2011年全国统一高考数学试卷(文科)(全国一卷)
2011年山东高考数学文科试卷带详解
2011年普通高等学校招生全国统一考试数学(山东卷)第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只 有一项是满足题目要求的.1.设集合 {}|(3)(2)0M x x x =+-<,{}|13,N x x=剟 则MN = ( )A.[1,2)B.[1,2]C.( 2,3]D.[2,3] 【测量目标】集合间的交集运算. 【考查方式】集合的表达(描述法),化解,求集合的交集. 【参考答案】A【试题解析】因为{}{}|32,|12M x x M N x x =-<<∴=<…,故选A.2.复数2i2iz -=+ (i 为虚数单位)在复平面内对应的点所在象限为 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【测量目标】复数代数的四则运算及复平面.【考查方式】给出复数的除法形式,考查复数的代数四则运算与复数的几何意义. 【参考答案】D【试题解析】因为22i (2i)34i2i 55z ---===+,故复数z 对应点在第四象限,选D. 3.若点(a ,9)在函数3xy =的图象上,则πtan6a 的值为 ( ) A.0 B.33C. 1D. 3 【测量目标】特殊的三角函数值.【考查方式】给出点在函数图象上,求解未知数,通过代入三角函数求解. 【参考答案】D【试题解析】由题意知:93a=,解得a =2,所以π2πtantan 366a ==,故选D. 4.曲线311y x =+在点P (1,12)处的切线与y 轴交点的纵坐标是 ( ) A.-9 B.-3 C.9 D.15【测量目标】导数的几何意义.【考查方式】给出函数式与其上一点,用求导的方式求该点的切线与y 轴的焦点纵坐标. 【参考答案】C【试题解析】因为23y x '=,切点为P (1,12),所以切线的斜率为3,故切线方程为390,x y -+=令0,9x y ==5.已知,,a b c ∈R ,命题“若3,a b c ++=则22233,a b c a b c ++++=…”的否命题是( ) A.若3,a b c ++≠则2223a b c ++< B.若3,a b c ++=则2223a b c ++< C.若3,a b c ++≠则2223a b c ++… D.若3,a b c ++…则3a b c ++< 【测量目标】命题的基本关系.【考查方式】考查命题的基本关系,主要考查否命题. 【参考答案】A【试题解析】命题“若p ,则q ”的否命题是“若,p ⌝则q ⌝”,故选A.6.若函数()sin (0)f x x ωω=>在区间π03⎡⎤⎢⎥⎣⎦,上单调递增,在区间ππ32⎡⎤⎢⎥⎣⎦,上单调递减,则ω= ( ) A.23 B.32C. 2D.3 【测量目标】三角函数,函数的单调性.【考查方式】给出函数在某段区间上的单调性,求未知数ω. 【参考答案】B【试题解析】由题意知,函数在π3x =处取得最大值1,所以π1sin 3ω=,故选B.7.设变量,x y 满足约束条件250200x y x y x +-⎧⎪--⎨⎪⎩………,则目标函数231z x y =++的最大值为 ( )A.11B.10C.9D.8.5【测量目标】二元线性规划求目标函数的最大值.【考查方式】给出约束条件,应用数形结合思想画出不等式组所表示的平面区域,求出线性目标函数的最大值. 【参考答案】B【试题解析】画出平面区域表示的可行域如图所示,当直线231z x y =++平移至点(3,1)A 时, 目标函数231z x y =++取得最大值为10,故选B. 8.某产品的广告费用x 与销售额y 的统计数据如下表根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为 ( )A.63.6万元B.65.5万元C.67.7万元D.72.0万元 【测量目标】回归方程,函数在生活的应用.【考查方式】给出方程的数据,及ˆb,求出回归方程,代入x 求解. 【参考答案】B【试题解析】由表可计算4235749263954,42424x y ++++++==== ,因为点7(,42)2在回归直线ˆˆˆy bx a =+上,且ˆb 为9.4,所以7ˆ429.42a =⨯+, 解得ˆ9.1a =,故回归方程为ˆ9.49.1yx =+, 令6x =,得ˆ65.5y =,选B. 9.设00(,)M x y 为抛物线2:8C x y =上一点,F 为抛物线C 的焦点,以F 为圆心、FM 为半径的圆和抛物线C 的准线相交,则0y 的取值范围是 ( ) A.(0,2) B.[0,2] C.(2,+∞) D.[2,+∞)【测量目标】抛物线的简单几何性质,圆锥曲线中的范围问题,两点之间的距离公式. 【考查方式】给出抛物线方程与椭圆的位置关系,求出圆方程,根据准线相交,限定0y 范围.【参考答案】C【试题解析】设圆的半径为r ,因为F (0,2)是圆心, 抛物线C 的准线方程为2y =-,由圆与准线相切知4r -,因为点00(,)M x y 为抛物线2:8C x y =上一点,所以有2008x y =,又点00(,)M x y 在圆222(2)x y r +-=,所以22200(2)16x y r +-=>,所以2008(2)16y y +->,即有2004120y y +->,解得02y >或06y <-, 又因为00y …, 所以02y >, 选C.10.函数2sin 2xy x =-的图象大致是 ( )【测量目标】函数图象的判断.【考查方式】给出函数式,给定四张图象,选出正确图象. 【参考答案】C【试题解析】因为12cos 2y x '=-,所以令12cos 02y x '=->,得1cos 4x <,此时原函数是增函数;令12cos 02y x '=-<,得1cos 4x >,此时原函数是减函数,结合余弦函数图象,可得选C 正确.11.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是第11题图A.3B.2C.1D.0 【测量目标】三视图,命题的概念.【考查方式】给出主视图俯视图,给出三个命题,判断真假. 【参考答案】A【试题解析】对于①,可以是放倒的三棱柱;容易判断②③可以.12.设1234,,,A A A A 是平面直角坐标系中两两不同的四点,若1312()A A A A λλ=∈R ,141211(),2,A A A A μμλμ=∈+=R 则称34,A A 调和分割12,A A ,已知点(,0),C c(,0)D d (,)c d ∈R 调和分割点(0,0),(1,0)A B ,则下面说法正确的是 ( )A.C 可能是线段AB 的中点B.D 可能是线段AB 的中点C.,C D 可能同时在线段AB 上D.,C D 不可能同时在线段AB 的延长线上 【测量目标】平面向量的线性运算及向量的坐标运算.【考查方式】给出向量满足的数量关系,求向量的位置关系. 【参考答案】D【试题解析】由13121412(),()A A A A A A A A λλμμ=∈=∈R R 知:四点1234,,,A A A A 在同一条直线上(步骤1)因为,C D 调和分割点,A B ,所以,,,A B C D 四点在同一直线上,且112c d+=, 故选D.(步骤2)第II 卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为 . 【测量目标】分层抽样.【考查方式】根据分层抽样的特点,结合实际问题按比例求解. 【参考答案】16【试题解析】由题意知,抽取比例为3:3:8:6,所以应在丙专业抽取的学生人数为8401620⨯=. 14.执行右图所示的程序框图,输入12,=3,5m n ==,则输出的y 的值是 .【测量目标】循环结构的程序框图.【考查方式】考查循环结构的流程图,注意循环条件的设置,以及循环体的构成,特别是注意最后一次循环y 的值. 【参考答案】68【试题解析】由输入12,3,5m n ===,计算得出278y =,第一次得新的173y =;第二次得新的68105y =<,输出y .15.已知双曲线22221(0,0)x y a b a b -=>>和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .【测量目标】双曲线的简单几何性质、椭圆的简单几何性质. 【考查方式】给出椭圆方程,及双曲线的离心率与椭圆的离心率的数量关系,求双曲线方程.【参考答案】22143x y -= 【试题解析】由题意知双曲线的焦点为(7,0),(7,0),-即7c =,(步骤1)又因为双曲线的离心率为27,4c a =所以2,a =故23b =,(步骤2) 双曲线的方程为22143x y -=(步骤3) 16.已知函数()log (0,1)a f x x x b a a =+->≠且当234a b <<<<时,函数()f x 的零点*0(,1),,x n n n ∈+∈N 则n = .【测量目标】函数的零点,对数函数的图象与性质.【考查方式】给出函数式,限定函数式里的未知数,求零点位于的区间. 【参考答案】5【试题解析】方程log (0,1)=0a x x b a a +->≠且的根为0x ,即函数log (23)a y x a =<<的图象与函数(34)y x b b =-<<的交点横坐标为0x ,且*0(,1),x n n n ∈+∈N (步骤1) 结合图象,因为当(24)x a a =<<时,1y =,此时对应直线上1y =的点的横坐标1(4,5)x b =+∈;(步骤2) 当2y =时, 对数函数log (23)a y x a =<<的图象上点的横坐标(4,9)x ∈,直线(34)y x b b =-<<的图象上点的横坐标(5,6)x ∈,(步骤3)故所求的5n =.(步骤4)三、解答题:本大题共6小题,共74分.17.(本小题满分12分)在ABC △中,内角,,A B C 的对边分别为,,a b c .已知cos 2cos 2cos A C c aB b--=.(I)求sin sin CA的值;(II)若1cos ,4B ABC =△的周长为5,求b 的长. 【测量目标】余弦定理正弦定理,利用正余弦定理解决有关长度问题.【考查方式】给出三角形三边与三角满足的关系式,求解两角正弦值的比值;给出三角形的周长,求边长.【试题解析】(1)由正弦定理得2sin ,2sin ,2sin ,a R A b R B c R C ===所以cos 2cos 22sin sin ,cos sin A C c a C AB b B---==(步骤1)即sin cos 2sin cos 2sin cos sin cos B A B C C B A B -=-, 即有sin()2sin()A B B C +=+,即sin sin 2sin ,2sin CC A A==所以.(步骤2) (2)由(1)知sin 2sin C A =,所以有2ca=,即2c a =,(步骤3) 又因为ABC △的周长为5,所以53,b a =-(步骤4) 由余弦定理得:222222212cos ,(53)(2)44b c a ac B a a a a =+--=+-⨯,解得1a =,所以2b =.(步骤5) 18.(本小题满分12分)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(I )若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(II )若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.【测量目标】随机事件与概率,古典概型.【考查方式】给出每个学校的人员具体情况,求从中选出一定人员的概率.【试题解析】(1) 从甲校和乙校报名的教师中各任选1名,所有可能的结果为(甲男1,乙男)、(甲男2, 乙男)、(甲男1, 乙女1)、(甲男1, 乙女2)、(甲男2, 乙女1)、(甲男2, 乙女2)、(甲女, 乙女1)、(甲女, 乙女2) 、(甲女, 乙男),共9种;(步骤1)选出的2名教师性别相同的结果有(甲男1,乙男)、(甲男2, 乙男)、(甲女1, 乙女1)、(甲女1, 乙女2),共4种,所以选出的2名教师性别相同的概率为49.(步骤2) (2)从报名的6名教师中任选2名,所有可能的结果为(甲男1,乙男)、(甲男2, 乙男)、(甲男1, 乙女1)、(甲男1, 乙女2)、(甲男2, 乙女1)、(甲男2, 乙女2)、(甲女, 乙女1)、(甲女, 乙女2) 、(甲女, 乙男) 、(甲男1, 甲男2)、(甲男1, 甲女)、(甲男2, 甲女)、(乙男, 乙女1)、(乙男, 乙女2)、(乙女1, 乙女2),共15种;(步骤3)选出的2名教师来自同一学校的所有可能的结果为(甲男1, 甲男2)、(甲男1, 甲女)、(甲男2, 甲女)、(乙男, 乙女1)、(乙男, 乙女2)、(乙女1, 乙女2),共6种,所以选出的2名教师来自同一学校的概率为62155=.(步骤4) 19.(本小题满分12分)如图,在四棱台1111ABCD A B C D -中,1D D ⊥平面ABCD ,底面ABCD 是平行四边形,2AB AD =,11,60AD A B BAD =∠=.(Ⅰ)证明:1AA BD ⊥; (Ⅱ)证明:1CC 平面1A BD .【测量目标】线面平行的判断,平行与垂直关系的综合问题.【考查方式】利用余弦定理求直线数量关系,线面垂直推出线线垂直;线线平行推出线面平行 【试题解析】(Ⅰ)证明:因为2AB AD =,所以设AD a =,则2AB a =(步骤1) 又因为60BAD ∠=,所以在ABD △中,由余弦定理得:2222(2)22cos 603BD a a a a a =+-⨯⨯=,所以3BD a =(步骤2)所以222AD BD AB +=,故BD AD ⊥,(步骤3) 又因为1D D ⊥平面ABCD ,所以1D D BD ⊥,(步骤4) 又因为1ADD D D =, 所以11BD ADD A ⊥平面,故1AA BD ⊥.(步骤5)(2)连结,AC 设AC BD O =, 连结1A O ,由底面ABCD 是平行四边形得:O 是AC 的中点(步骤6)由四棱台1111ABCD A B C D -知:平面ABCD 平面1111A B C D ,因为这两个平面同时都和平面11ACA C 相交,交线分别为11,AC A C ,故11ACA C (步骤7)又因为2,AB a BC a ==, 120ABC ∠=,所以可由余弦定理计算得7AC a =(步骤8)又因为11113,2A B a B C a ==, 111120A B C ∠=,所以可由余弦定理计算得1172A C a =(步骤9)所以11A C OC 且11A C OC =,故四边形11OCC A 是平行四边形,所以11CC A O (步骤10)又1CC Ü平面11,A BD AO ⊂平面1A BD . 1CC ∴平面1A BD (步骤11)20.(本小题满分12分)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数不在下表的同一列.第一列 第二列 第三列 第一行 3 2 10 第二行 6 4 14 第三行9818(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足:(1)ln n n n b a a =+-,求数列{}n b 的前2n 项和2n S . 【测量目标】等比数列的通项,数列的通项公式{}n a 与前n 项和n S 的关系. 【考查方式】将数值放在图象中,求解通项公式;给出n n b a 与的关系,求和. 【试题解析】(Ⅰ)由题意知1232,6,18a a a ===,(步骤1)因为{}n a 是等比数列,所以公比为3,所以数列{}n a 的通项公式123n n a -=.(步骤2) (Ⅱ)因为11(1)ln 23(1)ln 23,n n n n n b a a --=+-=+-所以21n n S b b b =+++=1212122(13)()(ln ln ln )ln()13n n n n a a a a a a a a a -+++-+++=--=-(1)121231ln(21333)31ln(23)n n nnn nn--=--⨯⨯⨯⨯=--(步骤3)2(21)2222231ln(23)912ln 2(2)ln 3.n n nnn n S n n n -∴=--=----(步骤4)21.(本小题满分12分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为80π3立方米,且2l r ….假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >.设该容器的建造费用为y 千元.(Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域; (Ⅱ)求该容器的建造费用最小时的r .【测量目标】球的表面积公式,圆柱的体积公式,导数在实际问题中的应用【考查方式】给出图象,将所给关系表达为函数表达式,根据函数式,求出最小值【试题解析】(Ⅰ)因为容器的体积为80π3立方米,所以324π80ππ33r r l +=,解得280433rl r =-,所以圆柱的侧面积为22804160π8π2π2π()3333r r rl r r r =-=-,两端两个半球的表面积之和为24πr ,所以22160π8π4πy r cr r =-+,定义域为(0,)2l. (Ⅱ)因为3228(2)20160π16π8πc r y r cr r r π⎡⎤--⎣⎦'=-+=,所以令0y '>得:3202r c >-; 令3320200,0,22y r r c c '<<<∴=--米时, 该容器的建造费用最小. 22.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于,A B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线3x =-于点(3,)D m -.(Ⅰ)求22m k +的最小值;(Ⅱ)若2OG OD OE =,(i )求证:直线l 过定点; (ii )试问点,B G 能否关于x 轴对称?若能,求出此时ABG △的外接圆方程;若不能,请说明理由.【测量目标】直线与椭圆的位置关系,韦达定理,圆的简单几何性质, 【考查方式】给出椭圆方程及图象,求俩数据和的最小值;给出向量的数量关系,求直线过定点和外接圆问题.【试题解析】(Ⅰ)由题意:设直线:(0)l y kx n n =+≠, 由2213y kx n x y =+⎧⎪⎨+=⎪⎩消y 得:222(13)6330,k x knx n +++-=(步骤1) 1122(,),(,)A x y B x y AB 设,的中点00(,)E x y ,则由韦达定理得: 122613kn x x k -+=+, 即00022233,131313kn kn n x y kx n k n k k k--==+=⨯+=+++ , 所以中点E 的坐标为223(,)1313kn n E k k-++(步骤2) 因为,,O E D 三点在同一直线上,所以,OE OD k k =即1,33m k -=- 解得222211,2m m k k k k =∴+=+…(步骤3) 当且仅当1k =时取等号,即22m k +的最小值为2.(步骤4)(Ⅱ)(i )证明:由题意知:0n >,因为直线OD 的方程为,3m y x =- 所以由22313m y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩得交点G 的纵坐标为223G m y m =+(步骤5) 又因为2,13E D n y y m k==+ ,且2OG OD OE =,所以222313m n m m k =++(步骤6) 又由(Ⅰ)知: 1m k=,所以解得k n =, 所以直线l 的方程为:,l y kx k =+即有:(1)l y k x =+,(步骤7)令1,x =-得0y =与实数k 无关,所以直线l 过定点(-1,0).(步骤8)(ii )假设点,B G 关于x 轴对称,则有ABG △的外接圆的圆心在x 轴上,又在线段AB 的中垂线上,(步骤9)由(i )知点223(,),33m G m m -++所以点223(,)33m B m m --++,(步骤10)又因为直线l 过定点(-1,0),所以直线l 的斜率为223,313mm k m -+=-++,(步骤11) 又因为1m k=所以解得21m =或6(步骤12) 又因为230,m ->所以26m =舍去,21m =(步骤13)此时311,1,(,)44k m E ==-,AB 的中垂线为2210x y ++=,圆心坐标为131(,0),(,)222G --,圆半径为52,圆的方程为2215().24x y -+=(步骤14) 综上所述, 点,B G 关于x 轴对称,此时ABG △的外接圆的方程为2215().24x y -+=(步骤15)。
2011年高考数学文科试卷(全国1卷)(内含答案)(新课标卷卷)
2011年普通高等学校招生全国统一考试一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(M N )I ð (A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4【答案】D【命题意图】本题主要考查集合交并补运算.【解析】{2,3},(){1,4}U M N M N =∴=ðQ I I(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥【答案】B【命题意图】本题主要考查反函数的求法. 【解析】由原函数反解得24y x =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4x y x =≥. (3)设向量,a b 满足||||1a b ==,12a b ⋅=-r r ,则2a b += (A(B(C(D【答案】B 【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+=r r r r r u r ,所以2a b +=r r (4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3【答案】C【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5.(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =(A )8 (B )7 (C )6 (D )5【答案】D【命题意图】本题主要考查等差数列的基本公式的应用.【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =. 解法二: 221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =.(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 【答案】C【命题意图】本题主要考查三角函数的周期性与三角函数图像变换的关系.【解析】由题意将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍,得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(8)已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,B β∈,BD l ⊥,D 为垂 足,若2,1AB AC BD ===,则CD =(A ) 2 (B(C (D )1 【答案】C【命题意图】本题主要考查二面角的平面角及解三角形.【解析】因为l αβ--是直二面角, AC l ⊥,∴AC ⊥平面β,AC BC ∴⊥BC ∴=又BD l ⊥,CD ∴=(9) 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(A) 12种 (B) 24种 (C) 30种 (D)36种【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有22⨯种选法,根据分步计数原理,有6424⨯=种选法.(10) 设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5()2f -= (A) -12 (B)1 4- (C)14 (D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 关键是把通过周期性和奇偶性把自变量52-转化到区间[0,1]上进行求值. 【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111()(2)()()2(1)2222222f f f f -=-+=-=-=-⨯⨯-=-(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =(A)4 (B)【答案】C【命题意图】本题主要考查圆的方程与两点间的距离公式.【解析】由题意知圆心在直线y=x 上并且在第一象限,设圆心坐标为(,)(0)a a a >,则a =,即210170a a -+=,所以由两点间的距离公式可求出128C C ===.(12)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M 的距离OM =,在Rt OMN ∆中,30OMN ︒∠=, ∴12ON OM ==故圆N 的半径r ==,∴圆N 的面积为213S r ππ==.第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2011年高考新课标卷文科数学试题(解析版)
2011年普通高等学校招生全国统一考试(新课标全国卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其他题为必考题第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{0,1,2,3,4}M =,{1,3,5}N =,P MN =,则P 的子集共有A .2个B .4个C .6个D .8个 【答案】B 【解析】P M N =={1,3},故P 的子集有224=个.2.复数5i12i=- A .2i - B .12i - C .2i -+ D .12i -+ 【答案】C 【解析】5i 5i(12i)2i 12i (12i)(12i)+==-+--+. 3.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是A .3y x =B .||1y x =+C .21y x =-+ D .||2x y -=【答案】B【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,||2x y -=在(0,)+∞上为减函数,故选B .4.椭圆221168x y +=的离心率为A .13 B .12C D .2【答案】D【解析】由221168x y +=可知216a =,28b =,∴2228c a b =-=,∴22212c e a ==,∴22e =. 5.执行右面的程序框图,如果输入的N 是6,那么输出的p 是A .120B .720C .1440D .5040 【答案】B【解析】由程序框图可得,输出的123456720p =⨯⨯⨯⨯⨯=,选B6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A .13 B .12 C .23 D .34【答案】A【解析】记三个兴趣小组分别为1、2、3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个.记事件A 为“甲、乙两位同学参加同一个兴趣小组”,其中事件A 有“甲1,乙1;甲2,乙2;甲3,乙3”,共3个.因此31()93P A ==. 7.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A .45-B .35-C .35D .45【答案】B【解析】由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B .8.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为俯视图正视图DCB A【答案】D【解析】通过正视图及俯视图可看出该几何体为半个圆锥和一个三棱锥组合在一起,故侧视图为D .9.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于,A B 两点,||AB =12,P 为C 的准线上一点,则ABP ∆的面积为_____.A .18B .24C .36D .48 【答案】C【解析】设抛物线方程为22y px =,则焦点坐标为(,0)2p ,将2px =代入22y px =可得22y p =,||AB =12,即2p =12,∴p =6.点P 在准线上,到AB 的距离为p =6,所以ABP ∆面积为1612362⨯⨯=. 10.在下列区间中,函数()43xf x e x =+-的零点所在的区间为_____. A .1(,0)4- B .1(0,)4 C .11(,)42 D .13(,)24【答案】C【解析】因为114411()432044f e e =+⨯-=-<,112211()431022f e e =+⨯-=->,所以()43xf x e x =+-的零点所在的区间为11(,)42.11.设函数()sin(2)cos(2)44f x x x ππ=+++,则 A .()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称 B .()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称 C .()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称 D .()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称【答案】D【解析】因为()sin(2)cos(2)44f x x x ππ=+++=2sin(2)2x π+=2cos 2x , 所以2cos 2y x =,在(0,)2π单调递减,对称轴为2x k π=,即2k x π=(k ∈Z ).12.已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有_____.A .10个B .9个C .8个D .1个 【答案】A【解析】画出两个函数图象可看出交点有10个.第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知a 与b 为两个不共线的单位向量,k 为实数,若向量+a b 与向量k -a b 垂直,则k = .【答案】1【解析】∵+a b 与k -a b 垂直,∴(+a b )·(k -a b ) =0,化简得(1)(1)0k -⋅+=a b ,根据a 、b 向量不共线,且均为单位向量得10⋅+≠a b ,得10k -=,即1k =. 14.若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.【答案】-6【解析】画出区域图知,当直线2z x y =+过239x y x y +=⎧⎨-=⎩的交点(4,-5)时,min 6z =-.15.ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为_________.153【解析】根据sin sin AB ACC B=得5353sin sin 7AB C B AC === 25311cos 1()1414C =-=, 所以sin sin[()]sin cos sin cos A B C B C C B π=-+=+3111533321421414=⨯-⨯=. 因此ABC S ∆=1133153sin 7522144AB AC A ⨯⨯⨯=⨯⨯⨯= 16.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为______________. 【答案】13【解析】设球心为1O ,半径为1r ,圆锥底面圆圆心为2O ,半径为2r ,则有22123416r r ππ⨯=,即212r r =,所以1122r O O ==, 设两个圆锥中,体积较小者的高与体积较大者的高分别为1h 、2h ,则1111211232r r h r h r -==+.三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等比数列{}n a 中,113a =,公比13q =.(Ⅰ)n S 为{}n a 的前n 项和,证明:12nn a S -=;(Ⅱ)设31323log log log n n b a a a =+++,求数列{}n b 的通项公式.【解析】(Ⅰ)因为.31)31(311n n n a =⨯=- ,2311311)311(31nn n S -=--= 所以,21nn a S --(Ⅱ)n n a a a b 32313log log log +++=)21(n +++-=2)1(+-=n n 所以}{n b 的通项公式为.2)1(+-=n n b n18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD .(Ⅰ)证明:PA BD ⊥;(Ⅱ)若1PD AD ==,求棱锥D PBC -的高.【解析】(Ⅰ)因为60,2DAB AB AD ∠=︒=, 由余弦定理得3BD AD =从而222BD AD AB +=,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面P AD. 故 P A ⊥BD(Ⅱ)如图,作DE ⊥PB ,垂足为E .已知PD ⊥底面ABCD ,则PD ⊥BC .由(Ⅰ)知BD ⊥AD ,又BC //AD ,所以BC ⊥BD . 故BC ⊥平面PBD ,BC ⊥DE . 则DE ⊥平面PBC .由题设知,PD =1,则BD =3,PB =2,根据BE ·PB =PD ·BD ,得DE =23, 即棱锥D —PBC 的高为.2319.(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到时下面试验结果:A 配方的频数分布表B 配方的频数分布表(Ⅰ)分别估计用A 配方,B 配方生产的产品的优质品率;(Ⅱ)已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩,估计用B 配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.【解析】(Ⅰ)由试验结果知,用A 配方生产的产品中优质品的频率为2280.3100+=,所以用A 配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B 配方生产的产品中优质品的频率为32100.42100+=,所以用B 配方生产的产品的优质品率的估计值为0.42.(Ⅱ)由条件知,用B 配方生产的一件产品的利润大于0当且仅当其质量指标值94t ≥,由试验结果知,质量指标值94t ≥的频率为0.96.所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96. 用B 配方生产的产品平均一件的利润为1[4(2)542424] 2.68100⨯⨯-+⨯+⨯=(元).20.(本小题满分12分)在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上. (Ⅰ)求圆C 的方程;(Ⅱ)若圆C 与直线0x y a -+=交于,A B 两点,且OA OB ⊥,求a 的值. 【解析】(Ⅰ)曲线162+-=x x y 与y 轴的交点为(0,1),与x 轴的交点为().0,223(),0,223-+故可设C 的圆心为(3,t ),则有,)22()1(32222t t +=-+解得t =1.则圆C 的半径为.3)1(322=-+t 所以圆C 的方程为.9)1()3(22=-+-y x(Ⅱ)设A (11,y x ),B (22,y x ),其坐标满足方程组:⎪⎩⎪⎨⎧=-+-=+-.9)1()3(,022y x a y x 消去y ,得到方程.012)82(222=+-+-+a a x a x由已知可得,判别式.0416562>--=∆a a因此,,441656)28(22,1a a a x --±-=从而2120,422121+-=-=+a a x x a x x①由于OA ⊥OB ,可得,02121=+y y x x 又,,2211a x y a x y +=+=所以.0)(222121=+++a x x a x x②由①,②得1-=a ,满足,0>∆故.1-=a21.(本小题满分12分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a ,b 的值;(Ⅱ)证明:当0x >,且1x ≠时,ln ()1xf x x >-. 【解析】(Ⅰ)221(ln )'()(1)x x b x f x x x α+-=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =.(Ⅱ)由(Ⅰ)知ln 1f ()1x x x x=++,所以 )1ln 2(111ln )(22xx x x x x x f -+-=-=考虑函数()2ln h x x =+xx 12-(0)x >,则22222)1()1(22)(xx x x x x x h --=---=' 所以当1≠x 时,,0)1(,0)(=<'h x h 而故 当)1,0(∈x 时,;0)(11,0)(2>->x h x x h 可得当),1(+∞∈x 时,;0)(11,0)(2>-<x h xx h 可得从而当.1ln )(,01ln )(,1,0->>--≠>x xx f x x x f x x 即且请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.EB(Ⅰ)证明:,,,C B D E 四点共圆;(Ⅱ)若90A ∠=︒,且4,6,m n ==求,,,C B D E 所在圆的半径.【解析】(Ⅰ)连结DE ,根据题意在ADE ∆和ACB ∆中,AD AB mn AE AC ⨯==⨯,即AD AEAC AB=. 又DAE CAB ∠=∠,从而ADE ∆∽ACB ∆. 因此ADE ACB ∠=∠. 所以C ,B ,D ,E 四点共圆.(Ⅱ)4m =,6n =时,方程2140x x mn -+=的两根为12x =,212x =. 故2AD =,12AB =.取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线相交于H 点,连结DH . 因为C ,B ,D ,E 四点共圆,所以C ,B ,D ,E 四点所在圆的圆心为H ,半径为DH .由于90A ∠=︒,故//GH AB ,//HF AC ,从而5HF AG ==,()112252DF =-=. 故C ,B ,D ,E 四点所在圆的半径为23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C . (Ⅰ)求2C 的方程;ADB C GEM(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求||AB .【解析】(Ⅰ)设(),P x y ,则由条件知,22x y M ⎛⎫⎪⎝⎭,由于M 点在1C 上,所以2cos 222sin 2xy αα⎧=⎪⎪⎨⎪=+⎪⎩,即4cos 44sin x y αα=⎧⎨=+⎩. 从而2C 的参数方程为4cos 44sin x y αα=⎧⎨=+⎩(α为参数).(Ⅱ)曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为8sin ρθ=. 射线3πθ=与1C 的交点A 的极径为14sin 3πρ=, 射线3πθ=与2C 的交点B 的极径为28sin3πρ=,所以12AB ρρ=-=24.(本小题满分10分)选修4-5:不等式选讲设函数()||3f x x a x =-+,其中0a >. (Ⅰ)当1a =时,求不等式()32f x x ≥+的解集.(Ⅱ)若不等式()0f x ≤的解集为{x |1}x ≤-,求a 的值. 【解析】(Ⅰ)当1a =时,()32f x x ≥+可化为12x -≥由此可得3x ≥或1x ≤-,故不等式()32f x x ≥+的解集为{3x x ≥或}1x ≤-. (Ⅱ)由()0f x ≤得30x a x -+≤,此不等式化为不等式组 30x a x a x ≥⎧⎨-+≤⎩或30x a a x x ≤⎧⎨-+≤⎩即4x a a x ≥⎧⎪⎨≤⎪⎩或2x aa x ≤⎧⎪⎨≤-⎪⎩.由于0a >,所以不等式组的解集为2a x x ⎧⎫≤-⎨⎬⎭⎩.由题设可得12a-=-,故2a =.。
2011年全国卷文科数学(必修+选修II)高考试卷及答案
2011年全国卷文科数学(必修+选修II )高考试卷及答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
..........3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题1.设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则=⋂(M N )ðA .{}12,B .{}23,C .{}2,4D .{}1,42.函数0)y x =≥的反函数为A .2()4xy x R =∈ B .2(0)4xy x =≥C .24y x =()x R ∈D .24(0)y x x =≥3.权向量a,b 满足1||||1,2a b a b ==⋅=-,则2a b +=A.B.CD4.若变量x 、y 满足约束条件6321x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y -+的最小值为A .17B .14C .5D .3 5.下面四个条件中,使a b >成立的充分而不必要的条件是 A .1a b >+ B .1a b >-C .22a b >D .33a b >6.设n S 为等差数列{}n a 的前n 项和,若11a =,公差为22,24k k d S S +=-=,则k=A .8B .7C .6D .57.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .98.已知二面角l αβ--,点,,A AC l α∈⊥C 为垂足,点,B BD l β∈⊥,D 为垂足,若AB=2,AC=BD=1,则CD=A .2BCD .1 9.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有A .12种B .24种C .30种D .36种10.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .14-C .14D .1211.设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =A .4B .C .8D .12.已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为 A .7π B .9πC .11πD .13π第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
全国统一高考数学试卷(文科)(全国一卷)(20201123225219)
2011年全国统一高考数学试卷(文科)(新课标)、选择题(共12小题,每小题5分,满分60分) (5分)已知集合M={0, 1, 2, 共有( )6. (5分)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,贝U 这两位同学参加同一个兴趣小组的概率为 ( )3, 4} , N={1, 3, 5} , P=M G N ,则 P 的子集2. A . 2个B . 4个C. 6个D . 8个(5分)复数 si A . 2 — i B. 1 — 2i C.— 2+i D .— 1+2i3. (5分)下列函数中,既是偶函数又在(B . y=| x|+ 10, +^)上单调递增的函数是( C. y= — x 2+4D . y=2—|x|4. (5分) 椭圆2工丄 y =1的离心率为( 1 3(5分)A .B .C. 执行如图的程序框图,如果输入的 V33N 是6,那么输出的p 是(B . 720 C. 1440D . 5040 16 85. A . 120A .丄B.丄 C.Z D. 3 32377. (5分)已知角B的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x 上,则cos2 0 = )A.-丄B.-色C.二D.5 5 58. (5分)在一个几何体的三视图中,正视图和俯视图如图所示,贝U相应的侧视B两点,|AB=12, P为C的准线上一点,则△ ABP的面积为()A. 18B. 24C. 36D. 4810.(5分)在下列区间中,函数f (x)=e x+4x- 3的零点所在的区间为()A. (*,订)B.(」,0) C (0,寺)D.(寺,孕)11. (5 分)设函数,贝U f (x)=sin (2x^-)+cos (2x^-),贝U()A. y=f (乂)在(0,——)单调递增,其图象关于直线x丄对称B. y=f (乂)在(0,—)单调递增,其图象关于直线x=—对称C. y=f (乂)在(0,—)单调递减,其图象关于直线XA-对称D. y=f (x)在(0,―)单调递减,其图象关于直线x —对称12. (5分)已知函数y=f (x)的周期为2,当x€ [ - 1,1]时f (x)=/,那么函数y=f (x)的图象与函数y=| lgx|的图象的交点共有()A. 10 个B. 9 个C. 8 个D. 1 个,且与C的对称轴垂直.I与C交于A,二、填空题(共4小题,每小题5分,满分20分)13. (5分)已知a与b为两个垂直的单位向量,k为实数,若向量.i+l,与向量k.i—I ■垂直,则k= ____14.(5分)若变量x,y满足约束条件,则z=x+2y的最小值为15. (5 分)△ ABC中,/ B=120°° AC=7, AB=5,则厶ABC的面积为16. (5分)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的亠,则这两个圆锥中,体积16较小者的高与体积较大者的高的比值为________ .三、解答题(共8小题,满分70分)17. (12分)已知等比数列{a n}中,a1,公比q3l_a(I )Sn为{an}的前n项和,证明:S=,--(U )设b n=log3a1+log3a2+・・+log3a n,求数列{b n}的通项公式.18. (12分)如图,四棱锥P- ABCD中,底面ABCD为平行四边形./ DAB=60,AB=2AD, PD丄底面ABCD(I )证明:PAI BD(n ) & PD=AD=1 求棱锥D- PBC的高.19. (12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A 配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表指标值分组[90, 94)[94,98) [98,102) [102,106) [106,110]频数82042228B配方的频数分布表指标值分组[90,94)[94,98) [98,102) [102,106) [106,110]频数412423210(I )分别估计用A配方,B配方生产的产品的优质品率;(U)已知用B配方生成的一件产品的利润y (单位:元)与其质量指标值t的关系式为y= 2, 94<t<1024, t>102从用B配方生产的产品中任取一件,其利润记为X (单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)20. (12分)在平面直角坐标系xOy中,曲线y=«-6x+1与坐标轴的交点都在圆C 上.(I )求圆C的方程;(U)若圆C与直线x-y+a=0交与A, B两点,且OA丄OB,求a的值.21. (12分)已知函数f (x)单孕也,曲线y=f (x)在点(1, f (1))处的切x+1 I线方程为x+2y- 3=0.(I )求a、b的值;(n)证明:当x> 0,且XM 1时,f(x)>丄匕.i-l22. (10分)如图,D, E分别为△ ABC的边AB, AC上的点,且不与厶ABC的顶点重合.已知AE的长为m, AC的长为n, AD, AB的长是关于x的方程x2- 14x+mn=0的两个根.(I )证明:C, B, D, E四点共圆;(n)若/ A=90°,且m=4, n=6,求C, B, D, E所在圆的半径.23 •在直角坐标系xOy中,曲线C i的参数方程为厂… '(ly=2+2S inClC i上的动点,P点满足| -2 ■,',P点的轨迹为曲线C(I)求C2的方程;(U)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线于极点的交点为A,与C的异于极点的交点为B,求|AB| .24.设函数f (x) =|x-a|+ 3x,其中a>0.(I)当a=1时,求不等式f (x)> 3x+2的解集(n )若不等式f (x)< 0的解集为{x| x<- 1},求a的值. a为参数)M是0 =与G的异。
2011年高考试题——数学文(新课标卷)解析版
2011年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}{}===则P的子集共有0,1,2,3,4,1,3,5,,M N P M N(A)2个(B)4个(C)6个(D)8个解析:本题考查交集和子集概念,属于容易题。
显然P={}3,1,子集数为22=4故选B(2)复数512ii=- (A )2i - (B )12i - (C )2i -+ (D )12i -+ 解析:本题考查复数的运算,属容易题。
解法一:直接法512ii =-()()()i i i i i +-=+-+22121215,故选C 解法二:验证法 验证每个选项与1-2i 的积,正好等于5i 的便是答案。
(3)下列函数中,即是偶数又在()0,+∞单调递增的函数是 A. 3y x = B. 1y x =+ C. 21y x =-+ D. 2x y -= 解析:本题考查函数的奇偶性和单调性,属于简单题可以直接判断:A 是奇函数,B 是偶函数,又是()0,+∞的增函数,故选B 。
(4).椭圆221168x y +=的离心率为A. 13B. 12C.3D. 2解析;本题考查椭圆离心率的概念,属于容易题,直接求e=22422==ac,故选D 。
2011年全国高考数学试卷(含标准答案)
2011年普通高等学校招生全国统一考试(全国卷)数学本试卷共4页,三大题21小题。
满分150分,考试时间120分钟。
注意事项:1. 答题前,考生务必将自己的姓名、准考证号填在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。
3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效。
4. 考试结束,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是满足题目要求的。
1.复数1z i =+,z 为z 的共轭复数,则1z z z --= (A) -2i (B) -i (C) i (D) 2i2. 函数()20y x x =≥的反函数为(A)()24xy x R =∈ (B)()204xy x =≥(C)()24y xx R =∈ (D)()240y xx =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是 (A) 1a b >+ (B) 1a b >- (C)22a b > (D) 33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差22,24k k d S S +=-=,则k= (A) 8 (B) 7 (C) 6 (D) 55.设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A)13(B) 3 (C) 6 (D) 96.已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,,,B BD l D β∈⊥为垂足,若2,1A B A C B D ===,则D 到平面ABC 的距离等于(A) 22(B) 33(C) 63(D) 17.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有(A) 4种 (B) 10种 (C) 18种 (D) 20种8.曲线21x y e =+在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为 (A)13(B)12(C)23(D) 19.设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则52f ⎛⎫-= ⎪⎝⎭(A) 12-(B) 14-(C)14(D)1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A 、B 两点,则cos A F B ∠= (A)45(B)35(C) 35-(D) 45-11.已知平面α截一球面得圆M ,过圆心M 且与α成60 二面角的平面β截该球面得圆N ,若该球面的半径为4.圆M 的面积为4π,则圆N 的面积为 (A) 7π (B) 9π (C) 11π (D) 13π12. 设向量,,a b c 满足11,,,602a b a b a c b c ===---=,则c 的最大值等于(A) 2 (B) 3 (C) 2 (D) 1二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写. 13. ()201x-的二项展开式中,x 的系数与9x 的系数之差为 .14. 已知,2παπ⎛⎫∈⎪⎝⎭,5sin 5α=,则tan 2α= . 15. 已知12F F 、分别为双曲线22:1927xyC -=的左、右焦点,点A C ∈,点M 的坐标为()2,0,AM 为12F A F ∠的角平分线,则 2AF = .16. 已知点E 、F 分别在正方体1111ABC D A B C D - 的棱11BB C C 、上,且12B E E B =,12C F FC =,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分。
2011年高考数学文科试卷(全国1卷)(内含答案)(新课标卷卷)
2011年普通高等学校招生全国统一考试一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(M N )(A){}12, (B ){}23, (C ){}2,4 (D ){}1,4【答案】D【命题意图】本题主要考查集合交并补运算.【解析】{2,3},(){1,4}U M N M N =∴=(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C)24y x =()x R ∈ (D)24(0)y x x =≥【答案】B【命题意图】本题主要考查反函数的求法。
【解析】由原函数反解得24y x =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4x y x =≥。
(3)设向量,a b 满足||||1a b ==,12a b ⋅=-,则2a b += (A ) (B ) (C) (D ) 【答案】B 【命题意图】本题主要考查平面向量的数量积与长度的计算方法。
【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+=,所以23a b += (4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3【答案】C【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5.(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【答案】A【命题意图】本题主要考查充要条件及不等式的性质。
【解析】即寻找命题,使P a b ⇒>,且a b >推不出,逐项验证知可选A 。
2011年全国高考文科数学试题及答案-北京
2011年普通高等学校招生全国统一考试(北京卷)数学(文)本试卷共5页,150分.考试时间长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U=R,集合P={x ︱x 2≤1},那么A .(-∞, -1]B .[1, +∞)C .[-1,1]D .(-∞,-1] ∪[1,+∞)2.复数212i i-=+A .iB .-iC .4355i -- D .4355i -+3.如果,0log log 2121<<y x 那么A .y< x<1B .x< y<1C .1< x<yD .1<y<x4.若p 是真命题,q 是假命题,则A .p ∧q 是真命题B .p ∨q 是假命题C .﹁p 是真命题D .﹁q 是真命题5.某四棱锥的三视图如图所示,该四棱锥的表面积是 A .32B .C .48D .6.执行如图所示的程序框图,若输入A 的值为2,则输入的P 值为 A .2 B .3 C .4 D .5 7.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为8x天,且每件产品每天的仓储费用为1元.为使平均没见产品的生产准备费用与仓储费用之和最小,每批应生产产品 A .60件 B .80件 C .100件 D .120件 8.已知点A (0,2),B (2,0).若点C 在函数y = x 的图像上,则使得ΔABC 的面积为2的点C 的个数为A .4B .3C .2D .1第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.在ABC ∆中.若b=5,4B π∠=,sinA=13,则a=___________________. 10.已知双曲线2221y x b-=(b >0)的一条渐近线的方程为2y x =,则b = .11.已知向量a=,1),b=(0,-1),c=(k.若a-2b 与c 共线,则k=________________. 12.在等比数列{a n }中,a 1=12,a 4=4,则公比q=______________;a 1+a 2+…+a n = _________________. 13.已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是_______14.设A (0,0),B (4,0),C (t+4,3),D (t,3)(t ∈R ).记N (t )为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N (0)= N (t )的所有可能取值为三、解答题6小题,共80分,解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分) 已知函数()4cos sin()16f x x x π=+-.(Ⅰ)求()f x 的最小正周期: (Ⅱ)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.16.(本小题共13分) 以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X=8,求乙组同学植树棵树的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. (注:方差],)()()[(1222212x x x x x x ns n -+-+-=其中为n x x x ,,,21 的平均数)17.(本小题共14分) 如图,在四面体PABC 中,PC ⊥AB ,PA ⊥BC,点D,E,F,G 分别是棱AP ,AC,BC,PB 的中点. (Ⅰ)求证:DE ∥平面BCP ; (Ⅱ)求证:四边形DEFG 为矩形; (Ⅲ)是否存在点Q ,到四面体PABC 六条棱的中点的距离相等?说明理由.18.(本小题共13分) 已知函数()()xf x x k e =-. (Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值.19.(本小题共14分)已知椭圆2222:1(0)x y G a b a b+=>>右焦点为(),斜率为I 的直线l与椭圆G 交与A 、B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(I )求椭圆G 的方程; (II )求PAB ∆的面积.20.(本小题共13分)若数列12:,,,(2)n n A a a a n ⋅⋅⋅≥满足11(1,2,,1)k k a a k n +-==⋅⋅⋅-,则称n A 为E 数列,记12()n n S A a a a =++⋅⋅⋅+.(Ⅰ)写出一个E 数列A 5满足130a a ==;(Ⅱ)若112a =,n=2000,证明:E 数列n A 是递增数列的充要条件是n a =2011; (Ⅲ)在14a =的E 数列n A 中,求使得()n S A =0成立得n 的最小值.参考答案一、选择题(共8小题,每小题5分,共40分) (1)D (2)A (3)D (4)D (5)B (6)C (7)B (8)A二、填空题(共6小题,每小题5分,共30分) (9)325 (10)2 (11)1(12)2 2121--n (13)(0,1) (14)6 6,7,8, 三、解答题(共6小题,共80分) (15)(共13分)解:(Ⅰ)因为1)6sin(cos 4)(-+=πx x x f1)cos 21sin 23(cos 4-+=x x x 1cos 22sin 32-+=x xx x 2cos 2sin 3+=)62sin(2π+=x所以)(x f 的最小正周期为π (Ⅱ)因为.32626,46πππππ≤+≤-≤≤-x x 所以 于是,当6,262πππ==+x x 即时,)(x f 取得最大值2;当)(,6,662x f x x 时即πππ-=-=+取得最小值—1. (16)(共13分)解(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, 所以平均数为;435410988=+++=x方差为.1611])43510()4359()4358[(412222=-+-+-=s(Ⅱ)记甲组四名同学为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10,分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4), (A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4), (A 3,B 1),(A 2,B 2),(A 3,B 3),(A 1,B 4), (A 4,B 1),(A 4,B 2),(A 4,B 3),(A 4,B 4),用C 表示:“选出的两名同学的植树总棵数为19”这一事件,则C 中的结果有4个,它们是:(A 1,B 4),(A 2,B 4),(A 3,B 2),(A 4,B 2),故所求概率为.41164)(==C P (17)(共14分) 证明:(Ⅰ)因为D ,E 分别为AP ,AC 的中点,所以DE//PC 。
2011年全国高考文科数学试题及答案-安徽
2011年普通高等学校招生全国统一考试(安徽卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:答题前,务必在试题卷、答题卡规定填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出书写的答案无效,在试题卷、草稿纸上答题无效。
考试结束后,务必将试题卷和答题卡一并上交。
参考公式:椎体体积,其中S为椎体的底面积,h为椎体的高.若(x,y),(x,y)…,(x,y)为样本点,为回归直线,则,,说明:若对数据适当的预处理,可避免对大数字进行运算.第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设是虚数单位,复数为纯虚数,则实数为(A)2 (B) 2 (C)(D)(2)集合,,,则等于(A)(B)(C)(D)(3)双曲线的实轴长是(A)2 (B)(C) 4 (D) 4(4)若直线过圆的圆心,则a的值为(A)1 (B) 1 (C) 3 (D) 3(5)若点(a,b)在图像上,,则下列点也在此图像上的是(A)(,b)(B)(10a,1b)(C)(,b+1)(D)(a2,2b)(6)设变量x,y满足,则的最大值和最小值分别为(A)1,1 (B)2,2 (C )1,2 (D)2,1(7)若数列的通项公式是(A)15 (B)12(C)(D)(8)一个空间几何体的三视图如图所示,则该几何体的表面积为(A) 48(B)32+8(C)48+8(D)80(9)从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于(A)(B)(C)(D)(10)函数在区间〔0,1〕上的图像如图所示,则n可能是(A)1 (B)2(C)3 (D)4第II卷(非选择题共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.(11)设是定义在R上的奇函数,当x≤0时,=,则 .(12)如图所示,程序框图(算法流程图)的输出结果是 .(13)函数的定义域是 .(14)已知向量a,b满足(a+2b)·(a-b)=-6,且=1,=2,则a与b的夹角为 .(15)设=,其中a,bR,ab0,若对一切则xR恒成立,则①②<③既不是奇函数也不是偶函数④的单调递增区间是⑤存在经过点(a,b)的直线与函数的图像不相交以上结论正确的是(写出所有正确结论的编号).三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的制定区域内.(16)(本小题满分13分)在△ABC中,a,b,c分别为内角A,B,C所对的边长,a=,b=,,求边BC上的高.(17)(本小题满分13分)设直线(I)证明与相交;(II)证明与的交点在椭圆(18)(本小题满分13分)设,其中为正实数.(Ⅰ)当时,求的极值点;(Ⅱ)若为上的单调函数,求的取值范围.(19)(本小题满分13分)如图,为多面体,平面与平面垂直,点在线段上,,,△OAB,△OAC,△ODE,△ODF都是正三角形。
2011年全国统一高考数学试卷(文科)(大纲版)解析版
2011年全国统一高考数学试卷(文科)(大纲版)解析版参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合{1U =,2,3,4},{1M =,2,3},{2N =,3,4},则()(U MN =ð)A .{1,2}B .{2,3}C .{2,4}D .{1,4}【考点】1H :交、并、补集的混合运算 【专题】11:计算题【分析】先根据交集的定义求出MN ,再依据补集的定义求出()U MN ð.【解答】解:{1M =,2,3},{2N =,3,4},{2MN ∴=,3},则(){1U MN =ð,4},故选:D .【点评】本题考查两个集合的交集、补集的定义,以及求两个集合的交集、补集的方法.2.(5分)函数0)y x =…的反函数为( ) A .2()4xy x R =∈B .2(0)4x y x =…C .24()y x x R =∈D .24(0)y x x =…【考点】4R :反函数 【专题】11:计算题【分析】由原函数的解析式解出自变量x 的解析式,再把x 和y 交换位置,注明反函数的定义域(即原函数的值域). 【解答】解:20)y x x =…,24y x ∴=,0y …,故反函数为2(0)4xy x =….故选:B .【点评】本题考查函数与反函数的定义,求反函数的方法和步骤,注意反函数的定义域是原函数的值域.3.(5分)设向量a 、b 满足||||1a b ==,12a b =-,|2|(a b += )A. BC .D.【考点】91:向量的概念与向量的模;9O :平面向量数量积的性质及其运算 【专题】11:计算题【分析】由222|2|(2)44a b a b a a b b +=+=++,代入已知可求 【解答】解:||||1a b ==,12ab =-,222|2|(2)44124a b a b a a b b +=+=++=-+故选:B .【点评】本题主要考查了向量的数量积 性质的基本应用,属于基础试题4.(5分)若变量x 、y 满足约束条件6321x y x y x +<⎧⎪--⎨⎪⎩……,则23z x y =+的最小值为( )A .17B .14C .5D .3【考点】7C :简单线性规划 【专题】31:数形结合【分析】我们先画出满足约束条件6321x y x y x +<⎧⎪--⎨⎪⎩……的平面区域,然后求出平面区域内各个顶点的坐标,再将各个顶点的坐标代入目标函数,比较后即可得到目标函数的最值. 【解答】解:约束条件6321x y x y x +<⎧⎪--⎨⎪⎩……的平面区域如图所示:由图可知,当1x =,1y =时,目标函数23z x y =+有最小值为5 故选:C .【点评】本题考查的知识点是线性规划,其中画出满足约束条件的平面区域是解答本题的关键.5.(5分)下面四个条件中,使a b >成立的充分而不必要的条件是( ) A .1a b >+B .1a b >-C .22a b >D .33a b >【考点】29:充分条件、必要条件、充要条件 【专题】5L :简易逻辑【分析】利用不等式的性质得到1a b a b >+⇒>;反之,通过举反例判断出a b >推不出1a b >+;利用条件的定义判断出选项.【解答】解:1a b a b >+⇒>;反之,例如2a =,1b =满足a b >,但1a b =+即a b >推不出1a b >+, 故1a b >+是a b >成立的充分而不必要的条件. 故选:A .【点评】本题考查不等式的性质、考查通过举反例说明某命题不成立是常用方法.6.(5分)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则(k =) A .8B .7C .6D .5【考点】85:等差数列的前n 项和 【专题】11:计算题【分析】先由等差数列前n 项和公式求得2k S +,k S ,将224k k S S +-=转化为关于k 的方程求解.【解答】解:根据题意:22(2)k S k +=+,2k S k = 224k k S S +∴-=转化为:22(2)24k k +-= 5k ∴=故选:D .【点评】本题主要考查等差数列的前n 项和公式及其应用,同时还考查了方程思想,属中档题.7.(5分)设函数()cos (0)f x x ωω=>,将()y f x =的图象向右平移3π个单位长度后,所得的图象与原图象重合,则ω的最小值等于( ) A .13B .3C .6D .9【考点】HK :由sin()y A x ωϕ=+的部分图象确定其解析式 【专题】56:三角函数的求值 【分析】函数图象平移3π个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,容易得到结果. 【解答】解:()f x 的周期2T πω=,函数图象平移3π个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,所以23kππω=,k Z ∈.令1k =,可得6ω=.故选:C .【点评】本题是基础题,考查三角函数的图象的平移,三角函数的周期定义的理解,考查技术能力,常考题型.8.(5分)已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,点B β∈,BD l ⊥,D 为垂足,若2AB =,1AC BD ==,则(CD = )A .2B CD .1【考点】MK :点、线、面间的距离计算 【专题】11:计算题【分析】根据线面垂直的判定与性质,可得AC CB ⊥,ACB ∆为直角三角形,利用勾股定理可得BC 的值;进而在Rt BCD ∆中,由勾股定理可得CD 的值,即可得答案.【解答】解:根据题意,直二面角l αβ--,点A α∈,AC l ⊥,可得AC ⊥面β, 则AC CB ⊥,ACB ∆为Rt △,且2AB =,1AC =,由勾股定理可得,BC在Rt BCD ∆中,BC 1BD =,由勾股定理可得,CD =; 故选:C .【点评】本题考查两点间距离的计算,计算时,一般要把空间图形转化为平面图形,进而构造直角三角形,在直角三角形中,利用勾股定理计算求解.9.(5分)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有( ) A .12种B .24种C .30种D .36种【考点】3D :计数原理的应用 【专题】11:计算题【分析】本题是一个分步计数问题,恰有2人选修课程甲,共有24C 种结果,余下的两个人各有两种选法,共有22⨯种结果,根据分步计数原理得到结果. 【解答】解:由题意知本题是一个分步计数问题,恰有2人选修课程甲,共有246C =种结果, ∴余下的两个人各有两种选法,共有224⨯=种结果,根据分步计数原理知共有6424⨯=种结果 故选:B .【点评】本题考查分步计数问题,解题时注意本题需要分步来解,观察做完这件事一共有几步,每一步包括几种方法,这样看清楚把结果数相乘得到结果.10.(5分)设()f x 是周期为2的奇函数,当01x 剟时,()2(1)f x x x =-,则5()(2f -=) A .12-B .14-C .14D .12【考点】3I :奇函数、偶函数;3Q :函数的周期性 【专题】11:计算题【分析】由题意得 51()(22f f -=- 1)()2f =-,代入已知条件进行运算.【解答】解:()f x 是周期为2的奇函数,当01x 剟时,()2(1)f x x x =-, ∴51()(22f f -=- 11)()222f =-=-⨯1(12- 1)2=-,故选:A .【点评】本题考查函数的周期性和奇偶性的应用,以及求函数的值.11.(5分)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12||(C C =)A .4B .C .8D .【考点】1J :圆的标准方程 【专题】5B :直线与圆【分析】圆在第一象限内,设圆心的坐标为(,)a a ,(,)b b ,利用条件可得a 和b 分别为210170x x -+= 的两个实数根,再利用韦达定理求得两圆心的距离212||2()C C a b -的值.【解答】解:两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),故圆在第一象限内, 设两个圆的圆心的坐标分别为(,)a a ,(,)b b ,由于两圆都过点(4,1),||a ,||b =, 故a 和b 分别为222(4)(1)x x x -+-= 的两个实数根,即a 和b 分别为210170x x -+= 的两个实数根,10a b ∴+=,17ab =,22()()432a b a b ab ∴-=+-=,∴两圆心的距离212||()8C C a b -=,故选:C .【点评】本题考查直线和圆相切的性质,两点间的距离公式、韦达定理的应用,属于基础题.12.(5分)已知平面α截一球面得圆M ,过圆心M 且与α成60︒二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为( ) A .7πB .9πC .11πD .13π【考点】MJ :二面角的平面角及求法 【专题】11:计算题;16:压轴题【分析】先求出圆M 的半径,然后根据勾股定理求出求出OM 的长,找出二面角的平面角,从而求出ON 的长,最后利用垂径定理即可求出圆N 的半径,从而求出面积. 【解答】解:圆M 的面积为4π∴圆M 的半径为2根据勾股定理可知OM =过圆心M 且与α成60︒二面角的平面β截该球面得圆N30OMN ∴∠=︒,在直角三角形OMN 中,ON∴圆N 则圆的面积为13π 故选:D .【点评】本题主要考查了二面角的平面角,以及解三角形知识,同时考查空间想象能力,分析问题解决问题的能力,属于基础题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)10(1)x -的二项展开式中,x 的系数与9x 的系数之差为: 0 . 【考点】DA :二项式定理 【专题】11:计算题【分析】利用二项展开式的通项公式求出展开式的通项,令x 的指数分别取1;9求出展开式的x 的系数与9x 的系数;求出两个系数的差.【解答】解:展开式的通项为110(1)r r rr T C x +=- 所以展开式的x 的系数10-9x 的系数10-x 的系数与9x 的系数之差为(10)(10)0---=故答案为:0【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.14.(5分)已知3(,)2a ππ∈,tan 2α=,则cos α= . 【考点】GG :同角三角函数间的基本关系 【专题】11:计算题【分析】先利用α的范围确定cos α的范围,进而利用同脚三角函数的基本关系,求得cos α的值.【解答】解:3(,)2a ππ∈, cos 0α∴<cos α∴==故答案为:【点评】本题主要考查了同角三角函数基本关系的应用.解题的关键是利用那个角的范围确定三角函数符号.15.(5分)已知正方体1111ABCD A B C D -中,E 为11C D 的中点,则异面直线AE 与BC 所成的角的余弦值为23. 【考点】LM :异面直线及其所成的角【专题】11:计算题;16:压轴题;31:数形结合;35:转化思想【分析】根据题意知//AD BC ,DAE ∴∠就是异面直线AE 与BC 所成角,解三角形即可求得结果.【解答】解:连接DE ,设2AD = 易知//AD BC ,DAE ∴∠就是异面直线AE 与BC 所成角,在RtADE ∆中,由于DE =,2AD =,可得3AE = 2cos 3AD DAE AE ∴∠==,故答案为:23.【点评】此题是个基础题.考查异面直线所成角问题,求解方法一般是平移法,转化为平面角问题来解决,体现了数形结合和转化的思想.16.(5分)已知1F 、2F 分别为双曲线22:1927x y C -=的左、右焦点,点A C ∈,点M 的坐标为(2,0),AM 为12F AF ∠的平分线,则2||AF = 6 . 【考点】KC :双曲线的性质 【专题】16:压轴题【分析】利用双曲线的方程求出双曲线的参数值;利用内角平分线定理得到两条焦半径的关系,再利用双曲线的定义得到两条焦半径的另一条关系,联立求出焦半径. 【解答】解:不妨设A 在双曲线的右支上AM 为12F AF ∠的平分线∴1122||||82||||4AF F M AF MF === 又12||||26AF AF a -== 解得2||6AF = 故答案为6【点评】本题考查内角平分线定理;考查双曲线的定义:解有关焦半径问题常用双曲线的定义.三、解答题(共6小题,满分70分)17.(10分)设等比数列{}n a 的前n 项和为n S ,已知26a =,13630a a +=,求n a 和n S . 【考点】88:等比数列的通项公式;89:等比数列的前n 项和 【专题】54:等差数列与等比数列【分析】设出等比数列的公比为q ,然后根据等比数列的通项公式化简已知得两等式,得到关于首项与公比的二元一次方程组,求出方程组的解即可得到首项和公比的值,根据首项和公比写出相应的通项公式及前n 项和的公式即可. 【解答】解:设{}n a 的公比为q ,由题意得: 12116630a q a a q =⎧⎨+=⎩, 解得:132a q =⎧⎨=⎩或123a q =⎧⎨=⎩,当13a =,2q =时:132n n a -=⨯,3(21)n n S =⨯-; 当12a =,3q =时:123n n a -=⨯,31n n S =-.【点评】此题考查学生灵活运用等比数列的通项公式及前n 项和的公式化简求值,是一道基础题.18.(12分)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin sin sin a A c C C b B +=,(Ⅰ)求B ;(Ⅱ)若75A =︒,2b =,求a ,c . 【考点】HU :解三角形 【专题】11:计算题【分析】(Ⅰ)利用正弦定理把题设等式中的角的正弦转换成边的关系,代入余弦定理中求得cos B 的值,进而求得B .(Ⅱ)利用两角和公式先求得sin A 的值,进而利用正弦定理分别求得a 和c . 【解答】解:(Ⅰ)由正弦定理得222a c b +=, 由余弦定理可得2222cos b a c ac B =+-,故cos B =45B =︒(Ⅱ)sin sin(3045)sin30cos45cos30sin 45A =︒+︒=︒︒+︒︒故sin 1sin A a b B =⨯==sin2sinCc bB∴=⨯==【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的灵活运用.19.(12分)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.【考点】5C:互斥事件的概率加法公式;CN:二项分布与n次独立重复试验的模型【专题】5I:概率与统计【分析】()I设该车主购买乙种保险的概率为P,由相互独立事件概率公式可得(10.5)0.3P-=,解可得p,先求出该车主甲、乙两种保险都不购买的概率,由对立事件的概率性质计算可得答案.()II该地的3位车主中恰有1位车主甲、乙两种保险都不购买,是一个n次独立重复试验恰好发生k次的概率,根据上一问的结果得到该地的一位车主甲、乙两种保险都不购买的概率,代入公式得到结果.【解答】解:()I设该车主购买乙种保险的概率为p,根据题意可得(10.5)0.3p⨯-=,解可得0.6p=,该车主甲、乙两种保险都不购买的概率为(10.5)(10.6)0.2--=,由对立事件的概率该车主至少购买甲、乙两种保险中的1种的概率10.20.8-=()II每位车主甲、乙两种保险都不购买的概率为0.2,则该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率1230.20.80.384P C=⨯⨯=.【点评】本题考查互斥事件的概率公式加法公式,考查n次独立重复试验恰好发生k次的概率,考查对立事件的概率公式,是一个综合题目.20.(12分)如图,四棱锥S ABCD-中,//AB CD,BC CD⊥,侧面SAB为等边三角形,2AB BC==,1CD SD==.(Ⅰ)证明:SD⊥平面SAB;(Ⅱ)求AB与平面SBC所成的角的大小.【考点】LW :直线与平面垂直;MI :直线与平面所成的角 【专题】11:计算题;14:证明题【分析】(1)利用线面垂直的判定定理,即证明SD 垂直于面SAB 中两条相交的直线SA ,SB ;在证明SD 与SA ,SB 的过程中运用勾股定理即可(Ⅱ)求AB 与平面S B C 所成的角的大小即利用平面S B C 的法向量n A B 与间的夹角关系即可,当n AB 与间的夹角为锐角时,所求的角即为它的余角;当n AB 与间的夹角为钝角时,所求的角为,2n AB π<>-【解答】(Ⅰ)证明:在直角梯形ABCD 中, //AB CD ,BC CD ⊥,2AB BC ==,1CD =AD ∴==侧面SAB 为等边三角形,2AB = 2SA ∴= 1SD =222AD SA SD ∴=+ SD SA ∴⊥同理:SD SB ⊥ SASB S =,SA ,SB ⊂面SABSD ∴⊥平面SAB(Ⅱ)建立如图所示的空间坐标系则(2A ,1-,0),(2B ,1,0),(0C ,1,0),作出S 在底面上的投影M ,则由四棱锥S ABCD -中,//AB CD ,BC CD ⊥,侧面SAB 为等边三角形知,M 点一定在x 轴上,又2AB BC ==,1CD SD ==.可解得12MD =,从而解得SM =1(2S ,0则331(,1,),(,1,22SB SC =-=-设平面SBC 的一个法向量为(,,)n x y z = 则0SB n=,0SCn = 即302102x y z x y ⎧+=⎪⎪⎨⎪-+=⎪⎩ 取0x =,y =,1z = 即平面SBC 的一个法向量为(,,)(0n x y z ==,1) 又(0AB =,2,0)cosAB <,3||||7AB n n ABn >===AB ∴<,n >= 即AB 与平面SBC 所成的角的大小为【点评】本题考查了直线与平面垂直的判定,直线与平面所成的角以及空间向量的基本知识,属于中档题.21.(12分)已知函数32()3(36)124()f x x ax a x a a R =++-+-∈ (Ⅰ)证明:曲线()y f x =在0x =处的切线过点(2,2);(Ⅱ)若()f x 在0x x =处取得极小值,0(1,3)x ∈,求a 的取值范围.【考点】6E :利用导数研究函数的最值;6H :利用导数研究曲线上某点切线方程 【专题】11:计算题;16:压轴题【分析】(Ⅰ)求出函数()f x 在0x =处的导数和(0)f 的值,结合直线方程的点斜式方程,可求切线方程;(Ⅱ)()f x 在0x x =处取得最小值必是函数的极小值,可以先通过讨论导数的零点存在性,得出函数有极小值的a 的大致取值范围,然后通过极小值对应的0(1,3)x ∈,解关于a 的不等式,从而得出取值范围【解答】解:(Ⅰ)2()3636f x x ax a '=++- 由(0)124f a =-,(0)36f a '=-,可得曲线()y f x =在0x =处的切线方程为(36)124y a x a =-+-, 当2x =时,2(36)1242y a a =-+-=,可得点(2,2)在切线上∴曲线()y f x =在0x =的切线过点(2,2)(Ⅱ)由()0f x '=得 22120x ax a ++-=⋯(1)方程(1)的根的判别式244(12)4(1(1a a a a =--=+++①当11a 剟时,函数()f x 没有极小值②当1a <或1a >时,由()0f x '=得12x a x a =--=-+故02x x =,由题设可知13a <-<()i 当1a >时,不等式13a <-没有实数解;()ii 当1a <时,不等式13a <-+<化为13a a +<<+,解得512a -<<综合①②,得a 的取值范围是5(,1)2-【点评】将字母a 看成常数,讨论关于x 的三次多项式函数的极值点,是解决本题的难点,本题中处理关于a 的无理不等式,计算也比较繁,因此本题对能力的要求比较高.22.(12分)已知O 为坐标原点,F 为椭圆22:12y C x +=在y 轴正半轴上的焦点,过F 且斜率为l 与C 交于A 、B 两点,点P 满足0OA OB OP ++=. (Ⅰ)证明:点P 在C 上;(Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.【考点】9S :数量积表示两个向量的夹角;KH :直线与圆锥曲线的综合 【专题】15:综合题;16:压轴题;35:转化思想【分析】(1)要证明点P 在C 上,即证明P 点的坐标满足椭圆C 的方程2212y x +=,根据已知中过F 且斜率为l 与C 交于A 、B 两点,点P 满足0OA OB OP ++=,我们求出点P 的坐标,代入验证即可.(2)若A 、P 、B 、Q 四点在同一圆上,则我们可以先求出任意三点确定的圆的方程,然后将第四点坐标代入验证即可.【解答】证明:(Ⅰ)设1(A x ,1)y ,2(B x ,2)y椭圆22:12y C x +=①,则直线AB 的方程为:1y =+②联立方程可得2410x --=,则12x x +,1214x x ⨯=-则1212)21y y x x +=++= 设1(P p ,2)p ,则有:10(A x =,1)y ,20(B x =,2)y ,10(P p =,2)p ;∴1200(A B x x +=+,12)(2y y +=,1);10(P p =,2)(00)(2p A B =-+=,1)-p ∴的坐标为(1)-代入①方程成立,所以点P 在C 上.(Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.设线段AB 的中点坐标为12(2x x +,12)2y y +,即1)2,则过线段AB 的中点且垂直于AB 的直线方程为:12y x -=,即14y x =+;③ P 关于点O 的对称点为Q ,故0(0.0)为线段PQ 的中点,则过线段PQ 的中点且垂直于PQ 的直线方程为:y x =④;③④联立方程组,解之得:8x =,18y =③④的交点就是圆心1(O ,1)8,22221199||(((1)864r O P ==-+--=故过P Q 两点圆的方程为:22199(()864x y ++-=⋯⑤,把1y =+ ⋯②代入⑤,有122x x +=,121y y += A ∴,B 也是在圆⑤上的.A ∴、P 、B 、Q 四点在同一圆上.【点评】本题考查的知识点是直线与圆锥曲线的关系,向量在几何中的应用,其中判断点与曲线关系时,所使用的坐标代入验证法是解答本题的关键.。
2011年高考新课标卷文科数学试题(解析版)
2011年普通高等学校招生全国统一考试(新课标全国卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其他题为必考题第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{0,1,2,3,4}M =,{1,3,5}N =,P MN =,则P 的子集共有A .2个B .4个C .6个D .8个 【答案】B 【解析】P M N =={1,3},故P 的子集有224=个.2.复数5i12i=- A .2i - B .12i - C .2i -+ D .12i -+ 【答案】C 【解析】5i 5i(12i)2i 12i (12i)(12i)+==-+--+. 3.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是A .3y x = B .||1y x =+ C .21y x =-+ D .||2x y -=【答案】B【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,||2x y -=在(0,)+∞上为减函数,故选B .4.椭圆221168x y +=的离心率为A .13 B .12C D .2【答案】D【解析】由221168x y +=可知216a =,28b =,∴2228c a b =-=,∴22212c e a ==,∴22e =. 5.执行右面的程序框图,如果输入的N 是6,那么输出的p 是A .120B .720C .1440D .5040 【答案】B【解析】由程序框图可得,输出的123456720p =⨯⨯⨯⨯⨯=,选B6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A .13 B .12 C .23 D .34【答案】A【解析】记三个兴趣小组分别为1、2、3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个.记事件A 为“甲、乙两位同学参加同一个兴趣小组”,其中事件A 有“甲1,乙1;甲2,乙2;甲3,乙3”,共3个.因此31()93P A ==. 7.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A .45-B .35-C .35D .45【答案】B【解析】由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B .8.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为俯视图正视图DCB A【答案】D【解析】通过正视图及俯视图可看出该几何体为半个圆锥和一个三棱锥组合在一起,故侧视图为D .9.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于,A B 两点,||AB =12,P为C 的准线上一点,则ABP ∆的面积为_____.A .18B .24C .36D .48 【答案】C【解析】设抛物线方程为22y px =,则焦点坐标为(,0)2p ,将2px =代入22y px =可得22y p =,||AB =12,即2p =12,∴p =6.点P 在准线上,到AB 的距离为p =6,所以ABP∆面积为1612362⨯⨯=. 10.在下列区间中,函数()43xf x e x =+-的零点所在的区间为_____. A .1(,0)4- B .1(0,)4 C .11(,)42 D .13(,)24【答案】C【解析】因为114411()432044f e e =+⨯-=-<,112211()431022f e e =+⨯-=->,所以()43xf x e x =+-的零点所在的区间为11(,)42.11.设函数()sin(2)cos(2)44f x x x ππ=+++,则 A .()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称B .()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称C .()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称 D .()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称【答案】D【解析】因为()sin(2)cos(2)44f x x x ππ=+++=2sin(2)2x π+=2cos 2x , 所以2cos 2y x =,在(0,)2π单调递减,对称轴为2x k π=,即2k x π=(k ∈Z ).12.已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有_____.A .10个B .9个C .8个D .1个 【答案】A【解析】画出两个函数图象可看出交点有10个.第Ⅱ卷本卷包括必考题和选考题两部分.第13题—第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知a 与b 为两个不共线的单位向量,k 为实数,若向量+a b 与向量k -a b 垂直,则k = .【答案】1【解析】∵+a b 与k -a b 垂直,∴(+a b )·(k -a b ) =0,化简得(1)(1)0k -⋅+=a b ,根据a 、b 向量不共线,且均为单位向量得10⋅+≠a b ,得10k -=,即1k =. 14.若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.【答案】-6【解析】画出区域图知,当直线2z x y =+过239x y x y +=⎧⎨-=⎩的交点(4,-5)时,min 6z =-.15.ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为_________.153【解析】根据sin sin AB ACC B=得5353sin sin 7AB C B AC === 25311cos 1()1414C =-=, 所以sin sin[()]sin cos sin cos A B C B C C B π=-+=+3111533321421414=⨯-⨯=. 因此ABC S ∆=1133153sin 7522144AB AC A ⨯⨯⨯=⨯⨯⨯= 16.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为______________. 【答案】13【解析】设球心为1O ,半径为1r ,圆锥底面圆圆心为2O ,半径为2r ,则有22123416r r ππ⨯=,即212r r =,所以1122r O O ==, 设两个圆锥中,体积较小者的高与体积较大者的高分别为1h 、2h ,则1111211232r r h r h r -==+.三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等比数列{}n a 中,113a =,公比13q =. (Ⅰ)n S 为{}n a 的前n 项和,证明:12nn a S -=;(Ⅱ)设31323log log log n n b a a a =+++,求数列{}n b 的通项公式.【解析】(Ⅰ)因为.31)31(311n n n a =⨯=- ,2311311)311(31nn n S -=--= 所以,21nn a S --(Ⅱ)n n a a a b 32313log log log +++=)21(n +++-=2)1(+-=n n 所以}{n b 的通项公式为.2)1(+-=n n b n18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD .(Ⅰ)证明:PA BD ⊥;(Ⅱ)若1PD AD ==,求棱锥D PBC -的高.【解析】(Ⅰ)因为60,2DAB AB AD ∠=︒=, 由余弦定理得3BD AD =从而222BD AD AB +=,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面P AD 。
2011全国统一高考新课标版文数卷(真题)
2011全国统一高考新课标版文数卷(真
题)
2013年全国性的高考马上就要开始了,现在临阵磨枪,也为时不晚。
出国留学网作为大家准备了大量丰富的高考试题及高考资料为筒靴们磨枪,不快也光:
2011年普通高等学校招生全国统一考试
文科数学
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.
4.考试结束后,将本试卷和答题卡一并交回.
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年全国统一高考数学试卷(文科)(新课标)
一、选择题(共12小题,每小题5分,满分60分)
1.(5分)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()
A.2个B.4个C.6个D.8个
2.(5分)复数=()
A.2﹣i B.1﹣2i C.﹣2+i D.﹣1+2i
3.(5分)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=2x3B.y=|x|+1C.y=﹣x2+4D.y=2﹣|x|
4.(5分)椭圆=1的离心率为()
A.B.C.D.
5.(5分)执行如图的程序框图,如果输入的N是6,那么输出的p是()
A.120B.720C.1440D.5040
6.(5分)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()
A.B.C.D.
7.(5分)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()
A.﹣B.﹣C.D.
8.(5分)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()
A.B.C.D.
9.(5分)已知直线l过抛物线C的焦点,且与C的对称轴垂直.l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为()
A.18B.24C.36D.48
10.(5分)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.(,)B.(﹣,0)C.(0,)D.(,)11.(5分)设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称
B.y=f(x)在(0,)单调递增,其图象关于直线x=对称
C.y=f(x)在(0,)单调递减,其图象关于直线x=对称
D.y=f(x)在(0,)单调递减,其图象关于直线x=对称
12.(5分)已知函数y=f(x)的周期为2,当x∈[﹣1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lgx|的图象的交点共有()
A.10个B.9个C.8个D.1个
二、填空题(共4小题,每小题5分,满分20分)
13.(5分)已知a与b为两个垂直的单位向量,k为实数,若向量+与向量k ﹣垂直,则k=.
14.(5分)若变量x,y满足约束条件,则z=x+2y的最小值为.15.(5分)△ABC中,∠B=120°,AC=7,AB=5,则△ABC的面积为.16.(5分)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.
三、解答题(共8小题,满分70分)
17.(12分)已知等比数列{a n}中,a1=,公比q=.
(Ⅰ)S n为{a n}的前n项和,证明:S n=
(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.
18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)证明:PA⊥BD
(Ⅱ)设PD=AD=1,求棱锥D﹣PBC的高.
19.(12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:
A配方的频数分布表
指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数82042228
B配方的频数分布表
指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数412423210(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;
(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=
从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)
20.(12分)在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.
(Ⅰ)求圆C的方程;
(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.
21.(12分)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0.
(Ⅰ)求a、b的值;
(Ⅱ)证明:当x>0,且x≠1时,f(x)>.
22.(10分)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根.
(Ⅰ)证明:C,B,D,E四点共圆;
(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.
23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2
(Ⅰ)求C2的方程;
(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.
24.设函数f(x)=|x﹣a|+3x,其中a>0.
(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集
(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.。