华师大版初中数学八年级下册学案:17.1 变量与函数1

合集下载

华师大版八年级下册数学教案:17.1 变量与函数

华师大版八年级下册数学教案:17.1 变量与函数

17.1 变量与函数课题变量与函数课时第1课时上课时间教学目标1.知识与技能(1)认识变量、常量.(2)学会用含一个变量的代数式表示另一个变量.2.过程与方法(1)经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己的观点.(2)逐步感知变量间的关系.3.情感、态度与价值观(1)积极参与数学活动,对数学产生好奇心和求知欲.(2)形成实事求是的态度以及独立思考的习惯.教学重难点重点:1.认识变量、常量.2.用式子表示变量间的关系.难点:用含有一个变量的式子表示另一个变量.教学活动设计[来源:学。

科。

网Z。

X。

X。

K]二次设计课堂导入情景问题:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.行驶时间为t小时.1.请同学们根据题意填写下表:t/小时12345s/千米2.在以上这个过程中,变化的量是,不变化的量是.3.试用含t的式子表示s.通过本节课的学习,相信大家一定能够解决这些问题.探索新知合作探究自学指导自学课本并思考课堂导入中的几个问题.自我总结:以上问题反映了匀速行驶的汽车所行驶的里程随行驶时间的变化过程.其实现实生活中有好多类似的问题,都是反映不同事物的变化过程,其中有些量的值是按照某种规律变化,其中有些量是按照某种规律变化的,如上例中的时间t、里程s,有些量的数值是始终不变的,如上例中的速度60千米/小时.合作探究1.每张电影票售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元.设一场电影售票x张,票房收入y元.怎样用含x的式子表示y?2.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10 cm,每 1kg重物使弹簧伸长0.5 cm,怎样用含有重物质量m的式子表示受力后的弹簧长度?设计意图:让学生熟练从不同事物的变化过程中寻找出变化量之间的变化规律,并逐步学会用含有一个变化量的式子表示另一个变化的量.续表探索新知合作探究探究结论:1.早场电影票房收入:150×10=1 500(元)日场电影票房收入:205×10=2 050(元)晚场电影票房收入:310×10=3 100(元)关系式:y=10x2.挂1 kg重物时弹簧长度:1×0.5+10=10.5(cm)挂2 kg重物时弹簧长度:2×0.5+10=11(cm)挂3 kg重物时弹簧长度:3×0.5+10=11.5(cm)关系式:L=0.5m+10通过上述活动,我们清楚地认识到,要想寻求事物变化过程的规律,首先需确定在这个过程中哪些量是变化的,而哪些量又是不变的.在一个变化过程中,我们称数值发生变化的量为变量(variable),那么数值始终不变的量称之为常量(constant).教师指导1.归纳小结:常量与变量:在某一变化过程中,可以取不同数值的量,叫做变量,数值保持不变的量叫做常量.2.方法规律:(1)变量和常量往往是相对的,相对于某个变化过程,比如s,v,t三者之间,在不同研究过程中,作为变量与常量的身份是可以相互转换的.(2)常量、变量与字母的指数没有关系,如S=πr2中,不能说自变量是r2.当堂训练1.分别指出下列各式中的常量与变量.(1)圆的面积公式S=πr2;(2)正方形的周长l=4a;(3)大米的单价为2.50元/千克,则购买的大米的数量x(kg)与金额y的关系为y=2.5x.2.写出下列问题的关系式,并指出常量和变量.(1)某种活期储蓄的月利率为0.16%,存入10 000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.(2)如图,每个图中是由若干盆花组成的图案,每条边(包括两个顶点)有(n+1)盆花,每个图案的花盆总数是S,求S与n之间的关系式.板书设计常量与变量1.什么是常量2.什么是变量3.常量与变量的区分教学反思课题变量与函数课时第2课时上课时间教学目标1.知识与技能(1)经过回顾思考认识变量中的自变量与函数.(2)进一步理解掌握确定函数关系式.(3)会确定自变量取值范围.2.过程与方法(1)经历回顾思考过程、提高归纳总结概括能力.(2)通过从图或表格中寻找两个变量间的关系,提高识图及读表能力,体会函数的不同表达方式.3.情感、态度与价值观(1)积极参与活动、提高学习兴趣.(2)形成合作交流意识及独立思考的习惯.教学重难点重点:1.进一步掌握确定函数关系的方法.2.确定自变量的取值范围.难点:认识函数、领会函数的意义.教学活动设计二次设计课堂导入如图,水滴激起的波纹可以看成是一个不断向外扩展的圆,它的面积随着半径的变化而变化;随着半径的确定而确定.在上述例子中,每个变化过程中的两个变量,当其中一个变量变化时,另一个变量也随着发生变化;当一个变量确定时,另一个变量也随着确定.你能举出一些类似的实例吗?从今天开始,我们就研究和此有关的问题——函数.探索新知合作探究自学指导问题:我们首先回顾一下上节活动一中的两个问题.思考它们每个问题中是否有两个变量,变量间存在什么联系.探究内容中两个问题都有两个变量.问题(1)中,经计算可以发现:每当售票数量x取定一个值时,票房收入y就随之确定一个值.例如早场x=150,则y=1 500;日场x=205,则y=2 050;晚场x=310,则y=3 100.问题(2)中,通过实验可以看出:每当重物质量m确定一个值时,弹簧长度L就随之确定一个值.如果弹簧原长10 cm,每1 kg重物使弹簧伸长0.5 cm.当m=10时,则L=15,当m=20时,则L=20.其实,在一些用图或表格表达的问题中,也能看到两个变量间的关系.(1)如图是体检时的心电图.其中横坐标x表示时间,纵坐标y表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?探索新知合作探究(2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,对于表中每个确定的年份(x),都对应着一个确定的人口数(y)吗?中国人口数统计表年份人口数/亿198410.34198911.06199411.76199912.52我们通过观察不难发现在问题(1)的心电图中,对于x的每个确定值,y都有唯一确定的值与其对应;在问题(2)中,对于表中每个确定的年份x,都对应着一个确定的人口数y.一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么b叫做当自变量值为a时的函数值.从上面的学习中可知许多问题中的变量之间都存在函数关系.教师指导1.归纳小结:函数:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么就说x是自变量,y是x的函数.如果当x=a时y=b,那么b叫做当自变量值为a时的函数值.2.方法规律:对函数概念的理解,主要应该抓住以下三点:①有两个变量;②一个变量的数值随着另一个变量的数值变化而变化;③自变量每确定一个值,函数有一个并且只有一个值与之对应(但可以有多个自变量数值对应一个函数值).当堂训练1.下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子.(1)改变正方形的边长x,正方形的面积S随之改变.(2)某村的耕地面积是106m2,这个村人均占有耕地面积y随这个村人数n的变化而变化.2.一辆汽车油箱现有汽油50 L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为0.1 L/km.(1)写出表示y与x的函数关系式;(2)指出自变量x的取值范围;(3)汽车行驶200 km时,油桶中还有多少汽油?板书设计变量与函数1.函数的概念2.函数自变量的取值范围3.函数值教学反思课题平面直角坐标系课时1课时上课时间教学目标1.知识与技能理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念;认识并能画出平面直角坐标系;能在给定的直角坐标系中,由点的位置写出它的坐标.2.过程与方法[来源:学科网ZXXK]通过画坐标系、由点找坐标等过程,发展学生的数形结合意识、合作交流意识.3.情感、态度与价值观由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心.教学重难点重点:1.理解平面直角坐标系的有关知识.2.在给定的平面直角坐标系中,会根据点的位置写出它的坐标.3.由观察点的坐标、纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点.难点:1.横(或纵)坐标相同的点的连线与坐标轴的关系的探究.2.坐标轴上点的坐标有什么特点的总结.教学活动设计二次设计课堂导入同学们,你们喜欢旅游吗? 假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?如图给出一张某市旅游景点的示意图,根据示意图,回答以下问题:(1)你是怎样确定各个景点位置的?(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?(3)如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?自学指导1.什么是数轴?2.平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分.学生看书,教师巡视,教师督促每一位学生认真、紧张地自学,鼓励学生质疑问难.探索新知合作探究合作探究1.组织学生探究平面直角坐标系的相关知识点.【例】写出图中的多边形ABCDEF各顶点的坐标.2.想一想在例题中,(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?(2)线段CE位置有什么特点?(3)坐标轴上点的坐标有什么特点?教师指导归纳小结:(1)认识并能画出平面直角坐标系.(2)在给定的直角坐标系中,由点的位置写出它的坐标.(3)能适当建立直角坐标系,写出直角坐标系中有关点的坐标.(4)横(纵)坐标相同的点的直线平行于y轴,垂直于x轴;连接纵坐标相同的点的直线平行于x轴,垂直于y轴.(5)坐标轴上点的纵坐标为0;纵坐标轴上点的坐标为0.(6)各个象限内的点的坐标特征是:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).[来源:学科网ZXXK][来源:学+科+网]当堂训练1.D(2,-3)的横坐标是,纵坐标是,点D在第象限.2.如果点E的横坐标为0,那么点E在轴上.3.如果点F的纵坐标为0,那么点F在轴上.板书设计平面直角坐标系1.平面直角坐标系的定义2.横坐标、纵坐标3.象限教学反思。

新华师大数学八年级下册优秀导学案:变量与函数(1)

新华师大数学八年级下册优秀导学案:变量与函数(1)

【学习目标】1.让学生了解变量与函数的相关概念,力求做到理解.2.让学生理解并掌握函数的三种最常用的表示方法,并会用表达式法表示数量关系. 【学习重点】变量与函数的概念. 【学习难点】变量与函数的概念.行为提示:创设问题情景导入,激发学生的求知欲望.行为提示:让学生阅读教材,尝试完成“自学互研”的所有内容,并适时给学生提供帮助,大部分学生完成后,进行小组交流.知识链接:1.对于收音机而言,波长与频率的积是一个定值.2.利率=利息本金×100%.解题思路:将所有相应的x ,y 的值代入函数关系式,如果等式成立,则成立.方法指导:一个函数中,至少有两个变量,而且自变量对因变量而言,是一一对应的关系.情景导入 生成问题【旧知回顾】1.在学习与生活中,经常要研究一些数量关系,先看下面的问题:如图是某地一天内的气温变化图,请同学们看图回答:(1)这天的6时、10时和14时的气温分别是多少?任意给出这天中的某一时刻,说出这一时刻的气温;(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低? 2.学生思考、讨论后,引导学生如何从图象中获取信息,并给出本题答案: (1)这天的6时、10时和14时的气温分别为-1 ℃、2 ℃、5 ℃; (2)这一天中最高气温是5 ℃,最低气温是-4 ℃;(3)这一天中,3~14时的气温在逐渐升高,0~3时和14~24时的气温在逐渐降低.自学互研 生成能力知识模块一 函数的表示方法 【自主探究】1.图象法:从上图中我们可以看到,随着时间t(h )的变化,相应地气温T(℃)也随之变化.也就是说,我们可以用图来反映气温随时间变化的规律.2.列表法:下表是某年某月某银行为“整存整取”的存款方式规定的利率:来反映两个变化着的量之间的关系.3.表达式法:如λf =300 000或f =300 000λ或S =πr 2等,可以用一个等式来反映两个变化着的数量之间的关系.4.不同的函数之间的表示方法也可以互相变换.学习笔记:1.函数的三种表示方法:列表法、图象法、表达式法. 2.当一个自变量对应唯一一个因变量时才是函数.3.寻找函数表达式时,一般应建立等式,再写成左边只含因变量、右边含变量的形式.行为提示:教师结合各组反馈的疑难问题分配任务,各组展示过程中,教师引导其他组进行补充、纠错、释疑,然后进行总结评比.学习笔记:检测的目的在于让学生掌握函数中的变量、常量与表示方法,学会求简单的函数表达式. 【合作探究】范例1:已知两个量x 和y ,它们之间的3组对应值如下表所示:则y 与x A .y =x B .y =2x +1 C .y =x 2+x +1 D .y =3x知识模块二 常量、变量与函数的定义 【自主探究】1.变量:在某一变化过程中,可以取__不同数值的量__,叫做变量.2.函数:一般地,如果在一个变化过程中,有两个变量,例如x 和y ,对于x 的每一个值,y 都__有唯一的值__与之对应,我们就说x 是自变量,y 是因变量,此时也称y 是x 的函数.3.常量:在某一变化过程中,取值__始终保持不变__的量,叫做常量. 【合作探究】 范例2:写出下列各问题中两个变量间的关系式,并指出哪些量是变量,哪些量是常量.(1)橘子每千克的售价是1.5元,则购买数量x(kg )与所付款y(元)之间的关系式; (2)用总长为60 m 的篱笆围成矩形场地,则矩形的面积S 与一边长x 之间的关系式. 解:(1)y =1.5x ,x ,y 是变量,1.5是常量;(2)S =-x 2+30x ,x ,S 是变量,-1,30是常量.范例3:声音在空气中传播的速度y(m /s )(简称音速)与气温x(℃)有一定的关系,下表列出一组不同气温时的音速:(1)y 确定吗?(2)音速y 可以看成是气温x 的函数吗?如果可以,请写出函数表达式. 解:(1)确定;(2)音速y 可以看成是气温x 的函数,此时y =0.6x +331.交流展示 生成新知1.将阅读教材时“生成的新问题“和通过“自主探究、合作探究”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一函数的表示方法知识模块二常量、变量与函数的定义检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。

华东师大版版八年级下册17.1函数与变量教案

华东师大版版八年级下册17.1函数与变量教案

17.1变量与函数✓教学目标:(1)掌握常量和变量、自变量和因变量(函数)基本概念;(2)引导学生联系代数式和方程的相关知识,继续探索数量关系,增强数学建模意识,列出函数关系式.✓教学重点:函数的定义以及运用方程的方法列出具体实例中的两个变量间的关系.✓教学难点:对函数概念的理解✓知识点梳理:1.变量与常量的概念:(1)变量:数值会产生变化的量,即未知数。

(2)常量:数值不会产生变化的量,即已知数。

2.函数的认识:揭示两个变量之间的关系(1)研究两个变量(2)两个变量分别为:自变量、因变量(3)当自变量去一个值时,代入相应关系式,因变量只能取一个值3.函数的表示方法:(1)数字语言:习惯上因变量在等号左边(因变量=含有自变量的式子)如y=2x-1,其中y是因变量,x是自变量;若x=2y-1,其中x是因变量,y是自变量。

(2)文字语言:y是x的函数,y关于x的函数。

“是、关于”相当于“=”,即y=含x 的式子,y 是自变量,x是因变量。

4.函数自变量的取值范围(1)当关系式是整数时,自变量的取值范围是全体实数(2)当关系式是分式时,自变量的取值范围是使分母不为0的实数(3)当关系式是偶次方根(二次根式)时,自变量的取值范围是使被开方数大于等于0的实数(4)当关系式是表示实际问题时,自变量的取值范围要使实际问题进行调整。

5. 函数值与自变量的值函数的值即因变量的值,由自变量x可以求出相应y的值,即此时函数的值。

6.函数关系式:用来表示函数关系的等式。

(1)函数关系式是等式,例如Y=4X-2,是一个函数关系式,我们就说y是关于x的函数,但不可以说(4x-2)是函数关系式。

(2)函数关系式指明自变量,因变量。

通常等号右边的代数式中的变量是自变量,等号左边的变量是因变量。

例如:Y=4X-2,x是自变量,y是因变量。

7.函数的表示方法:列表法、解析法、函数法(1)列表法可以看到每一个自变量所对应的函数值(2)解析法是用函数关系表示函数,能准确的反应函数与自变量之间的数值对应关系(4)图像法直观的看出函数随自变量的变化趋势变量与常量✓典例精析1.骆驼被称为“沙漠之舟”,它的体温是随时间的变化而变化的,在这一问题中,因变量是()A.沙漠B.体温C.时间D.骆驼2.在△ABC中,它的底边是a,底边上的高是h,则三角形面积S=12ah,当a为定长时,在此式中()A.S,h是变量,12,a是常量 B.S,h,a是变量,12是常量C.S,h是变量,12,S是常量 D.S是变量,12,a,h是常量3.对于圆的周长公式C=2πR,下列说法错误的是()A.π是变量B.R、C是变量C.R是自变量D.C是因变量4.挂重物后会伸长,测得弹簧长度y(cm)最长为20cm,与所挂物体重量x(kg)间有下面的关系:列说法不正确的是()A.x与y都是变量,x是自变量,y是因变量B.所挂物体为6 kg,弹簧长度为11 cmC.物体每增加1 kg,弹簧长度就增加0.5 cm✓ 小题精炼1. 假设汽车匀速行驶在高速公路上,那么在下列各量中,变量的个数是( ) ①行驶速度;②行驶时间;③行驶路程;④汽车油箱中的剩余油量.A.1个B.2个C.3个D.4个2列给出的式子中,x是自变量的是( ) A.x=5 B.2x+y=0 C.2y 2=4x+3 D.y=3x ﹣1✓ 函数的概念、表示方法✓ 典例精析1列曲线中不能表示y 是x 的函数的是( )2.下列关系中,y 不是x 的函数关系的是( )A.长方形的长一定时,其面积y 与宽xB.高速公路上匀速行驶的汽车,其行驶的路程y 与行驶的时间xC.y=|x|D.|y|=x3下列变量之间的关系中,是函数关系的有( )①三角形的面积与底边长;②多边形的内角和与边数;③圆的面积与半径; ④y=2017x+365中的y 与x .A.1个B.2个C.3个D.4个✓ 函数自变量取值问题✓ 典例精析1. 使函数y=√3−x 有意义的自变量x 的取值范围是( )A.x ≥3B.x ≥0C.x ≤3D.x ≤02.若函数y=1x−1有意义,则( )A.x >1B.x <1C.x=1D.x ≠1A B C D3.函数y=x 2−x 中自变量x 的取值范围是( )A.x ≠2B.x ≥2C.x ≤2D.x >2✓ 小题精炼1函数y=1x−3+√x −1的自变量x 的取值范围是( )A.x ≥1B.x ≥1且x ≠3C.x ≠3D.1≤x ≤32.函数y=13−x中自变量x 的取值范围是( ) A.x <3 B.x ≥3 C.x ≤3 D.x ≠33.下列函数中,自变量x 的取值范围不正确的是( )A.y=2x 2中,x 取全体实数B.y=√x −2中,x ≥2C.y=√x−3中,x>3D. .y=1x+1中,x ≠1✓ 函数的值✓ 典例精析1.已知变量s 与t 的关系式是s=6t ﹣52t 2,则当t=2时,s=( )A.1B.2C.3D.4 2. 已知两个变量之间的关系满足y=﹣x+2,则当x=﹣1时,对应的y 的值为( )A.1B.3C.﹣1D.﹣33. 如图,若输入x 的值为﹣5,则输出的结果为( )A.﹣6B.﹣5C.5D.6✓ 小题精炼1. 若物体运动的路程s (米)与时间t (秒)的关系式为s=3t 2+2t+1,则当t=4秒时,该物体所经过的路程为( )A.28米B.48米C.57米D.88米2.根据如图所示程序计算函数值,若输入的x的值为−13,则输出的函数值为()A.1B.19C.53D.733. 根据如图所示的计算程序计算变量y的对应值,若输入变量x的值为﹣1,则输出的结果为()A.−3B.﹣2C.﹣1D.1。

华师版八年级数学下册17.1 第1课时 变量与函数的概念及其表示方法教案与反思

华师版八年级数学下册17.1 第1课时 变量与函数的概念及其表示方法教案与反思

17.1 变量与函数随风潜入夜,润物细无声。

出自杜甫的《春夜喜雨》车前学校陈道锋第1课时变量与函数的概念及其表示方法1.了解常量与变量的含义,能分清实例中的常量与变量;初步理解函数的概念,了解自变量与函数的意义;(重点)2.通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,以提高分析问题和解决问题的能力;3.引导学生探索实际问题中的数量关系,培养对学习的兴趣和积极参与数学活动的热情.(难点)一、情境导入在学习与生活中,经常要研究一些数量关系,先看下面的问题.如图是某地一天内的气温变化图.从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其他类似的数量关系呢?二、合作探究探究点一:变量与常量写出下列各问题中的关系式中的常量与变量:(1)分针旋转一周内,旋转的角度n(度)与旋转所需要的时间t(分)之间的关系式n=6t;(2)一辆汽车以40千米/时的速度向前匀速直线行驶时,汽车行驶的路程s(千米)与行驶时间t(时)之间的关系式s=40t.解析:根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题.解:(1)常量:6,变量:n,t;(2)常量:40,变量:s,t.方法总结:确定在该过程中哪些量是变化的,而哪些量又是不变的,数值发生变化的量称为变量,数值始终不变的量称之为常量.探究点二:函数的相关概念【类型一】识别函数下列关系式中,哪些y是x的函数,哪些不是?(1)y=x;(2)y=x2+z;(3)y2=x.解析:要判断一个关系式是不是函数,首先看这个变化过程中是否只有两个变,其次看每一个x的值是否对应唯一确定的y值.解:(1)此关系式只有两个变量,且每一个x值对应唯一的一个y值,故y 是x的函数;(2)此关系式中有三个变量,因此y不是x的函数;(3)此关系式中虽然只有两个变量,但对于每一个确定的x值(x>0)对应的都有2个y值,如当x=4时,y=±2,故y不是x的函数.方法总结:由函数的定义可知在某个变化过程中,有两个变量x和y,对于每一个确定的x值,y值有且只有一个值与之对应.当x值取不同的值时,y的值可以相等,也可以不相等,但如果一个x的值对应着两个不的y值,那么y一定不是x的函数.根据这一点,我们可以判定一个关系式是否表示函数.【类型二】判断函数关系判断下列变化过程中,两变量存在函数关系的是( ) A.x,y是变量,y2=4x2B.某人的数学成绩和物理成绩C.三角形的底边长与面积D.速度一定的汽车所行驶的路程与时间解析:选项中根据x(或y)每取一个值,y(或x)有两个值与其对应,故不存在函数关系,故此选项错误;选项B中数学成绩与物理成并无对应关系,故此选项错误;选项C中高不能确定,共有三个变量,故不存在函数关系,故此选项错误;选项D中速度一定的汽车所行驶的路程与时间,存在函数关系,故此选项正确.故选D.方法总结:判断函数关系时,应先看问题中是否仅有两个变量,再看一个变量是否随着另一个变的变化而变化,最后看定一个自变量的值,因变量的值是否有唯一的值与它对应.【类型三】确定实际问题中函数关系式以及自变量下列问题中哪些量是自变量?哪些量是因变量?试写出用自变量表示函数的式子.(1)一个弹簧秤最大能称不超过10kg的物体,它的原长为10cm,挂上重物后弹簧的长度y cm)随所挂重物的质量x(kg)的变化而变化,每挂1kg物体,弹簧伸长0.5cm;(2)设一长方体盒子高为30cm,底面是正方形,底面边长a(cm)改变时,这个长方体的体积V(cm3)也随之改变.解析:(1)根据弹簧的长度等于原长加上伸长的长度,列式即可;(2)根据长方体的体积公式列出函数关系式.解:(1)y=10+0.5x(0<x≤10),其中x是自变量,y是因变量;(2)V=30a2(a>0),其中a是自变量,V是因变量.方法总结:函数关系式中,通常等式右边的式子中的变量是自变量,等式左边的那个字母表示因变量.三、板书设计1.常量和变量的概念2.函数的概念3.函数关系式变量和函数是用来描述我们所熟悉的变化的事物以及自然界中出现的一些变化现象的两个重要的量,对于我们所熟悉的变化,在用了这两个量的描述之后更加鲜明.函数的概念是学好本章的基础,教学中立足于学生的认知基础,激发学生的认知冲突,提升学生的认知水平,使学生在原有的知识基础上迅速迁移到新知上来.【素材积累】1、成都,是一个微笑的城市,宁静而美丽。

华师大版初中数学八年级数学下册学案:17.1 变量与函数

华师大版初中数学八年级数学下册学案:17.1  变量与函数

八(下)数学学案12——17.1 变量与函数(2)学习目标:通过实际问题体会函数自变量的取值会受到限制,会求一个函数关系式中的自变量的取值范围;能求一个函数关系式的函数值.学习过程:一、复习与回顾1、函数的有关概念.2、在分式中,B 有什么要求? .3、在中,a 有什么要求? .4、a 0= ,(a )二、新课学习1、自主完成P 31“试一试”,思考:各个函数中,自变量的取值有限制吗?如果有,请写出它的取值范围.2、认证体会例1和例2,仔细思考其自变量的取值范围是根据什么确定的?3、自变量取值范围的确定(1)关系式中有分母的,则分母不为零.例:求y =21+x 中自变量x 的取值范围 解:∵ x +20 ∴ x -2(2)关系式中有根号(开平方),则被开方数不为负数.例:求y =2-x 中自变量x 的取值范围解:∵ x -20 ∴ x 2(3)关系式中既没有分母又没根号(指开平方)的这时自变量的取值范围是全体实数.例:① y =3x -1; ② y =2x 2+7;解:x 取全体实数 . 解:x 取全体实数 .(4)从实际出发的,要符合实际意义.(课本P 31-32例1、例2)(5)综合型,要考虑全面.例:求下列函数中自变量x 的取值范围(1)y =11-x (2)y =21-+x x(1)解:∵ x -1>0 (2)解: ∵ x +10∴ x >1 ∴ x -1又∵ x -20∴ x 2∴ x -1且x 24、求函数值:在自变量的取值范围内,将给定的自变量的值带入函数关系式后所求出的结果。

一般的,函数的值是随着自变量的取值的不同而变化.三、课堂练习1、求下列函数中自变量x 的取值范围:(1)y =275+x (2)y =x 2-x -2(3)y =12-x (4)y =1-x(5)y =11+x (6)y =132-+x x2、对于函数y =4x -9⑴当x =3时,y = ; ⑵当x =-1时,y = ;⑶当x =0时,y = ; ⑷当y =0时,x = .3、在一个半径为10cm 的圆形纸片中剪去一个半径为r (cm )的同心圆,得到一个圆环.设圆环的面积为S (cm 2),求S 关于r 的函数关系式,并注明自变量的取值范围.八(下)数学作业——17.1 变量与函数(2)1、求下列函数中自变量x 的取值范围(1)y =5x -1 (2)y =732+x (3)y = (4)y =x -4(5)y = (6)y = (7)11-+=x x y2、在函数y =34x x +-中,自变量x 的取值范围是( )A .x ≥―3B .x ≠4C .x ≥―3且x ≠4D .x ≥3,且x ≠43、对于函数y =x 2-3x +2(1)当x =0时,函数值是 ;(2)当x =2时,函数值是 ;(3)当x =-1时,函数值是 .4、等腰三角形的周长是16cm ,底边长ycm ,腰长xcm .写出底边y 与腰长 x 的函数关系式,并指出自变量x 的取值范围.(注意三角形的三边关系)5、一架雪橇沿一斜坡滑下,它在时间t (秒)滑下的距离s (米)由下式 给出:s =10t +2t 2.假如滑到坡底的时间为8秒,试问坡长为多少?。

华师大版八下数学17.1变量与函数17.1.1变量说课稿

华师大版八下数学17.1变量与函数17.1.1变量说课稿

华师大版八下数学17.1变量与函数17.1.1变量说课稿一. 教材分析华师大版八下数学17.1变量与函数是本册书的重要内容,它为学生提供了用数学的语言和方法来描述现实生活中的变化规律提供了基础。

本节课的主要内容是让学生理解变量的概念,了解变量之间的相互关系,以及函数的概念。

教材通过丰富的实例和 activities 来引导学生理解和掌握这些概念,同时培养学生的数学思维能力。

二. 学情分析学生在进入八年级下学期之前,已经学习了代数初步知识,对一些基本的代数运算和数学概念有一定的了解。

但是,对于变量、函数这些较为抽象的概念,他们可能还比较陌生。

此外,学生可能对用数学语言描述现实生活中的变化规律感到困惑。

因此,在教学过程中,我需要关注学生的认知水平,通过适当的教具和示例,帮助他们理解和掌握这些概念。

三. 说教学目标1.知识与技能目标:学生能够理解变量的概念,了解变量之间的相互关系,掌握函数的定义及其表示方法。

2.过程与方法目标:通过观察、分析和归纳,学生能够发现现实生活中的数量关系,培养其数学思维能力。

3.情感态度与价值观目标:学生能够感受到数学与生活的紧密联系,增强对数学的兴趣和自信心。

四. 说教学重难点1.教学重点:变量、常量的概念,函数的定义及其表示方法。

2.教学难点:理解变量之间的相互关系,以及如何用数学语言描述现实生活中的变化规律。

五. 说教学方法与手段为了帮助学生理解和掌握变量与函数的概念,我将采用以下教学方法和手段:1.情境教学法:通过现实生活中的实例,引导学生理解和掌握变量和函数的概念。

2.数形结合法:利用图形和图像,帮助学生直观地理解变量之间的关系。

3.引导发现法:引导学生通过观察、分析和归纳,发现变量之间的相互关系。

4.教学辅助手段:利用多媒体课件,展示实例和图形,提高教学效果。

六. 说教学过程1.导入:通过展示一些现实生活中的变化现象,如太阳从东方升起,引起学生对变化的关注。

然后提出问题:“这些变化有什么共同点?”引导学生思考和讨论。

八年级数学下册17函数及其图象17.1变量与函数1教案[华东师大版]

八年级数学下册17函数及其图象17.1变量与函数1教案[华东师大版]

变量与函数借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体会从生活实例抽象出数学知识的方法,感知现实世界中变量之间联系的复杂性,数学研究从最简单的情形入手,化繁为简.从学生熟悉、感兴趣的实例引入课题,引领学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣.学生初步感知实际生活蕴藏着丰富的数学知识,感知数学是有用、有趣的学科.借助简单实例,从两个变量间的特殊对应关系抽象出函数的概念.(一)导言:1.《名侦探柯南》中有这样一个情景:柯南根据案发现场的脚印,锁定疑犯的身高.你知道其中的道理吗?2.我们班中同学A与职业相扑运动员,谁的饭量大?你能说明理由吗?问题1中都涉及两个量的关系,脚印确定,对应的身高有多个取值;问题2涉及多个量的关系.这一节课我们研究两个量的关系,研究怎样由一个量来确定另一个量.(二)概念的引入1.票房收入问题:每张电影票的售价为10元.(1)若一场售出150张电影票,则该场的票房收入是元;若售出205张、310张呢?(2)若一场售出x张电影票,则该场的票房收入y元,则y= .思考:(1)票房收入随售出的电影票变化而变化,即y随的变化而变化;(2)当售出票数x取定一个确定的值时,对应的票房收入y的取值是否唯一确定?2.成绩问题:如图是某班同学一次数学测试中的成绩登记表:这一次数学测试中,13号的成绩为______;15号的成绩为______;16号的成绩为______;23号的成绩为______.思考:(1)测试成绩随________的变化而变化;(2)任意确定一个学号x,对应的成绩f的取值是否唯一确定?3.气温问题:图一是抚顺春季某一天的气温T随时间t变化的图象,看图回答:(1)这天的8时的气温是℃,14时的气温是℃,最高气温是℃,最低气温是℃;(3)这一天中,在4时~12时,气温(),在16时~24时,气温(). A.持续升高 B.持续降低 C.持续不变思考:(1)天气温度随的变化而变化,即T随的变化而变化;(2)当时间t取定一个确定的值时,对应的温度T的取值是否唯一确定?(三)概念的界定思考:上述三个问题中,分别涉及哪些量的关系?通过哪一个量可以确定另一个量?在上面的三个问题中,其中一个量的变化引起另一个量的变化(按照某种规律变化),变化的量叫做变量;有些量的值始终不变(例如电影票的单价10元……).并且当其中一个变量取定一个值时,另一个变量就随之确定,且它的对应值只有一个.例1一个三角形的底边为5,这一边上的高h可以任意伸缩.(1)如何把具体的实例进行抽象,形式化为数学知识是本课的关键.这里提出的问题“上述三个问题中,分别涉及哪些量的关系?通过哪一个量可以确定另一个量?”是一个关键的“脚手架”,借助“脚手架”,学生经历数学概念的形成过程,引导学生认识为什么要引进变量、常量、函数的概念,逐步了解如何给数学概念下定义.(2)此处板书是“脚手架”的重要组成部分,揭示“两个量的对应关系”.这三个问题中都含有变量之间的单值对应关系,通过研究这些问题引出常量、变量、函数等概念,通过这种从实际问题出发开始讨论的方式,使学生体验从具体到抽象地认识过程.问题的形式有填空、列表、求值、写解析式、读图等,隐含着在函数关系中表示两个变量的对应关系有解析法、列表法、图象法.(1)高h的变化会引起三角形中哪些量发生变化?这些变量是高h的函数吗?(2)试求面积s随h变化的关系式,并指出其中的常量、变量与自变量。

华师大版数学八年级下册17.1《变量与函数》(第1课时)教学设计

华师大版数学八年级下册17.1《变量与函数》(第1课时)教学设计

华师大版数学八年级下册17.1《变量与函数》(第1课时)教学设计一. 教材分析《变量与函数》是华师大版数学八年级下册17.1节的内容,本节课的主要内容是让学生理解变量的概念,了解常量与变量的区别,以及函数的定义。

教材通过丰富的实例,让学生感受生活中的变量和函数,从而引出本节课的主题。

本节课的内容是学生学习数学的基础,对以后学习代数、几何等知识有着重要的影响。

二. 学情分析八年级的学生已经初步接触过变量,对常量和变量的概念有一定的了解。

但是,对于函数的概念以及变量与函数之间的关系,学生可能还比较模糊。

因此,在教学过程中,需要通过具体的实例让学生加深对变量、常量和函数的理解,并明确它们之间的关系。

三. 教学目标1.知识与技能:让学生理解变量的概念,了解常量与变量的区别,掌握函数的定义及其相关性质。

2.过程与方法:通过观察实例,培养学生抽象、概括的能力,以及运用数学知识解决实际问题的能力。

3.情感态度与价值观:让学生体验数学与生活的密切联系,培养学生的数学兴趣,提高学生学习数学的积极性。

四. 教学重难点1.重点:变量、常量与函数的概念及其关系。

2.难点:函数的定义及其在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活中的实例,让学生感受变量和函数的存在,激发学生的学习兴趣。

2.启发式教学法:引导学生观察、思考、归纳和总结,培养学生的抽象思维能力。

3.合作学习法:小组讨论,共同解决问题,提高学生的合作能力和沟通能力。

六. 教学准备1.准备相关的生活实例,用于导入和巩固环节。

2.准备PPT,展示教材中的图片和实例。

3.准备练习题,用于课后巩固和拓展。

七. 教学过程1.导入(5分钟)利用生活中的实例,如气温变化、物体运动等,引导学生观察和思考,让学生感受变量和函数的存在。

通过观察实例,引出本节课的主题——变量与函数。

2.呈现(10分钟)介绍变量的概念,解释常量与变量的区别。

然后,给出函数的定义,并通过PPT展示教材中的图片和实例,让学生理解和掌握函数的概念。

华师大版八年级数学下册教案:17.1第一课时 变量与函

华师大版八年级数学下册教案:17.1第一课时  变量与函

17、1 变量与函数第一课时变量与函数教学目标:1、知识与技能:使学生会发现、提出函数的实例,并能分清实例中的常量和变量、自变量与函数,理解函数的定义。

2、过程与方法:能应用方程思想列出实例中的等量关系。

3、情感态度与价值观:培养学生用字母表示数的思想,和变量思想。

教学重点、难点:因变量和自变量的概念,函数的概念,既是重点也是难点。

教学过程一、由下列问题导入新课问题l、右图(一)是某日的气温的变化图看图回答:1.这天的6时、10时和14时的气温分别是多少?任意给出这天中的某一时刻,你能否说出这一时刻的气温是多少吗?2.这一天中,最高气温是多少?最低气温是多少?3.这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?从图中我们可以看出,随着时间t(时)的变化,相应的气温T(℃)也随之变化。

问题2 一辆汽车以30千米/时的速度行驶,行驶的路程为s千米,行驶的时间为t小时,那么,s与t具有什么关系呢?问题3 设圆柱的底面直径与高h相等,求圆柱体积V的底面半径R的关系.问题 4 收音机上的刻度盘的波长和频率分别是用(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数:波长l(m)300 500 600 1000 1500频率f(kHz) 1000 600 500 300 200同学们是否会从表格中找出波长l与频率f的关系呢?二、讲解新课1.常量和变量在上述两个问题中有几个量?分别指出两个问题中的各个量?第1个问题中,有两个变量,一个是时间,另一个是温度,温度随着时间的变化而变化.第2个问题中有路程s,时间t和速度v,这三个量中s和t可以取不同的数值是变量,而速度30千米/时,是保持不变的量是常量.路程随着时间的变化而变化。

第3个问题中的体积V和R是变量,而是常量,体积随着底面半径的变化而变化.第4个问题中的l与频率f是变量.而它们的积等于300000,是常量.常量:在某一变化过程中始终保持不变的量,称为常量.变量:在某一变化过程中可以取不同数值的量叫做变量.2.函数的概念上面的各个问题中,都出现了两个变量,它们相互依赖,密切相关,例如:在上述的第1个问题中,一天内任意选择一个时刻,都有惟一的温度与之对应,t 是自变量,T 因变量(T 是t 的函数).在上述的2个问题中,s =30t ,给出变量t 的一个值,就可以得到变量s 惟一值与之对应,t 是自变量,s 因变量(s 是t 的函数)。

华师大版八年级数学下17.1变量与函数(1)教学设计

华师大版八年级数学下17.1变量与函数(1)教学设计

17.1 变量与函数(1)教学设计一.内容和内容解析【教学内容】《17.1变量与函数》是义务教育教科书华东师大版八年级下册第十七章第一节第1课时,介绍变量与函数的概念,是典型的概念课,引导学生从生活实例中抽象出常量、变量与函数等概念,其中函数的概念是本节课核心内容.【教材分析】函数是数学中最重要的基本概念之一,它刻画了现实世界中一类数量关系之间的“特殊对应关系”.方程、不等式、函数是初中数学的核心概念,它们从不同的角度刻画一类数量关系.本节课是函数入门课,首先必须准确认识变量与常量的特征,初步感受到现实世界各种变量之间联系的复杂性,同时感受到数学研究方法的化繁就简,在初中阶段主要研究两个变量之间的特殊对应关系.课本的引例较为丰富,但有些内容学生较为陌生,本设计只选取了其中较为简单的例子.考虑到初中列函数的解析式是一个难点,其本质是用含x的式子表示y,本节课中涉及的列函数解析式不是新的教学内容(将来学的待定系数法才是新的教学内容),也不是本节课能解决的问题,因此把设计的重点放在认识“两个变量间的特殊对应关系:由哪一个变量确定另一变量;唯一确定的含义.”【学情分析】变量与函数的概念把学生由常量数学的学习引入变量数学学习中.“变量与函数”较为抽象,学生初次接触函数的概念,难以理解定义中“唯一确定”的准确含义.另一方面,学生在日常生活中也接触到函数图象、两个变量的关系等生活实例.在本节教学中,试图从学生较为熟悉的现实情景入手,引领学生认识变量和函数的存在和意义,体会变量之间的互相依存关系和变化规律,借助生活实例,认识“由哪一个变量确定另一个变量?唯一确定的含义是什么?”,初步理解函数的概念.二.目标和目标解析【知识目标】(1)基于生活经验,学生初步感知用常量与变量来刻画一些简单的数学问题.能指出具体问题中的常量、变量.(2)借助简单实例,初步理解变量与函数的关系,知道存在一类变量可以用函数方式来刻画.能举出涉及两个变量的实例,并指出由哪一个变量确定另一个变量,这两个变量是否具有函数关系.(3)借助简单实例,初步理解对应的思想,体会函数概念的核心是两个变量之间的特殊对应关系.能判断两个变量间是否具有函数关系.【过程与方法目标】借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体会从生活实例抽象出数学知识的方法,感知现实世界中变量之间联系的复杂性,数学研究从最简单的情形入手,化繁为简.【情感与态度目标】(1)从学生熟悉、感兴趣的实例引入课题,学生初步感知实际生活蕴藏着丰富的数学知识,感知数学是有用、有趣的学科.(2) 借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣.【目标解析】函数的概念具有高度的抽象性.学生知道代数式中的字母可以表示数,方程中的未知数求出来后也是一个“已知数”,从“静态”的角度理解字母所表示的数.学生的生活经验中已具备一些朴素的函数关系的实例.学生初次接触两个变量之间的特殊对应关系,教师应根据学生的认知基础,创设丰富的现实情境,使学生在丰富的现实情境中感知变量和函数的存在和意义,认识常量与变量,理解具体实例中两个变量的特殊对应关系,初步理解函数的概念.【变量与函数概念的核心】两个变量间的特殊对应关系:(1)由哪一个变量确定另一个变量;(2)唯一对应关系.【教学重点】借助简单实例,从两个变量间的特殊对应关系抽象出函数的概念.【教学难点】怎样理解“唯一对应”.【教学关键】借助实例,明确由哪一个量的变化引起另一个量的变化,进而指出由哪一个变量确定另一个变量;“唯一对应”是一种特殊的对应关系,包括“一对一”、“多对一”.“一对多”不是函数关系.三、教学问题诊断分析【学生已有的知识结构】学生已学习了实数的加减、乘除、乘方与开方的运算,学习了列代数式及求代数式的值,会列一次方程(组)及解方程组,知道字母可以表示数,方程中的未知数求出来后也是一个“已知数”,从“静态”的角度理解字母所表示的数.学生的生活经验中具有一些朴素的函数实例,依托学生熟悉的生活实例,引导学生认识抽象的函数的概念符合学生的认知规律.【学生学习的困难】学生对“唯一对应关系”的理解是一个难点,特别是没有实例背景的变量间的对应关系.应借助学生熟悉的简单实例明确研究函数的目的,理解变量间的特殊对应关系,初步理解函数的概念.函数关系的本质,是变量与变量之间的特殊对应关系(单值对应).如果直接研究某个量y有一定困难,我们可以去研究另一个与之有关的量x,而x相对于y来说,比较容易研究,从而达到研究的目的.这也是一种化繁为简的转化思想.四、教学方法与教学手段学生的学法应以自主探究与合作交流为主.认识“唯一确定、唯一对应”的准确含义.教法采用师生互动探究式教学.函数概念具有高度的抽象性,借助学生熟悉的生活实例,引领学生经历从具体实例中抽象出常量、变量与函数的过程,初步理解抽象的函数概念.五、教学过程引言:由图片上的解放校园让同学们和老师一起回忆起随着时间的流逝,同学们已经从七年级走入了八年级,年龄增长了,体重增加了,身高长高了,更重要的是,我们的知识增多了。

华师大版八下数学17.1变量与函数17.1.2变量与函数教学设计

华师大版八下数学17.1变量与函数17.1.2变量与函数教学设计

华师大版八下数学17.1变量与函数17.1.2变量与函数教学设计一. 教材分析华东师范大学出版社八年级下册数学第17.1节“变量与函数”是学生在学习了代数基础知识后的进一步拓展。

本节内容主要包括变量的概念、函数的定义及其相关性质。

通过本节课的学习,学生能理解变量与函数的基本概念,掌握函数的表示方法,为后续学习函数的性质和图象打下基础。

二. 学情分析八年级的学生已经掌握了代数的基本知识,具备一定的逻辑思维能力和抽象思维能力。

但学生在学习过程中,对于一些抽象的概念和定义容易产生混淆,因此,在教学过程中,需要引导学生通过实例来理解变量与函数的概念,从而提高学生的理解和应用能力。

三. 教学目标1.理解变量、常量的概念,能正确区分两者。

2.掌握函数的定义,了解函数的表示方法。

3.能运用函数的概念解决实际问题,提高学生的应用能力。

四. 教学重难点1.重点:变量、常量的概念,函数的定义及其表示方法。

2.难点:函数概念的理解和应用。

五. 教学方法采用情境教学法、启发式教学法和小组合作学习法。

通过实例引入概念,引导学生主动探究,合作交流,从而提高学生的理解能力和动手能力。

六. 教学准备1.准备相关实例,用于引导学生理解和掌握概念。

2.设计好练习题,用于巩固所学知识。

3.准备课件,辅助教学。

七. 教学过程1.导入(5分钟)通过一个实际问题引入变量和常量的概念,例如:某商品的原价是100元,现进行8折优惠,求优惠后的价格。

让学生思考:原价和优惠后的价格是什么?它们之间的关系如何表示?2.呈现(10分钟)讲解变量的概念,介绍常量和变量的区别。

通过课件展示实例,让学生直观地理解变量和常量的含义。

同时,引入函数的定义,讲解函数的表示方法,如解析式、表格法和图象法。

3.操练(10分钟)让学生分组讨论,每组设计一个函数实例,并用不同的方法表示出来。

讨论结束后,每组汇报成果,其他组进行评价。

4.巩固(10分钟)出示练习题,让学生独立完成。

华师大版八下数学17.1变量与函数17.1.1变量与函数教学设计

华师大版八下数学17.1变量与函数17.1.1变量与函数教学设计

华师大版八下数学17.1变量与函数17.1.1变量与函数教学设计一. 教材分析华师大版八下数学17.1变量与函数是学生在学习了初中数学基础知识后,进一步学习高级数学知识的重要章节。

本节内容主要向学生介绍变量与函数的概念、性质和应用。

通过本节内容的学习,学生能够理解变量的意义,掌握函数的定义和表示方法,以及了解函数在实际生活中的应用。

二. 学情分析学生在学习本节内容前,已经掌握了初中数学的基本知识,具备一定的逻辑思维能力和问题解决能力。

但部分学生可能对抽象的数学概念理解较困难,对函数的实际应用价值认识不足。

因此,在教学过程中需要关注学生的学习情况,针对性地进行引导和帮助。

三. 教学目标1.知识与技能:使学生理解变量的概念,掌握函数的定义和表示方法,了解函数在实际生活中的应用。

2.过程与方法:通过观察、分析、归纳等方法,培养学生发现问题、分析问题和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的重要性。

四. 教学重难点1.重点:变量与函数的概念、性质和应用。

2.难点:函数的表示方法,以及函数在实际生活中的应用。

五. 教学方法1.情境教学法:通过生活实例引入变量与函数的概念,让学生在具体的情境中感受和理解知识。

2.启发式教学法:引导学生主动思考、发现问题、分析问题和解决问题。

3.小组合作学习:鼓励学生之间相互讨论、交流,培养学生的团队合作意识。

六. 教学准备1.准备相关的生活实例和图片,用于导入和巩固环节。

2.准备PPT课件,用于呈现知识点和引导学生的思考。

3.准备练习题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)通过展示一些生活实例,如气温变化、商品价格变动等,引导学生观察和思考这些现象背后的数学规律。

让学生认识到这些现象都可以用变量和函数来描述。

2.呈现(15分钟)讲解变量与函数的概念、性质和表示方法。

通过PPT课件展示,让学生直观地了解函数的图像和表达式。

华东师大版初八年级数学下册17.1变量与函数导学案

华东师大版初八年级数学下册17.1变量与函数导学案

华东师大版初八年级数学下册17.1变量与函数导学案17.1变量与函数导学案课题变量与函数单元17 学科数学年级八年级知识目标经历对具体变化过程中两个变量之间关系的探索过程,能指出自变量和函数;会求出函数值和写出解析式;认识变量之间的一一对应和唯一性,有简单的函数思想. 重点难点重点:用关系式表示某些变量之间的关系. 难点:求自变量的取值范围. 教学过程知识链接每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,如何用代数式表示总收入?合作探究一、教材第28页问题1、从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.问题2、小蕾在过14岁生日的时候,看到了爸爸为她记录的各周岁时的体重,如下表观察上表,说说随着年龄的增长,小蕾的体重是如何变化的?在哪一段时间内体重增加较快?二、教材第29页问题3、收音机刻度盘上的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值波长λ和频率f 数值之间有什么关系? 问题4、如果用r表示圆的半径,S表示圆的面积,S与r之间满足关系式:S=πr2 ,可以看出:圆的半径越大,它的面积就越大概括:变量:。

自变量:,因变量:。

函数:。

三、教材第30页函数的表示方法:,,。

四、教材第31页例1、等腰三角形顶角的度数y是底角度数x的函数,试写出这个函数关系式,并求出自变量x的取值范围. 列函数关系式的步骤:,,。

例2、如图,已知等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为10cm,CA与MN在同一条直线上,开始时点A与点M重合,让△ABC向右移动,最后点A与点N重合(1)试写出两图形重叠部分的面积y与线段MA的长度x之间的函数关系式. (2)当点A向右移动1cm时,重叠部分的面积是多少?自主尝试1、试写出用自变量表示函数的式子.(1)改变正方形的边长x,正方形的面积S随之改变.(2)秀水村的耕地面积是106m2,人均占有耕地面积y随这个村人数n•的变化而变化.2、一水库的水位在最近5小时内持续上涨,下表记录了这5小时的水位高度.t/时0 1 2 3 4 5 。

华师大版八下数学17.1变量与函数17.1.1变量教学设计

华师大版八下数学17.1变量与函数17.1.1变量教学设计

华师大版八下数学17.1变量与函数17.1.1变量教学设计一. 教材分析华东师范大学版八年级下册数学第17章《变量与函数》是学生在学习了初中数学基础知识后,进一步深入研究数学概念和数学思想的重要章节。

本章主要介绍变量的概念,函数的定义及其性质,以及函数图像的绘制方法。

通过本章的学习,使学生能够理解变量与函数的基本概念,掌握函数的性质和图像的绘制方法,培养学生的数学思维能力和解决问题的能力。

二. 学情分析学生在学习本章内容前,已经掌握了实数、代数式、方程等基础知识,具备一定的逻辑思维和抽象思维能力。

但学生在学习过程中,可能对变量的概念理解不够深入,对函数的性质和图像的绘制方法存在一定的困难。

因此,在教学过程中,需要注重引导学生理解变量与函数的关系,通过实例使学生感受函数的性质,并通过动手操作,使学生掌握函数图像的绘制方法。

三. 教学目标1.理解变量的概念,掌握常量和变量的区别。

2.理解函数的定义,掌握函数的表示方法。

3.掌握函数的性质,能够分析实际问题中的函数关系。

4.掌握函数图像的绘制方法,能够绘制简单的函数图像。

四. 教学重难点1.变量与函数的概念及其关系。

2.函数的性质及其应用。

3.函数图像的绘制方法。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过实例理解变量与函数的关系。

2.利用数形结合的方法,使学生直观地感受函数的性质。

3.采用动手操作的教学方法,让学生通过绘制函数图像,加深对函数性质的理解。

4.小组讨论,培养学生的合作能力和解决问题的能力。

六. 教学准备1.准备相关的教学实例,用于引导学生理解变量与函数的关系。

2.准备函数图像的绘制工具,如函数图像软件或板书。

3.准备一些实际问题,用于巩固学生对函数性质的理解。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生回顾已学的实数、代数式、方程等基础知识,为新课的学习做好铺垫。

2.呈现(15分钟)介绍变量的概念,引导学生理解常量和变量的区别。

华师大八年级下17.1变量与函数(1)参考教案

华师大八年级下17.1变量与函数(1)参考教案

17.1变量与函数(1)知识技能目标1.掌握常量和变量、自变量和因变量(函数)基本概念;2.了解表示函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系.过程性目标1.通过实际问题,引导学生直观感知,领悟函数基本概念的意义;2.引导学生联系代数式和方程的相关知识,继续探索数量关系,增强数学建模意识,列出函数关系式.教学过程一、创设情境在学习与生活中,经常要研究一些数量关系,先看下面的问题.问题1如图是某地一天内的气温变化图.看图回答:(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?解(1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃;(2)这一天中,最高气温是5℃.最低气温是-4℃;(3)这一天中,3时~14时的气温在逐渐升高.0时~3时和14时~24时的气温在逐渐降低.从图中我们可以看到,随着时间t (时)的变化,相应地气温T (℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢?二、探究归纳问题2 小蕾在过14岁生日的时候,看到了爸爸为她记录的各周岁时的体重,如下表: 周岁1 2 3 4 5 6 7 8 9 10 11 12 13 体重(kg) 7.9 12.2 15.6 18.4 20.7 23.0 25.6 28.5 31.2 34.0 37.6 41.2 44.9观察上表,说说随着年龄的增长,小蕾的体重是如何变化的?在哪一段时间内体重增加较快?解 随着年龄的增长,小蕾的体重也随着增长,且在1-2岁增加较快.问题3 收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值:观察上表回答:(1)波长l 和频率f 数值之间有什么关系?(2)波长l 越大,频率f 就________.解 (1) l 与 f 的乘积是一个定值,即lf =300 000,或者说 l300000 f . (2)波长l 越大,频率f 就 越小 .问题4 圆的面积随着半径的增大而增大.如果用r 表示圆的半径,S 表示圆的面积则S 与r 之间满足下列关系:S =_________.利用这个关系式,试求出半径为1 cm 、1.5 cm 、2 cm 、2.6 cm 、3.2 cm 时圆的面积,并将结果填入下表:由此可以看出,圆的半径越大,它的面积就_________.解 S =πr 2.圆的半径越大,它的面积就越大.在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量.例如问题1中,刻画气温变化规律的量是时间t 和气温T ,气温T 随着时间t 的变化而变化,它们都会取不同的数值.像这样在某一变化过程中,可以取不同数值的量,叫做变量(variable ).上面各个问题中,都出现了两个变量,它们互相依赖,密切相关.一般地,如果在一个变化过程中,有两个变量,例如x 和y ,对于x 的每一个值,y 都有惟一的值与之对应,我们就说x 是自变量(independent variable ),y 是因变量(dependent variable ),此时也称y 是x 的函数(function ).表示函数关系的方法通常有三种:(1)解析法,如问题3中的l 300000f ,问题4中的S =π r 2,这些表达式称为函数的关系式.(2)列表法,如问题2中的小蕾的体重表,问题3中的波长与频率关系表.(3)图象法,如问题1中的气温曲线.问题的研究过程中,还有一种量,它的取值始终保持不变,我们称之为常量(constant ),如问题3中的300 000,问题4中的π等.在研究函数时,必须注意自变量的取值范围.实际问题中,自变量的取值必须符合实际意义.例如,上述问题4中,自变量r 表示圆的半径,不能为负数和零,即它的取值范围为一切正实数.三、实践应用例1 下表是某市2012年统计的中小学男学生各年龄组的平均身高: 年龄组(岁) 7 8 9 10 11 12 13 14 15 16 17 18 平均身高(cm) 117 121 125 130 135 142 148 155 162 167 170 172(1)从表中你能看出该市14岁的男学生的平均身高是多少吗?(2)该市男学生的平均身高从哪一岁开始迅速增加?(3)上表反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?解(1)平均身高是155cm;(2)约从14岁开始身高增加特别迅速;(3)反映了该市男学生的平均身高和年龄这两个变量之间的关系,其中年龄是自变量,平均身高是因变量.例2 写出下列各问题中的关系式,并指出其中的常量与变量,指出自变量的取值范围:(1)圆的周长C与半径r的关系式;(2)火车以60千米/时的速度行驶,它驶过的路程s(千米)和所用时间t(时)的关系式;(3)n边形的内角和S与边数n的关系式.解(1)C=2π r,2π是常量,r、C是变量,r≥0;(2)s=60t,60是常量,t、s是变量,t≥0;(3)S=(n-2)×180,2、180是常量,n、S是变量,n≥3.四、交流反思1.函数概念包含:(1)两个变量;(2)两个变量之间的对应关系.2.在某个变化过程中,可以取不同数值的量,叫做变量;数值始终保持不变的量,叫做常量.例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量,y是因变量.3.函数关系三种表示方法:(1)解析法;(2)列表法;(3)图象法.4. 函数的取值范围:在研究函数时,必须注意自变量的取值范围.实际问题中,自变量的取值必须符合实际意义.五、检测反馈1.举3个日常生活中遇到的函数关系的例子.2.分别指出下列各关系式中的变量与常量:(1)三角形的一边长5cm ,它的面积S (cm 2)与这边上的高h (cm)的关系式是h S 25 ; (2)若直角三角形中的一个锐角的度数为α,则另一个锐角β(度)与α间的关系式是β=90-α ;(3)若某种报纸的单价为a 元,x 表示购买这种报纸的份数,则购买报纸的总价y (元)与x 间的关系是:y =ax .3.写出下列函数关系式,并指出式中的自变量与因变量:(1)每个同学购一本代数教科书,书的单价是2元,求总金额Y (元)与学生数n (个)的关系;(2)计划购买50元的乒乓球,求所能购买的总数n (个)与单价a (元)的关系.4.填写如图所示的乘法表,然后把所有填有24的格子涂黑.若用x 表示涂黑的格子横向的乘数,y 表示纵向的乘数,试写出y 关于x 的函数关系式.。

2023年华师大版八年级数学下册第十七章《变量与函数(1)》导学案

2023年华师大版八年级数学下册第十七章《变量与函数(1)》导学案

新华师大版八年级数学下册第十七章《变量与函数(1)》导学案课题及总课时第14课时17.1变量与函数(1)学习目标1.掌握常量和变量、自变量和因变量(函数)基本概念;2.了解表示函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系.学习重点了解常量与变量的意义;理解函数概念和自变量的意义;确定函数关系式。

学习难点函数概念的理解;函数关系式的确定.学法指导自主探究、合作交流。

预习案预习质疑一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.1.请同学们根据题意填写下表:t/时 1 2 3 4 5 ts/千米2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含t的式子表示s.__s=_________________t的取值范围是这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.探究案合作探疑活动一:思考并完成课本28页的问题1—4。

小结:在一个变化过程中,我们称数值发生变化....的量为________;在一个变化过程中,我们称数值始终不变....的量为________;交流释疑活动二:问题引申,探索概念(一)观察探究:1、在前面研究的每个问题中,都出现了______个变量,它们之间是相互影响,相互制约的.2、同一个问题中的变量之间有什么联系?(请同学们自己分析“问题一”中两个变量之间的关系,进而再分析上述所有实例中的两个变量之间是否有类似的关系.)归纳:上面每个问题中的两个变量相互联系,当其中一个变量取定一个值时,另一个变量就有________确定的值与其对应。

3、其实,在一些用图或表格表达的问题中,也能看到两个变量间有上述这样的关系.我们来看课本30页练习的两个问题,通过观察、思考、讨论后回答:(二)归纳概念:一般地,在一个变化过程中,如果有两个变量....x与y,并且对于x•的每一个确定的值,y•都有唯一..确定的值与其对应....,•那么我们就说x•是_________,y是x的________.如果当x=a 时y=b,那么b•叫做当自变量的值为a时的_________.拓展案交流释疑活动三:一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1L/km.(1)写出表示y与x的函数关系的式子,这样的识字叫做函数解析式。

华东师大版数学八年级下册教学设计《第17章函数及其图象17.1变量与函数(第1课时)》

华东师大版数学八年级下册教学设计《第17章函数及其图象17.1变量与函数(第1课时)》

华东师大版数学八年级下册教学设计《第17章函数及其图象17.1变量与函数(第1课时)》一. 教材分析华东师大版数学八年级下册第17章介绍了函数及其图象,而本节课将重点讲解变量与函数的概念。

函数是数学中的一个核心概念,它描述了两个变量之间的关系。

通过本节课的学习,学生将能够理解变量与函数的定义,并能够识别生活中的函数关系。

二. 学情分析学生在八年级上册已经学习了代数基础知识,对变量、常量等概念有一定的了解。

但是,对于函数的概念和图象可能还比较陌生。

因此,在教学过程中,教师需要引导学生从实际问题中抽象出函数关系,并通过图象来直观地理解函数。

三. 教学目标1.了解变量的概念,理解常量和变量的区别。

2.掌握函数的定义,能够识别生活中的函数关系。

3.能够通过图象来直观地理解函数,并能够绘制简单的函数图象。

四. 教学重难点1.重点:理解变量与函数的概念,能够识别生活中的函数关系。

2.难点:从实际问题中抽象出函数关系,并通过图象来直观地理解函数。

五. 教学方法本节课采用问题驱动的教学方法,通过引导学生从实际问题中抽象出函数关系,并通过图象来直观地理解函数。

同时,运用小组合作学习的方式,让学生在探究中共同解决问题,培养学生的合作能力。

六. 教学准备1.准备相关的实际问题,如身高与年龄的关系等。

2.准备函数图象的示例,如正比例函数、一次函数等。

3.准备黑板和粉笔,用于板书。

七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如身高与年龄的关系,让学生思考其中的数学关系。

引导学生发现,身高和年龄之间存在着一种依赖关系,即年龄增加,身高也会增加。

从而引出变量与函数的概念。

2.呈现(10分钟)教师通过PPT或者板书,向学生介绍变量与函数的定义。

变量是指在数学中可以取不同值的量,而函数是指两个变量之间的一种依赖关系。

教师可以通过举例来说明常量和变量的区别,如在身高与年龄的关系中,年龄是变量,而每个人的出生日期是常量。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华师大版初中数学华师大版初中数学
重点知识精选
掌握知识点,多做练习题,基础知识很重要!
华师大初中数学和你一起共同进步学业有成!
17.1 变量与函数(第一课时)
华师大版初中数学班级:八年级组名:数学姓名:日期:2014/3 编制:八年级数学备课组
课题:变量与函数课时:1课时
教学目标:
1.了解常量与变量的意义,能分清实例中的常量与变量;
2.了解自变量与函数的意义,能列举函数的实例,并能写出简单的函数关系式;
3.通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。

经历函数概念的抽象概括过程,体会函数的模型思想。

让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。

教学重点:函数概念的形成过程。

教学难点:理解函数概念。

预习案
1.变量与常量
在一个变化过程中,数值发生变化的量为变量,数值始终不变的量为常量
.
探究案
【定向导学·互动展示·当堂反馈】
学习流程【探究·展示·反馈】
问题1:图1是某地一天内的气温变化图.这张图告诉我们哪些信息?
看出回答:
(1) 这天的6时,10时和14时的气温分别为多少?任意给出这天中的某一时
刻,说出这一时刻的气温.
(2) 这一天中,最高气温是多少?最低气温是多少?
(3) 这一天中,什么时候的气温在逐渐升高?什么时候的气温在逐渐降低?
思考:这张图是怎样来展示这天各时刻的温度和刻画这天的气温变化规律的?
问题2:银行对各种不同的存款方式都规定了相应的利率,下表是2004年7月中国工商银行为”整存整取”的存款方式规定的年利率.
存期x 三月六月一年二年三年五年
年利率y(%) 1.710 1.890 1.980 2.250 2.520 2.790 观察上表,说一说随着存期x的增长,相应的年利率y是如何变化的?
问题3:收音机的刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对对应的数值:
波长l(m) 300 500 600 1000 1500 随堂笔记【成果记录、知识生成、规律总结】
教学反思:
频率f(kHz) 1000 600 500 300 200
仔细的观察你能发现什么?
问题4:圆的面积是随着半径增大而增大的.如果用r表示圆的半径,S表示圆面积,则S与r之间满足什么关系?利用这个关系式,试求出半径为1cm,1.5cm,2cm,2.6cm,3.2cm时圆的面积,并将结果填入下表:
半径r(cm) 1 1.5 2 2.6 3.2 …
圆面积S(cm2)
由此你可以得到什么结论?
二、形成概念
(一)变量与常量概念的形成过程
1.举例、归纳
问题1:某地一天内的气温变化图(示图)学生观察气温随时间变化的情况,引出“变量”。

问题2:学生观察随着存期x的增长,相应的年利率y是如何变化的过程,加深对变量的认识,引出“常量”。

设问:一个量变化,具体地说是它的什么在变?什么不变呢?
引导学生观察发现:是量的数值变与不变。

归纳变量与常量的定义并板书。

在其他二个问题中有哪些是变量?哪些是常量?
2.剖析概念
常量与变量必须存在于一个变化过程中。

判断一个量是常量还是变量,需着两个方面:①看它是否在一个变化的过程中,②看它在这个变化过程中的取值情况。

(二)自变量与函数概念的形成过程
1.举例、归纳
学生再次观察问题1、2、3、4两个变化过程,寻找共同之处:①一个变化过程,②两个变量,③一个量随另一个量的变化而变化。

若两个量满足上述三个条件,就说这两个量具有函数关系。

(引出课题并板书)
设问:上述第三条是形象描述两个变量的关系,具体地说是什么意思?
以问题4说明:引导学生观察发现:对于变量r的每一个值,变量S都有唯一的值与它对应。

所以两个变量的关系又可叙述为:对于一个变量的每一个值,另一个变量都有唯一的值与它对应。

即一种对应关系。

在s=πr2中,s与r具有这种对应关系,就说r是自变量,S是r的函数。

引出“自变量”、“函数”。

归纳自变量与函数的定义并板书。

在上面各例中,都有两个变量,给定其中某一各变量(自变量)的值,相应地就确定另一个变量(因变量)的值。

一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

2.剖析概念
理解函数概念把握三点:①一个变化过程,②两个变量,③一种对应关系。

判断两个量是否具有函数关系也以这三点为依据。

3.师生共同列举函数关系的例子。

三、表示函数的方法
在上述4个问题中有哪些相同点?有哪些不同点?
1.解析法:如问题3、4等式
2.列表法:问题2、3的表
3.图象法:如问题1的气温曲线图
解题过程略。

变式练习:
用20m的篱笆围成矩形,使矩形一边靠墙,另三边用篱笆围成,
1.写出矩形面积s(m?)与平行于墙的一边长x(m)的关系式;
2.写出矩形面积s(m?)与垂直于墙的一边长x(m)的关系式。

并指出两式中的常量与变量,函数与自变量。

相信自己,就能走向成功的第一步
教师不光要传授知识,还要告诉学生学会生活。

数学思维可以让他们更理
性地看待人生。

相关文档
最新文档