五年级下学期最大公因数与最小公倍数应用题及练习题

合集下载

五年级下学期最大公因数与最小公倍数应用题及练习题

五年级下学期最大公因数与最小公倍数应用题及练习题

最大公约数与最小公倍数1)有一个自然数,被6除余1,被5除余1,被4除余1,这个自然数最小是几?2)把长120厘米,宽80厘米的铁板裁成面积相等,最大的正方形而且没有剩余,可以裁成多少块?3)把长132厘米,宽60厘米,厚36厘米的木料锯成尽可能大的,同样大小的正方体木块,锯后不能有剩余,能锯成多少块?4)用长120厘米,宽80厘米的长方形砖块去铺一块正方形地,最少需要多少块砖?5)一盒钢笔可以平均分给2、3、4、5、6个同学,这盒钢笔最少有多少枝?7)每筐梨,按每份2个梨分多1个,每份3个梨分多2个,每份5个梨分4个,则筐里至少有多少个梨?8)现在有香蕉42千克,苹果112千克,桔子70千克,平均分给幼儿园的几个班,每班分到的这三种水果的数量分别相等,那么最多分给了多少个班?每个班至少分到了三种水果各多少千克?9)有三根铁丝,一根长54米,一根长72米,一根长36米,要把它们截成同样长的小段,不许剩余,每段最长是多少米?10)有一级茶叶96克,二级茶叶156克,三级茶叶240克,价值相等.现将这三种茶叶分别等分装袋(均为整数克),每袋价值相等,要使每袋价值最低应如何装袋?11)一次考试,参加的学生中有17得优,13得良,12得中,其余的得差,已知参加考试的学生不满50人,那么得差的学生有多少人?12)一次会餐供有三种饮料.餐后统计,三种饮料共用了65瓶;平均每2个人饮用一瓶A 饮料,每3人饮用一瓶B饮料,每4人饮用一瓶C饮料.问参加会餐的人数是多少人?13)把20个梨和25个苹果平均分给小朋友,分完后梨剩下2个,而苹果还缺2个,一共最多有多少个小朋友?14)因夜间施工需要,要把施工区的一条长120米的路边路灯有间隔6米改成间隔4米,除两端不需移动,中间还有几盏不需移动?15)两个数的积是6912,最大公因数是24,求它们的最小公倍数?16)甲、乙、丙三个学生定期向某老师求教,甲每4天去一次,乙每6天去一次,丙每9天去一次,如果这一次他们三人是3月23日都在这个老师家见面,那么下一次三人都在这个老师家见面的时间是几月几日?17)求被5除余2,被6除余3,被7除4的大于1000、小于1500的所有自然数.最大公因数与最小公倍数练习题一、填空:1、如果自然数A除以自然数B商是17,那么A与B的最大公因数是(),最小公倍数是()。

最大公因数和最小公倍数和列方程应用题1

最大公因数和最小公倍数和列方程应用题1

最大公因数和最小公倍数和列方程应用题1.甲、乙、丙三个班的同学去公园划船,甲班49人,乙班56人,丙班42人。

把各班同学分别分成小组,分乘若干条小船,使每条船上人数相等,最少要多少条船?2.有三根铁丝,长度分别是120厘米、180厘米、300厘米。

现在要把它们截成相等的小段,每根都不能有剩余。

每小段最长多少厘米?一共可以截成多少段?3.兄弟三人在外工作,大哥6天回家一次,二哥8天回家一次,小弟12天回家一次。

兄弟三人同时在十月一日回家,下一次三人再见面是哪一天?4.三个朋友每人隔不同的天数去图书馆一次,甲3天一次,乙4天一次,丙5天一次。

上次三人是星期二在图书馆相逢的,至少要过多少天才能在图书馆重逢?重逢时是星期几?5.两个数的最大公约数是14,最小公倍数是84。

已知其中一个数是28,则另一个数是多少?6.甲数是28,甲、乙两数的最小公倍数是168,最大公约数是4,求乙数。

7.三个连续自然数的最小公倍数是360,求这三个数。

8.三个连续自然数的最小公倍数是1092,求这三个数。

9.爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过几年分别是你的5倍、4倍、3倍、2倍。

”你知道爷爷和小明现在的年龄吗?10.大雪后的一天,亮亮和爸爸从同一点出发沿同一方向分别步测一个圆形花坛的周长。

亮亮每步长54厘米,爸爸每步长72厘米,由于两个人的脚印有重合,所以雪地上只留下60个脚印。

问这个花坛的周长是多少?11.现有四个自然数,它们的和是1111。

如果要求这四个数的公约数尽可能大,那么这四个数的公约数最大可能是多少?12.有三个互不相同的数,它们的和为721。

它们的公约数最大可能是多少?13.已知两个数的最大公约数是21,最小公倍数是126,求这两个数的和是多少。

14.已知两个数的最大公约数是4,最小公倍数是120,求这两个数。

15.两根铁丝分别长65米和95米,用一根绳子分别测量它们,都恰好量完无剩余,这根绳子最多有多长?16.一块砖底面长22厘米,宽是10厘米,要铺成一个正方形地面(不要折断,只能铺整砖)至少要多少块砖?17.小明和小华骑自行车同时从相距120千米的甲乙两地相向而行,3小时相遇,小明的速度是小华的3倍,求他们的速度各是多少?18.某学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍?19.弟弟有课外书20本,哥哥有课外书25本。

(完整版)最大公因数与最小公倍数综合应用题练习及答案④

(完整版)最大公因数与最小公倍数综合应用题练习及答案④

最大公因数与最小公倍数综合应用练习及答案(四)1、有一些糖果,分给8个人或分给10个人,正好分完,这些糖果最少有多少粒?2、有一包糖,不论分给8个人,还是分给10个人,都能正好分完。

这包糖至少有多少块?3、一个数被2除余1,被3除余2,被4除余4,被6除余5,此数最小是几?4、五年级学生参加植树活动,人数在30~50之间。

如果分成3人一组,4人一组,6人一组或者8人一组,都恰好分完。

五年级参加植树活动的学生有多少人?5、利用每一小块长6公分,宽4公分的长方形彩色瓷砖在墙壁上贴成正方形的图案。

问:拼成的正方形的面积最小是多少?6、有一堆苹果,每8千克一份,9千克一份,或10千克一份,都会多出3千克,这堆苹果至少有多少千克?7、学校合唱队排练时,如果7人一排就差2人,8人一排也差2人,合唱队至少有多少人?8、把37支钢笔和38本书,平均奖给几个学习成绩优秀的学生,结果钢笔多出一支,书还缺2本,最多有几个学习成绩优秀的同学?9、有24个苹果,32个梨,要分装在盘子里,每盘的苹果和梨的个数相同,最多可以装多少盘?每个盘子里苹果和梨各多少?10、阜沙市场是20路和21路汽车的起点站。

20路汽车每3分钟发车一次,21路汽车每5分钟发车一次。

这两路汽车同时发车以后,至少再过多少分钟又同时发车?11、中心小学五年级学生,分为6人一组,8人一组或9人一组排队做早操,都刚好分完。

这个年级至少有学生多少人?12、有一盘水果,3个3个地数余2个,4个4个数余3,5个5个数余4个,问个盘子里最少有多少个水果?13、有一个电子表,每走9分钟亮一次灯,每到整点响一次铃,中午12点整,电子表既响铃又亮灯,请问下一次既响铃又亮灯的是几点钟?14、数学兴趣小组有24个男同学,20个女同学,现要分成小组,每个小组男、女同学人数分别相同,最多可以分成多少个小组?每组至少有多少个男同学?多少个女同学?15、有38支铅笔和41本练习本平均奖给若干个好少年,结果铅笔多出3支,练习本还缺1本。

(完整版)最大公因数与最小公倍数应用题

(完整版)最大公因数与最小公倍数应用题

(完整版)最大公因数与最小公倍数应用题最大公因数与最小公倍数应用题1、有一些糖果,分给8个人或分给10个人,正好分完,这些糖果最少有多少粒?解:【8,10】=402、有一包糖,不论分给8个人,还是分给10个人,都能正好分完。

这包糖至少有多少块?解:【8,10】=40(人)3、一个数被2除余1,被3除余2,被4除余4,被6除余5,此数最小是几?解:【2,3,4,6】=1212-1=114、五年级学生参加植树活动,人数在30~50之间。

如果分成3人一组,4人一组,6人一组或者8人一组,都恰好分完。

五年级参加植树活动的学生有多少人?解:【3,4,6,8】=24(人)24×2=48(人)5、利用每一小块长6公分,宽4公分的长方形彩色瓷砖在墙壁上贴成正方形的图案。

问:拼成的正方形的面积最小是多少?解:【6,4】=12(公分)12×12=144(CM2)6、有一堆苹果,每8千克一份,9千克一份,或10千克一份,都会多出3千克,这堆苹果至少有多少千克?解:【8,9,10】=360360+3=363kg7、学校合唱队排练时,如果7人一排就差2人,8人一排也差2人,合唱队至少有多少人?解:【7,8】=56(人)56-2=54(人)8、把37支钢笔和38本书,平均奖给几个学习成绩优秀的学生,结果钢笔多出一支,书还缺2本,最多有几个学习成绩优秀的同学?解:37-1=36(本) 38+2=40(本)(36,40)=4(人)9、有24个苹果,32个梨,要分装在盘子里,每盘的苹果和梨的个数相同,最多可以装多少盘?每个盘子里苹果和梨各多少?解:(24,32)=8(盘)24÷8=3(个)32÷8=4(个)10、阜沙市场是20路和21路汽车的起点站。

20路汽车每3分钟发车一次,21路汽车每5分钟发车一次。

这两路汽车同时发车以后,至少再过多少分钟又同时发车?解:【3,5】=15(分钟)11、中心小学五年级学生,分为6人一组,8人一组或9人一组排队做早操,都刚好分完。

五年级最大公因数和最小公倍数

五年级最大公因数和最小公倍数

五年级最大公因数和最小公倍数公因数问题1:用短除法求下列各组数的最大公因数。

①12和18 ②34和102 ③15和50 ④12、24和36想:用短除法求两个数的最大公因数,一般用这两个数除以它们的公因数,一直除到所得的两个商只有公因数1为止,再把所有的除数连乘起来,所得积就是这两个数的最大公因数。

两个数的最大公因数用( )表示。

1218269323①②34102217511713③④155053101224362612182369312(34、102)= 2×17=34(15、50)= 5(15、24、36)= 2×2×3=123试一试:求下列各组数的最大公因数(用短除法)①20和30②28和84③54和90④30、45和60问题2:求24、60和132三个数,共有多少个公因数?其中最大的公因数是多少?想:这道题可用列举法来解答,但比较麻烦。

我们可以用短除法求出这三个数的最大公因数,然后根据几个自然数最大公因数的因数个数等于这几个自然数公因数的个数的规律,找到这三个数的公因数。

24601322123066261533325(24、60、132)= 2×2×3=12,因为24、60和132的最大公因数是12,而12=22×3,得(2+1)×(1+1)=6,所以,24、60和132共有6个公因数,最大公因数是12。

解:11试一试:先用短除法求出每一组数的最大公因数,再求出每组数中公因数的总个数。

解:同时除以公因数2同时除以公因数2同时除以公因数3除到三个商只有公因数1为止(12、18)= 2×3=6①16和24 ②28和70 ③150和180 ④60、75和150问题3:有三根木棒,分别长12厘米,44厘米,56厘米,把它们都截成同样长的小棒(整厘米),不许有剩余,每根小棒最长能有多少厘米?想:把每根木棒截成同样长的小棒后不许有剩余,每根小棒的长度必须是各自木棒长度的因数;把三根小棒截成同样长的小棒,不许有剩余,每根小棒的长就是这三根小棒的公因数;每根小棒最长多少厘米,就是求这三根小棒的最大公因数。

五年级数学最大公因数,最小公倍数练习题(含提高)

五年级数学最大公因数,最小公倍数练习题(含提高)

五年级数学最大公因数,最小公倍数练习题(含提高)定义:最大公约数:最大公约数,也称最大公因数、最大公因子,指两个或多个整数共有约数中最大的一个。

a,b的最大公约数记为(a,b),同样的,a,b,c的最大公约数记为(a,b,c),多个整数的最大公约数也有同样的记号。

求最大公约数有多种方法,常见的有质因数分解法、短除法、辗转相除法、更相减损法。

与最大公约数相对应的概念是最小公倍数,a,b的最小公倍数记为[a,b]。

质因数分解法:把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是这几个数的最大公约数。

例如:求24和60的最大公约数,先分解质因数,得24=2×2×2×3,60=2×2×3×5,24与60的全部公有的质因数是2、2、3,它们的积是2×2×3=12,所以,(24、60)=12。

把几个数先分别分解质因数,再把各数中的全部公有的质因数和独有的质因数提取出来连乘,所得的积就是这几个数的最小公倍数。

例如:求6和15的最小公倍数。

先分解质因数,得6=2×3,15=3×5,6和15的全部公有的质因数是3,6独有质因数是2,15独有的质因数是5,2×3×5=30,30里面包含6的全部质因数2和3,还包含了15的全部质因数3和5,且30是6和15的公倍数中最小的一个,所以[6,15]=30。

短除法:短除法求最大公约数,先用这几个数的公约数连续去除,一直除到所有的商互质为止,然后把所有的除数连乘起来,所得的积就是这几个数的最大公约数。

短除法求最小公倍数,先用这几个数的公约数去除每个数,再用部分数的公约数去除,并把不能整除的数移下来,一直除到所有的商中每两个数都是互质的为止,然后把所有的除数和商连乘起来,所得的积就是这几个数的最小公倍数,例如,求12、15、18的最小公倍数。

五年级公因数和公倍数的题120道

五年级公因数和公倍数的题120道

五年级公因数和公倍数的题120道一、公因数相关题目(60道,先20道带解析)1. 求12和18的最大公因数。

- 解析:分别列出12和18的因数。

12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。

它们共有的因数有1、2、3、6,其中最大的是6,所以12和18的最大公因数是6。

2. 求24和36的最大公因数。

- 解析:24的因数有1、2、3、4、6、8、12、24;36的因数有1、2、3、4、6、9、12、18、36。

共有的因数为1、2、3、4、6、12,最大公因数是12。

3. 求15和25的最大公因数。

- 解析:15的因数是1、3、5、15,25的因数是1、5、25。

它们的公因数有1和5,最大公因数是5。

4. 求8和12的最大公因数。

- 解析:8的因数有1、2、4、8,12的因数有1、2、3、4、6、12。

共有的因数为1、2、4,最大公因数是4。

5. 求20和30的最大公因数。

- 解析:20的因数有1、2、4、5、10、20,30的因数有1、2、3、5、6、10、15、30。

公因数有1、2、5、10,最大公因数是10。

6. 求16和24的最大公因数。

- 解析:16的因数有1、2、4、8、16,24的因数有1、2、3、4、6、8、12、24。

共有的因数为1、2、4、8,最大公因数是8。

7. 求9和15的最大公因数。

- 解析:9的因数有1、3、9,15的因数有1、3、5、15。

公因数为1和3,最大公因数是3。

8. 求14和21的最大公因数。

- 解析:14的因数有1、2、7、14,21的因数有1、3、7、21。

共有的因数为1、7,最大公因数是7。

9. 求28和42的最大公因数。

- 解析:28的因数有1、2、4、7、14、28,42的因数有1、2、3、6、7、14、21、42。

公因数有1、2、7、14,最大公因数是14。

10. 求10和15的最大公因数。

- 解析:10的因数有1、2、5、10,15的因数有1、3、5、15。

最大公因数和最小公倍数练习题(专项练习)

最大公因数和最小公倍数练习题(专项练习)

最大公因数和最小公倍数练习题姓名:成绩一. 填空题。

1. A与B的最小公倍数是10,那么它们的下一个公倍数应该是()。

2、所有自然数的公因数为()。

3、都是自然数,如果,的最大公因数是(),最小公倍数是()。

4. 如果m和n是互质数,那么它们的最大公因数是(),最小公倍数是()。

5. 在4、9、10和16这四个数中,()和()是互质数,()和()是互质数,()和()是互质数。

6. 分母是15的最简真分数一共有( )个。

三. 在左边写出每组数的最大公约数,右边写最小公倍数。

()26和13()()13和6()()4和6()()5和9()()29和87()()30和15()()13、26和52()()2、3和7()四. 用短除法求下面每组数的最大公因数和最小公倍数。

(注意格式完整)45和60 36和60 27和72 72和80五、生活中的应用(注意分清楚是与最大公因数有关还是与最小公倍数有关)1、五年级同学参加植树活动,如果8人一组或14人一组,正好分配完,五年级最少有多少人?2、五年级某班学生在40—50人间,如果分成2人一组、5人一组、4人一组都恰好分完,这个班有多少人?3、两条钢条,一根长18米,一根长24米,要把它们截成同样长的小段,每段最长可以有几米?一共截成多少段?4、7路车每5分钟发一班车,12路车每8分钟发,这两路车同时出发后,至少再经过多少分钟后又同时发车?5、有饼干27千克、糖18千克,这些物品都刚好能平均分给一些小朋友,最多可以分给几个小朋友?6、两个连续自然数的和是21,这两个数的最大公因数是(),最小公倍数是()。

*六. 动脑筋,想一想:*1某数除以3、5、7时都余1,这个数最小是()。

*2)甲,乙,甲和乙的最大公因数是(),甲和乙的最小公倍数是()*3)学校买40支钢笔和50本练习本,平均奖给四年级三好学生,结果钢笔多4支,练习本多2本,三好学生有几人五、生活中的应用(注意分清楚是与最大公因数有关还是与最小公倍数有关)6、五年级同学参加植树活动,如果8人一组或14人一组,正好分配完,五年级最少有多少人?7、五年级某班学生在40—50人间,如果分成2人一组、5人一组、4人一组都恰好分完,这个班有多少人?8、两条钢条,一根长18米,一根长24米,要把它们截成同样长的小段,每段最长可以有几米?一共截成多少段?9、7路车每5分钟发一班车,12路车每8分钟发,这两路车同时出发后,至少再经过多少分钟后又同时发车?10、有饼干27千克、糖18千克,这些物品都刚好能平均分给一些小朋友,最多可以分给几个小朋友?6、两个连续自然数的和是21,这两个数的最大公因数是(),最小公倍数是()。

五年级数学最大公因数,最小公倍数练习题(含提高)

五年级数学最大公因数,最小公倍数练习题(含提高)

五年级数学最大公因数,最小公倍数练习题(含提高)定义:最大公约数:最大公约数.也称最大公因数、最大公因子.指两个或多个整数共有约数中最大的一个。

a.b的最大公约数记为(a.b).同样的.a.b.c的最大公约数记为(a.b.c).多个整数的最大公约数也有同样的记号。

求最大公约数有多种方法.常见的有质因数分解法、短除法、辗转相除法、更相减损法。

与最大公约数相对应的概念是最小公倍数.a.b的最小公倍数记为[a.b]。

质因数分解法:把每个数分别分解质因数.再把各数中的全部公有质因数提取出来连乘.所得的积就是这几个数的最大公约数。

例如:求24和60的最大公约数.先分解质因数.得24=2×2×2×3.60=2×2×3×5.24与60的全部公有的质因数是2、2、3.它们的积是2×2×3=12.所以.(24、60)=12。

把几个数先分别分解质因数.再把各数中的全部公有的质因数和独有的质因数提取出来连乘.所得的积就是这几个数的最小公倍数。

例如:求6和15的最小公倍数。

先分解质因数.得6=2×3.15=3×5.6和15的全部公有的质因数是3.6独有质因数是2.15独有的质因数是5.2×3×5=30.30里面包含6的全部质因数2和3.还包含了15的全部质因数3和5.且30是6和15的公倍数中最小的一个.所以[6.15]=30。

短除法:短除法求最大公约数.先用这几个数的公约数连续去除.一直除到所有的商互质为止.然后把所有的除数连乘起来.所得的积就是这几个数的最大公约数。

短除法求最小公倍数.先用这几个数的公约数去除每个数.再用部分数的公约数去除.并把不能整除的数移下来.一直除到所有的商中每两个数都是互质的为止.然后把所有的除数和商连乘起来.所得的积就是这几个数的最小公倍数.例如.求12、15、18的最小公倍数。

五年级数学最大公因数与最小公倍数练习题 甄选

五年级数学最大公因数与最小公倍数练习题   甄选

五年级数学最大公因数与最小公倍数练习题(优选.)最大公因数与最小公倍数练习题1)有一个自然数,被6除余1,被5除余1,被4除余1,这个自然数最小是几?2)把长120厘米,宽80厘米的铁板裁成面积相等,最大的正方形而且没有剩余,可以裁成多少块?3)把长132厘米,宽60厘米,厚36厘米的木料锯成尽可能大的,同样大小的正方体木块,锯后不能有剩余,能锯成多少块?4)一盒钢笔可以平均分给2、3、4、5、6个同学,这盒钢笔最小有多少枝?5)用96朵红花和72朵白花做成花束,如果各花束里红花的朵数相同,白花的朵数也相同,每束花里最少有几朵花?6)从小明家到学校原来每隔50米安装一根电线杆,加上两端的两根一共是55根电线杆,现在改成每隔60米安装一根电线杆,除两端的两根不用移动外,中途还有多少根不必移动?7)每筐梨,按每份2个梨分多1个,每份3个梨分多2个,每份5个梨分4个,则筐里至少有多少个梨?8)现在有香蕉42千克,苹果112千克,桔子70千克,平均分给幼儿园的几个班,每班分到的这三种水果的数量分别相等,那么最多分给了多少个班?每个班至少分到了三种水果各多少千克?9)有三根铁丝,一根长54米,一根长72米,一根长36米,要把它们截成同样长的小段,不许剩余,每段最长是多少米?10).有一级茶叶96克,二级茶叶156克,三级茶叶240克,价值相等.现将这三种茶叶分别等分装袋(均为整数克),每袋价值相等,要使每袋价值最低应如何装袋?11).a、b两数的最大公因数是12,已知a有8个因数,b有9个因数,求a与b.12).两个数的积是6912,最大公因数是24,求它们的最小公倍数?13).甲、乙、丙三个学生定期向某老师求教,甲每4天去一次,乙每6天去一次,丙每9天去一次,如果这一次他们三人是3月23日都在这个老师家见面,那么下一次三人都在这个老师家见面的时间是几月几日?14).求被5除余2,被6除余3,被7除4的大于1000、小于1500的所有自然数.最大公因数与最小公倍数练习题班级:姓名:一、填空:1、如果自然数A除以自然数B商是17,那么A与B的最大公因数是(),最小公倍数是()。

小学五年级最大公因数最小公倍数练习题

小学五年级最大公因数最小公倍数练习题

求最小公倍数,最大公因数练习题一、填空1、当两个数是互质数时,它们的最大公因数是(),它们的最小公倍数是()。

2、甲=2×3×6,乙2×3×7,甲和乙的最大公因数是()×()=(),甲和乙的最小公倍数是()×()×()×()=()。

3、所有自然数的公因数为()。

4、如果m和n是互质数,则它们的最大公因数是(),最小公倍数是()。

5、在4、9、10和16这四个数中,()和()是互质数,()和()是互质数,()和()是互质数。

6、用一个数去除15和30,正好都能整除,这个数最大是()。

7、两个连续自然数的和是21,这两个数的最大公因数是(),最小公倍数是()。

8、两个相邻奇数的和是16,它们的最大公因数是(),最小公倍数是()。

9、某数除以3、5、7时都余1,这个数最小是( )。

10、根据要求写互质数。

(1)、()质数和()奇数。

(2)、()合数和()合数。

(3)、( 9 )和()任意一自然数。

二、判断1、是互质数的两个数必须都是质数。

()2、最小的质数是所有偶数的最大公约数。

()3、有公约数1的两个数,一定是互质数。

()4、 a是质数,b也是质数,a×b-m,(m也是质数),一定是质数。

()5、最大公因数指几个数的共同的因数。

()三、用短除法求最小公倍数。

26和52 69和33 82和1811和77 16和24 688和3444和6 2和9 7和8四、想一想学校买来40支圆珠笔和50本练习本,平均分给四年级三好学生,结果圆珠笔多四支,练习本多二本,四年级有多少三好学生?他们各获得什么奖品?五、生活应用1、五年一班去划船,他们算了一下,如果增加一条船,正好每船坐6个,如果减少一条船,正好每船坐9人,这个班有多少人?2、两个数的最大公约数是15,最小公倍数是90,求这两个数分别是多少?3、一个数被2除余1,被3除余2,被4除余3,被5除余4,被6除余5,此数最小是几?4、甲、乙、丙三人是朋友,他们每隔不同天数到图书馆去一次,甲3天去一次,乙4天去一次,丙5天去一次。

五年级数学最大公因数,最小公倍数练习题(含提高)

五年级数学最大公因数,最小公倍数练习题(含提高)

五年级数学最大公因数,最小公倍数练习题(含提高)定义:最大公约数:最大公约数.也称最大公因数.最大公因子.指两个或多个整数共有约数中最大的一个·a.b的最大公约数记为(a.b).同样的.a.b.c的最大公约数记为(a.b.c).多个整数的最大公约数也有同样的记号·求最大公约数有多种方法.常见的有质因数分解法.短除法.辗转相除法.更相减损法·与最大公约数相对应的概念是最小公倍数.a.b的最小公倍数记为[a.b]·质因数分解法:把每个数分别分解质因数.再把各数中的全部公有质因数提取出来连乘.所得的积就是这几个数的最大公约数·例如:求24和60的最大公约数.先分解质因数.得24=2×2×2×3.60=2×2×3×5.24与60的全部公有的质因数是2.2.3.它们的积是2×2×3=12.所以.(24.60)=12·把几个数先分别分解质因数.再把各数中的全部公有的质因数和独有的质因数提取出来连乘.所得的积就是这几个数的最小公倍数·例如:求6和15的最小公倍数·先分解质因数.得6=2×3.15=3×5.6和15的全部公有的质因数是3.6独有质因数是2.15独有的质因数是5.2×3×5=30.30里面包含6的全部质因数2和3.还包含了15的全部质因数3和5.且30是6和15的公倍数中最小的一个.所以[6.15]=30·短除法:短除法求最大公约数.先用这几个数的公约数连续去除.一直除到所有的商互质为止.然后把所有的除数连乘起来.所得的积就是这几个数的最大公约数·短除法求最小公倍数.先用这几个数的公约数去除每个数.再用部分数的公约数去除.并把不能整除的数移下来.一直除到所有的商中每两个数都是互质的为止.然后把所有的除数和商连乘起来.所得的积就是这几个数的最小公倍数.例如.求12.15.18的最小公倍数·[1]短除法的格式短除法的本质就是质因数分解法.只是将质因数分解用短除符号来进行·短除符号就是除号倒过来·短除就是在除法中写除数的地方写两个数共有的质因数.然后落下两个数被公有质因数整除的商.之后再除.以此类推.直到结果互质为止(两个数互质)·而在用短除计算多个数时.对其中任意两个数存在的因数都要算出.其它没有这个因数的数则原样落下·直到剩下每两个都是互质关系·求最大公因数便乘一边.求最小公倍数便乘一圈·无论是短除法.还是分解质因数法.在质因数较大时.都会觉得困难·这时就需要用新的方法·辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法.也叫欧几里德算法·这就是辗转相除法的原理·辗转相除法的格式例如.求(319.377):∵ 319÷377=0(余319)∴(319.377)=(377.319);∵ 377÷319=1(余58)∴(377.319)=(319.58);∵ 319÷58=5(余29).∴(319.58)=(58.29);∵ 58÷29=2(余0).∴(58.29)= 29;∴(319.377)=29.可以写成右边的格式·用辗转相除法求几个数的最大公约数.可以先求出其中任意两个数的最大公约数.再求这个最大公约数与第三个数的最大公约数.依次求下去.直到最后一个数为止·最后所得的那个最大公约数.就是所有这些数的最大公约数·更相减损法:也叫更相减损术.是出自《九章算术》的一种求最大公约数的算法.它原本是为约分而设计的.但它适用于任何需要求最大公约数的场合·《九章算术》是中国古代的数学专著.其中的“更相减损术”可以用来求两个数的最大公约数.即“可半者半之.不可半者.副置分母.子之数.以少减多.更相减损.求其等也·以等数约之·”翻译成现代语言如下:第一步:任意给定两个正整数;判断它们是否都是偶数·若是.则用2约简;若不是则执行第二步·第二步:以较大的数减较小的数.接着把所得的差与较小的数比较.并以大数减小数·继续这个操作.直到所得的减数和差相等为止·则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数·其中所说的“等数”.就是最大公约数·求“等数”的办法是“更相减损”法·所以更相减损法也叫等值算法·例1.用更相减损术求98与63的最大公约数·解:由于63不是偶数.把98和63以大数减小数.并辗转相减:98-63=3563-35=2835-28=728-7=2121-7=1414-7=7所以.98和63的最大公约数等于7·这个过程可以简单的写为:(98.63)=(35.63)=(35.28)=(7.28)=(7.21)=(7.14)=(7.7)=7最小公倍数:两个或多个整数公有的倍数叫做它们的公倍数·两个或多个整数的公倍数里最小的那一个叫做它们的最小公倍数·分解质因数法:先把这几个数的质因数写出来.最小公倍数等于它们所有的质因数的乘积(如果有几个质因数相同.则比较两数中哪个数有该质因数的个数较多.乘较多的次数)·比如求45和30的最小公倍数·45=3*3*530=2*3*5不同的质因数是2,3,5·3是他们两者都有的质因数.由于45有两个3.30只有一个3.所以计算最小公倍数的时候乘两个3.最小公倍数等于2*3*3*5=90又如计算36和270的最小公倍数36=2*2*3*3270=2*3*3*3*5不同的质因数是5·2这个质因数在36中比较多.为两个.所以乘两次;3这个质因数在270个比较多.为三个.所以乘三次·最小公倍数等于2*2*3*3*3*5=54020和40的最小公倍数是40[4]公式法:由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积·即(a.b)×[a.b]=a×b·所以.求两个数的最小公倍数.就可以先求出它们的最大公约数.然后用上述公式求出它们的最小公倍数·例如.求[18.20].即得[18.20]=18×20÷(18.20)=18×20÷2=180·求几个自然数的最小公倍数.可以先求出其中两个数的最小公倍数.再求这个最小公倍数与第三个数的最小公倍数.依次求下去.直到最后一个为止·最后所得的那个最小公倍数.就是所求的几个数的最小公倍数·常用结论:在解有关最大公约数.最小公倍数的问题时.常用到以下结论:(1)如果两个自然数是互质数.那么它们的最大公约数是1.最小公倍数是这两个数的乘积·例如8和9.它们是互质数.所以(8.9)=1.[8.9]=72·(2)如果两个自然数中.较大数是较小数的倍数.那么较小数就是这两个数的最大公约数.较大数就是这两个数的最小公倍数·例如18与3.18÷3=6.所以(18.3)=3.[18.3]=18·(3)两个整数分别除以它们的最大公约数.所得的商是互质数·例如8和14分别除以它们的最大公约数2.所得的商分别为4和7.那么4和7是互质数·(4)两个自然数的最大公约数与它们的最小公倍数的乘积等于这两个数的乘积·例如12和16.(12.16)=4.[12.16]=48.有4×48=12×16.即(12.16)× [12.16]=12×16·例1:两个数的最大公因数是15,最小公倍数是90,求这两个数分别是多少?15×1=15,15×6=90;当a1b1分别是2和3时,a.b分别为15×2=30,15×3=45·所以.这两个数是15和90或者30和45·例2:两个自然数的积是360,最小公倍数是120,这两个数各是多少?分析我们把这两个自然数称为甲数和乙数·因为甲.乙两数的积一定等于甲.乙两数的最大公因数与最小公倍数的积·根据这一规律.我们可以求出这两个数的最大公因数是360÷120=3·又因为(甲÷3=a,乙÷3=b)中,3×a×b=120,a和b一定是互质数.所以,a和b可以是1和40,也可以是5和8·当a和b是1和40时.所求的数是3×1=3和3×40=120;当a 和b是5和8时.所求的数是3×5=15和3×8=24·分析甲跑一圈需要600÷3=200秒.乙跑一圈需要600÷4=150秒.丙跑一圈需要600÷2=300秒·要使三人再次从出发点一齐出发.经过的时间一定是200.150和300的最小公倍数·200.150和300的最小公倍数是600,所以.经过600秒后三人又同时从出发点出发·综合练习:一. 填空题·1. 都是自然数.如果.的最大公约数是().最小公倍数是()·2. 甲.乙.甲和乙的最大公约数是()×()=().甲和乙的最小公倍数是()×()×()×()=()·3. 所有自然数的公约数为()·4. 如果m和n是互质数.那么它们的最大公约数是().最小公倍数是()·5. 在4.9.10和16这四个数中.()和()是互质数.()和()是互质数.()和()是互质数·6. 用一个数去除15和30.正好都能整除.这个数最大是()·7. 两个连续自然数的和是21.这两个数的最大公约数是().最小公倍数是()·8. 两个相邻奇数的和是16.它们的最大公约数是().最小公倍数是()·9. 某数除以3.5.7时都余1.这个数最小是()·10. 根据下面的要求写出互质的两个数·(1)两个质数()和()·(2)连续两个自然数()和()·(3)1和任何自然数()和()·(4)两个合数()和()·(5)奇数和奇数()和()·(6)奇数和偶数()和()·11.两个数的最大公因数是6.最小公倍数是144.这两个数的和是()·12.有一个数.同时能被9,10,15整除.满足条件的最大三位数是()·13.筐里装满了鸡蛋.已知这筐鸡蛋两个两个数多一个.五个五个数仍多一个.那么这筐鸡蛋至少有()个·14.有336个苹果.252个橘子.210个梨.用这些果品最多可分成若干份同样的礼物.这时在每份礼物中.三种水果各有()·15.有96多红花和72朵白花扎成花束.如果每个花束里红花的朵数相同.白花的朵数也相同.每个花束至少有()朵花·二. 判断题·1. 互质的两个数必定都是质数·()2. 两个不同的奇数一定是互质数·()3. 最小的质数是所有偶数的最大公约数·()4. 有公约数1的两个数.一定是互质数·()5. a是质数.b也是质数..一定是质数·()三. 直接说出每组数的最大公约数和最小公倍数·26和13() 13和6()4和6() 5和9()29和87() 30和15()13.26和52 () 2.3和7()四.求下面每组数的最大公约数和最小公倍数·(三个数的只求最小公倍数)45和60 36和6027和72 76和8042.105和56 24.36和48五.解答题·1.把一张长120厘米.宽80厘米的长方形的纸裁成正方形.不允许剩余.至少能裁多少张?2.已知两个自然数的最大公因数是12.(1)最小公倍数是72.求这两个数的积(2)满足已知条件的自然数有哪几组?3.一筐梨.按每份2个梨分多一个.每份3个梨多两个.每份5个梨多四个.问筐里至少有多少个梨?4.甲乙丙三人环绕操场步行一周.甲要三分钟.乙要四分钟.丙要六分钟.三人同时同地同向出发.当他们三人第一次相遇时.甲乙丙三人分别绕了多少周?5.某港口停着四艘轮船.一天他们同时开出港口.已知甲船每隔两星期回港一次.乙船每隔四星期回港一次.丙船每隔六星期回港一次.丁船八星期回港一次.至少经过几星期后.这四只轮船再次在港口重新会合?6、有一个自然数.被6除余1.被5除余1.被4除余1.这个自然数最小是几?7、一盒钢笔可以平均分给2.3.4.5.6个同学.这盒钢笔最小有多少枝?8、用96朵红花和72朵白花做成花束.如果各花束里红花的朵数相同.白花的朵数也相同.每束花里最少有几朵花?9、从小明家到学校原来每隔50米安装一根电线杆.加上两端的两根一共是55根电线杆.现在改成每隔60米安装一根电线杆.除两端的两根不用移动外.中途还有多少根不必移动?10.每筐梨.按每份两个梨分多1个.每份3个梨分多2个.每份5个梨分4个.则筐里至少有多少个梨?11.学校买来40支圆珠笔和50本练习本.平均奖给四年级三好学生.结果圆珠笔多4支.练习本多2本.四年级有多少名三好学生.他们各得到什么奖品?12.小明.小红.小王一起分17个苹果.小明分得其中的二分之一.小红分得其中的三分之一.小王分得其中的九分之一.问他们每个人分别分得几个苹果?。

五年级最大公因数和最小公倍数

五年级最大公因数和最小公倍数

五年级最大公因数和最小公倍数公因数问题1:用短除法求下列各组数的最大公因数。

①12和18 ②34和102 ③15和50 ④12、24和36想:用短除法求两个数的最大公因数,一般用这两个数除以它们的公因数,一直除到所得的两个商只有公因数1为止,再把所有的除数连乘起来,所得积就是这两个数的最大公因数。

两个数的最大公因数用( )表示。

试一试:求下列各组数的最大公因数(用短除法)①20和30 ②28和84 ③54和90 ④30、45和60问题2:求24、60和132三个数,共有多少个公因数?其中最大的公因数是多少?想:这道题可用列举法来解答,但比较麻烦。

我们可以用短除法求出这三个数的最大公因数,然后根据几个自然数最大公因数的因数个数等于这几个自然数公因数的个数的规律,找到这三个数的公因数。

2460132 2123066261533325(24、60、132)= 2×2×3=12,因为24、60和132的最大公因数是12,而12=22×3,得(2+1)×(1+1)=6,所以,24、60和132共有6个公因数,最大公因数是12。

解:1112 18 26 93 2 3①②341022 17 51 171 3③④155053101224362612182369312(34、102)= 2×17=34(15、50)= 5(15、24、36)= 2×2×3=123解: 同时除以公因数2 同时除以公因数2 同时除以公因数3 除到三个商只有公 因数1为止(12、18)= 2×3=6试一试:先用短除法求出每一组数的最大公因数,再求出每组数中公因数的总个数。

①16和24 ②28和70 ③150和180 ④60、75和150问题3:有三根木棒,分别长12厘米,44厘米,56厘米,把它们都截成同样长的小棒(整厘米),不许有剩余,每根小棒最长能有多少厘米?想:把每根木棒截成同样长的小棒后不许有剩余,每根小棒的长度必须是各自木棒长度的因数;把三根小棒截成同样长的小棒,不许有剩余,每根小棒的长就是这三根小棒的公因数;每根小棒最长多少厘米,就是求这三根小棒的最大公因数。

人教版五年级数学下册求最大公因数最小公倍数应用题

人教版五年级数学下册求最大公因数最小公倍数应用题

求最大公因数
1.有一张长方形纸,长70 ,宽50 ,若要剪成同样大小的正方形且无剩余,剪出小正方形边长最大是多少厘米?
2.男生有48人,女生有36人,男女分别排队,要使每排的人数相同,每排最多有多少人?这时男女分别有几排?
3.把3根分别长12cm,16cm,44cm,的小棒,截成同样的小棒,不能有剩余,每根小棒最长是多少厘米?
4.把46个苹果和38个橘子分别平分给一些同学,结果苹果剩一个,橘子剩3个,问有几位同学?
5.一个数除36和46,结果都余6个,这个数最大是多少?
6.一块长72cm,宽60cm, 高36cm,把它锯成同样大小的正方体木块,问正方体木块的棱长是多少cm?可锯几块?
求最小公倍数题
1.一些学生在40人以内,分4人一组,6人一组都正好分完,问这些人可能是多少人?
2.李阿姨今天给月季,君子兰同时浇水,月季每4天浇一次水,君子兰每6天浇一次水,至少多少天后,再同时给两种花浇水?
3.一块正方形布料,既可做成边长是8cm的方巾,也可以做10cm的方巾,都没有剩余,这块正方形布料的边长至少是多少厘米?
4.3路车和5路车起点站在一起,3路车每分钟发一次车,5路车每8分钟发一次车,这两路车至少过几分钟又同时发车?
5.小红妈妈4分钟跑一圈,爸爸3分钟跑一圈,若同时起跑,至少几分钟后又在起点相遇?
6.李阿姨带的钱买4元一瓶或6元一瓶的水都剩2元,李阿姨至少带了多少钱?
7.五(1)班排队,每排6人少2人,每排7人还少2人,这个班人数在30---50人之间,求这个班有多少人?
8.某班学生植树,人数在30---60人之间,若分4人一组,6人一组,8人一组,都正好分完,这人?。

五年级下册最大公因数最小公倍数

五年级下册最大公因数最小公倍数

例1甲乙两个数的最大公因数是6,最小公倍数是90.如果甲数是18则乙数是多少?
例2. 甲乙两个数的最大公因数是8,最小公倍数是48.则两个数分别是多少?
例3如果把长90厘米,宽42厘米的长方形贴片剪成边长是整理米数,面积相等的正方形铁片,恰好无剩余,请问至少剪成多少块?
例4小明小红和小亮定期去图书馆看书,小明每6天去一次,小红每8天去一次,小亮每9天去一次,如果今天刚好他们一起去了图书馆,至少再过几天三人同时去?
例5.一排电线杆共计41根,每相邻两根间相距都是45米,现在要改成60米,可以有几根不需要移动?
练习
1甲乙两个数的最大公因数是3,最小公倍数是90.如果甲数是15则乙数是多少?
2甲乙两个数的最大公因数是4,最小公倍数是288.如果甲数是36则乙数是多少?
3甲乙两个数的最大公因数是66,最小公倍数是2310这两个数的差是432.则两个数分别是多少?
4有三根钢管,分别长200cm,240cm,320cm,现在要把这三根钢管截成尽可能长而且相等的小段,每段最长都是厘米?
5.一个长方体,长宽高分别是16cm24cm和40cm,现在把这个长方体分割成大小一样的小正方体,不许有剩余,每个小正方体最大可以是多少?一共多少块?
6.有336个苹果252个橘子210个梨,用这些水果,最多可以分成多少个同样的果篮?每个果篮里的苹果.橘子.梨有多少个?
7.甲、乙、丙三个同学他们每隔不同的天数到图书馆借一次书,甲4天去一次,乙5天去一次,丙6天去一次某一个星期日,三人恰好在图书馆相会,问至少再过多少天三人又再图书馆相会?那天是星期几?
8.甲乙丙三人沿着一环形跑道跑步,甲跑一圈1分12秒,乙跑一圈需要1分20秒,丙跑一圈要1分30秒,三人同时从起点出发,最少经过多长时间又同时相遇于起点?。

【典型例题】五年级数学下册第四单元:最大公因数和最小公倍数的应用专项练习(含答案)人教版

【典型例题】五年级数学下册第四单元:最大公因数和最小公倍数的应用专项练习(含答案)人教版

2021-2022学年五年级数学下册典型例题系列之第四单元:最大公因数和最小公倍数的应用专项练习(原卷版)1.有两条丝带,分别长32m,2m。

现在要将它们剪成同样长的小段做成中国结,每一条都不能有剩余,这样一共最少可以剪成多少段?2.一块长72厘米,宽32厘米的铁皮,剪成若干个同样大小的正方形,且没有剩余。

剪成的正方形边长最长是多少厘米?一共剪成这样的正方形几个?3.一张长方形木板长28dm,宽12dm。

在无剩余的前提下,将它裁成大小相等且尽可能大的正方形,正方形的边长是多少?4.小红家要给长16dm、宽为12dm的储藏室地面铺一种地砖(整块铺),市场上有边为4dm和6dm的正方形地砖两种。

(1)她选择边长是()dm的正方形地砖来铺更合适。

(2)这种正方形地砖需要多少块?5.王老师买了32枝铅笔和24本笔记本,平均奖给班里的“三好”学生,刚好全部奖完。

王老师班里最多有多少名“三好”学生?6.有24朵红花,9朵黄花要分给几个同学,要求每人分得的花的颜色及对应的数量都相同,最多可以分给多少人?7.有一张长16厘米,宽12厘米的长方形纸。

要剪成若干同样大小的正方形而没有剩余,剪出的正方形的边长最大是几厘米?可以剪多少个这样的正方形?8.有一块长24dm,宽18dm的布料,要把这块布料裁成正方形的手帕没有剩余,手帕的边长可以是多少分米?边长最大是多少分米?9.有两根木条,一根长36cm,一根长48cm,把它们剪成完全相等的小段且没有剩余,每小段最长是多少厘米?这两根木条一共能剪成多少段?10.高新二小利用假期修缮校舍。

给一间长80分米,宽55分米的教室内铺同样大小的正方形地砖,铺的时候地砖要完整而没有剩余,地砖边长最大是几分米?需要多少块这样的地砖?11.春蕾小学五年级70多名学生参加社区活动。

这些学生可以分成8人一组,也可以分成12人一组,都正好分完。

春蕾小学有多少名学生参加这次活动?12.一个长方形的长和宽分别是24cm和16cm,至少用多少个这样的长方形才能拼成一个正方形?这个正方形的边长是多少?13.李阿姨有一筐苹果,3个3个地数,多2个,5个5个地数,多2个,4个4个地数,还多2个。

五年级下学期最大公因数和最小公倍数应用题及练习题

五年级下学期最大公因数和最小公倍数应用题及练习题

五年级下学期最大公因数和最小公倍数应用题及练习题应用题:1. 甲、乙两个人同时从一个城市出发,往同一方向走, 甲每三天走12公里,乙每四天走16公里,问他们在同时走了96公里后第一次相遇的位置,相遇时的时间是几天?解析:甲、乙在同时走了96公里后第一次相遇,说明他们走的总路程相等。

设他们相遇时走了x天,则有:甲走的路程:12 × x / 3 = 4 × x乙走的路程:16 × x / 4 = 4 × x因此,他们在走了4x公里后相遇。

根据题意,得到:4x = 96解得:x = 24因此,他们在走了24天后第一次相遇,相遇的位置为走了每人相应的步数。

甲和乙在这个位置所走的路程即为他们的最小公倍数,也就是:lcm(12, 16) = 48因此,他们在走了24天后第一次相遇的位置为48公里处。

2. 一支乐队有男、女成员各若干名。

如果男成员每6人排成一排,女成员每8人排成一排,排成的队伍的长度相等。

问这个乐队的男、女成员分别最少有多少人?解析:设男、女成员分别有x、y名,则男成员排成的队伍有x/6个,女成员排成的队伍有y/8个。

由题意得到:(x/6) × 6 = (y/8) × 8因此,x和y的最小公倍数为48。

同时,又要保证x和y都是正整数,所以x和y分别为48和48的约数。

因此,这个乐队的男、女成员分别最少有6名和8名。

练习题:1. 求下列各组数的最大公因数和最小公倍数:(1)24, 36(2)15, 25(3)18, 30(4)40, 60, 100解析:(1)24, 36的最大公因数为12,最小公倍数为72。

(2)15, 25的最大公因数为5,最小公倍数为75。

(3)18, 30的最大公因数为6,最小公倍数为90。

(4)40, 60, 100的最大公因数为20,最小公倍数为300。

2. 奶妈每隔4小时喂一次奶,夏天每隔6小时给婴儿喝一次水,如果他们同时开始工作,那么在何时第一次同时给婴儿喝奶和水?解析:奶妈每隔4小时给婴儿喝一次奶,夏天每隔6小时给婴儿喝一次水,因此,每过12小时就会同时给婴儿喝奶和水。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最大公约数与最小公倍数
1)有一个自然数,被6除余1,被5除余1,被4除余1,这个自然数最小是几?2)把长120厘米,宽80厘米的铁板裁成面积相等,最大的正方形而且没有剩余,可以裁成多少块?
3)把长132厘米,宽60厘米,厚36厘米的木料锯成尽可能大的,同样大小的正方体木块,锯后不能有剩余,能锯成多少块?
4)用长120厘米,宽80厘米的长方形砖块去铺一块正方形地,最少需要多少块砖?
5)一盒钢笔可以平均分给2、3、4、5、6个同学,这盒钢笔最少有多少枝?7)每筐梨,按每份2个梨分多1个,每份3个梨分多2个,每份5个梨分4个,则筐里至少有多少个梨?
8)现在有香蕉42千克,苹果112千克,桔子70千克,平均分给幼儿园的几个班,每班分到的这三种水果的数量分别相等,那么最多分给了多少个班?每个班至少分到了三种水果各多少千克?
9)有三根铁丝,一根长54米,一根长72米,一根长36米,要把它们截成同样长的小段,不许剩余,每段最长是多少米?
10)有一级茶叶96克,二级茶叶156克,三级茶叶240克,价值相等.现将这三种茶叶分别等分装袋(均为整数克),每袋价值相等,要使每袋价值最低应如何装袋?
11)一次考试,参加的学生中有1
7得优,
1
3得良,
1
2得中,其余的得差,已知参加考试的
学生不满50人,那么得差的学生有多少人?
12)一次会餐供有三种饮料.餐后统计,三种饮料共用了65瓶;平均每2个人饮用一瓶A 饮料,每3人饮用一瓶B饮料,每4人饮用一瓶C饮料.问参加会餐的人数是多少人?
13)把20个梨和25个苹果平均分给小朋友,分完后梨剩下2个,而苹果还缺2个,一共最多有多少个小朋友?
14)因夜间施工需要,要把施工区的一条长120米的路边路灯有间隔6米改成间隔4米,除两端不需移动,中间还有几盏不需移动?
15)两个数的积是6912,最大公因数是24,求它们的最小公倍数?
16)甲、乙、丙三个学生定期向某老师求教,甲每4天去一次,乙每6天去一次,丙每9天去一次,如果这一次他们三人是3月23日都在这个老师家见面,那么下一次三人都在这个老师家见面的时间是几月几日?
17)求被5除余2,被6除余3,被7除4的大于1000、小于1500的所有自然数.
最大公因数与最小公倍数练习题
一、填空:
1、如果自然数A除以自然数B商是17,那么A与B的最大公因数是(),最小公倍数是()。

2、最小质数与最小合数的最大公因数是(),最小公倍数是()。

3、能被5、7、16整除的最小自然数是()。

4、(1)(7、8)最大公因数(),[7,8 ]最小公倍数()
(2)(25,15)最大公因数(),[25、15 ]最小公倍数()
(3)(140,35)最大公因数(),[140,35 ]最小公倍数()
(4)(24,36)最大公因数(),[24、36 ]最小公倍数()
(5)(3,4,5)最大公因数(),[3,4,5 ]最小公倍数()
(6)(4,8,16)最大公因数(),[4,8,16 ]最小公倍数()
5、5和12的最小公倍数减去()就等于它们的最大公因数。

91和13的最小公倍数是它们最大公因数的()倍。

6、已知两个互质数的最小公倍数是153,这两个互质数是()和()。

7、甲数=2×3×5×7,乙数=2×3×11,甲乙两数的最大公因数是(),最小公倍数是()。

8、3个连续自然数的最小公倍数是60,这三个数是()、()和()。

9、被2、3、5除,结果都余1的最小整数是(),最小三位整数是()。

10、一筐苹果4个4个拿,6个6个拿,或者8个8个拿都正好拿完,这筐苹果最少有()个。

11、三个连续偶数的和是42,这三个数的最大公因数是()。

12、三个13、自然数m和n,n= m+1,m和n的最大公因数是(),最小公倍数是()。

14、把自然数a与b分解质因数,得到a=2×5×7×m,b=3×5×m,如果a与b 的最小公倍数是2730,那么m =()。

15、(273,231,117)最大公因数(),[273,231,117]最小公倍数()
16、三个数的和是312,这三个数分别能被7、8、9整除,而且商相同。

这三个数分别是()、()和()。

17、已知(A,40)=8,[A,40]=80,那么A=()。

18、找一个与众不同的数(三个方法)并说明理由):1、2、3、5、7、9、15 1:选,因为
2:选,因为
3:选,因为
19、按要求写互质数
两个都是质数()和();两个都是合数()和();一个质数和一个奇数()和();一个偶数5和一个合数()和();一个质数和一个合数()和();一个偶数和一个合数()和()。

二、解决下列的问题:
1、有一行数:1,1,2,3,5,8,13,21,34,55……,从第三个数开始,每个数都是前两个数的和,在前100个数中,偶数有多少个?不同质数的最小公倍数是105,这三个质数是()、()和()。

2、一个长方形的长和宽都是自然数,面积是36平方米,这样的形状不同的长方形共有多少种?
3、一种长方形的地砖,长24厘米,宽16厘米,用这种砖铺一个正方形,至少需多少块砖?
4、有一个长80厘米,宽60厘米,高115厘米的长方体储冰容器,往里面装入大小相同的立方体冰块,这个容器最少能装多少数量冰块?
5、已知某小学六年级学生超过100人,而不足140人。

将他们按每组12人分组,多3人;按每组8人分,也多3人。

这个学校六年级学生多少?
6、有四个小朋友,他们的年龄一个比一个大一岁,四个人的年龄的乘积是360。

他们中年龄最大是多少岁?
7、汽车站内每隔3分钟发一辆公交车,4分钟发一辆中巴车,1小时共发了几辆汽车?其中有几辆中巴车?
8、一块长方形铁皮,长96厘米,宽80厘米,要把它剪成同样大小的正方形且没有剩余,这种正方形的边长是多少?被剪成几块?
9、王老师把25本作文和39本数学分别平均分给第一组的同学,结果作文本多1本,数学本多3本,第一组最多有几位同学?
10、一张长方形纸长16厘米,宽12厘米,把它裁成大小一样的正方形,而没有剩余,最少可以裁成多少个正方形?每个正方形的边长是多少?
11、某班同学,排成7排多3人,排成8排少4人,这个班至少多少人?
12、五(1)班同学做操,排成8排少1人,排成10排也少1人,这个班至少多少人?。

相关文档
最新文档