于点E,求证:△ACE∽△ABC(2)求BD的长.。
(完整版)全等三角形练习题及答案
全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A、两条直角边对应相等。
B、斜边和一锐角对应相等。
C、斜边和一条直角边对应相等。
D、两锐角相等。
2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C3、下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是().A. BC=EF B.AC=DFC.∠B=∠E D.∠C=∠F5、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A、∠ADB=∠ADCB、∠B=∠CC、DB=DCD、AB=AC8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为A. 40°B. 80°C.120°D. 不能确定9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A.600 B.700C.750D.85010、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )A. 150°B.40°C.80°D. 90°11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( )A.①③ B.②④ C.②③④ D.①②④12、下列条件中,不能判定两个三角形全等的是()A.三条边对应相等 B.两边和一角对应相等C.两角及其一角的对边对应相等 D.两角和它们的夹边对应相等13、如图,已知,,下列条件中不能判定⊿≌⊿的是()(A)(B)(C)(D)∥14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为().A.50° B.30° C.80° D.100°15、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的度数是.16、在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=则这两个三角形全等(填“一定”或“不一定”)17、如图,,,,在同一直线上,,,若要使,则还需要补充一个条件:或.18、(只需填写一个你认为适合的条件)如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,需增加的一个条件是。
(完整版)全等三角形的性质与判定(SSS、SAS、ASA、AAS)练习题
全等三角形的性质与判定(SSS 、SAS 、ASA 、AAS )练习题1. 如图,在△ABC 中,∠A=90°,D 、E 分别是AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C=2. 如图,把△ABC 绕点C 顺时针旋转35°,得到△A ′B ′C ,A ′B ′交AC 于点D ,若∠A ′DC=90°,则∠A=1题图 2题图 3题图 4题图3. 如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转52°,得到△A ′OB ′,边A ′B ′与边OB 交于点C (A ′不在OB 上),则∠A ′CO=4. 如图,△ABC ≌△ADE,BC 的延长线过点E ,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,则∠DEF=5. 如图,Rt △ABC 中,∠BAC=90°,AB=AC ,分别过点B 、C 作过点A 的垂线BC 、CE ,垂足分别为D 、E ,若BD=3,CE=2,求DE 的长.6. 如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC,垂足分别是E 、F ,连接EF,交AD 于G ,试判断AD 与EF的关系,并证明你的结论。
7. 如图所示,在△ABC 中,AD 为∠BAC 的角平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长。
8. 如图,AD=BD,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点H ,则BH 与AC 相等吗?为什么?E F C D BEGB E FEF C AB A'B'BCD D B'AHE9. 已知:BD 、CE 是△ABC 的高,点F 在BD 上,BF=AC,点G 在CE 的延长线上,CG=AB,求证:AG ⊥AF10. 如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB,连结AD 、AG.试判断AD 与AG 的关系如何?并证明之。
人教八上:专题二--全等三角形的性质与判定(含解析)
专题二全等三角形的性质与判定一、单选题1.下面四个三角形中,与图中的△ABC全等的是()..23A.50°B.59°C.69°D.71°4.如图,点E、F在BC上,AB=CD,AF=DE,AF、DE相交于点G,添加下列哪一个条件,可使得△ABF≌△DCE()A.∠B=∠C B.AG=DG C.∠AFE=∠DEF D.BE=CF5.尺规作图中蕴含着丰富的数学知识和思想方法.如图,为了得到∠MBN=∠PAQ,在用直尺和圆规作图的过程中,得到△ACD≌△BEF的依据是().A.SAS B.SSS C.ASA D.AAS6.已知,如图所示的两个三角形全等,则∠1=()A.72°B.60°C.48°D.50°7.用三角尺可按下面方法画角平分线:在已知的∠AOB的两边上,分别取OM=ON,再分别过点M,N作OA,OB的垂线,交点为P,画射线OP,则OP平分∠AOB.做法中用到证明△OMP与△ONP全等的判定方法是()A.SAS B.SSS C.ASA D.HL8.如图,点E、F在BC上,AB=DC,∠B=∠C.添加一个条件后,不能证明△ABF≌△DCE,这个条件可能是()A.∠A=∠D B.BE=CF C.BF=CE D.AF=ED9.已知图中的两个三角形全等,则∠1等于( )A.72°B.60°C.58°D.50°10.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD11.如图,已知∠CAB=∠DBA,老师要求同学们补充一个条件使△ABC≌△BAD,以下是四个同学补充的条件,其中错误的是()A.AC=BD B.CB=DA C.∠C=∠D D.∠ABC=∠BAD12.用直尺和圆规作一个角等于已知角,如图,能得出∠AOB=∠A′O′B′的依据是()A.SSS B.SAS C.ASA D.AAS13.如图,AB=4厘米,BC=6厘米,∠B=∠C,如果点P在线段BC上以2厘米/秒的速度由B点向C 点运动,同时,点Q从C点出发沿射线CD运动.若经过t秒后,△ABP与△CQP全等,则t的值是()A.1B.1.5C.1或1.5D.1或214.已知图中的两个三角形全等,则∠1的度数是()A.50°B.54°C.60°D.76°15.如图,点E、F在BC上,BE=CF,∠B=∠C,添加一个条件,不能证明△ABF≌△DCE的是( )A.∠A=∠D B.∠AFB=∠DEC C.AB=DC D.AF=DE16.如图,点B、E、C、F在一条直线上,AB=DE,∠B=∠DEF,要使得△ABC≌△DEF,不能添加的条件是()A.∠A=∠D B.AC=DF C.BE=CF D.AC∥DF17.已知图中的两个三角形全等,图中的字母表示三角形的边长,则∠1的大小是()A.64°B.65°C.51°D.55°18.如图,工人师傅设计了一种测量零件内径AB的卡钳,卡钳交叉点O为AA′、BB′的中点,只要量出A′B′的长度,就可以知道该零件内径AB的长度.其依据的数学基本据实是()A.两边及其夹角分别相等的两个三角形全等B.两角及其夹边分别相等的两个三角形全等C.等角对等边D.两点之间线段最短19.如图,在等腰Rt△ABC中,AC=BC,∠ACB=90°,点A(0,a),B(b,0),C(−4,4),其中b<a<0,则a,b之间的数量关系是()A.a+b=−4B.a−b=4C.a+b=−8D.a−b=820.用尺规作图作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.HL D.SSS21.如图,点E、F在BC上,AB=DC,AF=DE,AF、DE相交于点G,要使得△ABF≌△DCE,添加下列哪一个条件()A.∠B=∠C B.GE=GF C.∠AFE=∠DEF D.BF=CE 22.阅读以下作图步骤:①在OA和OB上分别截取OC,OD,使OC=OD;②③23A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC 24.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°25.如图,已知∠CAB=∠DAB,则添加下列一个条件不一定能使△ABC≌△ABD的是( )A.BC=BD B.∠C=∠D C.AC=AD D.∠ABC=∠ABD26.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A+∠D=90°B.∠A=∠2C.△ABC≌△CED D.∠1=∠227.如图,已知ΔABC,下面甲、乙、丙、丁四个三角形中,与ΔABC全等的是()A.甲B.乙C.丙D.丁二、填空题28.如图,点B、C、E三点在同一直线上,且AB=AD,AC=AE,BC=DE,若∠1+∠2+∠3=96°,则∠3的度数为.29.如图,三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,△ADE的周长为cm.30313233.已知:如图,∠B=∠C=90°,AF=DE,BE=CF.求证:AB=DC.34.如图,OA=OC,OB=OD,∠AOD=∠COB.求证:AB=CD.35.如图,四边形ABCD中,∠B=90°,AB∥CD,M是BC边上的一点,且AM平分∠BAD,DM平分∠ADC,求证:(1)BM=MC;(2)AM⊥MD.36.如图,在Rt△ABC中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过点P作PF⊥AD 交BC的延长线于点F,PF交AC于点H,求证:(1)△ABP≌△FBP;(2)AH=AB−BD.37.如图,B、E、C、F在同一直线上,AB=DE,BE=CF,∠B=∠DEF,求证:AC=DF.38.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD交于点O,OB=OC.求证:∠1=∠2.39.如图,在△ABC中,AB=AC,D、E是BC边上的点,且BD=CE,求证:AD=AE.40.如图,在四边形ABCD中,AB∥CD,E为AD的中点,连接CE并延长交BA的延长线于点F.(1)求证:△CDE≌△FAE.(2)连接BE,当BE⊥CF时,CD=3,AB=2,求BC的长.41.如图,点D、E在△ABC的BC边上,AB=AC,AD=AE,求证:BD=CE.42.我们把两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,AD=CD,AB=CB,对角线AC交BD与点O.(1)请根据你学过的知识直接写出一组全等的三角形______;(2)求证:AC⊥BD.43.如图,AB=CD,AE⊥BC于E,DF⊥BC于F,若CE=BF.(1)求证:AE=DF;(2)求证:AB∥CD.44.如图,BE⊥AD,CF⊥AD,垂足分别为点E,F,AF=DE,∠B=∠C,求证:AB=CD.45.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)求证:△ADC≌△CEB;(2)延长EB至点F,使得BF=DE,连接AF交CE于点G,若AD=5,BE=3,求DG的长.46.如图,AB=AE,∠B=∠AED,∠1=∠2,求证:AC=AD.47.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE.求证:∠AFB=2∠ACB.48.(变图形—平移型)如图,点C是AB的中点,AD=CE,CD=BE.求证:△ACD≌△CBE.49.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.50.在Rt△ABC中,∠BAC=90°,AB=AC,过直角顶点A作直线MN,BD⊥MN于点D,CE⊥MN于点E.(1)如图1,当MN与BC边不相交时,判断BD,CE,DE之间的数量关系,并说明理由;(2)当MN与边BC相交时,请在图2中画出图形,并直接写出BD,CE,DE之间的数量关系.51.如图,CA=CD,∠1=∠2,BC=EC.求证:AB=DE.52.如图,AD与BC相交于点O,OA=OC,∠A=∠C,BE=DE.求证:OE垂直平分BD.53.如图,点B,E,C,F在同一直线上,相交于点E,AB=DE,AC=DF,∠A=∠D.求证:BE=CF.54.如图,点A、B、C、D在同一直线上,AE=DF,AB=CD,CE=FB.求证:AE∥DF.55.如图,已知AB=AC,BD=CD,DM⊥AB于M,DN⊥AC于N,求证:DM=DN56.如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以说明(△ABC与△A1 B1C全等除外);(2)当△BB1D是等腰三角形且BB1=BD时,求α的值.参考答案题号12345678910答案C C B D B C D D C A题号11121314151617181920答案B A C A D B A A D D题号21222324252627答案D A B B A D B1.C【分析】根据全等三角形的判定方法即可判断.【详解】解:由题可得∠A=180°−60°−54°=66°,∵A选项属于已知两边和其中一边的对角对应相等的情况,不能判定两个三角形全等,故不符合题意;∵B选项中66°角的对边不相同,不能判定两个三角形全等,故不符合题意;∵C选项中已知两边与其中一边的夹角对应相等,所以能判定全等,故C选项符合题意;∵D选项中两对应角的夹边不相等,不能判定两个三角形全等,故不符合题意;故选:C.【点睛】本题考查了全等三角形的判定,牢记判定方法以及正确找出对应边或对应角是解决本题的关键.2.C【分析】由作图可知直线MN为边AC的垂直平分线,再由BD=DC得到AD=DC=BD,利用等边对等角以及三角形内角和定理,进而得到∠B+∠C=90°.【详解】解:由作图可知,直线MN为边AC的垂直平分线,∴DC=AD,∴∠C=∠CAD,∵BD=DC,∴AD=BD,∴∠B=∠BAD,∵∠C+∠B+∠CAD+∠BAD=180°,∴∠B+∠C=90°.故选:C.3.B【分析】由全等三角形的对应角相等,结合三角形内角和定理即可得到答案.【详解】∵两个三角形全等,由全等三角形的性质可知,两幅图中边长为a、b的夹角对应相等,∴∠α=180°−50°−71°=59°,故选:B4.D【分析】根据全等三角形的判定条件逐一判断即可.【详解】解:A、由∠B=∠C,AB=CD,AF=DE,不能证明△ABF≌△DCE,不符合题意;B、由AG=DG,AB=CD,AF=DE,不能证明△ABF≌△DCE,不符合题意;C、由∠AFE=∠DEF,AB=CD,AF=DE,不能证明△ABF≌△DCE,不符合题意;D、由BE=CF即可证明BF=CE,AB=CD,AF=DE,可以由SSS证明△ABF≌△DCE,符合题意;故选D.【点睛】本题主要考查了全等三角形的判定,熟知全等三角形的判定定理是解题的关键,全等三角形的判定定理有SSS,SAS,AAS,ASA,HL.5.B【分析】此题考查了全等三角形的判定定理,三边对应相等的两个三角形全等,以及作一个角等于已知角,根据用尺规画一个角等于已知角的步骤,据此即可求解,正确理解题中的作图是解题的关键.【详解】解:根据做法可知:AC=BE,AD=BF,CD=EF,∴△ACD≌△BEF(SSS),∴∠MBN=∠PAQ,故选:B.6.C【分析】本题考查了全等三角形的性质,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应边相等,对应角相等.【详解】解:∵DE=AB=a,DF=AC=c,又∵图中两个三角形全等,∴△ABC≌△DEF,∴∠D=∠A=180°−60°−72°=48°,∴∠1=48°,故选:C.7.D【分析】根据直角三角形全等的判定HL定理,可证△OPM≌△OPN.【详解】解:∵OM=ON,OP=OP,∠OMP=∠ONP=90°,∴△OPM≌△OPN所用的判定定理是HL.故选D.【点睛】本题考查学生的观察能力和判定直角三角形全等的HL定理,本题是一操作题,要会转化为数学问题来解决.8.D【分析】本题主要考查三角形全等的判定,根据SSS,ASA,SAS,AAS逐个判断即可得到答案;【详解】解:∵AB=DC,∠B=∠C,当∠A=∠D构成ASA,能得到△ABF≌△DCE,不符合题意,当BE=CF得到BF=CE构成SAS,能得到△ABF≌△DCE,不符合题意,当BF=CE构成SAS,能得到△ABF≌△DCE,不符合题意,当AF=ED不能得到三角形全等的判定,符合题意,故选:D.9.C【分析】本题主要考查了三角形内角和定理,全等三角形的性质,先根据三角形内角和为180度求出∠2的度数,再根据全等三角形对应角相等即可求出∠1的度数.【详解】解:如图所示,由三角形内角和定理得∠2=180°−50°−72°=58°,由全等三角形的性质可得∠1=∠2=58°,故选:C.10.A【分析】根据全等三角形的判定方法逐项判断即得答案.【详解】解:∵∠ABC=∠BAD,AB=BA,AC=BD,条件为边边角,∴不能证明△ABC≌△BAD,故A符合题意;∵∠ABC=∠BAD,AB=BA,∠CAB=∠DBA,条件为边角边,∴能证明△ABC≌△BAD,故B不符合题意;∵∠ABC=∠BAD,AB=BA,∠C=∠D,条件为角角边,能证明△ABC≌△BAD,故C不符合题意;∵∠ABC=∠BAD,AB=BA,BC=AD,条件为边角边,能证明△ABC≌△BAD,故D不符合题意,故选:A.【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.11.B【分析】本题考查全等三角形的判定,根据全等三角形的判定定理,逐项分析判断,即可求解.【详解】解:∵∠CAB=∠DBA,AB=BA,∴添加的条件是:AC=BD,根据SAS可证明△ABC≌△BAD,故选项A不符合题意;添加的条件是:CB=DA,无法判断△ABC≌△BAD,故选项B符合题意;添加的条件是:∠C=∠D,根据AAS可证明△ABC≌△BAD,故选项C不符合题意;添加的条件是:∠ABC=∠BAD,根据ASA可证明△ABC≌△BAD,故选项D不符合题意;故选:B12.A【分析】本题主要考查了基本作图、全等三角形的判定与性质等知识点,明确作图过程成为解答本题的关键.通过分析作图的步骤,发现△OCD与△O′C′D′的三条边分别对应相等,于是利用边边边判定△OCD≌△O′C′D′,根据全等三角形对应角相等得∠AOB=∠A′O′B′.【详解】解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②作射线O′B′,以O′为圆心,OC长为半径画弧,交O′B′于点D′;③以D′为圆心,CD长为半径画弧,交前弧于点C′;④过点C′作射线O′A′.所以∠A′O′B′就是与∠AOB相等的角.在△O′C′D′与△OCD中,O′C′=OCO′D′=OD,C′D′=CD∴△OCD≌△O′C′D′(SSS),∴∠AOB=∠A′O′B′,即运用的判定方法是SSS.故选:A.13.C【分析】本题考查了全等的性质,解一元一次方程的应用.运用分类讨论的思想是解题的关键.由题意知,BP=2t,CP=6−2t,由△ABP与△CQP全等,分△ABP≌△PCQ,△ABP≌△QCP两种情况,列方程求解即可.【详解】解:由题意知,BP=2t,CP=6−2t,∵△ABP与△CQP全等,∴分△ABP≌△PCQ,△ABP≌△QCP两种情况求解;当△ABP≌△PCQ时,PC=AB,即6−2t=4,解得t=1;当△ABP≌△QCP时,BP=CP,即2t=6−2t,解得t=1.5;综上所述,t的值是1或1.5,故选:C.14.A【分析】本题考查了全等三角形的性质,根据全等三角形的对应边相等,对应角相等去判定对应关系后计算.熟练掌握对应角的判定方法是解题的关键.【详解】解:∵两个三角形全等,∠1是边a的对角,即边b、c夹角,∴∠1的度数是180°−54°−76°=50°.故选:A.15.D【分析】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL等.根据BE=CF求出BF=CE,再根据全等三角形的判定定理进行分析即可.【详解】解:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∵∠B=∠C,∴当∠A=∠D时,利用AAS可得△ABF≌△DCE;当∠AFB=∠DEC时,利用ASA可得△ABF≌△DCE;当AB=DC时,利用SAS可得△ABF≌△DCE;当AF=DE时,无法证明△ABF≌△DCE;故选:D.16.B【分析】本题考查的是添加条件证明三角形全等,熟记全等三角形的判定方法是解本题的关键;本题根据已有的条件AB=DE,∠B=∠DEF,再逐一分析添加的条件结合ASA,SAS,AAS可得答案.【详解】解:∵AB=DE,∠B=∠DEF,∴补充∠A=∠D,可利用ASA证明△ABC≌△DEF,故A不符合题意;补充AC=DF,不能证明△ABC≌△DEF,故B符合题意;补充BE=CF,∴BC=EF,可利用SAS证明△ABC≌△DEF,故C不符合题意;补充AC∥DF,∴∠ACB=∠F,可利用AAS证明△ABC≌△DEF,故D不符合题意;故选B17.A【分析】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.【详解】解:∵两个三角形全等,∴∠1=64°,故选:A.18.A【分析】本题主要考查了三角形全等的判定和性质,解题的关键是熟练掌握两边及其夹角分别相等的两个三角形全等.【详解】解:O为AA′、BB′的中点,∴OA=OA′,OB=OB′,∵∠AOB=∠A′OB′(对顶角相等),∴在△AOB与△A′OB′中,OA=OA′,∠AOB=∠A′OB′OB=OB∴△AOB≌△A′OB′(SAS),∴AB=A′B′,故选:A.19.D【分析】本题考查坐标与图形性质,过点C作坐标轴的垂线,利用AAS证明△BCM≌△ACN,即可求解,解题的关键是构造全等三角形.【详解】解:过点C作x轴和y轴的垂线,垂足分别M和N,∵∠CMO=∠CNO=∠MON=90°,∴四边形CMON是矩形,∴∠MCN=90°,∴∠ACN+∠ACM=90°,∵∠ACB=90°,∠BCM+∠ACM=90°,∴∠BCM=∠ACN,在△BCM和△ACN中,∠BCM=∠ACN∠BMC=∠ANC,BC=AC∴△BCM≌△ACN(AAS),∴BM=AN,又∵点C坐标为(−4,4),∴点M坐标为(−4,0),点N坐标为(0,4).∴BM=−4−b,AN=4−a∴−4−b=4−a即a−b=8.故选:D.20.D【分析】此题主要考查对尺规作图作一个角等于已知角的理解,利用全等三角形的判定方法判断即【详解】解:由作法得OD=O′D′,OC=O′C′,CD=C′D′,在△COD和△C′O′D′中,OD=O′D′OC=O′C′,CD=C′D′∴△COD≌△C′O′D′(SSS),∴∠A′O′B′=∠AOB(全等三角形的对应角相等).故选:D.21.D【分析】本题考查了全等三角形的判定.根据全等三角形的判定方法依次进行判断即可.【详解】解:A、添加∠B=∠C,不能使得△ABF≌△DCE,不符合题意;B、添加GE=GF,不能使得△ABF≌△DCE,不符合题意;C、添加∠AFE=∠DEF,不能使得△ABF≌△DCE,不符合题意;D、添加BF=CE,利用SSS,可以使得△ABF≌△DCE,符合题意;故选:D.22.A【分析】由作图过程可得:OD=OC,CM=DM,再结合DM=DM可得△COM≌△DOM(SSS),由全等三角形的性质可得∠1=∠2即可解答.【详解】解:由作图过程可得:OD=OC,CM=DM,∵DM=DM,∴△COM≌△DOM(SSS).∴∠1=∠2.∴A选项符合题意;不能确定OC=CM,则∠1=∠3不一定成立,故B选项不符合题意;不能确定OD=DM,故C选项不符合题意,OD∥CM不一定成立,则∠2=∠3不一定成立,故D选项不符合题意.故选A.【点睛】本题主要考查了角平分线的尺规作图、全等三角形的判定与性质等知识点,理解尺规作图过程是解答本题的关键.【分析】利用全等三角形的判定依次证明即可.【详解】解:∵AE=CF,∴AE+EF=CF+EF.∴AF=CE.A.在△ADF和△CBE中,{∠A=∠CAF=CE∠AFD=∠CEB,∴△ADF≌△CBE(ASA),正确,故本选项不符合题意.B.根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项符合题意.C.在△ADF和△CBE中,{AF=CE∠AFD=∠CEBDF=BE,∴△ADF≌△CBE(SAS),正确,故本选项不符合题意.D.∵AD∥BC,∴∠A=∠C.由A选项可知,△ADF≌△CBE(ASA),正确,故本选项不符合题意.故选B.【点睛】本题考查了添加条件证明三角形全等,解题的关键是熟练运用判定三角形全等的方法.24.B【分析】本题考查了全等三角形的性质:全等三角形的对应边相等、对应角相等,找准对应角是解题的关键.根据全等三角形的对应角相等可知∠ACB=∠A′CB′,给等式的两边同时减去∠BCA′,可得到∠ACA′=∠BCB′=30°.【详解】解:∵△ACB≌△A′CB′,∴∠A′CB′=∠ACB,∵∠BCA′+∠BCB′=∠BCA′+∠A′CA,∴∠ACA′=∠BCB′,∵∠BCB′=30°,∴∠ACA′=30°.故选:B.25.A【分析】根据题目中的已知条件AB=AB,∠CAB=∠DAB,再结合题目中所给选项中的条件,利用全等三角形的判定定理进行分析即可.【详解】解;由图形可知:AB=AB,∠CAB=∠DAB,A.再加上条件BC=BD,不能证明△ABC≌△ABD,故此选项合题意;B. 再加上条件∠C=∠D,可利用AAS可证明△ABC≌△ABD,故此选项不合题意;C. 再加上条件AC=AD,可利用SAS可证明△ABC≌△ABD,故此选项不符合题意;D. 再加上条件∠ABC=∠ABD,可利用ASA可证明△ABC≌△ABD,故此选项不合题意.故选:A【点睛】本题考查全等三角形的判定定理,解题的关键是掌握全等三角形的判定定理.26.D【分析】本题主要考查全等三角形的性质.先根据角角边证明△ABC≌△CED,再根据全等三角形对应边相等,全等三角形的对应角相等的性质对各选项判断后,利用排除法求解.【详解】解:∵AC⊥CD,∴∠1+∠2=90°,∵∠B=90°,∴∠1+∠A=90°,∴∠A=∠2,在△ABC和△CED中,∠B=∠E=90°∠A=∠2,AC=CD∴△ABC≌△CED(AAS),故B、C选项正确,不符合题意;∵∠2+∠D=90°,∴∠A+∠D=90°,故A选项正确,不符合题意;∵AC⊥CD,∴∠ACD=90°,∠1+∠2=90°,但∠1不一定等于∠2,故D选项错误,符合题意.故选:D.27.B【分析】根据三角形全等的判定逐个判定即可得到答案.【详解】解:由题意可得,B选项符合边角边判定,故选B.【点睛】本题考查三角形全等的判定,解题的关键是熟练掌握三角形全等的几个判定.28.48°/48度,∴在∵∴29先长=∴∴【点睛】本题考查了翻折变换的性质,翻折变换保留原有图形的性质,而且可以使得原有的分散条件相对集中,从而有利于问题的解决.30.AB/BA【分析】本题主要考查全等三角形的判定与性质,证明△ABC≌△ADC是解题的关键.由AAS判断出△ABC≌△ADC即可得到答案.【详解】解:∵AB⊥BC,AD⊥DC,∴∠B=∠D=90°,在△ABC,△ADC中,∠1=∠2∠B=∠D,AC=AC∴△ABC≌△ADC(AAS),∴AD=AB.故答案为:AB.31.证明见解析【分析】根据平行得出∠B=∠DEF,然后用“边角边”证明△ABC≌△DEF即可.【详解】证明:∵AB//DE,∴∠B=∠DEF.∵BE=CF,∴BE+EC=CF+EC.∴BC=EF.在△ABC和△DEF中,AB=DE,∠B=∠DEF,BC=EF,∴△ABC≌△DEF.∴∠A=∠D.【点睛】本题考查了全等三角形的判定与性质,解题关键是熟练运用已知条件,推导证明出全等三角形判定所需条件,运用全等三角形判定定理证明.32.见解析【分析】利用AAS证明△ACO≌△DBO,即可得到结论.【详解】解:证明:在△ACO和△DBO中∠AOC=∠DOB∠A=∠DAC=DB∴△ACO≌△DBO(AAS).∴AO=DO,CO=BO.∴AO+BO=DO+CO∴AB=CD.【点睛】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法是解题的关键.33.详见解析【分析】运用HL定理证明直角三角形全等即可.【详解】∵BE=CF,∴BF=CE在Rt△ABF与Rt△DCE中:{AF=DE BF=CE∴Rt△ABF≌Rt△DCE(HL)∴AB =DC【点睛】本题考查了直角三角形全等的判定与性质,熟练掌握HL定理是解题关键.34.见解析【分析】根据已知条件得出∠AOB=∠COD,进而证明△AOB≌△COD,根据全等三角形的性质即可得证.【详解】证明:∵∠AOD=∠COB,∴∠AOD−∠BOD=∠COB−∠BOD,即∠AOB=∠COD.在△AOB和△COD中,OA=OC,∠AOB=∠COD,OB=OD,∴△AOB≌△COD∴AB=CD.【点睛】本小题考查等式的基本性质、全等三角形的判定与性质等基础知识,考查几何直观、推理能力等,掌握全等三角形的性质与判定是解题的关键.35.(1)见详解(2)见详解【分析】(1)作NM⊥AD,根据角平分线的性质得到BM=MN,MN=CM,等量代换得到答案.(2)根据平行线的性质得到∠BAD+∠ADC=180°,根据角平分线的定义得到∠MAD+∠ADM=90°,根据垂直的定义得到答案;【详解】(1)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM;(2)证明:∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;【点睛】本题考查的是角平分线的性质,掌握平行线的性质和角的平分线上的点到角的两边的距离相等是解题的关键.36.(1)见详解(2)见详解【分析】(1)根据三角形内角和以及角平分线定义得出∠APB=135°,易得∠DPB=45°,可得∠BPF=135°,即可证明△ABP≌△FBP;(2)由(1)结论可得∠F=∠BAD,AP=PF,AB=BF,即可求得∠F=∠CAD,即可证明△APH≌△FPD,可得AH=DF,即可解题.【详解】(1)∵AD、BE分别平分∠BAC、∠ABC,∠ACB=90°,∴∠PAB+∠PBA=12(∠ABC+∠BAC)=45°,∴∠APB=135°,∴∠DPB=45°,∵PF⊥AD,∴∠BPF=135°,在△ABP和△FBP中,∠BPF=∠APB=135°BP=BP∠ABP=∠FBP∴△ABP≌△FBP(ASA);(2)∵△ABP≌△FBP,∴∠F=∠BAD,AP=PF,AB=BF,∵∠BAD=∠CAD,∴∠F=∠CAD,在△APH和△FPD中,∠F=∠CADAP=PF∠APH=∠FPD=90°∴△APH≌△FPD(ASA),∴AH=DF,∵BF=DF+BD,∴AB=AH+BD.∴AH=AB−BD.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ABP≌△FBP和△APH≌△FPD是解题的关键.37.见解析【分析】由BE=CF可得BC=EF,即可判定ΔABC≌ΔDEF(SAS),再利用全等三角形的性质证明即可.【详解】∵BE=CF,∴BE+EC=EC+CF,即BC=EF,又∵AB=DE,∠B=∠DEF,∴在ΔABC与ΔDEF中,AB=DE∠B=∠DEF,BC=EF∴ΔABC≌ΔDEF(SAS),∴AC=DF.【点睛】本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定定理是解决本题的关键. 38.见解析【分析】先证明ΔBDO≌ΔCEO(AAS),得到OD=OE,再根据角的平行线性质判定即可.【详解】证明:∵CD⊥AB于D点,BE⊥AC于点E,∴∠BDO =∠CEO =90∘,在ΔBDO 和ΔCEO 中,∠BDO =∠CEO ∠BOD =∠COE OB =OC,ΔBDO≌ΔCEO (AAS),∴OD =OE ,∵OD ⊥AB ,OE ⊥AC ,∴OA 平分∠BAC ,∴∠1=∠2.【点睛】本题考查了三角形全等的判定和性质,角的平分线的判定定理,熟练掌握三角形全等的判定和角的平分线的判定是解题的关键.39.见解析【分析】利用等腰三角形的性质可得∠B =∠C ,再由SAS 证明△ABD≌△ACE ,从而得AD =AE .【详解】证明:∵AB =AC ,∴∠B =∠C ,在△ABD 和△ACE 中,AB =AC ∠B =∠C BD =CE,∴△ABD≌△ACE (SAS ),∴AD =AE .【点睛】本题考查等腰三角形的性质,全等三角形的性质与判定,熟练掌握相关性质定理是解题的关键.40.(1)证明见解析(2)5【分析】此题主要考查全等三角形的判定和性质,解题关键是根据AAS 证明△CDE 和△FAE 全等.(1)根据 AAS 证明△CDE 和△FAE全等即可;(2)根据全等三角形的性质结合线段垂直平分线性质解答即可.【详解】(1)证明:∵AB ∥CD ,∴∠DCE =∠F ,∵点E 是AD 中点,∴DE =AE ,在△CDE 和△FAE 中,∠DCE =∠F ∠CED =∠FEA DE =AE,∴△CDE≌△FAE (AAS);(2)由(1)知△CDE≌△FAE ,∴CE =FE ,CD =AF∵BE ⊥GF ,∴BE 垂直平分CF ,∴BC =BF ,∵CD =3,AB =2,∴AF =CD =3,∴BC =BF =AF +AB =3+2=5.41.证明见解析【分析】本题主要考查了三线合一定理,过点A 作AP ⊥B C 于P ,利用三线合一得到P 为DE 及BC 的中点,再根据线段之间的关系即可得证.【详解】证明:如图,过点A 作AP ⊥B C 于P .∵AB =AC ,∴BP =PC ;∵AD =AE ,∴DP =PE ,∴BP−DP =PC−PE ,∴BD =CE .42.(1)△ABD≌△CBD(2)证明见解析【分析】本题考查的是全等三角形的判定与性质,等腰三角形的性质;熟记等腰三角形的三线合一是解本题的关键.(1)直接利用SSS证明△ABD≌△CBD即可;(2)由△ABD≌△CBD可得∠ADB=∠CDB,再结合等腰三角形的性质可得结论.【详解】(1)解:△ABD≌△CBD,理由如下:在△ABD和△CBD中,AD=CDAB=CB,BD=BD∴△ABD≌△CBD(SSS);(2)∵△ABD≌△CBD,∴∠ADB=∠CDB,∵DA=DC,∴AD⊥AC.43.(1)证明见解析(2)证明见解析【分析】本题主要考查直角三角形的全等判定和性质,(1)根据题意得∠AEB=∠DFC=90°,由CE=BF得BE=CF,则有Rt△CDF≌Rt△BAE,结合全等的性质即可证明;(2)利用Rt△CDF≌Rt△BAE得到对应的角度相等,结合内错角相等两直线平行的判定即可证明;【详解】(1)证明:∵AE⊥BC于E,DF⊥BC于F,∴∠AEB=∠DFC=90°,∵CE=BF,∴CE−EF=BF−EF,∴BE=CF,在Rt△CDF与Rt△BAE中,CD=ABCF=BE,∴Rt△CDF≌Rt△BAE(HL)∴AE=DF,(2)由(1)可知Rt△CDF≌Rt△BAE(HL),∴∠C=∠B,∴AB∥CD.44.证明见解析【分析】本题考查了全等三角形的判定与性质等知识,证△AEB≌△DFC(AAS),即可得出结论.∴∵∴∴在∴∴45(2)((∴∴∠ACD+∠DAC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠DAC=∠ECB.在△ADC和△CEB中,∠ADC=∠CEB,∠DAC=∠ECB, AC=CB,∴△ADC≌△CEB (AAS)(2)由(1)得△ADC≌△CEB∴CE =AD =5,CD =BE =3,∴BF =DE =CE−CD =5−3=2,∴EF =BF +BE =2+3=5,∴EF =AD .∵AD ⊥CE ,BE ⊥CE ,∴∠FEG =∠ADG =90°在△FEG 和△ADG 中,∠FEG =∠ADG,∠FGE =∠AGD,FE =AD,∴△FEG≌△ADG (AAS),∴DG =EG =12DE =1.46.证明见解析【分析】本题考查三角形全等的判定,先证明∠BAC =∠EAD ,在用ASA 证明△ABC≌△AED 即可,掌握判定三角形全等是解题的关键.【详解】证明∵∠1=∠2,∴∠1+∠EAC =∠2+∠EAC∴∠BAC =∠EAD ,在△ABC 和△AED 中,∠B =∠AED AB =AE ∠BAC =∠EAD,∴△ABC≌△AED .∴AC =AD 47.见解析【分析】先根据SSS 定理得出△ABC≌△DEB (SSS ),故∠ACB =∠EBD ,再根据∠AFB 是△BFC 的外角,可知∠AFB =∠ACB +∠EBD ,可得出∠AFB =2∠ACB,故可得出答案.【详解】解:在△ABC和△BDE中,AC=BDAB=EDBC=BE∴△ABC≌△DEB(SSS)∴∠ACB=∠EBD;∵∠AFB=∠ACB+∠EBD,∴∠AFB=2∠ACB【点睛】此题考查全等三角形的判定和性质,同时涉及三角形外角和定理,掌握相关定理知识是解题的关键.48.见解析【分析】根据中点的定义得出AC=CB,即可根据SSS证明△ACD≌△CBE.【详解】证明:∵点C是AB的中点,∴AC=CB.在△ACD和△CBE中,AD=CECD=BE,AC=CB∴△ACD≌△CBE(SSS).【点睛】本题主要考查了的三角形全等的判定,解题的关键是掌握三边都相等的两个三角形全等.49.见解析【分析】由BE=CF可得BF=CE,再结合AB=DC,∠B=∠C可证得△ABF≌△DCE,问题得证.【详解】解∵BE=CF,∴BE+EF=CF+EF,即BF=CE.在△ABF和△DCE中,AB=DC∠B=∠CBF=CE∴△ABF≌△DCE,∴∠A=∠D.【点睛】本题考查了全等三角形的判定和性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握全等三角形的判定和性质.50.(1)DE=BD+CE,见解析(2)见解析,CE−BD=DE或BD−CE=DE【分析】(1)由BD⊥MN于点D,CE⊥MN于点E,得∠BDA=∠AEC=∠BAC=90°,则∠DAB=∠ECA=90°−∠EAC,而AB=CA,即可证明△DAB≌△ECA,得BD=AE,AD=CE,则BD+CE=AE+AD=DE;(2)分两种情况讨论,一是MN与边BC相交且∠BAD<45°,同理可证△DAB≌△ECA,得BD=AE,AD=CE,则CE−BD=AD−AE=DE;二是MN与边BC相交且∠BAD>45°,同理可证△DAB≌△ECA,得BD=AE,AD=CE,则BD−CE=AE−AD=DE.【详解】(1)证明:∵BD⊥MN,CE⊥MN,∴∠ADB=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠CAE+∠ACE=90°,∴∠BAD=∠ACE,在△ABD和△CAE中,∠ADB=∠CEA∠BAD=∠ACEAB=CA,∴△ABD≅△CAE(AAS);∴AD=CE,BD=AE,∵DE=AD+AE,∴DE=BD+CE;(2)解:CE−BD=DE或BD−CE=DE,理由:如图2,MN与边BC相交且∠BAD<45°,∵BD⊥MN于点D,CE⊥MN于点E,∴∠BDA=∠AEC=90°,∵∠BAC=90°,∴∠DAB=∠ECA=90°−∠EAC,在△DAB和△ECA中,∠DAB=∠ECA∠BDA=∠AEC,AB=CA∴△DAB≌△ECA(AAS),∴BD=AE,AD=CE,∴CE−BD=AD−AE=DE.如图3,MN与边BC相交且∠BAD>45°,∵BD⊥MN于点D,CE⊥MN于点E,∴∠BDA=∠AEC=90°,∵∠BAC=90°,∴∠DAB=∠ECA=90°−∠EAC,在△DAB和△ECA中,∠DAB=∠ECA∠BDA=∠AEC,AB=CA∴△DAB≌△ECA(AAS),∴BD=AE,AD=CE,∴BD−CE=AE−AD=DE.【点睛】此题重点考查直角三角形的两个锐角互余、同角的余角相等、全等三角形的判定与性质等知识,证明△DAB≌△ECA是解题的关键.51.见解析【分析】根据∠1=∠2,可得出∠ACB=∠DCE,然后利用SAS证明△ABC≌△DEC,继而可得出AB=DE.本题考查了全等三角形的判定与性质,熟练掌握SAS证三角形全等是解题的关键.【详解】证明:∵∠1=∠2,∴∠1+∠ECA=∠2+∠ECA,即∠ACB=∠DCE,在△ABC和△DEC中,CA=CD∠ACB=∠DCE,BC=EC∴△ABC≌△DEC(SAS),∴AB=DE.52.证明见解析【分析】先利用A S A证明△AOB≌△COD,得出OB=OD,根据线段垂直平分线的判定可知点O在线段BD的垂直平分线上,再由BE=DE,得出点E在线段BD的垂直平分线上,即O,E两点都在线段BD的垂直平分线上,从而可证明OE垂直平分BD.【详解】在△AOB与△COD中,∠A=∠C,OA=OC,∠AOB=∠COD,∴△AOB≌△COD(ASA),∴OB=OD,∴点O在线段BD的垂直平分线上,∵BE=DE,∴点E在线段BD的垂直平分线上,∴OE垂直平分BD.【点睛】本题考查了线段垂直平分线的判定:到一条线段两端距离相等的点在这条线段的垂直平分线上,同时考查了全等三角形的判定与性质.53.见解析【分析】根据题意可以证得△ABC≅△DEF,所以BC=EF,即可得到结论.【详解】根据题意,在△ABC和△DEF中,AB=DE∠A=∠D,AC=DF∴△ABC≅△DEF,∴BC=EF,∴BC−CE=EF−CE,∴BE=CF.【点睛】本题考查了全等三角形的判定及性质,熟练掌握全等三角形的判定及性质是解题的关键.54.见解析【分析】本题考查了全等三角形的判定和性质,平行线的判定,熟练掌握全等三角形的判定和性质定理是解题的关键.根据全等三角形的判定和性质定理和平行线的判定定理即可得到结论.【详解】证明:∵AB=CD,∴AB+BC=CD+BC,即:AC=BD,。
2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)
2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)知识回顾1.三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。
2.三角形的内角和定理:三角形的三个内角之和等于180°。
3.三角形的外角定理:三角形的一个外角等于它不相邻的两个内角之和。
大于它不相邻的任意一个内角。
4.全等三角形的性质:若两个三角形全等,则他们的对应边相等;对应角相等;对应边上的中线相等,高线相等,角平分线也相等;且这两个三角形的周长和面积均相等。
5.全等三角形的判定:①边边边(SSS):三条边分别对应性相等的两个三角形全等。
②边角边(SAS):两边及其这两边的夹角对应相等的两个三角形全等。
③角边角(ASA):两角及其这两角的夹边对应相等的两个三角形全等。
④角角边(AAS):两角及其其中一角的对边对应相等的两个三角形全等。
⑤直角三角形判定(HL):直角三角形中斜边与其中任意一直角边分别对应相等的两个直角三角形全等。
全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件。
在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形。
专项练习题(含答案解析)1.已知:如图,∠1=∠2,∠3=∠4.求证:AB=AD.【分析】根据邻补角的定义得出∠ACB=∠ACD,利用ASA证明△ACB≌△ACD,根据全等三角形的性质即可得解.【解答】证明:∵∠3=∠4,∴∠ACB=∠ACD,在△ACB和△ACD中,,∴△ACB≌△ACD(ASA),∴AB=AD.2.如图,△ABC是等腰三角形,点D,E分别在腰AC,AB上,且BE=CD,连接BD,CE.求证:BD=CE.【分析】根据等腰三角形的性质得出∠EBC=∠DCB,进而利用SAS证明△EBC与△DCB全等,再利用全等三角形的性质解答即可.【解答】证明:∵△ABC∴∠EBC=∠DCB,在△EBC与△DCB中,,∴△EBC≌△DCB(SAS),∴BD=CE.3.如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.【分析】由∠BAD=∠EAC可得∠BAC=∠EAD,根据SAS可证△BAC≌△EAD,再根据全等三角形的性质即可求解.【解答】解:∵∠BAD=∠EAC,∴∠BAD+∠CAD=∠EAC+∠CAD,即∠BAC=∠EAD,在△BAC与△EAD中,,∴△BAC≌△EAD(SAS),∴∠D=∠C=50°.4.如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形的面积.【分析】(1)由AC平分∠BAD,得∠BAC=∠DAC,根据CB⊥AB,CD⊥AD,得∠B=90°=∠D,用AAS 可得△ABC≌△ADC;(2)由(1)△ABC≌△ADC,得BC=CD=3,S△ABC=S△ADC,求出S△ABC=AB•BC=6,即可得四边形ABCD的面积是12.【解答】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵CB⊥AB,CD⊥AD,∴∠B=90°=∠D,在△ABC和△ADC中,,∴△ABC≌△ADC(AAS);(2)解:由(1)知:△ABC≌△ADC,∴BC=CD=3,S△ABC=S△ADC,∴S△ABC=AB•BC=×4×3=6,∴S△ADC=6,∴S四边形ABCD=S△ABC+S△ADC=12,答:四边形ABCD的面积是12.5.如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.【分析】利用平行线的性质得∠EDC=∠B,再利用ASA证明△CDE≌△ABC,可得结论.【解答】证明:∵DE∥AB,∴∠EDC=∠B,在△CDE和△ABC中,,∴△CDE≌△ABC(ASA),∴DE=BC.6.如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).【分析】(1)过点M作MQ∥BC,交AC于点Q,根据等边三角形的性质以及平行线的性质可得∠AMQ=∠AQM=∠A=60°,可得△AMQ是等边三角形,易证△QMP≌△CNP(AAS),即可得证;(2)根据等边三角形的性质可知AH=HQ,根据全等三角形的性质可知QP=PC,即可表示出HP的长.【解答】(1)证明:过点M作MQ∥BC,交AC于点Q,如图所示:在等边△ABC中,∠A=∠B=∠ACB=60°,∵MQ∥BC,∴∠AMQ=∠B=60°,∠AQM=∠ACB=60°,∠QMP=∠N,∴△AMQ是等边三角形,∴AM=QM,∵AM=CN,∴QM=CN,在△QMP和△CNP中,,∴△QMP≌△CNP(AAS),∴MP=NP;(2)解:∵△AMQ是等边三角形,且MH⊥AC,∴AH=HQ,∵△QMP≌△CNP,∴QP=CP,∴PH=HQ+QP=AC,∵AB=a,AB=AC,∴PH=a.7.如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC =∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.【分析】(1)根据SSS ABC≌△DEF,即可解决问题;(2)根据全等三角形的性质可得∠A=∠EDF,再根据平行线的判定即可解决问题.【解答】(1)解:在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,选取的条件为①,判定△ABC≌△DEF的依据是SSS.故答案为:①,SSS;(答案不唯一).(2)证明:∵△ABC≌△DEF.∴∠A=∠EDF,∴AB∥DE.8.在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【分析】(1)证明△BCD≌△FCE(SAS),由全等三角形的性质得出∠DBC=∠EFC,证出BD∥EF,则可得出结论;(2)由题意画出图形,延长BC到F,使CF=BC,连接AF,EF,由(1)可知BD∥EF,BD=EF,证出∠AEF=90°,得出∠DHE=90°,由直角三角形的性质可得出结论.【解答】(1)证明:在△BCD和△FCE中,,∴△BCD≌△FCE(SAS),∴∠DBC=∠EFC,∴BD∥EF,∵AF⊥EF,∴BD⊥AF;(2)解:由题意补全图形如下:CD=CH.证明:延长BC到F,使CF=BC,连接AF,EF,∵AC⊥BF,BC=CF,∴AB=AF,由(1)可知BD∥EF,BD=EF,∵AB2=AE2+BD2,∴AF2=AE2+EF2,∴∠AEF=90°,∴AE⊥EF,∴BD⊥AE,∴∠DHE=90°,又∵CD=CE,∴CH=CD=CE.9.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,且点D在线段BC上,连CE.(1)求证:△ABD≌△ACE;(2)若∠EAC=60°,求∠CED的度数.【分析】(1)可利用SAS证明结论;(2)由全等三角形的性质可得∠ACE=∠ABD,利用等腰直角三角形的性质可求得∠ACE=∠ABD=∠AED =45°,再根据三角形的内角和定理可求解∠AEC的度数,进而可求可求解【解答】(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE,∴∠ACE=∠ABD,∵△ABC和△ADE都是等腰直角三角形,∴∠ACE=∠ABD=∠AED=45°,∵∠EAC=60°,∴∠AEC=180°﹣∠ACE﹣∠EAC=180°﹣45°﹣60°=75°,∴∠CED=∠AEC﹣∠AED=75°﹣45°=30°.10.如图,在△ABC中(AB<BC),过点C作CD∥AB,在CD上截取CD=CB,CB上截取CE=AB,连接DE、DB.(1)求证:△ABC≌△ECD;(2)若∠A=90°,AB=3,BD=2,求△BCD的面积.【分析】(1)由CD∥AB得∠ABC=∠ECD,而CD=CB,CE=AB,即可根据全等三角形的判定定理“SAS”证明△ABC≌△ECD;(2))由∠A=90°,根据全等三角形的对应角相等证明∠BED=∠CED=∠A=90°,设BE=x,由BD2﹣BE2=CD2﹣EC2=DE2,列方程(2)2﹣x2=(3+x)2﹣32,解方程求得符合题意的x的值为2,则BC =5,再根据勾股定理求出DE的长,即可求出△BCD的面积.【解答】(1)证明:∵CD∥AB,CD=CB,CE=AB,∴∠ABC=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(SAS).(2)解:∵∠A=90°,∴∠CED=∠A=90°,∴∠BED=180°﹣∠CED=90°,设BE=x,∵EC=AB=3,BD=2,∴CD=BC=3+x,∵BD2﹣BE2=CD2﹣EC2=DE2,∴(2)2﹣x2=(3+x)2﹣32,整理得x2+3x﹣10=0,解得x1=2,x2=﹣5(不符合题意,舍去),∴BE=2,BC=3+2=5,∴DE===4,∴S△BCD=BC•DE=×5×4=10,∴△BCD的面积为10.11.如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt △ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.【分析】(1)由“SAS”可证△ACE;(2)由等腰三角形三角形的性质可得BC的长,由角度关系可求∠ADC=67.5°=∠CAD,可得AC=CD =1,即可求解.【解答】(1)证明:∵∠BAC=90°=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵∠BAC=90°,AB=AC=1,∴BC=,∠B=∠ACB=45°,∵∠BAD=22.5°,∴∠ADC=67.5°=∠CAD,∴AC=CD=1,∴BD=﹣1.12.如图,已知矩形ABCD中,AB=8,BC=x(0<x<8),将△ACB沿AC对折到△ACE的位置,AE和CD交于点F.(1)求证:△CEF≌△ADF;(2)求tan∠DAF的值(用含x的式子表示).【分析】(1)根据矩形的性质得到∠B=∠D=90°,BC=AD,根据折叠的性质得到BC=CE,∠E=∠B =90°,等量代换得到∠E=∠D=90°,AD=CE,根据AAS证明三角形全等即可;(2)设DF=a,则CF=8﹣a,根据矩形的性质和折叠的性质证明AF=CF=8﹣a,在Rt△ADF中,根据勾股定理表示出DF的长,根据正切的定义即可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,BC=AD,根据折叠的性质得:BC=CE,∠E=∠B=90°,∴∠E=∠D=90°,AD=CE,在△CEF与△ADF中,,∴△CEF≌△ADF(AAS);(2)解:设DF=a,则CF=8﹣a,∵四边形ABCD是矩形,∴AB∥CD,AD=BC=x,∴∠DCA=∠BAC,根据折叠的性质得:∠EAC=∠BAC,∴∠DCA=∠EAC,∴AF=CF=8﹣a,在Rt△ADF中,∵AD2+DF2=AF2,∴x2+a2=(8﹣a)2,∴a=,∴tan∠DAF==.13.如图,△ABC和△DEF,点E,F在直线BC上,AB=DF,∠A=∠D,∠B=∠F.如图①,易证:BC+BE =BF.请解答下列问题:(1)如图②,如图③,请猜想BC,BE,BF之间的数量关系,并直接写出猜想结论;(2)请选择(1)中任意一种结论进行证明;(3)若AB=6,CE=2,∠F=60°,S△ABC=123,则BC=,BF=.【分析】(1)根据图形分别得出答案;(2)利用AAS证明△ABC≌△DFE,得BC=EF,再根据图形可得结论;(3)首先利用含30°角的直角三角形的性质求出BH和AH的长,从而得出BC,再对点E的位置进行分类即可.【解答】解:(1)图②:BC+BE=BF,图③:BE﹣BC=BF;(2)图②:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BC+CE,∴BC+BE=EF+BC+CE=BF;图③:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BF+EF,∴BE﹣BC=BF+EF﹣BC=BF+BC﹣BC=BF;(3)当点E在BC上时,如图,作AH⊥BC于H,∵∠B=∠F=60°,∴∠BAH=30°,∴BH=3,∴AH=3,∵S△ABC=12,∴=12,∴BC=8,∵CE=2,∴BF=BE+EF=8﹣2+8=14;同理,当点E在BC延长线上时,如图②,BF=BC+BE=8+10=18,故答案为:8,14或18.14.△ABC和△ADE都是等边三角形.(1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有P A+PB =PC(或P A+PC=PB)成立(不需证明);(2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?并加以证明;(3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【分析】(2)证明△ABD≌△ACE(SAS)和△BAF≌△CAP(SAS),得AF=AP,∠BAF=∠CAP,再证明△AFP是等边三角形,最后由线段的和可得结论;(3)如图③,在PC上截取CM=PB,连接AM,同理可得结论.【解答】解:(2)PB=P A+PC,理由如下:如图②,在BP上截取BF=PC,连接AF,∵△ABC、△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠CAD+∠DAE,即∠DAB=∠EAC,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,BF=CP,∴△BAF≌△CAP(SAS),∴AF=AP,∠BAF=∠CAP,∴∠BAC=∠P AF=60°,∴△AFP是等边三角形,∴PF=P A,∴PB=BF+PF=PC+P A;(3)PC=P A+PB,理由如下:如图③,在PC上截取CM=PB,连接AM,同理得:△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,PB=CM,∴△AMC≌△APB(SAS),∴AM=AP,∠BAP=∠CAM,∴∠BAC=∠P AM=60°,∴△AMP是等边三角形,∴PM=P A,∴PC=PM+CM=P A+PB.15.【情境再现】甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处.将甲绕点O 顺时针旋转一个锐角到图②位置.按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC 交OG于F,通过证明△OBE≌△OAF,可得OE=OF.请你证明:AG=BH.【迁移应用】延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.【拓展延伸】小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.【分析】【情境再现】由△OBE≌△OAF,得BE=AF,OE=OF,∠BEO=∠AFO,可证明△BHE≌△AGF (SAS),得BH=AG;【迁移应用】由△BHE≌△AGF,得∠BHE=∠AGF,可得∠AGF+∠GPO=90°,从而∠BHE+∠HPD=90°,∠HDP=90°,故DG⊥BH;【拓展延伸】设AB交OH于T,OG交AC于K,根据△ABC,△HOG是含30°角的直角三角形,AO⊥BC,可得OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,即得△BOT∽△AOK,有===,∠BTO=∠AKO,又OH=GO,可得==,故△BTH∽△AKG,即得==,BH=AG.【解答】【情境再现】证明:由阅读材料知△OBE≌△OAF,∴BE=AF,OE=OF,∠BEO=∠AFO,∴∠BEH=∠AFG,∵OH=OG,∴OH﹣OE=OG﹣OF,即EH=GF,在△BHE和△AGF中,,∴△BHE≌△AGF(SAS),∴BH=AG;【迁移应用】解:猜想:DG⊥BH;证明如下:由【情境再现】知:△BHE≌△AGF,∴∠BHE=∠AGF,∵∠HOG=90°,∴∠AGF+∠GPO=90°,∴∠BHE+∠GPO=90°,∵∠GPO=∠HPD,∴∠BHE+∠HPD=90°,∴∠HDP=90°,∴DG⊥BH;【拓展延伸】解:猜想:BH=AG,证明如下:设AB交OH于T,OG交AC于K,如图:由已知得:△ABC,△HOG是含30°角的直角三角形,AO⊥BC,∴∠AOB=90°,∴OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,∴△BOT∽△AOK,∴===,∠BTO=∠AKO,∴OT=OK,BT=AK,∠BTH=∠AKG,∵OH=GO,∴HT=OH﹣OT=GO﹣OK=(GO﹣OK)=KG,∴==,∴△BTH∽△AKG,∴==,∴BH=AG19。
专题2.15直角三角形全等的判定两大题型专项训练(30题)-2024-2025学年八年[含答案]
(23-24 八年级·重庆渝北·期中)
16.如图,点 B 在线段 AC 上,点 E 在线段上, ÐABD = ÐDBC , EB = BC , AE = DC ,
点 M , N 分别在线段 AE ,边上,且满足 ÐMBN = 90° ,猜测与 BN 的数量关系并说
并说明理由;
(3)若将图 1 中的 V DBE 按如图 3 所示位置摆放, DE , DB 分别交 AC 的延长线于点 F , P ,
连接 FB ,且 FB 平分 ÐCFE .你认为(1)中②猜想的结论还成立吗?若成立,写出证明过
程;若不成立,请直接写出 AF , EF 与 DE 之间的数量关系.
证明你的结论.
(3)如图 3,当 A, E , D 在同一直线上时(A, D 在点 E 的异侧), CE 与 AB 交于点 G ,
Ð BAD = ÐACE ,请直接写出 BBiblioteka , AB , AC 之间的数量关系.
(23-24 八年级·江苏淮安·期中)
22.【知识再现】
学完《全等三角形》一章后,我们知道“斜边和一条直角边分别相等的两个直角三角形全等
专题 2.15 直角三角形全等的判定两大题型专项训练(30 题)
【浙教版】
【题型 1 用 HL 证全等】
(23-24 八年级·辽宁沈阳·期末)
1.如图, AB ^ BC , AD ^ DC ,要根据“ HL ”证明 Rt△ ABC≌Rt△ ADC ,还应添加一个条
件是(
)
A. Ð1 = Ð2
B. Ð 2 = Ð 4
连接 FB ,且 FB 平分 ÐCFE .
①求证 BC = BE ;
②猜想 DE , EF 与 AF 之间的数量关系是__________;
(完整版)全等三角形知识总结和经典例题
全等三角形复习[ 知识要点 ]一、全等三角形1.判定和性质一般三角形直角三角形边角边( SAS)、角边角( ASA)具备一般三角形的判定方法判定斜边和一条直角边对应相等( HL )角角边( AAS)、边边边( SSS)对应边相等,对应角相等性质对应中线相等,对应高相等,对应角平分线相等注:①判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等.2.证题的思路:找夹角( SAS)已知两边找直角( HL )找第三边( SSS)若边为角的对边,则找任意角( AAS)找已知角的另一边(SAS)已知一边一角边为角的邻边找已知边的对角(AAS)找夹已知边的另一角(ASA)找两角的夹边(ASA)已知两角找任意一边(AAS)性质1、全等三角形的对应角相等、对应边相等。
2、全等三角形的对应边上的高对应相等。
3、全等三角形的对应角平分线相等。
4、全等三角形的对应中线相等。
5、全等三角形面积相等。
6、全等三角形周长相等。
( 以上可以简称 : 全等三角形的对应元素相等)7、三边对应相等的两个三角形全等。
(SSS)8、两边和它们的夹角对应相等的两个三角形全等。
(SAS)9、两角和它们的夹边对应相等的两个三角形全等。
(ASA)10、两个角和其中一个角的对边对应相等的两个三角形全等。
(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。
(HL)运用1、性质中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反。
2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
3,当图中出现两个以上等边三角形时,应首先考虑用 SAS找全等三角形。
4、用在实际中,一般我们用全等三角形测等距离。
以及等角,用于工业和军事。
有一定帮助。
5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上做题技巧一般来说考试中线段和角相等需要证明全等。
全等三角形判定-专题复习50题(含答案)
A.一个锐角对应相等C.一条边对应相等B.两个锐角对应相等全等三角形判定、选择题:1-如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全样的三角形,那么这两个三角形完全一样的依据是()A.SSSB.SASC.AASD.ASA2•方格纸中,每个小格顶点叫做一个格点,以格点连线为边的三角形叫做格点三角形。
如图,在4X4的方格纸中,有两个格点三角形△ABC、ADEF,下列说法中成立的是()A.ZBCA=ZEDF CoZBAC=ZEFDB.ZBCA=ZEFDD.这两个三角形中,没有相等的角3•如图所示,△ABD9ACDB,下面四个结论中,不正确的是()A.△ABD和厶CDB的面积相等B.AABD和厶CDB的周长相等C.ZA+ZABD=ZC+ZCBDD.AD〃BC,且AD=BC4.下列判断中错误的是()A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等5-使两个直角三角形全等的条件是()6•如图,在AABC和厶BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则Z AACB等于(B.ZBEDC.寺ZAFBD.2ZABFA.ZEDBBA B C DB.ZA=ZDC.AC=DD.ZACB=ZF7.在AABC 和厶A /B /C /中,已知ZA=ZA /,AB=A /B /,在下面判断中错误的是()A. 若添加条件AC=A /C /,则厶ABC^^^A /B /C /B. 若添加条件BC=B /C /,则厶ABC^^^A /B /C /C 。
若添加条件ZB=ZB /,则△ABC^^^A /B /C /D 。
若添加条件ZC=ZC /,则△ABC^^^A /B /C /8•如图,AABC 和厶DEF 中,AB=DE 、ZB=ZDEF,添加下列哪一个条件无法证明厶ABC^^DEF ()9•如图,在△ABC 中,ZABC=45°,AC=8cm,F 是高AD 和BE 的交点,则BF 的长是()A.4cmB.6cmC.8cmD.9cm1°.在如图所示的5X5方格中,每个小方格都是边长为1的正方形,AABC 是格点三角形(即顶点恰好是正方形的顶点),则与△ABC 有一条公共边且全等的所有格点三角形个数是()11.如图,点E 在正方形ABCD 的对角线AC 上,且EC=2AE ,直角三角形FEG 的两直角边EF 、EG 分别交BC 、DC 于点M 、N.若正方形ABCD 的边长为a,则重叠部分四边形EMCN 的面积为( A.AC 〃DF12-在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是(C、填空题:I3•如图所示,有一块三角形的镜子,小明不小心弄破裂成1、2两块,现需配成同样大小的一块.为了方便起见,需带上—块,其理由是.14.如图示,点B在AE上,ZCBE=ZDBE,要使AABC^AABD,还需添加一个条件是,(填上你认为适当的一个条件即可)15•如图,已知Z1=Z2,AC=AD,请增加一个条件,使△ABC9AAED,你添加的条件是16-如图,Z1=Z2,要使△ABD9AACD,需添加的一个条件是(只添一个条件即可).17•如图,在△ABC中,AB=AC,AD丄BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角形对.18•如图,△ABD9ABAC,若AD=BC,则ZBAD的对应角是.19-如图,已知AB丄BD,垂足为B,ED丄BD,垂足为D,AB=CD,BC=DE,则ZACE=_度.2°・如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是.三、解答题:21•如图,ZDCE=90°,CD=CE,AD丄AC,BE丄AC,垂足分别为A.B.试说明AD+AB=BE.22.如图,E、A.C三点共线,AB〃CD,ZB=ZE,,AC=CD。
专题01 全等三角形的性质与判定、应用(原卷版)
专题01 全等三角形的性质与判定、应用全等三角形的性质1.(2022秋•鄞州区校级期末)如图,△AOB≌△ADC,∠O=∠D=90°,记∠OAD=α,∠ABO =β,当BC∥OA时,α与β之间的数量关系为( )A.α=βB.α=2βC.α+β=90°D.α+2β=180°2.(2022秋•嘉兴期末)如图,△ABC≌△DEF,若∠A=100°,∠F=47°,则∠E的度数为( )A.100°B.53°C.47°D.33°3.(2022秋•拱墅区期末)如图,△ABC≌△EFD,则下列说法错误的是( )A.FC=BD B.EF平行且等于ABC.∠B=∠ACB D.AC平行且等于DE4.(2021秋•青田县期末)如图,已知△ABC≌△DEF,B,E,C,F在同一条直线上.若BF=8cm,BE=2cm,则CE的长度( )cm.A.5B.4C.3D.25.(2022秋•仙居县期末)如图,△ABC≌△DEF,且∠A=55°,∠B=75°,则∠F = °.6.(2022秋•宁波期末)如图,若△ABD≌△ACE,且∠1=45°,∠ADB=95°,则∠B = °.7.(2022秋•鄞州区校级期末)如图所示,已知△ABD≌△CFD,AD⊥BC于D.(1)求证:CE⊥AB;(2)已知BC=7,AD=5,求AF的长.全等三角形的判定8.(2022秋•丽水期末)如图,已知AB=DC,下列条件中,不能使△ABC≌△DCB的是( )A.AC=DB B.∠A=∠D=90°C.∠ABC=∠DCB D.∠ACB=∠DBC9.(2021秋•湖州期末)我国传统工艺中,油纸伞制作非常巧妙,其中蕴含着数学知识.如图是油纸伞的张开示意图,AE=AF,GE=GF,则△AEG≌△AFG的依据是( )A.SAS B.ASA C.AAS D.SSS10.(2022秋•鄞州区校级期末)如图,AC和BD相交于O点,若OA=OD,不能证明△AOB≌△DOC的是( )A.AB=DC B.OB=OC C.∠A=∠D D.∠B=∠C11.(2022秋•鄞州区校级期末)下列所给条件中,能画出唯一的△ABC的是( )A.AC=3,AB=4,BC=8B.∠A=50°,∠B=30°,AB=10C.∠C=90°,AB=90D.AC=4,AB=5,∠B=60°12.(2022秋•新昌县期末)已知:如图,AC与DB相交于点O,∠1=∠2,∠A=∠D.求证:△AOB≌△DOC.13.(2022秋•镇海区校级期末)如图,在△ABC中,AC=AB,AD⊥BC,过点C作CE∥AB,∠BCE=70°,连接ED并延长ED交AB于点F.(1)求∠CAD的度数;(2)证明:△CDE≌△BDF;全等三角形的性质与判定14.(2022秋•江北区期末)如图,已知∠ABC,以点B为圆心,适当长为半径作弧,分别交AB,BC于P,D;作一条射线FE,以点F圆心,BD长为半径作弧l,交EF于点H;以H为圆心,PD长为半径作弧,交弧l于点Q;作射线FQ.这样可得∠QFE=∠ABC,其依据是( )A.SSS B.SAS C.ASA D.AAS15.(2023春•宁波期末)如图,△ABC的两条高AD和BF相交于点E,AD=BD=8,AC=10,AE=2,则BF的长为( )A.11.2B.11.5C.12.5D.1316.(2021秋•海曙区校级期末)如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE 交AD于点F,AG平分∠DAC,给出下列结论:①∠BAD=∠C;②AE=AF;③∠EBC=∠C;④FG∥AC;⑤EF=FG.其中正确的结论有( )个.A.2B.3C.4D.517.(2022秋•杭州期末)如图,在△ABC中,AB=AC,AD平分∠BAC,DF⊥AB于F点,DE⊥AC于点E,则下列四个结论:①AD上任意一点到AB,AC两边的距离相等;②AD⊥BC且BD=CD;③∠BDF=∠CDE;④AE=AF.其中正确的有( )A.②③B.①③C.①②④D.①②③④18.(2022秋•鄞州区校级期末)如图,已知△ABC和△CDE都是等腰直角三角形,∠EBD=50°,则∠AEB的度数为( )A.130°B.135°C.140°D.145°19.(2022秋•温州期末)如图,在等腰三角形ABC中,AD是底边BC上的高线,CE⊥AB于点E,交AD于点F,若∠BAC=45°,AF=6,则BD的长为 3 .20.(2022秋•拱墅区期末)已知,如图,点A、D、B、E在同一直线上,AC=EF,AD=BE,∠A =∠E,(1)求证:△ABC≌△EDF;(2)当∠C=90°,∠CBA=60°时,求∠E的度数.21.(2022秋•鄞州区期末)如图,已知△ABC和△ADE,AB=AD,∠BAD=∠CAE,∠B=∠D,AD与BC交于点P,点C在DE上.(1)求证:BC=DE;(2)若∠B=30°,∠APC=70°.①求∠E的度数;②求证:CP=CE.22.(2021秋•鄞州区期末)如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C作CE∥AB且CE=BC,连接DE并延长,分别交AC、AB于点F、G.(1)求证:△ABC≌△DCE;(2)若∠B=50°,∠D=22°,求∠AFG的度数.全等三角形的应用23.(2021秋•临海市期末)如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC 与右边滑梯的水平长度DF相等,那么判定△ABC与△DEF全等的依据是( )A.HL B.ASA C.AAS D.SSS24.(2022秋•温州期末)如图是某纸伞截面示意图,伞柄AP平分两条伞骨所成的角∠BAC,AE=AF.若支杆DF需要更换,则所换长度应与哪一段长度相等( )A.BE B.AE C.DE D.DP25.(2022秋•金东区期末)如图,有一块三角形的玻璃,不小心掉在地上打成三块,现要到玻璃店重新划一块与原来形状、大小一样的玻璃,只需带到玻璃店( )A.①B.②C.③D.①、②、③其中任一块26.(2022秋•武义县期末)王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.27.(2021秋•金华期末)如图,A,B两点分别位于一个池塘的两端,小明通过构造△ABC与△BCD 来测量A,B间的距离,其中AC=CD,∠ACB=∠BCD.那么量出的BD的长度就是AB的距离.请你判断小明这个方法正确与否,并给出相应理由.1.(2022秋•临海市期末)下列说法正确的是( )A.面积相等的两个三角形全等B.形状相同的两个三角形全等C.三个角分别相等的两个三角形全等D.斜边和一条直角边对应相等的两个直角三角形全等2.(2021秋•诸暨市期末)如图,△ABC≌△EDC,BC⊥CD,点A,D,E在同一条直线上,∠ACB =25°,则∠ADC的度数是( )A.45°B.60°C.75°D.70°3.(2023春•镇海区校级期末)如图,已知△OAB≌△OA1B1,AB与A1O交于点C,AB与A1B1交于点D,则下列说法中错误的是( )A.∠A=∠A1B.AC=COC.OB=OB1D.∠A1DC=∠AOC4.(2022秋•江北区校级期末)如图,要测量池塘两岸相对的两点A,B的距离,小明在池塘外取AB的垂线BF上的点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上,这时测得DE的长就是AB的长,依据是( )A.SSS B.SAS C.ASA D.HL5.(2022秋•义乌市校级期末)如图,用纸板挡住部分直角三角形后,能画出与此直角三角形全等的三角形,其全等的依据是 .6.(2021秋•西湖区期末)若△ABC≌△DEF,A与D,B与E分别是对应顶点,∠A=50°,∠B =60°,则∠F= °.7.(2021秋•海曙区期末)如图,AB=DB,∠1=∠2,要使△ABC≌△DBE还需添加一个条件是 .(只需写出一种情况)8.(2022秋•平湖市期末)如图,在等边三角形ABC的AC、BC边上各取一点P、Q,使AP=CQ,AQ、BP相交于点O,则∠POQ的度数为 .9.(2021秋•莲都区期末)如图,∠D=∠ACB=∠E=90°,AC=BC.求证:△ADC≌△CEB.10.(2021秋•临海市期末)如图,点B,E,C,F在同一条直线上,AB=DE,BE=CF,∠B=∠DEF.求证:△ABC≌△DEF.11.(2022秋•余姚市校级期末)在△ABC和△ADE中,AB=AD,∠1=∠2,∠E=∠C,求证:BC=DE.12.(2020•婺城区校级期末)如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由.(2)若固定二根木条AB、BC不动,AB=2cm,BC=5cm,量得木条CD=5cm,∠B=90°,写出木条AD的长度可能取得的一个值(直接写出一个即可)(3)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A、C、D能构成周长为30cm的三角形,求出木条AD,BC的长度.。
全等三角形的判定(SSS与SAS)(精选精练)(专项练习)(教师版)24-2025学年八年级数学上册
专题12.4全等三角形的判定(SSS 与SAS)(精选精练)(专项练习)一、单选题(本大题共10小题,每小题3分,共30分)1.(23-24八年级上·河南信阳·期末)如图,AB AC =,BD CD =,35BAD ∠=︒,120ADB ∠=︒,则C ∠的度数为()A .25︒B .30︒C .35︒D .55︒2.(23-24八年级上·广西百色·期末)如图,O 为AC 的中点,若要利用“SAS ”来判定△≌△AOB COD ,则应补充的一个条件是()A .A C ∠=∠B .AB CD =C .B C ∠=∠D .OB OD=3.(22-23九年级上·重庆大渡口·期末)如图,在正方形ABCD 中,点E F ,分别在边CD BC ,上,且DE CF =,连接AE DF ,,DG 平分ADF ∠交AB 于点G .若70AED ∠=︒,则AGD ∠的度数为()A .50︒B .55︒C .60︒D .65︒4.(2024·陕西咸阳·三模)如图,在ABC 中,D 为边BC 的中点,1AB =,2AD =,延长AD 至点E ,使得DE AD =,则AC 长度可以是()A .4B .5C .6D .75.(17-18八年级上·辽宁营口·阶段练习)如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连接BF CE ,.则下列说法:①CE BF =;②ABD △和ACD 面积相等;③BF CE ∥;④BDF CDE △△≌.其中正确的有()A .4个B .3个C .2个D .1个6.(23-24八年级上·安徽安庆·期末)如图,已知方格纸中是4个相同的正方形,则1∠与2∠的和为()A .80︒B .90︒C .100︒D .110︒7.(23-24八年级上·湖北孝感·期中)如图,已知48AOB ∠=︒,点C 为射线OB 上一点,用尺规按如下步骤作图:①以点O 为圆心,以任意长为半径作弧,交OA 于点D ,交OB 于点E ;②以点C 为圆心,以OD 长为半径作弧,交OC 于点F ;③以点F 为圆心,以DE 长为半径作弧,交前面的弧于点G ;④连接CG 并延长交OA 于点H .则AHC ∠的度数为()A .24︒B .42︒C .48︒D .96︒8.(23-24八年级上·山东德州·阶段练习)如图,平面上有ACD 与BCE ,其中AD 与BE 相交于P 点,如图,若AC BC AD BECD CE ===,,,55ACE ∠=︒,155BCD ∠=︒,则BPD ∠的度数为()A .110︒B .125︒C .130︒D .155︒9.(23-24七年级下·山西太原·阶段练习)如图1,两个大小不同的三角板叠放在一起,图2是由它得到的抽象几何图形,已知AB AC =,AE AD =,90CAB DAE ∠=∠=︒,且点B ,C ,E 在同一条直线上,10cm BC =,4cm CE =,连接DC .现有一只壁虎以2cm/s 的速度沿B C D --的路线爬行,则壁虎爬到点D 所用的时间为()A .10sB .11sC .12sD .13s10.(21-22八年级上·云南昭通·期末)如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且CE BF ,连接BF CE ,,下列说法:①DE DF =;②ABD 和ACD 面积相等;③CE BF =;④BDF CDE ≌;⑤CEF F ∠∠=.其中正确的有()A .1个B .5个C .3个D .4个二、填空题(本大题共8小题,每小题4分,共32分)11.(23-24八年级上·江苏南京·期末)如图,已知12∠=∠,要用“SAS ”判定ABD ACD △≌△,则需要补充的一个条件为.12.(23-24八年级上·河北保定·期末)如图,在ABC 与ADE V 中,E 在BC 边上,AD AB =,AE AC =,DE BC =,若125∠=︒,则DAB ∠=.13.(23-24八年级上·吉林松原·期中)如图,为了测量A 、B 两点之间的距离,在地面上找到一点C ,使90ACB ∠=︒,然后在BC 的延长线上确定点D ,使BC CD =,那么只要测量出AD 的长度就得到A 、B 两点之间的距离,其中ABC ADC △△≌的依据是.14.(23-24八年级上·重庆江津·期中)如图,BE BA =,DE AB ∥,DE BC =,若3825BAC E ∠=︒∠=︒,,则BDE ∠=.15.(23-24八年级上·江苏泰州·期中)如图,在ABC 中,点D 、E 分别在AC 、BC 上,AD DE =,AB BE =,80A ∠=︒,则DEC ∠=︒.16.(23-24八年级上·河南洛阳·期中)如图,在长方形ABCD 中,20cm AB =,点E 在边AD 上,且12cm AE =.动点P 在边AB 上,从点A 出发以4cm/s 的速度向点B 运动,同时,点Q 在边BC 上,以cm/s v 的速度由点B 向点C 运动,若在运动过程中存在EAP 与PBQ 全等的时刻,则v 的值为.17.(23-24八年级上·山东菏泽·阶段练习)已知,如图,在ABC 中,点D 是AB 上一点,CD 平分ACB ∠,2A ADC ∠=∠,6BD =,4AC =,则BC 的长为.18.(23-24九年级下·江苏泰州·阶段练习)如图,AC 平分DCB ∠,CB CD =,DA 的延长线交BC 于点E ,若BAE x ∠=︒,则EAC ∠的度数为.(用含x 的代数式表示).三、解答题(本大题共6小题,共58分)19.(8分)(23-24八年级上·陕西商洛·阶段练习)如图,在ABF △和DCE △中,,,AB DC AF DE BE CF ===,且点,,,B E F C 在同一条直线上.求证:B C ∠=∠.20.(8分)(23-24八年级上·江苏泰州·期中)如图,点B F C E 、、、在一条直线上,AB DE =,,,AC DF BF CE AD ==交BE 于点O .(1)求证:B E ∠=∠;(2)求证:,AD BE 互相平分.21.(10分)(23-24八年级上·天津宁河·期中)如图,已知AD AB AC AE DAB CAE ==∠=∠,,,连接DC BE ,.(1)求证:BAE DAC ≌;(2)若13520CAD D ∠=︒∠=︒,,求E ∠的度数.22.(10分)(23-24七年级下·陕西西安·阶段练习)如图,在ABC 中,D 为AB 上一点,E 为AC 中点,连接DE 并延长至点F 使得EF ED =,连CF .(1)求证:CF AB ∥;(2)若50ABC ∠=︒,连接BE ,CA 平分BCF ∠,求A ∠的度数.23.(10分)(23-24七年级下·陕西西安·阶段练习)已知等腰三角形ABC ,AB AC =,D 为射线BC 上一动点,连接AD ,以AD 为边在直线AD 的右侧作等腰三角形ADE ,DAE BAC ∠=∠,AD AE =,连接CE .(1)如图1,当点D 在边BC 上时,请探究BC ,CD ,CE 之间的数量关系.(2)如图2,当点D 在BC 的延长线上时,(1)中BC ,CD ,CE 之间的数量关系是否仍然成立?若成立,请说明理由;若不成立,请你写出新的结论,并说明理由.24.(12分)(23-24七年级下·陕西咸阳·阶段练习)如图,在ABC 中,AD 是BC 边上的中线,分别以AB ,AC 为直角边作直角ABE 和ACF △,其中AB AE =,90BAE ∠=︒,AC AF =,90CAF =︒∠,连接EF ,延长AD 至点G ,使DG AD =,连接BG .【初步探索】(1)试说明:AC BG ∥;【衍生拓展】(2)探究EF 和AD 之间的数量关系,并说明理由.参考答案:1.A【分析】本题主要考查了全等三角形的性质,正确判断对应角,对应边是解决本题的关键.在ABD △中,根据三角形内角和定理求得B ∠,根据全等三角形的对应角相等即可解决.【详解】解:在ABD △中,18025B BAD ADB ∠=︒-∠-∠=︒,∵AB AC =,BD CD =,AD AD =,∴()SSS ABD ACD ≌,∴25C B ∠=∠=︒.故选:A .2.D【分析】本题主要考查了添加一个条件,使得用“SAS ”来判定△≌△AOB COD ,根据已知条件得出OA OC =,AOB COD ∠=∠,故只需要OB OD =即可使用SAS 证明△≌△AOB COD .【详解】解:∵O 为AC 的中点,∴OA OC =,∵AOB COD ∠=∠,∴当添加OB OD =时,()SAS AOB COD ≌△△.故选:D .3.B【分析】可以先证明ADE DCF ≌,则70ADF ∠=︒,利用角平分线可得35ADG ∠=︒,再利用直角三角形的两锐角互余解题即可.【详解】解:∵正方形ABCD∴90AD DC ADC C DAG AD BC ∠∠∠====︒ ,,,在ADE 和DCF 中,AD DC ADE C DE CF =⎧⎪∠=∠⎨⎪=⎩,∴ADE DCF≌∴70AED DFC ADF ∠∠∠===︒∵DG 平分ADF∠∴1352ADG ADF ∠∠==︒∴9055ADG ADG ∠∠=︒-=︒故选B .【点睛】本题考查正方形的性质,全等三角形的性质和判定,掌握全等三角形的判定方法是解题的关键.4.A【分析】本题考查了全等三角形的判定与性质,三角形三边关系;证明ABD ECD ≌,得1CE AB ==,在AEC △中由三边不等关系确定AC 的取值范围,根据范围即可完成求解.【详解】解:D 为边BC 的中点,BD CD ∴=;在ABD △与BCD △中,BD CD ADB EDC AD DE =⎧⎪∠=∠⎨⎪=⎩,ABD ECD ∴ ≌,1CE AB ∴==;AE CE AC AE CE -<<+ ,4AE AD DE =+=,35AC ∴<<,故AC 可以为4,故选:A .5.D【分析】本题主要考查了全等三角形的判定与性质、等底等高的三角形的面积相等、平行线的判定等知识点,熟练掌握三角形全等的判定方法并准确识图是解题的关键.根据三角形中线的定义可得BD CD =,然后利用“SAS ”证明BDF V 和CDE 全等,根据全等三角形对应边相等可得CE BF =,全等三角形对应角相等可得F CED ∠=∠,再根据内错角相等,两直线平行可得BF CE ∥,最后根据等底等高的三角形的面积相等判断出②正确.【详解】解:∵AD 是ABC 的中线,∴BD CD =,在BDF V 和CDE 中,BD CD BDF CDE DE DF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BDF CDE ≌ ,故④正确;∴CE BF F CED =∠=∠,,故①正确,∴BF CE ∥,故③正确;∵BD CD =,点A 到BD CD 、的距离相等,∴ABD △和ACD 面积相等,故②正确,综上所述,正确的是①②③④,共4个.故选:D .6.B【分析】本题考查了全等三角形的判定与性质,互余.解题的关键在于对知识的熟练掌握与灵活运用.如图,证明()SAS ABC DFE ≌,则1BAC ∠=∠,由290BAC ∠+∠=︒,可得1290∠+∠=︒,然后作答即可.【详解】解:如图,∵BC ED =,90BCA DEF ∠=∠=︒,AC FE =,∴()SAS ABC DFE ≌,∴1BAC ∠=∠,∵290BAC ∠+∠=︒,∴1290∠+∠=︒,故选:B .7.D【分析】本题考查尺规基本作图-作一角等于已知角,三角形全等的判定和性质,三角形外角的性质,根据作图,由全等三角形的判定定理SSS 可以推知DOE GCF ≌,得到GCF DOE ∠=∠,即48ACO AOB ∠=∠=︒,再利用三角形外角性质求解即可.【详解】解:由作图可知,在DOE 与GCF 中,OD CG DE GF OE CF =⎧⎪=⎨⎪=⎩,则()SSS DOE GCF ≌.∴GCF DOE ∠=∠,即48ACO AOB ∠=∠=︒,∴484896AHC AOB ACO ∠=∠+∠=︒+︒=︒.故选:D .8.C【分析】易证≌ACD BCE V V ,由全等三角形的性质可知:A B ∠=∠,再根据已知条件和四边形的内角和为360︒,即可求出BPD ∠的度数.【详解】解:在ACD 和BCE 中,AC BC CD CE AD BE =⎧⎪=⎨⎪=⎩,∴()SSS ACD BCE ≌,∴BCE ACD ∠=∠,∴BCA ECD ∠=∠,∵55ACE ∠=︒,155BCD ∠=︒,∴100BCA ECD ︒∠+∠=,∴50BCA ECD ︒∠=∠=,∵55ACE ∠=︒,∴105ACD ∠=︒∴75A D ︒∠+∠=,∴75B D ∠+∠=︒,∵155BCD ∠=︒,∴36075155130BPD ︒︒︒︒∠=--=,故选:C .【点睛】本题考查了全等三角形的判定和性质、三角形的内角和定理以及四边形的内角和定理,解题的关键是利用整体的数学思想求出75B D ∠+∠=︒.9.C【分析】先根据等腰直角三角形的性质可以得出ABE ACD ≌,属于手拉手型全等,所以()10414cm CD BE ==+=,最后根据时间=路程÷速度即可解答.本题考查全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.【详解】解:BAC EAD ∠=∠ ,BAC CAE EAD CAE ∴∠+∠=∠+∠,BAE CAD ∴∠=∠,在ABE 与ACD 中,AB AC BAE CAD AD AE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABE ACD ∴ ≌,10414(cm)CD BE BC CE ∴==+=+=,则()101424cm BC CD +=+= 壁虎以2cm/s 的速度B 处往D 处爬,24212()t s ∴=÷=.故选:C .10.B【分析】根据三角形中线的定义可得BD CD =,然后利用“边角边”证明BDF 和CDE 全等,根据全等三角形对应边相等可得CE BF =,全等三角形对应角相等可得F CED ∠∠=,再根据内错角相等,两直线平行可得BF CE ,最后根据等底等高的三角形的面积相等判断出②正确.【详解】解:∵AD 是ABC 的中线,∴BD CD =,在BDF 和CDE 中,BD CD BDF CDE DF DE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BDF CDE ≌,故④正确∴CE BF F CED ∠∠==,,故①正确,∵CEF CED ∠∠=,∴CEF F ∠∠=,故⑤正确,∴BF CE ,故③正确,∵BD CD =,点A 到BD CD 、的距离相等,∴ABD 和ACD 面积相等,故②正确,综上所述,正确的有5个,故选:B .【点睛】本题考查全等三角形的判定与性质,熟练掌握全等三角形的判定方法并准确识图是解题的关键.11.BD CD=【分析】本题主要考查对全等三角形的判定的理解和掌握,根据用“SAS ”判定ABD ACD △≌△,已知12∠=∠及公共边AD ,添加的条件是BD CD =.【详解】解:添加的条件是BD CD =,理由是:在ABD △与ACD 中,11AD AD BD CD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABD ACD ≌,故答案为:BD CD =.12.25︒/25度【分析】本题主要考查了全等三角形的性质与判定,三角形内角和定理,证明()SSS ABC ADE ≌得到AED C ∠=∠,再根据三角形内角和定理和平角的定义可得2125∠=∠=︒.【详解】解:∵AD AB =,AE AC =,DE BC =,∴()SSS ABC ADE ≌,∴AED C ∠=∠,∵11802C AEC AEC AED ∠++=︒=++∠∠∠∠∠,∴2125∠=∠=︒,故答案为:25︒.13.SAS /边角边【分析】本题考查了全等三角形的判定,根据SAS 即可证明ACB ACD ≌ 是解题的关键.【详解】解:AC BD ^ ,90ACB ACD ∴∠=∠=︒,在ACB △和ACD 中,AC AC ACB ACD BC CD =⎧⎪∠=∠⎨⎪=⎩,()SAS ACB ACD \≌ ,故答案为:SAS .14.117︒/117度【分析】本题考查了全等三角形的判定及其性质等知识,根据平行线的性质得出∠=∠ABC BED ,进而利用SAS 证明ABC 和EBD △全等,利用全等三角形的性质解答即可.【详解】解:∵DE AB ∥,ABC BED ∴∠=∠,在ABC 和EBD △中,BA BE ABC BED BC DE =⎧⎪∠=∠⎨⎪=⎩,()SAS ABC EBD ∴ ≌,38BAC EBD ∴∠=∠=︒,1801803825117BDE EBD E ∴∠=︒-∠-∠=︒-︒-︒=︒,故答案为:117︒.15.100【分析】本题考查了三角形全等的判定与性质,熟练掌握三角形全等的判定方法是解题关键.先证出EBD ABD △≌△,再根据全等三角形的性质可得80BED A ∠=∠=︒,由此即可得.【详解】解:在EBD △和ABD △中,ED AD BE BA BD BD =⎧⎪=⎨⎪=⎩,()SSS EBD ABD ∴ ≌,80BED A ∴∠=∠=︒,180100DEC BED ∴∠=︒-∠=︒,故答案为:100.16.4或245【分析】本题主要考查三角形全等的判定.设运动s t ,则4 cm AP t =,()204cm BP AB AP t =-=-, cm BQ vt =,由于在长方形ABCD 中,90A B ∠=∠=︒,因此①当AE BP =,AP BQ =时,()SAS AEP BPQ ≌,②当AE BQ =,AP BP =时,()SAS AEP BQP ≌,代入即可求解v 的值.【详解】设运动s t ,则4 cm AP t =,()204cm BP AB AP t =-=-, cm BQ vt =,∵在长方形ABCD 中,90A B ∠=∠=︒,∴①当AE BP =,AP BQ =,即12204t =-,4t vt =时,()SAS AEP BPQ ≌,解得:2t =,4v =或当AE BQ =,AP BP =,即12vt =,4204t t =-时,()SAS AEP BQP ≌,解得:52t =,245v =.综上所述,v 的值为4或245.故答案为:4或24517.10【分析】本题考查了全等三角形的判定与性质,解决本题的关键是证明ACD ECD ≌△△,在BC 边上取点E ,使EC AC =,连接DE ,证明ACD ECD ≌△△,再根据已知条件证得6BD BE ==,即可得解.【详解】解:如图,在BC 边上取点E ,使EC AC =,连接DE ,∵CD 平分ACB ∠,∴ACD ECD ∠=∠,∵CD CD =,∴()SAS ACD ECD ≌,∴4AC CE ==,ADC EDC ∠=∠,∵22A ADC ADE ADC EDC ADC ∠=∠∠=∠+∠=∠,,∴A ADE DEC ∠=∠=∠,∴BDE BED ∠=∠,∴6BD BE ==,∴6410BC BE CE =+=+=.故答案为:10.18.1802x-【分析】本题主要考查了全等三角形的判定与性质,角平分线的性质,利用SAS 证明ABC ADC △△≌得D DCA B BCA ∠+∠=∠+∠,根据三角形的外角定理推出B BCA CAE ∠+∠=∠,进而根据三角形内角和定理即可求解,解题的关键是利用SAS 证明ABC ADC △△≌.【详解】解:∵AC 平分DCB ∠,∴BCA DCA ∠=∠,在ABC 和ADC △中,CB CD BCA DCA CA CA =⎧⎪∠=∠⎨⎪=⎩∴ABC ADC △△≌,∴B D ∠=∠,∴B BCA D DCA ∠+∠=∠+∠,∵EAC D DCA ∠=∠+∠,∴B BCA EAC ∠+∠=∠,∵180180B BCA BAC BAE EAC ∠+∠=︒-∠=︒-∠-∠,∴180CAE BAE EAC ∠=︒-∠-∠,∵BAE x ∠=︒,∴1802x EAC -⎛⎫∠=︒ ⎪⎝⎭,故答案为:1802x -.19.见解析【分析】由BE CF =可得BF CE =,然后利用SSS 证明ABF DCE ≌即可证明结论.【详解】解:∵BE CF =,∴BE EF EF FC +=+,即BF CE =,在ABF 和DCE 中AB CD AF DE BF CE =⎧⎪=⎨⎪=⎩,∴ABF DCE ≌,∴B C ∠=∠.【点睛】本题考查全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键.20.(1)见解析(2)见解析【分析】本题考查了全等三角形的判定与性质,解题的关键是:(1)利用SSS 证明ABC DEF ≌△△,然后根据全等三角形的性质即可得证;(2)利用AAS 证明ABO DEO △△≌,然后根据全等三角形的性质即可得证.【详解】(1)证明:∵BF CE =,∴BC EF =,在ABC 和DEF 中AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩,∴()SSS ABC DEF ≌,∴B E ∠=∠;(2)证明:在ABO 和DEO 中B E AOB DOE AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABO DEO ≌,∴AO DO =,=BO EO ,即AD ,BE 互相平分.21.(1)见解析(2)25E ∠=︒【分析】本题主要考查了全等三角形的判定与性质;(1)根据题意由DAB BAC CAE BAC ∠+∠=∠+∠,可得DAC BAE ∠=∠,即可求证;(2)由()SAS BAE DAC ≌,可得E C ∠=∠,再由内角和为180︒即可求解.【详解】(1)证明:∵DAB CAE ∠=∠,∴DAB BAC CAE BAC ∠+∠=∠+∠,∴DAC BAE ∠=∠,又∵AD AB AC AE ==,,∴()SAS BAE DAC ≌;(2)∵()SAS BAE DAC ≌,∴E C ∠=∠,∵13520CAD D ∠=︒∠=︒,,∴1801801352025C CAD D ∠=︒-∠-∠=︒-︒-︒=︒,∴25E C ∠=∠=︒.22.(1)见详解(2)65︒【分析】本题考查了全等三角形的性质和判定、平行线的性质和判定、三角形内角和定理等知识点,能综合运用定理进行推理是解此题的关键.(1)求出AED CEF ≌,根据全等三角形的性质得出A ACF ∠=∠,根据平行线的判定得出即可;(2)根据(1)求出A ACB ∠=∠,根据三角形内角和定理求出即可.【详解】(1)证明:∵E 为AC 中点,AE CE ∴=,在AED △和CEF △中AE CE AED CEF DE EF =⎧⎪∠=∠⎨⎪=⎩,()AED CEF SAS ∴ ≌,A ACF ∴∠=∠,∴CF AB ∥;(2)解:∵AC 平分BCF ∠,ACB ACF ∴∠=∠,A ACF ∠=∠ ,A ACB ∴∠=∠,180,50A ABC ACB ABC ∠+∠+∠=︒∠=︒ ,18050652A ︒-︒∴∠==︒,65A ∴∠=︒.23.(1)CE CD BC+=(2)不成立.CE CD BC-=【分析】本题考查的是全等三角形的判定与性质,掌握全等三角形的判定方法是解本题的关键.(1)证明BAD CAE ∠=∠.再证明()SAS BAD CAE ≌△△,可得CE BD =,再进一步可得结论;(2)证明BAD CAE ∠=∠.再证明()SAS BAD CAE ≌△△,可得CE BD =,再进一步可得结论;【详解】(1)解:∵BAC DAE ∠=∠,∴BAC DAC DAE DAC ∠-∠=∠-∠,即BAD CAE ∠=∠.在BAD 与CAE V 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BAD CAE ≌△△,∴CE BD =,∴CE CD BD CD BC +=+=.(2)不成立.CE CD BC -=.理由:∵BAC DAE ∠=∠,∴BAD CAE ∠=∠.在BAD 与CAE V 中,,,,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩()SAS BAD CAE ∴△≌△,∴CE BD =,∴CE CD BD CD BC -=-=.24.(1)见解析(2)2EF AD =,理由见解析【分析】本题考查了全等三角形的判定和性质、平行线的判定和性质,熟练掌握知识点、推理证明是解题的关键.(1)根据AD 是边BC 的中线,得出BD CD =,利用SAS 证明GDB ADC ≌,得出DBG ACD Ð=Ð,根据“内错角相等,两直线平行”,即可证明AC BG ∥;(2)由(1)得AC BG ∥,GDB ADC ≌,得出180BAC ABG ∠+∠=︒,BG AC =,推出BG AF =,ABG EAF ∠=∠,利用SAS 证明ABG EAF ≌,得出AG EF =,根据DG AD =,AG DG AD =+,得出2AG AD =,即可证明2EF AD =.【详解】解:(1)∵AD 是边BC 的中线,∴BD CD =,在GDB △和ADC △中,DG AD GDB ADC BD CD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS GDB ADC ≌,∴DBG ACD Ð=Ð,∴AC BG ∥;(2)2EF AD =,理由如下,∵由(1)得AC BG ∥,GDB ADC ≌,∴180BAC ABG ∠+∠=︒,BG AC =,∵AC AF =,∴BG AF =,∵3603609090180BAC EAF BAE CAF Ð+Ð=°-Ð-Ð=°-°-°=°,∴ABG EAF ∠=∠,在ABG 和EAF △中,AB AE ABG EAF BG AF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABG EAF ≌,∴AG EF =,∵DG AD =,AG DG AD =+,∴2AG AD =,∴2EF AD =.。
全等三角形专题复习(含练习讲评)
一、全等三角形注: ① 判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等. 2. 证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS例1: 如图, 在△ABE 中, AB =AE,AD =AC,∠BAD =∠EAC, BC.DE 交于点O.求证: (1) △ABC ≌△AED ; (2) OB =OE .例2: 如图所示, 已知正方形ABCD 的边BC.CD 上分别有点E 、点F, 且BE +DF =EF, 试求∠EAF 的度数.AD F例3.在△ABC中, ∠ACB=90°,AC=BC, AE是BC的中线, 过点C作CF⊥AE于F,过B作BD⊥CB 交CF的延长线于点D。
(1)求证:AE=CD, (2)若BD=5㎝,求AC的长。
例4:如图, △ABE和△ADC是△ABC分别沿着AB.AC边翻折180°形成的, 若∠1: ∠2: ∠3=28: 5: 3, 则∠a的度数为例5: 如图: 在△ABC中, ∠ACB=90°, AC=BC, D是AB上一点, AE⊥CD于E, BF⊥CD交CD的延长线于F.求证: AE=EF+BF。
练习:1.已知: 如图5—129, △ABC 的∠B.∠C 的平分线相交于点D, 过D 作MN ∥BC 交AB.AC 分别于点M 、N, 求证:BM +CN =MN2.如图(13):已知AB ⊥BD, ED ⊥BD, AB=CD , BC=DE ,请你判断AC 垂直于CE 吗? 并说明理由。
3.如图(14),已知AB=DC , DE=BF, ∠B=∠D , 试说明(1)DE ∥BF (2)AE=CFFDCABE(14)4.如图: 在△ABC中, ∠BAC=90°,∠ABD= ∠ABC, DF⊥BC, 垂足为F, AF交BD于E。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形判定与性质专题训练
一、全等三角形实际应用问题
1如图,要测量河两岸相对的两点A、B间的距离,先在过B点的AB的垂线L上取两点C、D,使CD=BC,再在过D点的垂线上取点E,使A、C、E在一条直线上,ED=AB这时,测ED的长就得AB得长,判定△ACB≌△ECD的理由是()
A. SAS
B. ASA
C. SSS D .AAS
2.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是()
A.PO B.PQ C.MO D.MQ
3、如图所示,将两根钢条AA′,BB′的中点O连在一起,使A A′,BB′可以绕着点O自由转动,就做成了一个测量工具,则A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是()A、SSS B、SAS C、ASA D、HL
4、如图:工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB的边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,得到∠AOB的平分线OP,做法中用到三角形全等的判定方法是()
A、SSS
B、SAS
C、ASA
D、HL
5、如图,有两个长度相等的滑梯靠在一面墙上.已
知左边滑梯的高度AC与右边滑梯水平方向的长度
DF相等,则这两个滑梯与地面的夹角∠ABC+∠DFE= 度
6、如图,小明把一块三角形的玻璃打碎成了三块,
现在要到玻璃店去配一块完全一样的玻璃,那么最
省事的办法是:( )
A、带①去,
B、带②去
C、带③去
D、①②③都带去
二、证两次全等相关问题
1:如图:已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证: CF=DF
2:如图已知AD∥BC,AB∥CD BF=DE,求证:AE=CF,
3:如图AB⊥AC,AD⊥AE AB=AD,BC=DE,求证AM=AN
三、探索两线段的关系问题
1.如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,连接CD,以CD为直角边作等腰直角三角形CDE,其中∠DCE=90°,连接BE交CD于点F,试探索线段BE与AD的关系,并证明。
2、如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。
试探索线段EC与BF的关系,并证明。
A
E
B M
C
F
3、如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB。
试探索线段AM与AN的关系,并证明。
B
4、如图,已知:△ABC中,AD⊥BC于D,E是AD上一点,BE的延长线交AC于F,若BD=AD,DE=DC。
猜想BE与AC的关系并证明。
A
E F
D
B C
四、探索三线段的数量关系问题
1.在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .
(1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ∆≌CEB ∆;②BE AD DE +=;
(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.
2、已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE
3.如图,AC平分∠BAD,CM⊥AB于M,∠ADC+∠ABC=180°.
求证:AB+AD=2AM.
五、构造全等三角形问题
1.如图,在△ABC中,BD=DC,∠1=∠2,求证:AD 平分∠BAC.
2·如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请说明理由
3如图:AD 为 △ABC 的中线, 求证:21(AB-AC )<AD <2
1(AB+AC )
A
B C D E
4.如图,Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC,交AC于F,求证:AE=CF。