无线电波的传播
无线电波的发射传播接收
1. 增加电源两端的电压 2. 将线圈中的铁芯取走 3. 增大调谐电路中线圈的匝数 4. 减少调谐电路中线圈的匝数
答案:BD
有波长分别为290m、397m、 566m的无线电波同时传向收音机的 接收天线,当把收音机的调谐频率调 到756kHz时。
1. 哪种波长的无线电波在收音机 中产生的电流最强?
会使导体产生感应电流,感应电流的 频率跟激起它的电磁波的频率相同。 因此利用放在电磁波传播空间中的导 体(天线和地线组成),就可以接收到 电磁波了。
03 如 何 使 我 们需要的电 磁波在接收天 线
中激起的感应电流最强呢?
04 当 接 收 电 路的固有频 率跟接收到的 电
磁波的频率相同时,接收电路中产生 的振荡电流最强。(这种现象叫做电 谐振)
1. 减小振荡电路中的电容 2. 增加振荡时的电压 3. 增加电容器充电的电荷量 4. 用开放电路,不用闭合电
路
答案:AD
二.关于无线电波的发射过程,下列说法正确的是: 1. 必须对信号进行调制; 2. 必须对信号进行电谐振; 3. 必须把信号加在高频电流上; 4. D必须使用开放电路
ACD
无线电接收机中调谐电路的可变 电容器动片,从完全旋入到完全 旋出都不能接收到某一较高频率 电台送出的信号,要接收到电信 号,应:
在信息技术高速发展的今天,电磁波对我们 来说越来越重要,例如,广播、电视要利用 电磁波,无线电通信要利用电磁波,航空、 航天中的自动控制和通信联系都要利用电磁 波……那么,学习了前面几节的电磁学内容, 我们知道了电磁波是怎样产生的、它的性质。 那么怎样利用它来传递各种信号?
3.4无线电波的发射、传播和接收
2. 如果想接收到波长为290m的无 线电波,应把调谐电路中可变 电容器的动片旋进些还是旋出 些?
无线电波传播途径
无线电波在均匀介质 (如空气)中,具有直线传播的特点。
只要测出电波传播的方向,就可以确定出信号源(发射台)所在方向。
无线电测向是指通过无线电测向机测定发射台(或接收台)方位的过程,但是无线电测向运动中,要快速寻找隐蔽巧妙的信号源,必须掌握无线电波的传播规律。
一、无线电波的发射与传播无线电波既看不见,也摸不着,却充满了整个空间。
广播、移动通讯、电视等,已经是现代社会生活必不可少的一部分。
无线电波属于电磁波中频率较低的一种,它可直接在空间辐射传播。
无线电波的频率范围很宽,频段不同,特性也不尽相同。
我国目前开展的无线电测向运动涉及三个频段:频率为1.8—2兆赫的中波波段,波长为150—166.6米,称160米波段测向;频率为3.5—3.6兆赫的短波波段,波长为83.3—85.7米,称80米波段测向;频率为144—146兆赫的超短波段,波长为2.08—2.055米,称2米波段测向。
(一)无线电波的发射过程无线电波是通过天线发射到空间的。
当电流在天线中流动时,天线周围的空间不但产生电力线 (即电场),同时还产生磁力线。
其相互间的关系,如图2-1-1所示。
如果天线中电流改变方向,空间的电力线和磁力线方向随之改变。
如果加在天线上的是高频交流电,由于电流的方向变化极快,根据电磁感应的原理,在这些交替变化的电场和磁场的外层空间,又激起新的电磁场,不断地向外扩散,天线中的高频电能以变化的电磁场的形式,传向四面八方,这就是无线电波。
从图2-l可知,电力线 (即电场)方向与天线基本平行,磁力线 (磁场)的形状则是以天线为圆心,与天线相垂直的方向随之变化的无数同心圆。
图2-1-1 无线电波的发射(二)无线电波的特性l.无线电波的极化交变电磁场在其附近空间又激起新的电磁场的现象称无线电波的极化。
空间传播的无线电波都是极化波。
当天线垂直于地平面时,天线辐射的无线电波的电场垂直于地平面称垂直极化波。
天线平行于地平面时,天线辐射的无线电波的电场平行于地面称水平极化波。
无线电波的传播特性
无线电波的传播特性(一)移动通信的一个重要基础是无线电波的传播,无线电波通过多种方式从发射天线传播到接收天线,我们按照无线电波的波长人为地把电波分为长波(波长 1000米以上),中波(波长100-1000米),短波(波长10-100米),超短波和微波(波长为10米以下)等等。
为了更好地说明移动通信的问题,我们先介绍一下电波的各种传播方式:1. 表面波传播表面波传播是指电波沿着地球表面传播的情况。
这时电波是紧靠着地面传播的,地面的性质,地貌,地物等的情况都会影响电波的传播。
当电波紧靠着实际地面--起伏不平的地面传播时,由于地球表面是半导体,因此一方面使电波发生变化和引起电波的吸收。
另一方面由于地球表面是球型,使沿它传播的电波发生绕射。
从物理知识中我们已经知道,只有当波长与障碍物高度可以比较的时候,才能有绕射功能。
由此可知,在实际情况中只有长波,中波以及短波的部分波段能绕过地球表面的大部分障碍到达较远的地方。
在短波的部分波段和超短波,微波波段,由于障碍高度比波长大,因而电波在地面上不绕射,而是按直线传播。
2. 天波传播短波能传至地球上较远的地方,这种现象并不能用绕射或其他的现象做解释。
直到1925年,利用在地面上垂直向上发射一个脉冲,并收到其反射回波,才直接证明了高层大气中存在电离层。
籍此电离层的反射作用,电波在地面与电离层之间来回反射传播至较远的地方。
我们把经过电离层反射到地面的电波叫作天波。
电离层是指分布在地球周围的大气层中,从60km以上的电离区域。
在这个区域中,存在有大量的自由电子与正离子,还可能有大量的负离子,以及未被电离的中性离子。
发现电离层后,尤其近三四十年来,随着火箭与卫星技术的发展,利用这些工具对电离层进行了深入的试验和研究。
当前电离层的研究已经成为空间物理的一个重要的组成部分,其研究的空间范围和频段也日益宽广。
在电离层中,当被调制的无线电波信号在电离层内传播时,组成信号的不同频率成分有着不同的传播速度。
无线电波传播特性的研究与应用
无线电波传播特性的研究与应用在我们的日常生活中,无线电波无处不在。
从手机通信到广播电视,从卫星导航到无线网络,无线电波在信息传递和通信领域发挥着至关重要的作用。
然而,要实现高效、稳定和可靠的无线电通信,就必须深入了解无线电波的传播特性。
本文将对无线电波的传播特性进行研究,并探讨其在各个领域的广泛应用。
无线电波是一种电磁波,其频率范围非常广泛,从低频的长波到高频的微波和毫米波。
它们在空间中以光速传播,不需要任何介质,可以在真空、空气、水和其他物质中传播。
但无线电波在不同的环境中传播时,会受到多种因素的影响,从而表现出不同的特性。
首先,让我们来了解一下无线电波的直射传播特性。
当无线电波在自由空间中传播时,没有障碍物的阻挡,它会沿着直线传播。
这种传播方式称为直射传播。
在直射传播中,无线电波的强度会随着距离的增加而逐渐减弱,遵循反平方定律。
也就是说,距离发射源的距离增加一倍,信号强度会降低为原来的四分之一。
这是因为无线电波的能量在传播过程中会逐渐扩散,导致单位面积上的能量减少。
然而,在实际环境中,很难存在完全没有障碍物的自由空间。
建筑物、山脉、树木等都会对无线电波的传播产生阻挡和反射。
这就引出了无线电波的反射传播特性。
当无线电波遇到障碍物时,一部分能量会被反射回来。
反射的程度取决于障碍物的材质、形状和粗糙度等因素。
例如,金属表面会对无线电波产生强烈的反射,而粗糙的墙壁则会导致反射信号的散射和衰减。
除了反射,无线电波还会发生折射现象。
当无线电波穿过不同介质的分界面时,由于介质的折射率不同,电波的传播方向会发生改变。
这就像光线从空气进入水中会发生折射一样。
在大气中,由于温度、湿度和气压的变化,会导致大气层的折射率不均匀,从而影响无线电波的传播路径。
这种现象在卫星通信和远程通信中尤为重要。
另外,无线电波还会发生散射传播。
当无线电波遇到尺寸小于波长的障碍物时,会向各个方向散射。
例如,雨滴、灰尘颗粒等都会引起无线电波的散射。
无线电波的传播方式
无线电波的传播方式一、无线电波的传播方式无线电波以每秒三十万公里的速度离开发射天线后,是经过不同的传播路径到达接收点的。
人们根据这些各具特点的传播方式,把无线电波归纳为四种主要类型。
1)地波,这是沿地球表面传播的无线电波。
2)天波,也即电离层波。
地球大气层的高层存在着“电离层”。
无线电波进入电离层时其方向会发生改变,出现“折射”。
因为电离层折射效应的积累,电波的入射方向会连续改变,最终会“拐”回地面,电离层如同一面镜子会反射无线电波。
我们把这种经电离层反射而折回地面的无线电波称为“天波”。
3)空间波,由发射天线直接到达接收点的电波,被称为直射波。
有一部分电波是通过地面或其他障碍物反射到达接收点的,被称为反射波。
直射波和反射波合称为空间波。
4)散射波,当大气层或电离层出现不均匀团块时,无线电波有可能被这些不均匀媒质向四面八方反射,使一部分能量到达接收点,这就是散射波。
在业余无线电通信中,运用最多的是“天波”传播方式,这是短波远距离通信向必要条件。
空间波和散射波的运用多见于超高频通信,而地波传播“般只用于低波段和近距离通信。
二、电离层与天波传播1.电离层概况在业余无线电中,短波波段的远距离通信占据着极重要的位置。
短波段信号的传播主要依靠的是天波,所以我们必需对电离层有所了解。
地球表面被厚厚的大气层包围着。
大气层的底层部分是“对流层”,其高度在极区约为九公里,在赤道约为十六公里。
在这里,气温除局部外总是随高度上升而下降。
人们常见的电闪雷鸣、阴晴雨雪都发生在对流层,但这些气象现象一般只对直射波传播有影响。
在离地面约10到50公里的大气层是“同温层”。
它对电波传播基本上没有影响。
离地面约50到400公里高空的空气很少流动。
在太阳紫外线强烈照射下,气体分子中的电子挣脱了原子的束缚,形成了自由电子和离子,即电离层。
由于气体分子本身重量的不同以及受到紫外线不同强度的照射,电离层形成了四个具有不同电子密度和厚度的分层,每个分层的密度都是中间大两边小。
无线电波空间传播模型
无线电波空间传播模型一、引言无线电波是一种电磁波,它的传播是通过空间介质进行的。
无线电波的传播模型是对无线电波在空间中传播过程的一种描述和模拟。
了解无线电波空间传播模型对于实现高效的无线通信系统设计和优化至关重要。
本文将介绍几种常见的无线电波空间传播模型,包括自由空间传播模型、二维和三维传播模型以及多径传播模型。
二、自由空间传播模型自由空间传播模型是最简单也是最常用的一种传播模型。
它假设无线电波在真空中传播,没有遇到任何障碍物和干扰。
根据自由空间传播模型,无线电波的传播损耗与距离的平方成反比。
具体而言,传播损耗(L)可以通过以下公式计算:L = 20log(d) + 20log(f) + 20log(4π/c)其中,d是发送端和接收端之间的距离,f是无线电波的频率,c是光速。
自由空间传播模型适用于开阔的空间环境,如农村、海洋等,但在城市和山区等环境中,由于有大量建筑物和地形等障碍物的存在,自由空间传播模型并不适用。
三、二维和三维传播模型二维和三维传播模型考虑了障碍物和地形等因素对无线电波传播的影响。
在二维传播模型中,地面被简化为平面,建筑物和其他障碍物被建模为二维形状。
在三维传播模型中,地面和建筑物等障碍物被建模为三维形状。
为了计算二维和三维传播模型中的传播损耗,常用的方法是射线追踪。
射线追踪将无线电波视为一束射线,通过计算射线与障碍物的相交点,从而确定传播路径和传播损耗。
射线追踪可以基于几何光学原理进行,也可以使用电磁波的波动性质进行更精确的计算。
四、多径传播模型多径传播模型是一种复杂的传播模型,考虑了多个传播路径和多个传播信号的叠加效应。
当无线电波传播过程中遇到建筑物、地形等障碍物时,会发生反射、折射和散射等现象,导致信号在接收端出现多个传播路径。
这些多个传播路径的信号叠加在一起,会引起传播信号的衰减和时延扩展。
多径传播模型通常使用统计方法进行建模和仿真。
常见的多径传播模型包括瑞利衰落模型和莱斯衰落模型。
无线电波传播方式与各频段的利用
无线电波传播方式与各频段的利用无线电通信是利用电磁波在空间传送信息的通信方式。
电磁波由发射天线向外辐射出去,天线就是波源。
电磁波中的电磁场随着时间而变化,从而把辐射的能量传播至远方。
无线电波共有以下七种传播方式(附图为无线电波传播方式示意图)。
(1)波导方式当电磁波频率为30kHz以下(波长为10km以上)时,大地犹如导体,而电离层的下层由于折射率为虚数,电磁波也不能进入,因此电磁波被限制在电离层的下层与地球表面之间的空间内传输,称为波导传波方式;(2)地波方式沿地球表面传播的无线电波称为地波(或地表波),这种传播方式比较稳定,受天气影响小;(3)天波方式射向天空经电离层折射后又折返回地面(还可经地面再反射回到天空)的无线电波称为天波,天波可以传播到几千公里之外的地面,也可以在地球表面和电离层之间多次反射,即可以实现多跳传播。
(4)空间波方式主要指直射波和反射波。
电波在空间按直线传播,称为直射波。
当电波传播过程中遇到两种不同介质的光滑界面时,还会像光一样发生镜面反射,称为反射波。
(5)绕射方式由于地球表面是个弯曲的球面,因此电波传播距离受到地球曲率的限制,但无线电波也能同光的绕射传播现象一样,形成视距以外的传播。
(6)对流层散射方式地球大气层中的对流层,因其物理特性的不规则性或不连续性,会对无线电波起到散射作用。
利用对流层散射作用进行无线电波的传播称为对流层散射方式。
(7)视距传播指点到点或地球到卫星之间的电波传播。
附表给出了从甚低频(VLF)至极高频(EHF)频段的电波传播方式、传播距离、可用带宽以及可能形成的干扰情况。
序频段名号称 4 5 甚低频(VLF)低频频段范围 3-30kHz 传播可用干扰传播距离方式带宽量波导数千公里利用极有宽扩世界范围长距离无线限展电导航 30-300kHz 地波数千公里很有宽扩长距离无线电民航战(LF) 6 7 天波限展略通信中频地波宽扩中等距离点到点广播300-3000kHz 几千公里适中(MF)天波展和水上移动高频(HF) 3-30MHz 天波几千公里宽有限长和短距离点到点全的球广播,移动空间波对短和中距离点到点移甚高频几百公里有限8 30-300MHz 流层很宽动,LAN声音和视频广(VHF)以内的散射播个人通信绕射空间波对短和中距离点到点移特高频流层100公里有限9 300-3000MHz 很宽动,LAN声音和视频广(UHF)散射以内的播个人通信卫星通信绕射祝距超高频(SHF)短和中距离点到点移通常30公里左动LAN声音和视频广视距很宽是有右播移动/个人通信卫限的星通信 10 3-30GHz 通常短和中距离点到点移极高频 11 30-3000GHz 视距 20公里很宽是有动,LAN个人通信卫星(EHF)限的通信在确定无线电系统实际通信距离、覆盖范围和无线电干扰影响范围时,无线电传播损耗是一个关键参数。
无线电波
通常的模拟电视信号采用将图像调幅,调频并合成在同一信号中传播。 数字电视采用MPEG-2图像压缩技术,由此大约仅需模拟电视信号一半的带宽。
移动通信系统选择所用频段时要综合考虑覆盖效果和容量。UHF频段与其他频段相比,在覆盖效果和容量之 间折衷的比较好,因此被广泛应用于手机等终端的移动通信领域。当然,随着人们对移动通信的需求越来越多, 需要的容量越来越大,移动通信系统必然要向高频段发展。
无线电波的速度只随传播介质的电和磁的性质而变化。
传播
感谢观看
雷达
雷达通过测量反射无线电波的延迟来推算目标的距离。并通过反射波的极化和频率感应目标的表面类型。
无线电波的多经传送效应导航雷达使用超短波扫描目标区域。一般扫描频率为每分钟两到四次,通过反射波 确定地形。这种技术通常应用在商船和长距离商用飞机上。多用途雷达通常使用导航雷达的频段。不过,其所发 射的脉冲经过调制和极化以便确定反射体的表面类型。优良的多用途雷达可以辨别暴雨、陆地、车辆等等。
调频广播的边带可以用来传播数字信号如,电台标识、节目名称简介、、股市信息等。在有些国家,当被移 动至一个新的地区后,调频收音机可以自动根据边带信息自动寻找原来的频道。
航海和航空中使用的电台应用VHF调幅技术。这使得飞机和船舶上可以使用轻型天线。
政府、消防、警察和商业使用的电台通常在专用频段上应用窄带调频技术。这些应用通常使用5KHz的带宽。 相对于调频广播或电视的带宽,保真度上不得不作出牺牲。
民用或军用高频服务使用短波用于船舶,飞机或孤立地点间的通讯。
《无线电波的发射、接收和传播》 讲义
《无线电波的发射、接收和传播》讲义一、无线电波的概述在我们的日常生活中,无线电波无处不在。
从手机通信到广播电视,从卫星导航到无线局域网,无线电波在信息传递中扮演着至关重要的角色。
那么,什么是无线电波呢?无线电波是一种电磁波,其频率范围非常广泛,从低频的几千赫兹到高频的几十亿赫兹。
它们能够在自由空间中传播,不需要像电线那样的物理连接就能传递信息。
二、无线电波的发射要实现无线电通信,首先需要发射无线电波。
无线电波的发射主要依靠天线和发射机。
天线是发射和接收无线电波的重要设备。
发射时,电流通过天线,产生变化的电磁场,从而向周围空间辐射出无线电波。
天线的形状和尺寸会影响发射的效率和方向性。
发射机则负责产生高频振荡电流。
这个电流具有特定的频率和功率,决定了发射的无线电波的特征。
为了有效地发射无线电波,发射机通常会对信号进行调制。
调制就是把要传递的信息加载到高频载波上。
常见的调制方式有调幅(AM)和调频(FM)。
调幅是使载波的振幅随信号变化,而调频则是使载波的频率随信号变化。
经过调制后的信号,能够携带更多的信息,并且更适合在空间中传播。
三、无线电波的传播无线电波在空间中的传播方式主要有地波传播、天波传播和直线传播三种。
地波传播是指无线电波沿着地球表面传播。
这种传播方式适合频率较低的无线电波,如长波和中波。
地波传播比较稳定,但传播距离有限,且容易受到地面障碍物和地球曲率的影响。
天波传播是指无线电波被发射到高空的电离层,然后被反射回地面。
这种传播方式适合中波和短波。
电离层是地球大气层中的一个区域,其中存在大量的自由电子和离子,能够反射无线电波。
但电离层的状态会随时间和季节变化,导致天波传播的稳定性较差。
直线传播是指无线电波以直线的方式传播。
这种传播方式适合频率较高的无线电波,如超短波和微波。
直线传播的信号强度随距离的增加而迅速衰减,因此需要通过中继站来延长传播距离。
此外,无线电波在传播过程中还会受到各种因素的影响,如大气衰减、障碍物阻挡、多径传播等。
手机信号传播原理
手机信号传播原理
手机信号的传播原理是指无线电波在空间中的传播方式。
手机信号是通过电磁波进行传输的,具体的传播过程主要包括三个环节:发射、传播和接收。
在发射环节,手机内部的发射器产生电磁波。
这些电磁波属于无线电波的一种,具有特定的频率和振幅。
手机发射器通过天线将电磁波传输到周围的空间中。
传播环节是指无线电波在空间中的传输过程。
传播过程中,无线电波会受到多种因素的影响,包括传播距离、地形、建筑物、大气等。
无线电波的传播有以下几种方式:
1. 直射路径传播:当无线电波没有受到任何障碍物的遮挡时,可以直接沿着直射路径传播。
在这种情况下,传播距离较远,信号衰减较小。
2. 绕射传播:当无线电波遇到建筑物、山脉等遮挡物时,会发生绕射现象。
绕射使得无线电波沿着物体的边缘传播,达到遮挡物背后的区域。
3. 折射传播:无线电波在不同介质之间传播时,会由于介质的折射率不同而发生折射。
这种传播方式常见于大气环境中,例如夜晚的折射现象可以使得信号传播更远。
接收环节是指手机对传输的无线电波进行接收和解码的过程。
当无线电波到达手机的天线时,接收器会将电磁波转化为电信
号,并进行解码处理,以还原出原始的信息内容。
手机信号的传播原理是基于电磁波的传输和接收机制,通过发射、传播和接收环节,实现了手机之间的通信和信息交流。
无线电波传播原理及主要传播模型
无线电波传播原理1无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析1.1 电磁场与电磁波基础1820年奥斯特电磁1831年法拉第磁电产生产生变化的电场磁场变化的磁场电场激发?电磁场理论麦克斯韦在总结前人工作的基础上,提出了著名的电磁场理论(经典电磁场理论),指出变化电场和变化磁场形成了统一的电磁场,预言电磁场能以波动的形式在空间传播,称为电磁波;并得到电磁波在真空中传播的速度等于光速,从而断定光在本质上就是一种电磁波。
后来,赫兹用振荡电路产生了电磁波,使麦克斯韦的学说得到了实验证明,为电学和光学奠定了统一的基础。
因此,麦克斯韦的经典电磁场理论是人类对电磁规律的历史性总结,是19世纪物理学发展的最辉煌成就,是物理学发展史上一个重要的里程碑。
电磁波的诞生赫兹----德国物理学家赫兹对人类伟大的贡献是用实验证实了电磁波的存在,发现了光电效应。
1888年,成了近代科学史上的一座里程碑。
开创了无线电电子技术的新纪元。
赫兹用各种实验,证明了不仅电磁波的性质和光波相同,而且传播速度也相同,并可发生反射、折射、干涉、衍射和偏振等现象,即电磁波服从一般波动所具有的一切规律。
如果空间的电场或磁场变化是周期性的,我们用周期和频率来描述变化快慢。
电磁场变化过程中产生的电磁波的频率等于电磁场的变化频率;电磁波在传播中从一种介质进入另一种介质时,其频率不会发生改变,但其传播速度会发生改变。
电磁波的应用从1888年赫兹用实验证明了电磁波的存在,1895年俄国科学家波波夫发明了第一个无线电报系统。
1914年语音通信成为可能。
1920年商业无线电广播开始使用。
20世纪30年代发明了雷达。
40年代雷达和通讯得到飞速发展,自50年代第一颗人造卫星上天,卫星通讯事业得到迅猛发展。
如今电磁波已在通讯、遥感、空间控测、军事应用、科学研究等诸多方面得到广泛的应用。
无线电通信的起源1897 年:马可尼完成无线通信试验——电报发收两端距离为18 海里试验是在固定站与一艘拖船之间进行的20 世纪初:两次世界大战导致无线通信蓬勃发展步话机、对讲机等1941 年美陆军就开始装备步话机短波波段,电子管电磁波分类-按传输方式电磁波分类-按传输方式电磁波分类-按波长电磁波分类-按波长各波段电磁波特点长波通信:沿地面传播,衰减小、穿透能力强 中波通信:地波传播及夜晚电离层反射传播 短波通信:天波传播,适合远距离传输超短波通信:直线传播,视距通信,广播电视、移动通信微波通信:工作频带宽,长距离接力通信第1讲无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析传播途径①建筑物反射波②绕射波③直射波④地面反射波①建筑物反射波②绕射波③直射波④地面反射波第1讲无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析1.3 无线传播环境•问题:移动通信比较固定通信有那些特殊性呢?•多径无线传播无线路径是一个很复杂的传播媒介•手机发射功率有限手机的发射功率客观限制了蜂窝小区的服务范围手机电池寿命和对人体危害决定了发射功率大小•频率资源有限带宽一定信道编码等占用额外频率资源频率需要被重复利用==> 产生同频干扰•用户行为的不确定性第1讲无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析无线信道分析在移动通信研究中的意义无线通信系统的信道十分复杂:9地理环境的复杂性和多样性9用户移动的随机性9多径传播无线信道是制约移动通信质量的主要因素无线信道是研究各种技术的主要推动力量无线信道的建模对于整个移动通信系统仿真的正确性和可靠性有着举足轻重的意义1.4 无线信道分析•无线信道中的损耗一般分为三个层次:—大尺度(又称路径损耗)【path loss】—中等尺度(阴影衰落、慢衰落)【shadowing】—小尺度衰落(快衰落)【fast fading】无线信道分析场强平均值随距离增加而衰减(路径损耗,大尺度衰落)•电磁波在空间传播的损耗场强中值呈慢速变化(慢衰落,阴影衰落,中等尺度衰落)•由地形地貌导致场强瞬时值呈快速变化(快衰落,小尺度衰落)•多径效应——由移动体周围的局部散射体引起的多径传播,表现为快衰落•多普勒效应——由移动体的运动引起,多径条件下引起频谱展宽三种衰落区别•大尺度衰落主要是路径损耗,可用自由空间传播模型来近似;其特点是:慢变,信道在很长时间内可以认为是恒定的,而且衰落的幅度很小。
无线电波传播
无线电波传播无线电波通过介质或在介质分界面的连续折射或反射,由发射点传播到接收点的过程。
无线电通信是利用无线电波的传播特性而实现的。
因此,研究无线电波的传播特性和模式,是提高无线电通信质量的重大课题。
传播模式通常指电磁波在各种介质中传播的一些典型方式。
在地球上,无线电波的传播介质有地壳、海水、大气等。
根据物理性质,可将地球介质由下而上地分为地壳高温电离层、地壳介质岩层、地壳表面导电层、大气对流层、高空电离层。
不同频率的无线电波,在各层介质中传播的折射率n和吸收衰减常数ɑ各不相同。
因而各种频段的无线电波在介质中传播均有其衰减较小的传播模式。
适于通信的传播模式主要有以下九种。
地壳波导传播以地壳表面导电层和地壳高温电离层为界面,以地壳介质岩层为介质形成地壳波导的传播模式。
超长波或更长波段的电波可以在地壳波导中传播到千余公里。
但由于深入地下数公里的天线难以建造,现在还不能实际应用于通信。
水下传播无线电波在海水中传播的传播模式。
电波在海水中的吸收衰减随频率升高而增大,目前仅用于超长波水下通信。
地表波传播无线电波沿地壳表面传播的传播模式,又称地波传播。
地面吸收衰减导致波阵面前倾,使单位距离吸收衰减率随传播距离的增大而增大。
地面吸收衰减随频率升高而增大。
地波传播无线电波传播无线电波传播用于中频(中波)以下频段。
电离层传播利用电离层和地面对电磁波的一次或多次反射进行传播的传播模式,又称天波传播。
电离层按高度由下而上地分为D、E、F1和F2等几个主要层次。
各个层次中部的电子密度最大值由下而上逐层增加,而电子和中性气体分子的单位时间碰撞次数则逐层减少。
电离层的高度和电子密度均随季节、昼夜和太阳黑子活动而变化(见图)。
无线电波只能在折射率n值随高度递减的区域开始折返地面,电波途径最高点处的折射率n值等于电波入射角θ0的正弦函数。
对应于某一折射角,存在一个最高频率,其传播途径的最高点可以达到F2层的最大电子密度区。
此频率称为最高可用频率MUF。
无线电波传播模型与仿真
无线电波传播模型与仿真在现代的通信领域中,无线电波的传播模型成为了一个重要的研究主题。
当我们需要传输数据、信息或者信号的时候,我们需要通过无线电波来实现。
无线电波传播模型和仿真技术的研究,可以帮助我们更好地了解无线电波在传播过程中的特点,为我们设计和优化无线电通信系统提供重要的依据。
1. 无线电波传播模型在无线电通信中,无线电波的传播受到诸多因素的影响。
传输距离、频率、天线高度和地形都会影响无线电波的传播。
1.1 自由空间模型自由空间模型是一种最简单的无线电波传播模型。
在自由空间中,无线电波沿直线传输,向四面八方辐射。
此时,无线电波传输的距离和波长有关,距离越远,信号衰减越严重。
自由空间模型适用于在太空中,或没有障碍的通信环境中使用。
1.2 多径模型在现实的通信环境中,无线电波遇到各种障碍物后会发生反射、折射、绕射等现象,从而可能产生多路径效应。
因此,多径模型被广泛应用于无线电通信系统的研究中。
在多径模型中,无线电波的传播路径包括直射路径、反射路径、绕射路径和散射路径等。
多径模型中的多路传输会使接收信号出现干扰,影响通信的可靠性。
1.3 表面波模型在表面波模型中,无线电波沿着地表层或者水面传播。
这种模型适用于低频率的无线电通信。
表面波模型的一个缺陷是信号的传输距离较短。
2. 无线电波传播仿真无线电波传播仿真是指通过计算机模拟无线电波的传播过程,以求出在各种条件下无线电波的传播特性。
无线电波仿真的目的是为了给通信工程师提供一个可靠的工具,以便进行通信系统的规划、设计和优化。
2.1 无线电波传播仿真软件无线电波传播仿真软件是通信工程师研究和设计无线电通信系统的必备工具。
在现代通信领域中,有许多广泛使用的仿真软件,比如:MATLAB、OPTIWAVE、HFSS等。
这些软件能够根据实验数据和实际场景模拟无线电波传播的行为,进行通信系统的优化和规划。
2.2 仿真参数在进行无线电波仿真时,需要输入一些参数来模拟无线电波的传输过程。
无线电波段划分及传播方式
无线电波段划分及传播方式频率从几十Hz(甚至更低)到3000GHz左右(波长从几十Mm到0.1mm左右)频谱范围内的电磁波,称为无线电波。
电波旅行不依靠电线,也不象声波那样,必须依靠空气媒介帮它传播,有些电波能够在地球表面传播,有些波能够在空间直线传播,也能够从大气层上空反射传播,有些波甚至能穿透大气层,飞向遥远的宇宙空间。
发信天线或自然辐射源所辐射的无线电波,通过自然条件下的媒质到达收信天线的过程,就称为无线电波的传播。
ﻫ无线电波的频谱,根据它们的特点可以划分为表所示钓几个波段。
根据频谱和需要,可以进行通信、广播、电视、导航和探测等,但不同波段电波的传播特性有很大差别。
ﻫ光速÷频率=波长ﻫ无线电波波段划分波段名称波长范围(m)频段名称频率范围超长波ﻫ长波中波1,000,000~10,000短波ﻫﻫ10~110~~10010,000~1,000ﻫ1,000~100ﻫ1~0.1ﻫ0.1~0.010.01~0.001ﻫ甚低频低频中频ﻫ高频甚高频特高频超高频ﻫ极高频ﻫ3~30KHz3,000KHz30~300KHzﻫ~3003~30MHz30~300MHz300~3,000MHz3~30GHzﻫ30~300GHzﻫ超短波米波ﻫ分米波ﻫ厘米波毫米波ﻫ电波主要传播方式电波传输不依靠电线,也不象声波那样,必须依靠空气媒介帮它传播,有些电波能够在地球表面传播,有些波能够在空间直线传播,也能够从大气层上空反射传播,有些波甚至能穿透大气层,飞向遥远的宇宙空间。
ﻫ任何一种无线电信号传输系统均由发信部分、收信部分和传输媒质三部分组成。
传输无线电信号的媒质主要有地表、对流层和电离层等,这些媒质的电特性对不同波段的无线电波的传播有着不同的影响。
根据媒质及不同媒质分界面对电波传播产生的主要影响,可将电波传播方式分成下列几种:地表传播对有些电波来说,地球本身就是一个障碍物。
当接收天线距离发射天线较远时,地面就象拱形大桥将两者隔开。
无线电波的四种传播方式
无线电波的四种传播方式
无线电波的四种传播方式分别是:
1. 地面波传播:地面波是靠着大地反射和折射形成的,主要在短波和中波频段中使用。
地面波传播的优点是信号稳定,但距离有限,适用于局部通信。
2. 天波传播:天波是指从天空反射回来的无线电波,主要在短波和中波频段中使用。
天波传播的优点是传播距离较远,但受天气影响较大,信号容易受到干扰。
3. 散射波传播:散射波是指无线电波在物体表面散射后形成的波,主要在超短波和微波频段中使用。
散射波传播的优点是信号不易受到干扰,但传播距离较短。
4. 空间波传播:空间波是指直接从发射天线向接收天线发射的无线电波,主要在超短波和微波频段中使用。
空间波传播的优点是传播距离较远,但信号容易受到遮挡和衰减的影响。
无线电波的传播机理与信号处理
无线电波的传播机理与信号处理无线电波是一种能够通过空气释放能量、传递信息的电磁波。
它们在通信、雷达、卫星通讯等许多领域都有广泛的应用。
本文将着重探讨无线电波的传播机理和信号处理技术。
一、无线电波的传播机理无线电波在传播过程中会与周围的物质相互作用,产生吸收、反射、散射等现象。
这些现象是决定无线电波传播的重要因素。
1. 吸收现象吸收现象是指无线电波在传播过程中被周围介质吸收的现象。
介质的吸收特性由介质的电性能和磁性能决定。
在大气中,气体、水汽和云雾等都会对无线电波产生一定的吸收作用。
2. 反射现象反射现象是指无线电波在传播过程中遇到较大的障碍物而被反射回来的现象。
如果障碍物是平面的,则反射波的入射角等于反射角。
如果障碍物是曲面的,则反射波会沿不同的方向散射开来。
3. 散射现象散射现象是指无线电波在传播过程中遇到比自己尺寸小的物体而发生的反射和散射。
该现象会使无线电波在传播过程中发生频率和相位的改变。
二、信号处理技术无线电波的信号在传播过程中会受到干扰和噪声的影响,使得信号质量下降,因此需要采用一些技术来提高信号的质量。
1. 功率控制功率控制是指在传输过程中,动态地调整信号的功率以使其达到最佳状态。
此技术可有效减少信号的失真和干扰,提高信号的质量。
2. 多路径补偿多路径补偿是指针对具有多条信号路径的传输信道的技术。
在这种情况下,传输信号会有多条路径到达接收端,由于路径长度和反射等复杂的因素的影响,会引起信号的码间串扰及多径干扰。
通过使用多路径补偿技术,可以完全消除这些干扰,从而提高信号的质量。
3. 信道编码技术信道编码技术是指在传输过程中,对原始数据进行编码以达到提高传输质量的效果。
这种编码技术可以允许接收端对信号进行错误检测和纠正,并实现数据压缩的效果。
4. 多天线技术多天线技术是指在发射和接收方同时安装多个天线,以提供更多的路径和增加信号的可靠性。
多天线技术可以通过最大化信号传输的分集增益来减少干扰和抗多径干扰,并改善信号的覆盖范围。
无线电波传播的基础知识
无线电波传播的基础知识要了解电磁辐射,那么对于无线电波的电波传播相关的基础知识就要有所了解,只有基于对电波了解、熟悉的基础上才能更好采取合适的电磁辐射的防护措施!一、无线电波的传播特性及信号分析甚低频:VLF,3-30KHz、超长波、波长1KKm-100Km、以空间波为主,主要用于海岸潜艇通信;远距离通信;超远距离导航;低频:LF,30-300KHz、长波、波长10Km-1Km、以地波为主主要用于越洋通信;中距离通信;地下岩层通信;远距离导航;中频:MF,0.3-3MHz、中波、波长1Km-100m、以地波与天波为主,主要用于船用通信;业余无线电通信;移动通信;中距离导航;高频:HF,3-30MHz、短波、波长100m-10m、天波与地波,主要用于远距离短波通信;国际定点通信;甚高频:VHF,30-300MHz、米波、波长10m-1m、空间波主要用于电离层散射(30-60MHz)通信;流星余迹通信;人造电离层通信(30-144MHz);对空间飞行体通信;移动通信等超高频:UHF,0.3-3GHz、分米波、波长1m-0.1m、空间波,主要用于小容量微波中继通信;(352-420MHz);对流层散射通信(700-10000MHz);中容量微波通信(1700-2400MHz);特高频:SHF,3-30GHz、厘米波,波长10cm-1cm、空间波,主要用于大容量微波中继通信(3600-4200MHz);大容量微波中继通信(5850-8500MHz);数字通信;卫星通信;国际海事卫星通信(1500-1600MHz)等;ELF:极低频3~30Hz SLF:超低频30~300Hz ULF:特低频300~3000Hz VLF:甚低频3~30kHz LF:低频30~300kHz中波,长波MF:中频300~3000kHz、波长100m~1000m、中波主要用于AM广播HF:高频3~30MHz波长10~100m、短波主要用于短波广播VHF:甚高频30~300MHz波长1~10m、米波主要用于FM广播UHF:特高频300~3000MHz波长0.1~1m、分米波SHF:超高频3~30GHz波长1cm~10cm、厘米波EHF:极高频30~300GHz波长1mm~1cm、毫米波二、无线电波的传播无线电波按传播途径可分为以下四种:天波-由空间电离层反射而传播;地波-沿地球表面传播;直射波-由发射台到接收台直线传播;地面反射波-经地面反射而传播。
无线电波的传播途径
第一章卫星电视广播系统概述
1.1.1无线电波
1.1.2 无线电波的极化方式
电磁波是一种横波,其“电场矢量”、“磁场强度矢量”和“波的传播方向”三者之间“两两互相垂直”。
常用“电场强度矢量”的变化来代表电磁波的变化。
其中“电场强度矢量”的方向具有确定的规律,这种现象成为电磁波的极化。
线极化波:电磁波在空间传播时,如果电场矢量的空间轨迹为一条直线,始终在一个平面内传播,则称为线极化波。
圆极化波:若电场矢量在空间的轨迹为一个圆,即电场矢量围绕传播方向的轴线不断地旋转,则称为圆极化波。
1.1.3 无线电波的传播途径
无线电波的传播途径有地面传播、电离层传播、空间传播、对流层传播和外球层传播五。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六、室分设计电波传输考虑
1.室内分布系统的无线传播也是多径传播,也存在多径现象 。因为室内环境比较稳定,多径衰落呈现慢衰落的现象。 所以,在计算电平时,常常采用自由空间的传播计算方式 。 2.由于不考虑信号的多径叠加问题。所以,在电平计算上主 要考虑的是直射波。在直射波传播路径上有阻挡,则考虑 阻挡衰减。 3.折射波、反射波的应用。某些曲折死角,可以巧妙地应用 电波的折射和发射。 4.电波的隧道效应。
七、天线基本特性和工作原理
1、天线是无线电波发送和接收的装置。具有电波导向性、 电磁场极化、“放大信号”三个基本功能。 2、电波导向性:引导电磁波传播。方式是“引导”和“反射”。 3、电磁场极化:使得电磁场与其他参照物成一定角度。 4、“放大信号”:增益。 天线增益:相对于点源,天线把电磁波集中的程度。 dBi相对于点源的天线增益单位;dBd相对于偶极子的天 线增益单位。0dBd = 2.15dBi 所以:天线一般包含有源振子、导向装置、能量汇集装置。
1.全向吸顶天线 工作频段:800~2500MHz 增益:2dBi 接口:50欧姆,N型阴头 最大输入功率:50W 驻波系数:小于1.4 2.(小)板状天线 工作频段:800~2500MHz 增益:7dBi 接口:50欧姆,N型阴头 最大输入功率:50W 驻波系数:小于1.4 3.八木天线 工作频段:880~960MHz 增益:7dBi 接口:50欧姆,N型阴头 最大输入功率:50W 驻波系数:小于1.4
4.多径对数字信号的影响:时延拓展;相关带宽;随机调频 5.多径传播现象有利有弊。有弊是造成了电波接收的不确多普勒效应是指发射源与接收点相对移动而产生频率变化的现象; 多普勒频移:f = (v/λ)*cosα ;其中v/λ为最大多普勒频移
例如:900MHz频率,移动台速度50Km/h,
2.雨雾衰减
雨雾对无线电波也有吸收作用,频率越高,衰减越大;雨雾越大,衰减 也越大。通常,大雾对6GHz以上的电磁波产生10dB/Km的衰减。
3.大气折射衰减
大气各向不同性,主要是空气密度不同造成的。折射产生电波发射方向 ,从而引起信号衰减。
三、视距传播的地面效应
1.树林、建筑、山头或地面等障碍物对电磁波阻挡掉一些电 磁波射线,在自由传播基础上增加了衰减。 2.平滑地面和水面可以把电磁波发射到接收天线,发射波和 直射波在矢量相加后抵消,产生附加衰减。
八、天线常用技术指标
1、工作频段 2、增益 3、方位角:分水平和垂直两个指标。 4、驻波系数(发射系数P=反射波振幅/入射波振幅;回波系数L=1 / P;驻
波系数S = (1+P)/(1-P))
5、最大输入功率 6、前后比(前后隔离度) 7、极化方向 其他:外形尺寸、接口阻抗和类型、安装方式。
九、室分常用天线介绍
一、自由空间传播
2.自由空间的传播
自由空间:均匀无损耗的无限大空间;各 向同性;电导率为零;空间无限大。 空气中电导率不为零,且方向不同性,所 以不是自由空间,但是近似自由空间。
二、视距传播的大气效应
1.大气的吸收衰减
大气的组成分子(氧气、氮气、水蒸气等等),有自己的固有电磁谐振 频率,会吸收传播中的电磁波能量。对12GHz频率以下的电磁波吸收衰减约 为0.0015dB/km。
无线电传输理论
----技术中心
目
一、自由空间传播
录
二、视距传播的大气效应
三、视距传播的地面效应
四、多径衰落 五、多普勒效应
六、室分设计电波传播考虑
七、天线基本特性和工作原理 八、天线常用技术指标 九、室分常用天线介绍
一、自由空间传播
1.概述:
无线电波也称为电磁波,是一组正交的电场和磁场交替出现的能量波。电 磁波在自由空间传播速度30万千米/秒。 电磁波传播的主要方式是空间波,即直射波、折射波、散射波、绕射波和 它们的合成波。 当无线电波遇到物体时,产生折射和散射;由于电波传播方向上有不同的 物体,造成不同的折射和散射,所以在任何一个接受点均可能收到来自不同路 径的同源电磁波,这个就是多径传播。
重点和思考
重点:无线电波自由空间传播公式。 多径传输产生的结果。 天线的种类、指标。 思考:相对运动改变无线电波的频率,动车或高铁怎样覆盖 信号比较合适?
谢 谢!
四、多径传输
1.接收点的无线电波是从信源通过多个路径传播而来的电波 合成。这个现象就是多径传播。
2.由于是同源的多个电波合成,则在合成点叠加时幅度和相 位不相同,有时叠加而增强,有时抵消而减弱,形成衰落 。这种由多径传播引起的衰落,称为多径衰落。 3.多径衰落是快衰弱;而由距离引起的衰弱称为慢衰落。无 线电波的衰落就是有快衰落和慢衰弱组成的。