2020年安徽省芜湖市中考数学试题及答案
2020年安徽中考数学试卷及答案A4纸word版
2020年安徽中考数学试题一、选择题(本大题共10题,每题4题) 1、下列各数中,比 -2小的数是( )A.-3B.-1C.0D.2 2、计算(-a )6÷a 3的结果是( )A.-a 3B.-a 2C.a 3D.a 2 3、下面四个几何体中,主视图为三角形的是( )4、安徽省计划到2022年建成54 700 000亩高标准农田,其中54 700 000用科学计数法表示为( )A. 5.47×108B. 0.547×108C. 547×105D. 5.47×107 5、下列方程中,有两个相等实数根的是( )A. x 2+1=2xB. x 2+1=0C. x 2-2x=3D. x 2-2x=0 6、冉冉的妈妈在网上销售装饰品,最近一周,每天销售某种装饰品的个为:11,10,11,13,11,13,15。
关于这组数据,冉冉得出如下结果,其中错误..的是( ) A.众数是11 B.平均数是12 C.方差是718D. 中位数是13 7、已知一次函数y=kx+3的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A.(-1,2)B.(1,-2)C.(2,3)D. (3,4) 8、如图,Rt △ABC 中,∠C =90o ,点D 在AC 上,∠DBC =∠A ,若AC =4,cosA=54,则BD 的长度为( )A. 49B. 512C. 415D. 49、已知点A 、B 、C 在☉O 上,则下列命题为真命题的是( )A.若半径OB 平分弦AC ,则四边形OABC 是平行四边形B.若四边形OABC 是平行四边形,则∠ABC =120oC.若∠ABC =120o ,则弦AC 平分半径OBD.若弦AC 平分半径OB ,则半径OB 平分弦AC 10、如图,△ABC 和△DEF 都是边长为2的等边三角形,它们的边BC ,EF 在同一条直线l 上,点C ,E 重合,现将△ABC 沿着直线向右移动,直至点B 与F 重合时停止移动,在此过程中,设点C 移动的距离为x ,两具三角形重叠部分的面积为y ,则y 随x 变化的函数图象大致为( )A B C D 二、填空题(每题5分) 11、计算:9-4 = .12、分解因式:ab 2-a= .13、如图,一次函数y=x+k(k>0)的图象与x 轴和y 轴分别交于点A和点B ,与反比例函数x ky =的图象在第一象限内交于点C ,CD ⊥x轴,CE ⊥y 轴,垂足分别为点D ,E ,当矩形ODCE 与△OAB 的面积相等时,k 的值为 .14、在数学探究活动中,敏敏进行了如下操作,如图将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处,折痕为AP ;再将△PCQ ,△ADQ 分别沿PQ ,AQ 折叠,此时点C ,D 落在AP 上的同一点R 处,请完成下列探究: (1)∠PAQ 的大小为 0.(2)当四边形APCD 是平行四边形时,QRAB 的值为 .三、(本大题共2小题,每小题8分)15、解不等式:1212>-x16、如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段MN 在网格线上。
安徽省芜湖市2020年(春秋版)中考数学试卷(I)卷
安徽省芜湖市2020年(春秋版)中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、填空题 (共12题;共12分)1. (1分)﹣2016的相反数是________2. (1分)(2018·荆州) 如图,正方形ABCD的对称中心在坐标原点,AB∥x轴,AD、BC分别与x轴交于E、F,连接BE、DF,若正方形ABCD有两个顶点在双曲线y= 上,实数a满足a3﹣a=1,则四边形DEBF的面积是________.3. (1分)简便计算:7.292﹣2.712=________4. (1分) (2017八下·昆山期末) 若最简二次根式是同类二次根式,则a的值为________;5. (1分)(2014·泰州) 五边形的内角和为________.6. (1分) (2019七下·成都期中) 如图,在矩形ABCD中,将四边形ABFE沿EF折叠得到四边形HGFE.已知∠CFG=40°,则∠DEF=________.7. (1分)若关于x的一元二次方程x2﹣4x+2k=0有两个实数根,则k的取值范围为________ .8. (1分)在进行某批乒乓球的质量检验时,当抽取了2000个乒乓球时,发现优等品有1898个,则这批乒乓球“优等品”的概率的估计值是________(精确到0.01).9. (1分)如图,SO,SA分别是圆锥的高和母线,若SA=12cm,∠ASO=30°,则这个圆锥的侧面积是________cm2.(结果保留π)10. (1分)在直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′= ,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).若点P在函数y=﹣x2+16的图象上,其“可控变点”Q的纵坐标y′是7,则“可控变点”Q的横坐标是________.11. (1分)如图,在半径为4cm的⊙O中,劣弧AB的长为2πcm,则∠C=________度.12. (1分)如图,已知AB⊥AD,CD⊥AD,垂足分别为A、D,AD=6,AB=5,CD=3,P是线段AD上的一个动点,设AP=x,DP=y,,则a的最小值是________.二、选择题 (共5题;共10分)13. (2分)每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为150000000千米,将150000000千米用科学记数法表示为()A . 0.15×千米B . 1.5×千米C . 15×千米D . 1.5×千米14. (2分)如图,一个几何体是由两个小正方体和一个圆锥构成,其主视图是()A .B .C .D .15. (2分) (2019九上·射阳期末) 人民商场对上周女装的销售情况进行了统计,销售情况如下表所示:颜色黄色绿色白色紫色红色数量(件)10018022080550经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A . 平均数B . 中位数C . 众数D . 方差16. (2分) (2017七下·博兴期末) 如图,在平面直角坐标系中,小猫遮住的点的坐标可能是()A . (﹣2,1)B . (2,3)C . (3,﹣5)D . (﹣6,﹣2)17. (2分) (2017九下·莒县开学考) 如图,将矩形ABCD纸片沿EF折叠,若∠BGE=130°,则∠GEF等于()A . 60°B . 65°C . 70°D . 75°三、解答题 (共11题;共135分)18. (5分)(2017·北京) 计算:4cos30°+(1﹣)0﹣ +|﹣2|.19. (13分) (2017七下·简阳期中) 如图1,一条笔直的公路上有A、B、C三地,B、C两地相距150千米,甲、乙两辆汽车分别从B、C两地同时出发,沿公路始终匀速相向而行,分别驶往C、B两地. 甲、乙两车与A地的距离y1、y2(千米)与行驶时间x(时)的关系如图2所示:(1)请在图1中标出A地的位置________,并写出相应的距离:AB=________km,AC= ________km;(2)在图2中求出甲车到达C地的时间a,并分别写出甲车到达A地之前y1与行驶时间x的关系式和甲车从A地离开到C地的y1与行驶时间x的关系式(不需要写自变量的取值范围);(3)甲、乙两车都配有对讲机,对讲机在15千米之内(含15千米)时能够互相通话,请问两车能用对讲机通话的时间共有多长?20. (25分)(2017·德阳模拟) 学校准备在各班设立图书角以丰富同学们的课余文化生活,为了更合理的搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.(5)学校若在喜爱艺术、文学、科普、体育四类中任意抽取两类建立兴趣小组,求出恰好选中是体育和科普两类的概率?21. (12分)某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如图两幅不完整的统计图.根据以上信息解答下列问题:(1)回收的问卷数为________份,“严加干涉”部分对应扇形的圆心角度数为________(2)把条形统计图补充完整.(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?22. (10分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.23. (5分)(2014·淮安) 为了对一棵倾斜的古杉树AB进行保护,需测量其长度.如图,在地面上选取一点C,测得∠ACB=45°,AC=24m,∠BAC=66.5°,求这棵古杉树AB的长度.(结果取整数)参考数据:≈1.41,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30.24. (10分)(2017·东莞模拟) 有A、B两种饮料,这两种饮料的体积和单价如表:类型A B单瓶饮料体积/升1 2.5单价/元 3 4(1)小明购买A、B两种饮料共13升,用了25元,他购买A,B两种饮料个各多少瓶?(2)若购买A、B两种饮料共36瓶,且A种饮料的数量不多于B种饮料的数量,则最少可以购买多少升饮料?25. (15分)(2016·黄石模拟) M为双曲线y= 上的一点,过点M作x轴、y轴的垂线,分别交直线y=﹣x+m于点D,C两点,若直线y=﹣x+m与y轴交于点A,与x轴相交于点B.(1)求AD•BC的值.(2)若直线y=﹣x+m平移后与双曲线y= 交于P、Q两点,且PQ=3 ,求平移后m的值.(3)若点M在第一象限的双曲线上运动,试说明△MPQ的面积是否存在最大值?如果存在,求出最大面积和M的坐标;如果不存在,试说明理由.26. (15分)(2016·南岗模拟) 如图1,AB为⊙O的直径,点C,G都在⊙O上, = ,过点C作AB 的垂线,垂足为D,连接BC,AC,BG,BG与AC相交于点E.(1)求证:BG=2CD;(2)若⊙O的直径为5 ,BC=5,求CE的长;(3)如图2,在(2)条件下,延长CD,ED,分别与⊙O相交于点M,N,连接MN,求MN的长.27. (10分)(2017·贺州) 如图,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为点O.(1)求证:四边形ABCD是菱形;(2)若CD=3,BD=2 ,求四边形ABCD的面积.28. (15分) (2020九上·港南期末) 如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.参考答案一、填空题 (共12题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、选择题 (共5题;共10分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共11题;共135分)18-1、19-1、19-2、19-3、20-1、20-2、20-3、20-4、20-5、21-1、21-2、21-3、22-1、22-2、23-1、24-1、24-2、25-1、25-2、25-3、26-1、26-2、27-1、27-2、28-1、28-2、28-3、第21 页共21 页。
芜湖市2020年(春秋版)中考数学试卷(I)卷
芜湖市2020年(春秋版)中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) -6的相反数是A . 6B . -6C .D .2. (2分)(2019·泸州) 函数的自变量的取值范围是()A .B .C .D .3. (2分)下列叙述中,不正确的个数有()①所有的正数都是整数②|a|一定是正数③无限小数一定是无理数④(-2)3没有平方根⑤的平方根是⑥=2A . 3个B . 4个C . 5个D . 6个4. (2分)(2020·中山模拟) 下列等式中,不一定成立的是()A . 3m2﹣2m2=m2B . m2•m3=m5C . (m+1)2=m2+1D . (m2)3=m65. (2分) (2020七下·凉州月考) 将一直角三角尺与两边平行的纸条按如图所示放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°.正确的个数是()A . 1B . 2C . 3D . 46. (2分)不等式组的解集是()A . -5≤x<3B . -5<x≤3C . x≥-5D . x<37. (2分)某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为()A . 89B . 90C . 92D . 938. (2分)(2019·毕节) 下列四个运算中,只有一个是正确的.这个正确运算的序号是()①30+3﹣1=﹣3;② ﹣=;③(2a2)3=8a5;④﹣a8÷a4=﹣a4.A . ①B . ②C . ③D . ④9. (2分)受“莫拉克”台风影响,台湾引发了50年不遇的严重水灾,截至2009年8月19日止,大陆各界向台湾受灾同胞捐款总数已达1.76亿元人民币,把1.76亿元进行科学记数正确的是().A .B .C .D .10. (2分)一个几何体的三视图如图所示,这个几何体侧面展开图的面积是()A . 40πB . 24πC . 20πD . 12π11. (2分)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限12. (2分)(2011·嘉兴) 如图,边长为4的等边△ABC中,DE为中位线,则四边形BCED的面积为()A .B .C .D .二、填空题 (共5题;共5分)13. (1分) (2015七下·海盐期中) 已知(x﹣3)2+|x﹣y+6|=0,则x+y=________.14. (1分)已知﹣=3,则分式的值为________.15. (1分) (2016八上·徐州期中) 一元二次方程2x2+4x﹣1=0的两根为x1、x2 ,则x1+x2的值是________.16. (1分)今年母亲42岁,儿子2岁,________年后,母亲年龄是儿子年龄的6倍.17. (1分) (2017九上·鄞州月考) 如图,已知抛物线y=mx2﹣6mx+5m与x轴交于A、B两点,以AB为直径的⊙P经过该抛物线的顶点C,直线l∥ x轴,交该抛物线于M、N两点,交⊙ P与E、F两点,若EF=2 ,则MN的长是________.三、解答题 (共7题;共65分)18. (5分)(2017·西城模拟) 已知x2﹣3x﹣4=0,求代数式(x+1)(x﹣1)﹣(x+3)2+2x2的值.19. (10分) (2018九上·梁子湖期末) 将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.20. (10分)(2018·长清模拟) 国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.21. (5分)(2020·新疆) 如图,为测量建筑物CD的高度,在A点测得建筑物顶部D点的仰角为22°,再向建筑物CD前进30米到达B点,测得建筑物顶部D点的仰角为58°(A,B,C三点在一条直线上),求建筑物CD 的高度.(结果保留整数.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)22. (10分)(2020·遵义) 如图,在边长为4的正方形ABCD中,点E为对角线AC上一动点(点E与点A,C不重合),连接DE,作EF⊥DE交射线BA于点F,过点E作MN∥BC分别交CD,AB于点M、N,作射线DF交射线CA 于点G.(1)求证:EF=DE;(2)当AF=2时,求GE的长.23. (10分) (2016九上·怀柔期末) 在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2 ,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求x取何值时,花园面积S最大,并求出花园面积S的最大值.24. (15分)(2016·北仑模拟) 如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE是△ABC的一条特异线.(2)如图2,已知△A BC是特异三角形,且∠A=30°,∠B为钝角,求出所有可能的∠B的度数.(3)如图3,△ABC是一个腰长为2的等腰锐角三角形,且它是特异三角形,若它的顶角度数为整数,请求出其特异线的长度;若它的顶角度数不是整数,请直接写出顶角度数.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共7题;共65分)18-1、19-1、19-2、20-1、20-2、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、。
2020年安徽省中考数学试题含答案解析(Word版)
2020年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1. 的绝对值是()A. B. 8 C. D.【答案】B【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2. 2017年我赛粮食总产量为635.2亿斤,其中635.2亿科学记数法表示()A. B. C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】635.2亿=63520000000,63520000000小数点向左移10位得到6.352,所以635.2亿用科学记数法表示为:6.352×108,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A. B. C. D.【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.4. 一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【详解】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.5. 下列分解因式正确的是()A. B.C. D.【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. =(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.6. 据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.7. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:类于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.9. □ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A. BE=DFB. AE=CFC. AF//CED. ∠BAE=∠DCF【答案】B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.10. 如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC 在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.【答案】A【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断.【详解】由正方形的性质,已知正方形ABCD的边长为,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,y=2,如图,当1<x≤2时,y=2m+2n=2(m+n)= 2,如图,当2<x≤3时,y=2,综上,只有选项A符合,故选A.【点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键.二、填空题(本大共4小题,每小题5分,满分30分)11. 不等式的解集是___________.【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键.12. 如图,菱形ABOC的AB,AC分别与⊙O相切于点D、E,若点D是AB的中点,则∠DOE__________.【答案】60°【解析】【分析】由AB,AC分别与⊙O相切于点D、E,可得∠BDO=∠ADO=∠AEO=90°,根据已知条件可得到BD=OB,在Rt△OBD中,求得∠B=60°,继而可得∠A=120°,再利用四边形的内角和即可求得∠DOE 的度数.【详解】∵AB,AC分别与⊙O相切于点D、E,∴∠BDO=∠ADO=∠AEO=90°,∵四边形ABOC是菱形,∴AB=BO,∠A+∠B=180°,∵BD=AB,∴BD=OB,在Rt△OBD中,∠ODB=90°,BD=OB,∴cos∠B=,∴∠B=60°,∴∠A=120°,∴∠DOE=360°-120°-90°-90°=60°,故答案为:60°.【点睛】本题考查了切线的性质,菱形的性质,解直角三角形的应用等,熟练掌握相关的性质是解题的关键.13. 如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .【答案】y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y==3,∴A(2,3),B(2,0),∵y=kx过点A(2,3),∴3=2k,∴k=,∴y=x,∵直线y=x平移后经过点B,∴设平移后的解析式为y=x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=x-3,故答案为:y=x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.14. 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.【答案】3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.三、解答题15. 计算:【答案】7【解析】【分析】先分别进行0次幂的计算、二次根式的乘法运算,然后再按运算顺序进行计算即可.【详解】=1+2+=1+2+4=7.【点睛】本题考查了实数的运算,熟练掌握实数的运算法则、0次幂的运算法则是解题的关键. 16. 《孙子算经》中有过样一道题,原文如下: “今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.【答案】城中有75户人家.【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.【详解】设城中有x户人家,由题意得x+x=100,解得x=75,答:城中有75户人家.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键.17. 如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点. (1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;(2)将线段绕点逆时针旋转90°得到线段.画出线段;(3)以为顶点的四边形的面积是个平方单位.【答案】(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=,所以四边形AA1 B1 A2的在面积为:=20,故答案为:20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.18. 观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证. 【详解】(1)观察可知第6个等式为:,故答案为:;(2)猜想:,证明:左边====1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,故答案为:.【点睛】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键. 19. 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【答案】旗杆AB高约18米.【解析】【分析】如图先证明△FDE∽△ABE,从而得,在Rt△FEA中,由tan∠AFE=,通过运算求得AB的值即可.【详解】如图,∵FM//BD,∴∠FED=∠MFE=45°,∵∠DEF=∠BEA,∴∠AEB=45°,∴∠FEA=90°,∵∠FDE=∠ABE=90°,∴△FDE∽△ABE,∴,在Rt△FEA中,∠AFE=∠MFE+∠MFA=45°+39.3°=84.3°,tan84.3°=,∴,∴AB=1.8×10.02≈18,答:旗杆AB高约18米.【点睛】本题考查了解直角三角形的应用,相似三角形的判定与性质,得到是解题的关键.20. 如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.21. “校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【答案】(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.5~79.5所占的百分比;(2)观察可知79.5~99.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),“89.5~99.5”这一组人数占百分比为:(8+4)÷50×100%=24%,所以“69.5~79.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为:50,30%;(2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的8结果共有种,故P==.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.22. 小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【答案】(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元.【解析】【分析】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉(50-x)盆,根据盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元,②花卉的平均每盆利润始终不变,即可得到利润W1,W2与x的关系式;(2)由W总=W1+W2可得关于x的二次函数,利用二次函数的性质即可得.【详解】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由题意得W1=(50+x)(160-2x)=-2x²+60x+8000,W2=19(50-x)=-19x+950;(2)W总=W1+W2=-2x²+60x+8000+(-19x+950)=-2x²+41x+8950,∵-2<0,=10.25,故当x=10时,W总最大,W总最大=-2×10²+41×10+8950=9160.【点睛】本题考查了二次函数的应用,弄清题意,找准数量关系列出函数解析式是解题的关键.23. 如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【解析】【分析】(1)在Rt△DCB和Rt△DEB中,利用直角三角形斜边中线等于斜边一半进行证明即可得;(2)根据直角三角形两锐角互余可得∠ABC=40°,根据CM=MB,可得∠MCB=∠CBM,从而可得∠CMD=2∠CBM,继而可得∠CME=2∠CBA=80°,根据邻补角的定义即可求得∠EMF的度数;【详解】(1)∵M为BD中点,Rt△DCB中,MC=BD,Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°;(3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE,∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°,∴∠ABC=45°,∠ECM=45°,又∵CM=ME=BD=DM,∴DE=EM=DM,∴△DEM是等边三角形,∴∠EDM=60°,∴∠MBE=30°,∵CM=BM,∴∠BCM=∠CBM,∵∠MCB+∠ACE=45°,∠CBM+∠MBE=45°,∴∠ACE=∠MBE=30°,∴∠ACM=∠ACE+∠ECM=75°,连接AM,∵AE=EM=MB,∴∠MEB=∠EBM=30°,∠AME=∠MEB=15°,∵∠CME=90°,∴∠CMA=90°-15°=75°=∠ACM,∴AC=AM,∵N为CM中点,∴AN⊥CM,∵CM⊥EM,∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.。
2020年安徽省中考数学试题及答案
2020年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的. 1.(4分)下列各数中,比﹣2小的数是( ) A .﹣3B .﹣1C .0D .22.(4分)计算(﹣a )6÷a 3的结果是( ) A .﹣a 3B .﹣a 2C .a 3D .a 23.(4分)下面四个几何体中,主视图为三角形的是( )A .B .C .D .4.(4分)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为( ) A .5.47×108B .0.547×108C .547×105D .5.47×1075.(4分)下列方程中,有两个相等实数根的是( ) A .x 2+1=2xB .x 2+1=0C .x 2﹣2x =3D .x 2﹣2x =06.(4分)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( ) A .众数是11B .平均数是12C .方差是187D .中位数是137.(4分)已知一次函数y =kx +3的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( ) A .(﹣1,2)B .(1,﹣2)C .(2,3)D .(3,4)8.(4分)如图,Rt △ABC 中,∠C =90°,点D 在AC 上,∠DBC =∠A .若AC =4,cos A =45,则BD 的长度为( )A.94B.125C.154D.49.(4分)已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC10.(4分)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC沿着直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x 变化的函数图象大致为()A.B.C.D .二、填空题(本大题共4小题,每小题5分,满分20分) 11.(5分)计算:√9−1= . 12.(5分)分解因式:ab 2﹣a = .13.(5分)如图,一次函数y =x +k (k >0)的图象与x 轴和y 轴分别交于点A 和点B .与反比例函数y =kx的图象在第一象限内交于点C ,CD ⊥x 轴,CE ⊥y 轴.垂足分别为点D ,E .当矩形ODCE 与△OAB 的面积相等时,k 的值为 .14.(5分)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处.折痕为AP ;再将△PCQ ,△ADQ 分别沿PQ ,AQ 折叠,此时点C ,D 落在AP 上的同一点R 处.请完成下列探究: (1)∠P AQ 的大小为 °; (2)当四边形APCD 是平行四边形时,AB QR的值为 .三、(本大题共2小题,每小题8分,满分16分)15.(8分)解不等式:2x−12>1.16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段MN 在网格线上.(1)画出线段AB 关于线段MN 所在直线对称的线段A 1B 1(点A 1,B 1分别为A ,B 的对应点);(2)将线段B 1A 1绕点B 1顺时针旋转90°得到线段B 1A 2,画出线段B 1A 2.四、(本大题共2小题,每小题8分,满分16分) 17.(8分)观察以下等式:第1个等式:13×(1+21)=2−11,第2个等式:34×(1+22)=2−12, 第3个等式:55×(1+23)=2−13, 第4个等式:76×(1+24)=2−14. 第5个等式:97×(1+25)=2−15. …按照以上规律,解决下列问题: (1)写出第6个等式: ;(2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明.18.(8分)如图,山顶上有一个信号塔AC ,已知信号塔高AC =15米,在山脚下点B 处测得塔底C 的仰角∠CBD =36.9°,塔顶A 的仰角∠ABD =42.0°,求山高CD (点A ,C ,D 在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)五、(本大题共2小题,每小题10分,满分20分)19.(10分)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.20.(10分)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.六、(本题满分12分)21.(12分)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.七、(本题满分12分)22.(12分)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m 经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y 轴交点纵坐标的最大值.八、(本题满分14分)23.(14分)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=√2AG.2020年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.A .2.C .3.B .4.D .5.A .6.D .7.B .8.C .9.B .10.A . 二、填空题(本大题共4小题,每小题5分,满分20分) 11.2.12.a (b +1)(b ﹣1)13.2.14.(1)30;(2)√3. 三、(本大题共2小题,每小题8分,满分16分) 15.【解答】解:去分母,得:2x ﹣1>2, 移项,得:2x >2+1, 合并,得:2x >3, 系数化为1,得:x >32.16.【解答】解:(1)如图线段A 1B 1即为所求. (2)如图,线段B 1A 2即为所求.四、(本大题共2小题,每小题8分,满分16分) 17.【解答】解:(1)第6个等式:118×(1+26)=2−16;(2)猜想的第n 个等式:2n−1n+2×(1+2n)=2−1n.证明:∵左边=2n−1n+2×n+2n =2n−1n =2−1n=右边, ∴等式成立. 故答案为:118×(1+26)=2−16;2n−1n+2×(1+2n )=2−1n .18.【解答】解:由题意,在Rt △ABD 中,tan ∠ABD =ADBD , ∴tan42.0°=ADBD ≈0.9,∴AD ≈0.9BD ,在Rt △BCD 中,tan ∠CBD =CDBD , ∴tan36.9°=CDBD≈0.75, ∴CD ≈0.75BD , ∵AC =AD ﹣CD , ∴15=0.15BD , ∴BD =100(米), ∴CD =0.75BD =75(米), 答:山高CD 为75米.五、(本大题共2小题,每小题10分,满分20分)19.【解答】解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%, ∴该超市2020年4月份线下销售额为1.04(a ﹣x )元. 故答案为:1.04(a ﹣x ).(2)依题意,得:1.1a =1.43x +1.04(a ﹣x ), 解得:x =213a , ∴1.43x 1.1a=1.43⋅213a 1.1a=0.22a 1.1a=0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2. 20.【解答】(1)证明:∵AB 是半圆O 的直径, ∴∠ACB =∠ADB =90°,在Rt △CBA 与Rt △DAB 中,{BC =AD BA =AB ,∴Rt △CBA ≌Rt △DAB (HL );(2)解:∵BE =BF ,由(1)知BC ⊥EF , ∴∠E =∠BFE ,∵BE 是半圆O 所在圆的切线, ∴∠ABE =90°, ∴∠E +∠BAE =90°, 由(1)知∠D =90°, ∴∠DAF +∠AFD =90°,∵∠AFD=∠BFE,∴∠AFD=∠E,∵∠DAF=90°﹣∠AFD,∠BAF=90°﹣∠E,∴∠DAF=∠BAF,∴AC平分∠DAB.六、(本题满分12分)21.【解答】解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),则最喜欢C套餐的人数为240﹣(60+84+24)=72(人),∴扇形统计图中“C”对应扇形的圆心角的大小为360°×72240=108°,故答案为:60、108;(2)估计全体960名职工中最喜欢B套餐的人数为960×84240=336(人);(3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为612=12.七、(本题满分12分)22.【解答】解:(1)点B是在直线y=x+m上,理由如下:∵直线y=x+m经过点A(1,2),∴2=1+m,解得m=1,∴直线为y=x+1,把x=2代入y=x+1得y=3,∴点B(2,3)在直线y=x+m上;(2)∵直线y=x+1经过点B(2,3),直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),点(0,1),A(1,2),B(2,3)在直线上,点(0,1),A(1,2)在抛物线上,直线与抛物线不可能有三个交点且B、C两点的横坐标相同,∴抛物线只能经过A 、C 两点,把A (1,2),C (2,1)代入y =ax 2+bx +1得{a +b +1=24a +2b +1=1, 解得a =﹣1,b =2;(3)由(2)知,抛物线的解析式为y =﹣x 2+2x +1,设平移后的抛物线的解析式为y =﹣x 2+px +q ,其顶点坐标为(p 2,p 24+q ),∵顶点仍在直线y =x +1上,∴p 24+q =p 2+1, ∴q =−p 24+p 2+1,∵抛物线y =﹣x 2+px +q 与y 轴的交点的纵坐标为q ,∴q =−p 24+p 2+1=−14(p ﹣1)2+54,∴当p =1时,平移后所得抛物线与y 轴交点纵坐标的最大值为54. 八、(本题满分14分)23.【解答】(1)证明:∵四边形ABCD 是矩形,点E 在BA 的延长线上,∴∠EAF =∠DAB =90°,又∵AE =AD ,AF =AB ,∴△AEF ≌△ADB (SAS ),∴∠AEF =∠ADB ,∴∠GEB +∠GBE =∠ADB +∠ABD =90°,即∠EGB =90°,故BD ⊥EC ,(2)解:∵四边形ABCD 是矩形,∴AE ∥CD ,∴∠AEF =∠DCF ,∠EAF =∠CDF ,∴△AEF ∽△DCF ,∴AE DC =AF DF ,即AE •DF =AF •DC ,设AE =AD =a (a >0),则有a •(a ﹣1)=1,化简得a 2﹣a ﹣1=0,解得a=1+√52或1−√52(舍去),∴AE=1+√5 2.(3)证明:如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠P AG=∠P AD+∠DAG=∠P AD+∠EAP=∠DAE=90°,∴△P AG为等腰直角三角形,∴EG﹣DG=EG﹣EP=PG=√2AG.。
2020年安徽省中考数学试卷(含解析)
2020年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.(4分)(2020•安徽)下列各数中,比﹣2小的数是( )A .﹣3B .﹣1C .0D .22.(4分)(2020•安徽)计算(﹣a )6÷a 3的结果是( )A .﹣a 3B .﹣a 2C .a 3D .a 23.(4分)(2020•安徽)下面四个几何体中,主视图为三角形的是( )A .B .C .D .4.(4分)(2020•安徽)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为( )A .5.47×108B .0.547×108C .547×105D .5.47×1075.(4分)(2020•安徽)下列方程中,有两个相等实数根的是( )A .x 2+1=2xB .x 2+1=0C .x 2﹣2x =3D .x 2﹣2x =06.(4分)(2020•安徽)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( )A .众数是11B .平均数是12C .方差是187D .中位数是139.(4分)(2020•安徽)已知点A ,B ,C 在⊙O 上,则下列命题为真命题的是( )A .若半径OB 平分弦AC ,则四边形OABC 是平行四边形B .若四边形OABC 是平行四边形,则∠ABC =120°C .若∠ABC =120°,则弦AC 平分半径OBD .若弦AC 平分半径OB ,则半径OB 平分弦AC10.(4分)(2020•安徽)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2020•安徽)计算:√9−1=.12.(5分)(2020•安徽)分解因式:ab2﹣a=.13.(5分)(2020•安徽)如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=kx的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为.14.(5分)(2020•安徽)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处.折痕为AP ;再将△PCQ ,△ADQ 分别沿PQ ,AQ 折叠,此时点C ,D 落在AP 上的同一点R 处.请完成下列探究:(1)∠P AQ 的大小为 °;(2)当四边形APCD 是平行四边形时,AB QR 的值为 .四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2020•安徽)观察以下等式:第1个等式:13×(1+21)=2−11, 第2个等式:34×(1+22)=2−12, 第3个等式:55×(1+23)=2−13, 第4个等式:76×(1+24)=2−14. 第5个等式:97×(1+25)=2−15.…按照以上规律,解决下列问题:(1)写出第6个等式: ;(2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明.18.(8分)(2020•安徽)如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.20.(10分)(2020•安徽)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.六、(本题满分12分)21.(12分)(2020•安徽)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.七、(本题满分12分)22.(12分)(2020•安徽)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y 轴交点纵坐标的最大值.八、(本题满分14分)23.(14分)(2020•安徽)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE =AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=√2AG.2020年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)(2020•安徽)下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.2【解答】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2.故选:A.2.(4分)(2020•安徽)计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a2【解答】解:原式=a6÷a3=a3.故选:C.3.(4分)(2020•安徽)下面四个几何体中,主视图为三角形的是()A.B.C.D.【解答】解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.4.(4分)(2020•安徽)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×107【解答】解:54700000用科学记数法表示为:5.47×107.故选:D .5.(4分)(2020•安徽)下列方程中,有两个相等实数根的是( )A .x 2+1=2xB .x 2+1=0C .x 2﹣2x =3D .x 2﹣2x =0【解答】解:A 、△=(﹣2)2﹣4×1×1=0,有两个相等实数根;B 、△=0﹣4=﹣4<0,没有实数根;C 、△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等实数根;D 、△=(﹣2)2﹣4×1×0=4>0,有两个不相等实数根.故选:A .6.(4分)(2020•安徽)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( )A .众数是11B .平均数是12C .方差是187D .中位数是13【解答】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A 选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D 符合题意; x =(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B 不符合题意;S 2=17[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2]=187,因此方差为187,于是选项C 不符合题意;故选:D .9.(4分)(2020•安徽)已知点A ,B ,C 在⊙O 上,则下列命题为真命题的是( )A .若半径OB 平分弦AC ,则四边形OABC 是平行四边形B .若四边形OABC 是平行四边形,则∠ABC =120°C .若∠ABC =120°,则弦AC 平分半径OBD .若弦AC 平分半径OB ,则半径OB 平分弦AC【解答】解:A 、如图,若半径OB平分弦AC,则四边形OABC不一定是平行四边形;原命题是假命题;B、若四边形OABC是平行四边形,则AB=OC,OA=BC,∵OA=OB=OC,∴AB=OA=OB=BC=OC,∴∠ABO=∠OBC=60°,∴∠ABC=120°,是真命题;C、如图,若∠ABC=120°,则弦AC不平分半径OB,原命题是假命题;D、如图,若弦AC平分半径OB,则半径OB不一定平分弦AC,原命题是假命题;故选:B.10.(4分)(2020•安徽)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.【解答】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=√32EJ=√32x,∴y=12EJ•GH=√34x2.当x=2时,y=√3,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y =12FJ •GH =√34(4﹣x )2,函数图象为抛物线的一部分,且抛物线开口向上. 故选:A .二、填空题(本大题共4小题,每小题5分,满分20分) 11.(5分)(2020•安徽)计算:√9−1= 2 . 【解答】解:原式=3﹣1=2. 故答案为:2.12.(5分)(2020•安徽)分解因式:ab 2﹣a = a (b +1)(b ﹣1) . 【解答】解:原式=a (b 2﹣1)=a (b +1)(b ﹣1), 故答案为:a (b +1)(b ﹣1)13.(5分)(2020•安徽)如图,一次函数y =x +k (k >0)的图象与x 轴和y 轴分别交于点A 和点B .与反比例函数y =kx 的图象在第一象限内交于点C ,CD ⊥x 轴,CE ⊥y 轴.垂足分别为点D ,E .当矩形ODCE 与△OAB 的面积相等时,k 的值为 2 .【解答】解:一次函数y =x +k (k >0)的图象与x 轴和y 轴分别交于点A 和点B ,令x =0,则y =k ,令y =0,则x =﹣k ,故点A 、B 的坐标分别为(﹣k ,0)、(0,k ),则△OAB 的面积=12OA •OB =12k 2,而矩形ODCE 的面积为k , 则12k 2=k ,解得:k =0(舍去)或2,故答案为2.14.(5分)(2020•安徽)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处.折痕为AP ;再将△PCQ ,△ADQ 分别沿PQ ,AQ 折叠,此时点C ,D 落在AP 上的同一点R 处.请完成下列探究: (1)∠P AQ 的大小为 30 °; (2)当四边形APCD 是平行四边形时,AB QR的值为 √3 .【解答】解:(1)由折叠的性质可得:∠B =∠AQP ,∠DAQ =∠QAP =∠P AB ,∠DQA =∠AQR ,∠CQP =∠PQR ,∠D =∠ARQ ,∠C =∠QRP , ∵∠QRA +∠QRP =180°, ∴∠D +∠C =180°, ∴AD ∥BC ,∴∠B +∠DAB =180°, ∵∠DQR +∠CQR =180°, ∴∠DQA +∠CQP =90°, ∴∠AQP =90°, ∴∠B =∠AQP =90°, ∴∠DAB =90°,∴∠DAQ =∠QAP =∠P AB =30°, 故答案为:30;(2)由折叠的性质可得:AD =AR ,CP =PR , ∵四边形APCD 是平行四边形, ∴AD =PC , ∴AR =PR , 又∵∠AQP =90°,∴QR =12AP ,∵∠P AB =30°,∠B =90°, ∴AP =2PB ,AB =√3PB , ∴PB =QR , ∴AB QR=√3,故答案为:√3.四、(本大题共2小题,每小题8分,满分16分) 17.(8分)(2020•安徽)观察以下等式: 第1个等式:13×(1+21)=2−11,第2个等式:34×(1+22)=2−12, 第3个等式:55×(1+23)=2−13, 第4个等式:76×(1+24)=2−14. 第5个等式:97×(1+25)=2−15. …按照以上规律,解决下列问题: (1)写出第6个等式:118×(1+26)=2−16 ;(2)写出你猜想的第n 个等式: 2n−1n+2×(1+2n )=2−1n (用含n 的等式表示),并证明.【解答】解:(1)第6个等式:118×(1+26)=2−16;(2)猜想的第n 个等式:2n−1n+2×(1+2n)=2−1n.证明:∵左边=2n−1n+2×n+2n =2n−1n =2−1n=右边, ∴等式成立. 故答案为:118×(1+26)=2−16;2n−1n+2×(1+2n )=2−1n .18.(8分)(2020•安徽)如图,山顶上有一个信号塔AC ,已知信号塔高AC =15米,在山脚下点B 处测得塔底C 的仰角∠CBD =36.9°,塔顶A 的仰角∠ABD =42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)【解答】解:由题意,在Rt△ABD中,tan∠ABD=AD BD,∴tan42.0°=ADBD≈0.9,∴AD≈0.9BD,在Rt△BCD中,tan∠CBD=CD BD,∴tan36.9°=CDBD≈0.75,∴CD≈0.75BD,∵AC=AD﹣CD,∴15=0.15BD,∴BD=100米,∴CD=0.75BD=75(米),答:山高CD为75米.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x 1.04(a﹣x)(2)求2020年4月份线上销售额与当月销售总额的比值.【解答】解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a﹣x)元.故答案为:1.04(a ﹣x ).(2)依题意,得:1.1a =1.43x +1.04(a ﹣x ), 解得:x =213a , ∴1.43x 1.1a=1.43⋅213a 1.1a=0.22a 1.1a=0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.20.(10分)(2020•安徽)如图,AB 是半圆O 的直径,C ,D 是半圆O 上不同于A ,B 的两点,AD =BC ,AC 与BD 相交于点F .BE 是半圆O 所在圆的切线,与AC 的延长线相交于点E .(1)求证:△CBA ≌△DAB ;(2)若BE =BF ,求证:AC 平分∠DAB .【解答】(1)证明:∵AB 是半圆O 的直径, ∴∠ACB =∠ADB =90°,在Rt △CBA 与Rt △DAB 中,{BC =AD BA =AB ,∴Rt △CBA ≌Rt △DAB (HL );(2)解:∵BE =BF ,由(1)知BC ⊥EF , ∴∠E =∠BFE ,∵BE 是半圆O 所在圆的切线, ∴∠ABE =90°, ∴∠E +∠BAE =90°, 由(1)知∠D =90°, ∴∠DAF +∠AFD =90°, ∵∠AFD =∠BFE , ∴∠AFD =∠E ,∴∠DAF =90°﹣∠AFD ,∠BAF =90°﹣∠E , ∴∠DAF =∠BAF ,∴AC平分∠DAB.六、(本题满分12分)21.(12分)(2020•安徽)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为60,扇形统计图中“C”对应扇形的圆心角的大小为108°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【解答】解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),则最喜欢C套餐的人数为240﹣(60+84+24)=72(人),∴扇形统计图中“C”对应扇形的圆心角的大小为360°×72240=108°,故答案为:60、108;(2)估计全体960名职工中最喜欢B套餐的人数为960×84240=336(人);(3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为612=12.七、(本题满分12分)22.(12分)(2020•安徽)在平面直角坐标系中,已知点A (1,2),B (2,3),C (2,1),直线y =x +m 经过点A ,抛物线y =ax 2+bx +1恰好经过A ,B ,C 三点中的两点. (1)判断点B 是否在直线y =x +m 上,并说明理由; (2)求a ,b 的值;(3)平移抛物线y =ax 2+bx +1,使其顶点仍在直线y =x +m 上,求平移后所得抛物线与y 轴交点纵坐标的最大值.【解答】解:(1)点B 是在直线y =x +m 上,理由如下: ∵直线y =x +m 经过点A (1,2), ∴2=1+m ,解得m =1, ∴直线为y =x +1,把x =2代入y =x +1得y =3, ∴点B (2,3)在直线y =x +m 上;(2)∵直线y =x +1与抛物线y =ax 2+bx +1都经过点(0,1),且B 、C 两点的横坐标相同,∴抛物线只能经过A 、C 两点,把A (1,2),C (2,1)代入y =ax 2+bx +1得{a +b +1=24a +2b +1=1,解得a =﹣1,b =2;(3)由(2)知,抛物线为y =﹣x 2+2x +1,设平移后的抛物线为y =﹣x 2+px +q ,其顶点坐标为(p2,p 24+q ),∵顶点仍在直线y =x +1上, ∴p 24+q =p2+1, ∴q =−p 24+p2+1,∵抛物线y =﹣x 2+px +q 与y 轴的交点的纵坐标为q , ∴q =−p 24+p 2+1=−14(p ﹣1)2+54,∴当p =1时,平移后所得抛物线与y 轴交点纵坐标的最大值为54.八、(本题满分14分)23.(14分)(2020•安徽)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE =AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=√2AG.【解答】(1)证明:∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC,(2)解:∵四边形ABCD是矩形,∴AE∥CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴AEDC =AF DF,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解得a=1+√52或1−√52(舍去),∴AE=1+√5 2.(3)如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠P AG=∠P AD+∠DAG=∠P AD+∠EAP=∠DAE=90°,∴△P AG为等腰直角三角形,∴EG﹣DG=EG﹣EP=PG=√2AG.。
2020年安徽省中考数学试卷(含解析)打印版
2020年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.22.(4分)计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a23.(4分)下面四个几何体中,主视图为三角形的是()A.B.C.D.4.(4分)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×1075.(4分)下列方程中,有两个相等实数根的是()A.x2+1=2x B.x2+1=0C.x2﹣2x=3D.x2﹣2x=06.(4分)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是D.中位数是137.(4分)已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)8.(4分)如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cos A=,则BD 的长度为()A.B.C.D.49.(4分)已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC10.(4分)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)计算:﹣1=.12.(5分)分解因式:ab2﹣a=.13.(5分)如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为.14.(5分)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D 落在AP上的同一点R处.请完成下列探究:(1)∠P AQ的大小为°;(2)当四边形APCD是平行四边形时,的值为.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解不等式:>1.16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.四、(本大题共2小题,每小题8分,满分16分)17.(8分)观察以下等式:第1个等式:×(1+)=2﹣,第2个等式:×(1+)=2﹣,第3个等式:×(1+)=2﹣,第4个等式:×(1+)=2﹣.第5个等式:×(1+)=2﹣.…按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.18.(8分)如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)五、(本大题共2小题,每小题10分,满分20分)19.(10分)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.20.(10分)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.六、(本题满分12分)21.(12分)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.七、(本题满分12分)22.(12分)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.八、(本题满分14分)23.(14分)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=AG.2020年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.2【分析】先根据正数都大于0,负数都小于0,可排除C、D,再根据两个负数,绝对值大的反而小,可得比﹣2小的数是﹣3.【解答】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2.故选:A.2.(4分)计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a2【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:原式=a6÷a3=a3.故选:C.3.(4分)下面四个几何体中,主视图为三角形的是()A.B.C.D.【分析】根据主视图是从正面看得到的图形,可得答案.【解答】解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.4.(4分)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:54700000用科学记数法表示为:5.47×107.故选:D.5.(4分)下列方程中,有两个相等实数根的是()A.x2+1=2x B.x2+1=0C.x2﹣2x=3D.x2﹣2x=0【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.有两个相等实数根的一元二次方程就是判别式的值是0的一元二次方程.【解答】解:A、△=(﹣2)2﹣4×1×1=0,有两个相等实数根;B、△=0﹣4=﹣4<0,没有实数根;C、△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等实数根;D、△=(﹣2)2﹣4×1×0=4>0,有两个不相等实数根.故选:A.6.(4分)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是D.中位数是13【分析】根据平均数、众数、中位数、方差的计算方法分别计算这组数据的平均数、众数、中位数、方差,最后做出选择.【解答】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D符合题意;=(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B不符合题意;S2=[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2]=,因此方差为,于是选项C不符合题意;故选:D.7.(4分)已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)【分析】由点A的坐标,利用一次函数图象上点的坐标特征求出k值,结合y随x的增大而减小即可确定结论.【解答】解:A、当点A的坐标为(﹣1,2)时,﹣k+3=2,解得:k=1>0,∴y随x的增大而增大,选项A不符合题意;B、当点A的坐标为(1,﹣2)时,k+3=﹣2,解得:k=﹣5<0,∴y随x的增大而减小,选项B符合题意;C、当点A的坐标为(2,3)时,2k+3=3,解得:k=0,选项C不符合题意;D、当点A的坐标为(3,4)时,3k+3=4,解得:k=>0,∴y随x的增大而增大,选项D不符合题意.故选:B.8.(4分)如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cos A=,则BD 的长度为()A.B.C.D.4【分析】在△ABC中,由三角函数求得AB,再由勾股定理求得BC,最后在△BCD中由三角函数求得BD.【解答】解:∵∠C=90°,AC=4,cos A=,∴AB=,∴,∵∠DBC=∠A.∴cos∠DBC=cos∠A=,∴,故选:C.9.(4分)已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC【分析】根据垂径定理,平行四边形的性质判断即可.【解答】解:A、如图,若半径OB平分弦AC,则四边形OABC不一定是平行四边形;原命题是假命题;B、若四边形OABC是平行四边形,则AB=OC,OA=BC,∵OA=OB=OC,∴AB=OA=OB=BC=OC,∴∠ABO=∠OBC=60°,∴∠ABC=120°,是真命题;C、如图,若∠ABC=120°,则弦AC不平分半径OB,原命题是假命题;D、如图,若弦AC平分半径OB,则半径OB不一定平分弦AC,原命题是假命题;故选:B.10.(4分)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.【分析】分为0<x≤2、2<x≤4两种情况,然后依据等边三角形的性质和三角形的面积公式可求得y 与x的函数关系式,于是可求得问题的答案.【解答】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=EJ=x,∴y=EJ•GH=x2.当x=2时,y=,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y=FJ•GH=(4﹣x)2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)计算:﹣1=2.【分析】直接利用二次根式的性质化简进而得出答案.【解答】解:原式=3﹣1=2.故答案为:2.12.(5分)分解因式:ab2﹣a=a(b+1)(b﹣1).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)13.(5分)如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为2.【分析】分别求出矩形ODCE与△OAB的面积,即可求解.【解答】解:一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B,令x=0,则y=k,令y=0,则x=﹣k,故点A、B的坐标分别为(﹣k,0)、(0,k),则△OAB的面积=OA•OB=k2,而矩形ODCE的面积为k,则k2=k,解得:k=0(舍去)或2,故答案为2.14.(5分)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D 落在AP上的同一点R处.请完成下列探究:(1)∠P AQ的大小为30°;(2)当四边形APCD是平行四边形时,的值为.【分析】(1)由折叠的性质可得∠B=∠AQP,∠DAQ=∠QAP=∠P AB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,由平角的性质可得∠D+∠C=180°,∠AQP=90°,可证AD ∥BC,由平行线的性质可得∠DAB=90°,即可求解;(2)由平行四边形和折叠的性质可得AR=PR,由直角三角形的性质可得AP=2PB=2QR,AB=PB,即可求解.【解答】解:(1)由折叠的性质可得:∠B=∠AQP,∠DAQ=∠QAP=∠P AB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,∵∠QRA+∠QRP=180°,∴∠D+∠C=180°,∴AD∥BC,∴∠B+∠DAB=180°,∵∠DQR+∠CQR=180°,∴∠DQA+∠CQP=90°,∴∠AQP=90°,∴∠B=∠AQP=90°,∴∠DAB=90°,∴∠DAQ=∠QAP=∠P AB=30°,故答案为:30;(2)由折叠的性质可得:AD=AR,CP=PR,∵四边形APCD是平行四边形,∴AD=PC,∴AR=PR,又∵∠AQP=90°,∴QR=AP,∵∠P AB=30°,∠B=90°,∴AP=2PB,AB=PB,∴PB=QR,∴=,故答案为:.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解不等式:>1.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.【解答】解:去分母,得:2x﹣1>2,移项,得:2x>2+1,合并,得:2x>3,系数化为1,得:x>.16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.【分析】(1)分别作出A,B的对应点A1,B2即可.(2)作出点A1的对应点A2即可.【解答】解:(1)如图线段A1B1即为所求.(2)如图,线段B1A2即为所求.四、(本大题共2小题,每小题8分,满分16分)17.(8分)观察以下等式:第1个等式:×(1+)=2﹣,第2个等式:×(1+)=2﹣,第3个等式:×(1+)=2﹣,第4个等式:×(1+)=2﹣.第5个等式:×(1+)=2﹣.…按照以上规律,解决下列问题:(1)写出第6个等式:×(1+)=2﹣;(2)写出你猜想的第n个等式:×(1+)=2﹣(用含n的等式表示),并证明.【分析】(1)根据题目中前5个等式,可以发现式子的变化特点,从而可以写出第6个等式;(2)把上面发现的规律用字母n表示出来,并运用分式的混合运算法则计算等号的右边的值,进而得到左右相等便可.【解答】解:(1)第6个等式:×(1+)=2﹣;(2)猜想的第n个等式:×(1+)=2﹣.证明:∵左边=×==2﹣=右边,∴等式成立.故答案为:×(1+)=2﹣;×(1+)=2﹣.18.(8分)如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)【分析】根据三角函数的定义和直角三角形的性质解答即可.【解答】解:由题意,在Rt△ABD中,tan∠ABD=,∴tan42.0°=≈0.9,∴AD≈0.9BD,在Rt△BCD中,tan∠CBD=,∴tan36.9°=≈0.75,∴CD≈0.75BD,∵AC=AD﹣CD,∴15=0.15BD,∴BD=100米,∴CD=0.75BD=75(米),答:山高CD为75米.五、(本大题共2小题,每小题10分,满分20分)19.(10分)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x 1.04(a﹣x)(2)求2020年4月份线上销售额与当月销售总额的比值.【分析】(1)由线下销售额的增长率,即可用含a,x的代数式表示出2020年4月份的线下销售额;(2)根据2020年4月份的销售总额=线上销售额+线下销售额,即可得出关于x的一元一次方程,解之即可得出x的值(用含a的代数式表示),再将其代入中即可求出结论.【解答】解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a﹣x)元.故答案为:1.04(a﹣x).(2)依题意,得:1.1a=1.43x+1.04(a﹣x),解得:x=a,∴===0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.20.(10分)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.【分析】(1)根据圆周角定理得到∠ACB=∠ADB=90°,根据全等三角形的判定定理即可得到结论;(2)根据等腰三角形的性质得到∠E=∠BFE,根据切线的性质得到∠ABE=90°,根据三角形的内角和以及角平分线的定义即可得到结论.【解答】(1)证明:∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,在Rt△CBA与Rt△DAB中,,∴Rt△CBA≌Rt△DAB(HL);(2)解:∵BE=BF,由(1)知BC⊥EF,∴∠E=∠BFE,∵BE是半圆O所在圆的切线,∴∠ABE=90°,∴∠E+∠BAE=90°,由(1)知∠D=90°,∴∠DAF+∠AFD=90°,∵∠AFD=∠BFE,∴∠AFD=∠E,∴∠DAF=90°﹣∠AFD,∠BAF=90°﹣∠E,∴∠DAF=∠BAF,∴AC平分∠DAB.六、(本题满分12分)21.(12分)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为60,扇形统计图中“C”对应扇形的圆心角的大小为108°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【分析】(1)用被调查的职工人数乘以最喜欢A套餐人数所占百分比即可得其人数;再由四种套餐人数之和等于被调查的人数求出C对应人数,继而用360°乘以最喜欢C套餐人数所占比例即可得;(2)用总人数乘以样本中最喜欢B套餐的人数所占比例即可得;(3)画树状图列出所有等可能结果,从中找到符合条件的结果数,利用概率公式求解可得答案.【解答】解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),则最喜欢C套餐的人数为240﹣(60+84+24)=72(人),∴扇形统计图中“C”对应扇形的圆心角的大小为360°×=108°,故答案为:60、108;(2)估计全体960名职工中最喜欢B套餐的人数为960×=336(人);(3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为=.七、(本题满分12分)22.(12分)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.【分析】(1)根据待定系数法求得直线的解析式,然后即可判断点B(2,3)在直线y=x+m上;(2)因为直线经过A、B和点(0,1),所以经过点(0,1)的抛物线不同时经过A、B点,即可判断抛物线只能经过A、C两点,根据待定系数法即可求得a、b;(3)设平移后的抛物线为y=﹣x2+px+q,其顶点坐标为(,+q),根据题意得出+q=+1,由抛物线y=﹣x2+px+q与y轴交点的纵坐标为q,即可得出q=﹣﹣1=﹣(p﹣1)2+,从而得出q的最大值.【解答】解:(1)点B是在直线y=x+m上,理由如下:∵直线y=x+m经过点A(1,2),∴2=1+m,解得m=1,∴直线为y=x+1,把x=2代入y=x+1得y=3,∴点B(2,3)在直线y=x+m上;(2)∵直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),且B、C两点的横坐标相同,∴抛物线只能经过A、C两点,把A(1,2),C(2,1)代入y=ax2+bx+1得,解得a=﹣1,b=2;(3)由(2)知,抛物线为y=﹣x2+2x+1,设平移后的抛物线为y=﹣x2+px+q,其顶点坐标为(,+q),∵顶点仍在直线y=x+1上,∴+q=+1,∴q=﹣++1,∵抛物线y=﹣x2+px+q与y轴的交点的纵坐标为q,∴q=﹣++1=﹣(p﹣1)2+,∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为.八、(本题满分14分)23.(14分)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=AG.【分析】(1)证明△AEF≌△ADB(SAS),得出∠AEF=∠ADB,证得∠EGB=90°,则结论得出;(2)证明△AEF∽△DCF,得出,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解方程即可得出答案;(3)在线段EG上取点P,使得EP=DG,证明△AEP≌△ADG(SAS),得出AP=AG,∠EAP=∠DAG,证得△P AG为等腰直角三角形,可得出结论.【解答】(1)证明:∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC,(2)解:∵四边形ABCD是矩形,∴AE∥CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解得或(舍去),∴AE=.(3)如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠P AG=∠P AD+∠DAG=∠P AD+∠EAP=∠DAE=90°,∴△P AG为等腰直角三角形,∴EG﹣DG=EG﹣EP=PG=AG.。
2020年安徽省中考数学试卷(含详细解析)
C.若 .则弦 平分半径
D.若弦 平分半径 .则半径 平分弦
10.如图 和 都是边长为 的等边三角形,它们的边 在同一条直线 上,点 , 重合,现将 沿着直线 向右移动,直至点 与 重合时停止移动.在此过程中,设点移动的距离为 ,两个三角形重叠部分的面积为 ,则 随 变化的函数图像大致为()
A.众数是 B.平均数是 C.方差是 D.中位数是
7.已知一次函数 的图象经过点 ,且 随 的增大而减小,则点 的坐标可以是()
A. B. C. D.
8.如图, 中, ,点 在 上, .若 ,则 的长度为()
A. B. C. D.
9.已知点 在 上.则下列命题为真命题的是()
A.若半径 平分弦 .则四边形 是平行四边形
故选C.
【点睛】
本题考查的是乘方符号的处理,考查同底数幂的除法运算,掌握以上知识是解题的关键.
3.D
【解析】
试题分析:A.圆柱的主视图为矩形,∴A不符合题意;
B.正方体的主视图为正方形,∴B不符合题意;
C.球体的主视图为圆形,∴C不符合题意;
D.圆锥的主视图为三角形,∴D符合题意.
故选D.
考点:简单几何体的三视图.
保密★启用前
2020年安徽省中考数学试卷
题号
一
二
三
总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
评卷人
得分
一、单选题
1.下列各数中比 小的数是()
A. B. C. D.
2.计算 的结果是()
A. B. C. D.
3.下列几何体中,其主视图为三角形的是()
2020年安徽省芜湖中考数学试题(word版及答案)
初中毕业学业考试数学试卷温馨提示:L数学试卷共8页,三大题.共24小题.请你仔细核对每页试卷下方页码和题数,核实无误后再答题.考试时间共120分钟.请合理分配时间.2.请你仔细思考、认真答题,不要过于紧张,祝考试顺利!一、选择题(本大题共10小题,每小题4分,共40分.)在每小题给出的四个选项中,只有一项是符合题意的,请把你认为正确的选项前字母填写在该题后面的括号中。
1.-8的相反数是()A. -8B. 一1C. -D. 88 82.我们身处在自然环境中,一年接受的宇宙射线及其它天然辐射照射量约为3 1 00微西弗(1西弗等于1000毫西弗,1毫西弗等于1000微西弗),用科学记数法可表示为()A. 3.1x106西弗g. 3.1X1O'西弗 C. 3.1x10-3西弗口. 3.1x10、西弗3.如图所示,下列几何体中主视图、左视图、俯视图都相同的是()。
:D.六棱柱4.函数中,自变量X的取值范围是()A x<6B x>6 C. x<-6 D. x>-65.分式方程汩=—匚的解是(), ZN工一2 2-x /尸 X6.如图,已知aABC中,ZABC=45° ,F是高AD和BE的交点,CD=4,则线段DF的长度为()产 ------- 今一A. 2& B. 4 C. 3& D. 4& 第6题图7.已知直线),=辰+。
经过点(k, 3)和(1, k),则k的值为()A. 6B. 土6C.五D. ±728.如图,直径为10的OA山经过点C(0, 5)和点0(0, 0), B是y轴右侧。
A 优弧上一点,则N0BC的余弦值为()A- B. 3 C.且 D.士2 42 59.如图,从边长为(a+4)cm 的正方形纸片中剪去一个边长 为(〃 +1)cm的正方形(〃>0),剩余部分沿虚线乂剪拼成一个矩形(不 重叠无缝隙),则矩形的面积为()A. (2a 2+5a )cm 2B. (3« + 15)c/n 2C. (6a + 9)c 〃/D. (6d + 15)cn/210,二次函数y = ad+法+ c 的图象如图所示,则反比例函数y = B 与一次函数x y = Z?x+c 在同一坐标系中的大致图象是()二、填空题(本大题共6小题.每小题5分.共30分.)将正确的答案填在题中 的横线上.11. 一个角的补角是36° 35' .这个角是 _______o 12.因式分解/一2/),+92=o 13.方程组9T2 = 7解是 __________ 。
2020年安徽省中考数学试卷【含答案;word版本试题;可编辑】
2020年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1. 下列各数中,比−2小的数是()A.−12B.12C.−3D.02. 计算(−a)6÷a3的结果是()A.−a3B.−a2C.a3D.a23. 下面四个几何体中,主视图为三角形的是()A. B. C. D.4. 安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×1075. 下列方程中,有两个相等实数根的是()A.x2+1=2xB.x2+1=0C.x2−2x=3D.x2−2x=06. 冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11 B.平均数是12 C.方差是187D.中位数是137. 已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(−1, 2)B.(1, −2)C.(2, 3)D.(3, 4)8. 如图,Rt△ABC中,∠C=90∘,点D在AC上,∠DBC=∠A.若AC=4,cos A=45,则BD的长度为()A.94B.125C.154D.49. 已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120∘C.若∠ABC=120∘,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC10. 如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A. B.C. D.1 / 8。
安徽省芜湖市2020版中考数学试卷D卷
安徽省芜湖市2020版中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如图,直线a、b与直线相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°,其中能判断a∥b的是()A . ①③;B . ①③④;C . ②④;D . ①②③④.2. (2分)(2017·洛阳模拟) 大树的价值很多,可以吸收有毒气体,防止大气污染,增加土壤肥力,涵养水源,为鸟类及其他动物提供繁衍场所等价值,累计计算,一棵50年树龄的大树总计创造价值超过160万元,其中160万元用科学记数法表示为()A . 1.6×105B . 1.6×106C . 1.6×107D . 1.6×1083. (2分)下列计算正确的是()A .B .C .D .4. (2分)在一个晴朗的上午,乐乐拿着一块长方形木板在地面上形成的投影中不可能的是()A .B .C .D .5. (2分)(2017·临沂模拟) 不等式组的解集在数轴上表示为()A .B .C .D .6. (2分)用作位似形的方法,可以将一个图形放大或缩小,位似中心()A . 只能选在原图形的外部B . 只能选在原图形的内部C . 只能选在原图形的边上D . 可以选择任意位置7. (2分)一个袋子中装有10个球,其中有6个黑球和4个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机从这个袋子中摸出一个球,摸到黑球的概率为A .B .C .D .8. (2分)(2017·碑林模拟) 如图,直线l:y=﹣ x﹣2与直线y=a(a为常数)的交点在第四象限,则a可能在()A . ﹣2<a<0B . ﹣10<a<﹣3C . ﹣<a<0D . a<﹣29. (2分)(2011·杭州) 在矩形ABCD中,有一个菱形BFDE(点E,F分别在线段AB,CD上),记它们的面积分别为SABCD和SBFDE ,现给出下列命题正确的是()①若,则;②若DE2=BD•EF,则DF=2AD.A . ①是真命题,②是真命题B . ①是真命题,②是假命题C . ①是假命题,②是真命题D . ①是假命题,②是假命题10. (2分)(2019·东阳模拟) 如图,在矩形ABCD中,E是CD边的中点,且BE⊥AC于点F,连接DF,则下列结论错误的是()A . △ADC∽△CFBB . AD=DFC . =D . =二、填空题 (共11题;共14分)11. (1分)﹣1的绝对值与5的相反数的和是________.12. (1分)如图,二次函数y=ax2+bx+c(a≠0)的图象过原点O,且该图象的对称轴是直线x=,若函数值y>0.则x取值范围是________ .13. (1分)(2012·义乌) 正n边形的一个外角的度数为60°,则n的值为________.14. (1分)(2018·广东模拟) 分解因式 ________.15. (1分)(2017·临泽模拟) 计算: =________.16. (1分)(2017·盘锦模拟) 已知圆锥的母线长为8cm,底面圆的半径为3cm,则圆锥的侧面展开图的面积是________ cm2 .17. (2分)若一组数据x1 , x2 ,…,xn的平均数是a,方差是b,则4x1﹣3,4x2﹣3,…,4xn﹣3的平均数是________,方差是________.18. (3分)(2018·毕节模拟) 如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△AnBnCn的顶点Bn、Cn在圆上.如图1,当n=1时,正三角形的边长a1=________;如图2,当n=2时,正三角形的边长a2=________;如图3,正三角形的边长an=________(用含n的代数式表示).19. (1分)(2016·潍坊) 已知反比例函数y= (k≠0)的图象经过(3,﹣1),则当1<y<3时,自变量x的取值范围是________.20. (1分) (2018八下·太原期中) 如图,在Rt△ABC中,∠C=90°,∠A=30°,点D,点E分别在边AC,AB上,且DE垂直平分AB.若AD=2,则CD的长为________.21. (1分)(2019·台江模拟) 如图,在平面直角坐标系中,等腰直角△OAB的斜边OB在x轴上,且OB=4,反比例函数y=(x>0)的图象经过OA的中点C ,交AB于点D ,则点D坐标是________.三、解答题 (共8题;共87分)22. (5分) (2020七下·西安月考) 如图,以点B为顶点,射线BC为一边,利用尺规作图法作∠EBC(不写作法,保留作图痕迹),使∠EBC=∠A,EB与AD平行吗?请说明理由.23. (10分)甲、乙两台机床同时加工直径为100mm的零件,为了检验产品的质量,从产品中各随机抽出6件进行测量,测得数据如下表(单位:min):甲机床9910098100100103乙机床9910010299100100(1)分别计算两组数据的平均数与方差;(2)根据(1)的计算结果,你能知道哪一台机床加工这种零件更符合要求吗?24. (10分)(2017·兰州模拟) 已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.25. (10分) (2020八下·西安月考) 某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品。
2020年安徽省中考数学试卷及答案
2020年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.(4分)(2020•安徽)下列各数中,比﹣2小的数是( ) A .﹣3B .﹣1C .0D .22.(4分)(2020•安徽)计算(﹣a )6÷a 3的结果是( ) A .﹣a 3B .﹣a 2C .a 3D .a 23.(4分)(2020•安徽)下面四个几何体中,主视图为三角形的是( )A .B .C .D .4.(4分)(2020•安徽)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为( ) A .5.47×108B .0.547×108C .547×105D .5.47×1075.(4分)(2020•安徽)下列方程中,有两个相等实数根的是( ) A .x 2+1=2xB .x 2+1=0C .x 2﹣2x =3D .x 2﹣2x =06.(4分)(2020•安徽)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( ) A .众数是11B .平均数是12C .方差是187D .中位数是137.(4分)(2020•安徽)已知一次函数y =kx +3的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( ) A .(﹣1,2)B .(1,﹣2)C .(2,3)D .(3,4)8.(4分)(2020•安徽)如图,Rt △ABC 中,∠C =90°,点D 在AC 上,∠DBC =∠A .若AC=4,cos A=45,则BD的长度为()A.94B.125C.154D.49.(4分)(2020•安徽)已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC10.(4分)(2020•安徽)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D .二、填空题(本大题共4小题,每小题5分,满分20分) 11.(5分)(2020•安徽)计算:√9−1= . 12.(5分)(2020•安徽)分解因式:ab 2﹣a = .13.(5分)(2020•安徽)如图,一次函数y =x +k (k >0)的图象与x 轴和y 轴分别交于点A 和点B .与反比例函数y =kx的图象在第一象限内交于点C ,CD ⊥x 轴,CE ⊥y 轴.垂足分别为点D ,E .当矩形ODCE 与△OAB 的面积相等时,k 的值为 .14.(5分)(2020•安徽)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处.折痕为AP ;再将△PCQ ,△ADQ 分别沿PQ ,AQ 折叠,此时点C ,D 落在AP 上的同一点R 处.请完成下列探究: (1)∠P AQ 的大小为 °; (2)当四边形APCD 是平行四边形时,AB QR的值为 .三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2020•安徽)解不等式:2x−12>1.16.(8分)(2020•安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段MN 在网格线上.(1)画出线段AB 关于线段MN 所在直线对称的线段A 1B 1(点A 1,B 1分别为A ,B 的对应点);(2)将线段B 1A 1绕点B 1顺时针旋转90°得到线段B 1A 2,画出线段B 1A 2.四、(本大题共2小题,每小题8分,满分16分) 17.(8分)(2020•安徽)观察以下等式: 第1个等式:13×(1+21)=2−11,第2个等式:34×(1+22)=2−12, 第3个等式:55×(1+23)=2−13, 第4个等式:76×(1+24)=2−14. 第5个等式:97×(1+25)=2−15. …按照以上规律,解决下列问题: (1)写出第6个等式: ;(2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明.18.(8分)(2020•安徽)如图,山顶上有一个信号塔AC ,已知信号塔高AC =15米,在山脚下点B 处测得塔底C 的仰角∠CBD =36.9°,塔顶A 的仰角∠ABD =42.0°,求山高CD (点A ,C ,D 在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.20.(10分)(2020•安徽)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.六、(本题满分12分)21.(12分)(2020•安徽)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.七、(本题满分12分)22.(12分)(2020•安徽)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y 轴交点纵坐标的最大值.八、(本题满分14分)23.(14分)(2020•安徽)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE =AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=√2AG.2020年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)(2020•安徽)下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.2【解答】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2.故选:A.2.(4分)(2020•安徽)计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a2【解答】解:原式=a6÷a3=a3.故选:C.3.(4分)(2020•安徽)下面四个几何体中,主视图为三角形的是()A.B.C.D.【解答】解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.4.(4分)(2020•安徽)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×107【解答】解:54700000用科学记数法表示为:5.47×107.故选:D .5.(4分)(2020•安徽)下列方程中,有两个相等实数根的是( ) A .x 2+1=2xB .x 2+1=0C .x 2﹣2x =3D .x 2﹣2x =0【解答】解:A 、△=(﹣2)2﹣4×1×1=0,有两个相等实数根; B 、△=0﹣4=﹣4<0,没有实数根;C 、△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等实数根;D 、△=(﹣2)2﹣4×1×0=4>0,有两个不相等实数根. 故选:A .6.(4分)(2020•安徽)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( ) A .众数是11B .平均数是12C .方差是187D .中位数是13【解答】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A 选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D 符合题意;x =(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B 不符合题意;S 2=17[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2]=187,因此方差为187,于是选项C 不符合题意; 故选:D .7.(4分)(2020•安徽)已知一次函数y =kx +3的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( ) A .(﹣1,2)B .(1,﹣2)C .(2,3)D .(3,4)【解答】解:A 、当点A 的坐标为(﹣1,2)时,﹣k +3=2, 解得:k =1>0,∴y 随x 的增大而增大,选项A 不符合题意; B 、当点A 的坐标为(1,﹣2)时,k +3=﹣2, 解得:k =﹣5<0,∴y 随x 的增大而减小,选项B 符合题意;C、当点A的坐标为(2,3)时,2k+3=3,解得:k=0,选项C不符合题意;D、当点A的坐标为(3,4)时,3k+3=4,解得:k=13>0,∴y随x的增大而增大,选项D不符合题意.故选:B.8.(4分)(2020•安徽)如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cos A=45,则BD的长度为()A.94B.125C.154D.4【解答】解:∵∠C=90°,AC=4,cos A=4 5,∴AB=ACcosA=5,∴BC=√AB2−AC2=3,∵∠DBC=∠A.∴cos∠DBC=cos∠A=BCBD=45,∴BD=3×54=154,故选:C.9.(4分)(2020•安徽)已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC【解答】解:A、如图,若半径OB平分弦AC,则四边形OABC不一定是平行四边形;原命题是假命题;B、若四边形OABC是平行四边形,则AB=OC,OA=BC,∵OA=OB=OC,∴AB=OA=OB=BC=OC,∴∠ABO=∠OBC=60°,∴∠ABC=120°,是真命题;C、如图,若∠ABC=120°,则弦AC不平分半径OB,原命题是假命题;D、如图,若弦AC平分半径OB,则半径OB不一定平分弦AC,原命题是假命题;故选:B.10.(4分)(2020•安徽)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.【解答】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=√32EJ=√32x,∴y=12EJ•GH=√34x2.当x=2时,y=√3,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y =12FJ •GH =√34(4﹣x )2,函数图象为抛物线的一部分,且抛物线开口向上. 故选:A .二、填空题(本大题共4小题,每小题5分,满分20分) 11.(5分)(2020•安徽)计算:√9−1= 2 . 【解答】解:原式=3﹣1=2. 故答案为:2.12.(5分)(2020•安徽)分解因式:ab 2﹣a = a (b +1)(b ﹣1) . 【解答】解:原式=a (b 2﹣1)=a (b +1)(b ﹣1), 故答案为:a (b +1)(b ﹣1)13.(5分)(2020•安徽)如图,一次函数y =x +k (k >0)的图象与x 轴和y 轴分别交于点A 和点B .与反比例函数y =kx 的图象在第一象限内交于点C ,CD ⊥x 轴,CE ⊥y 轴.垂足分别为点D ,E .当矩形ODCE 与△OAB 的面积相等时,k 的值为 2 .【解答】解:一次函数y =x +k (k >0)的图象与x 轴和y 轴分别交于点A 和点B ,令x =0,则y =k ,令y =0,则x =﹣k ,故点A 、B 的坐标分别为(﹣k ,0)、(0,k ),则△OAB 的面积=12OA •OB =12k 2,而矩形ODCE 的面积为k , 则12k 2=k ,解得:k =0(舍去)或2,故答案为2.14.(5分)(2020•安徽)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处.折痕为AP ;再将△PCQ ,△ADQ 分别沿PQ ,AQ 折叠,此时点C ,D 落在AP 上的同一点R 处.请完成下列探究: (1)∠P AQ 的大小为 30 °; (2)当四边形APCD 是平行四边形时,AB QR的值为 √3 .【解答】解:(1)由折叠的性质可得:∠B =∠AQP ,∠DAQ =∠QAP =∠P AB ,∠DQA =∠AQR ,∠CQP =∠PQR ,∠D =∠ARQ ,∠C =∠QRP , ∵∠QRA +∠QRP =180°, ∴∠D +∠C =180°, ∴AD ∥BC ,∴∠B +∠DAB =180°, ∵∠DQR +∠CQR =180°, ∴∠DQA +∠CQP =90°, ∴∠AQP =90°, ∴∠B =∠AQP =90°, ∴∠DAB =90°,∴∠DAQ =∠QAP =∠P AB =30°, 故答案为:30;(2)由折叠的性质可得:AD =AR ,CP =PR , ∵四边形APCD 是平行四边形, ∴AD =PC , ∴AR =PR , 又∵∠AQP =90°,∴QR =12AP ,∵∠P AB =30°,∠B =90°, ∴AP =2PB ,AB =√3PB , ∴PB =QR , ∴AB QR=√3,故答案为:√3.三、(本大题共2小题,每小题8分,满分16分) 15.(8分)(2020•安徽)解不等式:2x−12>1.【解答】解:去分母,得:2x ﹣1>2, 移项,得:2x >2+1, 合并,得:2x >3, 系数化为1,得:x >32.16.(8分)(2020•安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段MN 在网格线上.(1)画出线段AB 关于线段MN 所在直线对称的线段A 1B 1(点A 1,B 1分别为A ,B 的对应点);(2)将线段B 1A 1绕点B 1顺时针旋转90°得到线段B 1A 2,画出线段B 1A 2.【解答】解:(1)如图线段A 1B 1即为所求. (2)如图,线段B 1A 2即为所求.四、(本大题共2小题,每小题8分,满分16分) 17.(8分)(2020•安徽)观察以下等式: 第1个等式:13×(1+21)=2−11,第2个等式:34×(1+22)=2−12, 第3个等式:55×(1+23)=2−13, 第4个等式:76×(1+24)=2−14. 第5个等式:97×(1+25)=2−15. …按照以上规律,解决下列问题: (1)写出第6个等式:118×(1+26)=2−16 ;(2)写出你猜想的第n 个等式: 2n−1n+2×(1+2n )=2−1n(用含n 的等式表示),并证明.【解答】解:(1)第6个等式:118×(1+26)=2−16;(2)猜想的第n 个等式:2n−1n+2×(1+2n)=2−1n.证明:∵左边=2n−1n+2×n+2n =2n−1n =2−1n=右边, ∴等式成立.故答案为:118×(1+26)=2−16;2n−1n+2×(1+2n )=2−1n .18.(8分)(2020•安徽)如图,山顶上有一个信号塔AC ,已知信号塔高AC =15米,在山脚下点B 处测得塔底C 的仰角∠CBD =36.9°,塔顶A 的仰角∠ABD =42.0°,求山高CD (点A ,C ,D 在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)【解答】解:由题意,在Rt△ABD中,tan∠ABD=AD BD,∴tan42.0°=ADBD≈0.9,∴AD≈0.9BD,在Rt△BCD中,tan∠CBD=CD BD,∴tan36.9°=CDBD≈0.75,∴CD≈0.75BD,∵AC=AD﹣CD,∴15=0.15BD,∴BD=100米,∴CD=0.75BD=75(米),答:山高CD为75米.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x 1.04(a﹣x)(2)求2020年4月份线上销售额与当月销售总额的比值.【解答】解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a﹣x)元.故答案为:1.04(a﹣x).(2)依题意,得:1.1a=1.43x+1.04(a﹣x),解得:x =213a , ∴1.43x 1.1a=1.43⋅213a 1.1a=0.22a 1.1a=0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.20.(10分)(2020•安徽)如图,AB 是半圆O 的直径,C ,D 是半圆O 上不同于A ,B 的两点,AD =BC ,AC 与BD 相交于点F .BE 是半圆O 所在圆的切线,与AC 的延长线相交于点E .(1)求证:△CBA ≌△DAB ;(2)若BE =BF ,求证:AC 平分∠DAB .【解答】(1)证明:∵AB 是半圆O 的直径, ∴∠ACB =∠ADB =90°,在Rt △CBA 与Rt △DAB 中,{BC =AD BA =AB ,∴Rt △CBA ≌Rt △DAB (HL );(2)解:∵BE =BF ,由(1)知BC ⊥EF , ∴∠E =∠BFE ,∵BE 是半圆O 所在圆的切线, ∴∠ABE =90°, ∴∠E +∠BAE =90°, 由(1)知∠D =90°, ∴∠DAF +∠AFD =90°, ∵∠AFD =∠BFE , ∴∠AFD =∠E ,∴∠DAF =90°﹣∠AFD ,∠BAF =90°﹣∠E , ∴∠DAF =∠BAF , ∴AC 平分∠DAB . 六、(本题满分12分)21.(12分)(2020•安徽)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为60,扇形统计图中“C”对应扇形的圆心角的大小为108°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【解答】解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),则最喜欢C套餐的人数为240﹣(60+84+24)=72(人),∴扇形统计图中“C”对应扇形的圆心角的大小为360°×72240=108°,故答案为:60、108;(2)估计全体960名职工中最喜欢B套餐的人数为960×84240=336(人);(3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为612=12.七、(本题满分12分)22.(12分)(2020•安徽)在平面直角坐标系中,已知点A (1,2),B (2,3),C (2,1),直线y =x +m 经过点A ,抛物线y =ax 2+bx +1恰好经过A ,B ,C 三点中的两点. (1)判断点B 是否在直线y =x +m 上,并说明理由; (2)求a ,b 的值;(3)平移抛物线y =ax 2+bx +1,使其顶点仍在直线y =x +m 上,求平移后所得抛物线与y 轴交点纵坐标的最大值.【解答】解:(1)点B 是在直线y =x +m 上,理由如下: ∵直线y =x +m 经过点A (1,2), ∴2=1+m ,解得m =1, ∴直线为y =x +1,把x =2代入y =x +1得y =3, ∴点B (2,3)在直线y =x +m 上;(2)∵直线y =x +1与抛物线y =ax 2+bx +1都经过点(0,1),且B 、C 两点的横坐标相同,∴抛物线只能经过A 、C 两点,把A (1,2),C (2,1)代入y =ax 2+bx +1得{a +b +1=24a +2b +1=1,解得a =﹣1,b =2;(3)由(2)知,抛物线为y =﹣x 2+2x +1,设平移后的抛物线为y =﹣x 2+px +q ,其顶点坐标为(p2,p 24+q ),∵顶点仍在直线y =x +1上, ∴p 24+q =p2+1, ∴q =−p 24+p2+1, ∵抛物线y =﹣x 2+px +q 与y 轴的交点的纵坐标为q ,∴q =−p 24+p 2+1=−14(p ﹣1)2+54,∴当p =1时,平移后所得抛物线与y 轴交点纵坐标的最大值为54.八、(本题满分14分)23.(14分)(2020•安徽)如图1,已知四边形ABCD 是矩形,点E 在BA 的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=√2AG.【解答】(1)证明:∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC,(2)解:∵四边形ABCD是矩形,∴AE∥CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴AEDC =AF DF,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解得a=1+√52或1−√52(舍去),∴AE=1+√5 2.(3)如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠P AG=∠P AD+∠DAG=∠P AD+∠EAP=∠DAE=90°,∴△P AG为等腰直角三角形,∴EG﹣DG=EG﹣EP=PG=√2AG.。
安徽省芜湖市2020年中考数学试卷C卷
安徽省芜湖市2020年中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2011·来宾) 据国家统计局2011年4月28日发布的《2011年第六次全国人口普查主要数据公报(第一号)》,总人口为1370536875人,这一数字用科学记数法表示为()(保留四个有效数字)A . 1.37×109B . 1.37×108C . 1.371×109D . 1.371×1082. (2分)下列图形:①三角形,②线段,③正方形,④直角.其中是轴对称图形的个数是()A . 4个B . 3个C . 2个D . 1个3. (2分) (2015高二上·昌平期末) 一个多边形的边数每增加一条,这个多边形的()A . 内角和增加360°B . 外角和增加360°C . 对角线增加一条D . 内角和增加180°4. (2分) (2015七上·献县期中) 数轴上A、B两点所对应的数分别是4和﹣6,则A、B两点间的距离为()A . ﹣2B . 2C . ﹣10D . 105. (2分)(2017·宜春模拟) 如图,四边形ABCD内接于⊙O,F是上一点,且 = ,连接CF 并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=30°,则∠E的度数为()A . 45°B . 50°C . 55°D . 60°6. (2分)计算:22014-(-2)2015的结果是()A . 24029B . 3×22014C . -22014D . (-2 )20147. (2分) (2015八下·青田期中) 能证明命题x是实数,则“(x﹣3)2>0”是假命题的反例是()A . x=1B . x=2C . x=3D . x=48. (2分)(2018·成都模拟) 已知一组数据,,,,平均数为2,方差为那么另一组数据,,,,的平均数和方差分别为()A . ,B . 2,1C . ,3D . 以上都不对二、填空题 (共8题;共8分)9. (1分) (2019八上·鸡东期末) 当x________时,分式的值为正.10. (1分) (2019八上·平遥月考) 在△ABC中,AB=12,BC=16,AC=20,则△ABC的面积为________。
安徽省芜湖市2020版中考数学试卷(II)卷
安徽省芜湖市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题(共12小题,每小题3分,满分36分) (共12题;共24分)1. (2分) (2015九下·海盐期中) 实数﹣的相反数是()A . ﹣2B .C . 2D . ﹣|﹣0.5|2. (2分) (2019八上·随县月考) 使分式有意义的的取值范围是()A .B .C .D .3. (2分) (2016七下·鄂城期中) 如图:AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确结论有()A . ①②③④B . ①②③C . ①③④D . ①②④4. (2分)(2020·黄石) 如图所示,该几何体的俯视图是()A .B .C .D .5. (2分) (2020七下·贵州期末) 下列运算结果正确的是()A .B .C .D .6. (2分)(2020·杭州模拟) 已知某种型号的纸100张厚度约为1cm,那么这种型号的纸13亿张厚度约为()A . 1.3×107kmB . 1.3×103kmC . 1.3×102kmD . 1.3×10km7. (2分)(2013·深圳) 某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的()A . 最高分B . 中位数C . 极差D . 平均数8. (2分) (2017八下·揭西期末) 正八边形的每一个内角的度数为()A . 45°B . 60°C . 120°D . 135°9. (2分)参加一次足球联赛的每两个队之间都进行两场比赛,共要比赛110场,共有()个队参加比赛?A . 8B . 9C . 10D . 1110. (2分)(2019·赤峰模拟) 如果关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是()A . a>﹣B . a≥﹣C . a≥﹣且a≠0D . a>且a≠011. (2分)已知下列命题:①若a>0,b>0,则a+b>0;②正方形的对角线互相垂直平分;③直角三角形斜边上的中线等于斜边的一半;④菱形的四条边相等.其中原命题与逆命题均为真命题的个数是()A . 1个B . 2个C . 3个D . 4个12. (2分)如图,直线l是经过点(1,0)且与y轴平行的直线.Rt△ABC中直角边AC=4,BC=3.将BC边在直线l上滑动,使A,B在函数y=的图象上.那么k的值是()A . 3B . 6C . 12D .二、填空题(共6小题,每小题3分,满分18分) (共6题;共6分)13. (1分)(2014·桂林) 分解因式:a2+2a=________.14. (1分)(2020·武汉) 计算的结果是________.15. (1分) (2020七下·巩义期末) 已知线段,轴,若点的坐标为,则点坐标为________.16. (1分)若△ABC∽△DEF,△ABC与△DEF的面积比为4:9,则AB:DE=________.17. (1分)(2020·河池模拟) 用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为________.18. (1分)(2017·保康模拟) 已知在Rt△ABC中,∠C=90°,AB=5cm,BC=3cm,把Rt△ABC绕AB旋转一周,所得几何体的表面积是________.三、解答题(共8小题,满分66分) (共8题;共80分)19. (10分) (2020七下·合肥月考) 计算.(1)(2)20. (15分) (2017八上·台州开学考) 某校的20年校庆举办了四个项目的比赛,现分别以A,B,C,D表示它们.要求每位同学必须参加且限报一项.以701班为样本进行统计,并将统计结果绘制如下两幅统计图,其中参加A项目的人数比参加C与D项目人数的总和多1人,参加D项目的人数比参加A项目的人数少11人.请你结合图中所给出的信息解答下列问题:(1)求出全班总人数;(2)求出扇形统计图中参加D项目比赛的学生所在的扇形圆心角的度数;(3)若该校7年级学生共有200人,请你估计这次活动中参加A和B项目的学生共有多少人?21. (5分) (2020八下·洪泽期中) 如图,在□ABCD中,E、F为对角线BD上的两点,且∠BAE=∠DCF.求证:BE=DF.22. (10分) (2019九上·东河月考) 某校的一个数学兴趣小组在本校学生中开展主题为“买房知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,分别记作、、、;并根据调查结果绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)求本次被调查的学生共有多少人?并将条形统计图和扇形统计图补充完整;(2)在“比较了解”的调查结果里,初三年级学生共有5人,其中2男3女,在这5人中,打算随机选出2位进行采访,请你用列表法或树状图的方法求出所选两位同学至少有一位是男同学的概率?23. (10分) (2019九下·昆明模拟) 昆明市某中学“综合实践活动”棋类社团前两次购买的两种材质的围棋采购如表(近期两种材质的围棋的售价一直不变):塑料围棋玻璃围棋总价(元)第一次(盒)第二次(盒)(1)若该社团计划再采购这两种材质的围棋各盒,则需要多少元;(2)若该社团准备购买这两种材质的围棋共盒,且要求塑料围棋的数量不多于玻璃围棋数量的倍,请设计出最省钱的购买方案,并说明理由.24. (10分) (2020八下·哈尔滨月考) 如图,一艘渔船正以30海里/时的速度由西向东追赶鱼群,在A处看见小岛C在船的北偏东60°方向上,40分钟后,渔船行至B处,此时看见小岛C在渔船的北偏东30°方向上.(1)求A处与小岛C之间的距离;(2)渔船到达B处后,航行方向不变,当渔船继续航行多长时间时,才能与小岛C的距离最短.25. (10分)(2020·安顺) 如图,为的直径,四边形内接于,对角线,交于点E,的切线交的延长线于点F,切点为A,且 .(1)求证:;(2)若,求的值.26. (10分)根据条件求函数的关系式(1)已知二次函数y=x2+bx+c经过(﹣2,5)和(2,﹣3)两点,求该函数的关系式;(2)已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5),求该函数的关系式.参考答案一、选择题(共12小题,每小题3分,满分36分) (共12题;共24分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题(共6小题,每小题3分,满分18分) (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题(共8小题,满分66分) (共8题;共80分)19-1、19-2、20-1、20-2、20-3、21-1、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、。
2020年安徽省中考数学试卷(精析版)
2020年安徽省中考数学试卷一、选择题(本大题共10小题,共40.0分)1.下列各数中,比−2小的数是()A. −3B. −1C. 0D. 2【答案】A【解析】【分析】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.先根据正数都大于0,负数都小于0,可排除C、D,再根据两个负数,绝对值大的反而小,可得比−2小的数是−3.【解答】解:根据两个负数,绝对值大的反而小可知−3<−2.故选A.2.计算(−a)6÷a3的结果是()A. −a3B. −a2C. a3D. a2【答案】C【解析】解:原式=a6÷a3=a3.故选:C.直接利用同底数幂的除法运算法则计算得出答案.此题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.3.下面四个几何体中,主视图为三角形的是()A. B. C. D.【答案】B【解析】解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.根据主视图是从正面看得到的图形,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A. 5.47×108B. 0.547×108C. 547×105D. 5.47×107【答案】D【解析】解:54700000用科学记数法表示为:5.47×107.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.5.下列方程中,有两个相等实数根的是()A. x2+1=2xB. x2+1=0C. x2−2x=3D. x2−2x=0【答案】A【解析】解:A、△=(−2)2−4×1×1=0,有两个相等实数根;B、△=0−4=−4<0,没有实数根;C、△=(−2)2−4×1×(−3)=16>0,有两个不相等实数根;D、△=(−2)2−4×1×0=4>0,有两个不相等实数根.故选:A.判断上述方程的根的情况,只要看根的判别式△=b2−4ac的值的符号就可以了.有两个相等实数根的一元二次方程就是判别式的值是0的一元二次方程.本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A. 众数是11B. 平均数是12C. 方差是187D. 中位数是13【答案】D【解析】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D符合题意;x−=(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B不符合题意;S2=17[(10−12)2+(11−12)2×3+(13−12)2×2+(15−12)2]=187,因此方差为187,于是选项C不符合题意;故选:D.根据平均数、众数、中位数、方差的计算方法分别计算这组数据的平均数、众数、中位数、方差,最后做出选择.本题考查平均数、中位数、众数、方差的意义和计算方法,掌握计算方法是得出正确答案的前提.7.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A. (−1,2)B. (1,−2)C. (2,3)D. (3,4)【答案】B【解析】解:A、当点A的坐标为(−1,2)时,−k+3=3,解得:k=1>0,∴y随x的增大而增大,选项A不符合题意;B、当点A的坐标为(1,−2)时,k+3=−2,解得:k=−5<0,∴y随x的增大而减小,选项B符合题意;C、当点A的坐标为(2,3)时,2k+3=3,解得:k=0,选项C不符合题意;D、当点A的坐标为(3,4)时,3k+3=4,解得:k=13>0,∴y随x的增大而增大,选项D不符合题意.故选:B.由点A的坐标,利用一次函数图象上点的坐标特征求出k值,结合y随x的增大而减小即可确定结论.本题考查了一次函数的性质以及一次函数图象上点的坐标特征,根据点的坐标,利用一次函数图象上点的坐标特征求出k值是解题的关键.8.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cosA=45,则BD的长度为()A. 94B. 125C. 154D. 4【答案】C【解析】解:∵∠C=90°,AC=4,cosA=45,∴AB=ACcosA=5,∴BC=√AB2−AC2=3,∵∠DBC=∠A.∴cos∠DBC=cos∠A=BCBD =45,∴BD=3×54=154,故选:C.在△ABC中,由三角函数求得AB,再由勾股定理求得BC,最后在△BCD中由三角函数求得BD.本题主要考查了勾股定理,解直角三角形的应用,关键是解直角三角形.9.已知点A,B,C在⊙O上,则下列命题为真命题的是()A. 若半径OB平分弦AC,则四边形OABC是平行四边形B. 若四边形OABC是平行四边形,则∠ABC=120°C. 若∠ABC=120°,则弦AC平分半径OBD. 若弦AC平分半径OB,则半径OB平分弦AC【答案】B【解析】解:A、如图,若半径OB平分弦AC,则四边形OABC不一定是平行四边形;原命题是假命题;B、若四边形OABC是平行四边形,则AB=OC,OA=BC,∵OA=OB=OC,∴AB=OA=OB=BC=OC,∴∠ABO=∠OBC=60°,∴∠ABC=120°,是真命题;C、如图,若∠ABC=120°,则弦AC不平分半径OB,原命题是假命题;D、如图,若弦AC平分半径OB,则半径OB不一定平分弦AC,原命题是假命题;故选:B.根据垂径定理,平行四边形的性质判断即可.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A. B.C. D.【答案】A【解析】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=√32EJ=√32x,∴y=12EJ⋅GH=√34x2.当x=2时,y=√3,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y=12FJ⋅GH=√34(4−x)2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A.分为0<x≤2、2<x≤4两种情况,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.本题主要考查的是动点问题的函数图象,求得函数的解析式是解题的关键.二、填空题(本大题共4小题,共20.0分)11.√9−1=______.【答案】2【解析】解:原式=3−1=2.故答案为:2.直接利用二次根式的性质化简进而得出答案.此题主要考查了实数运算,正确化简二次根式是解题关键.12.分解因式:ab2−a=____________.【答案】a(b+1)(b−1)【解析】【分析】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.首先将原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2−1)=a(b+1)(b−1),故答案为:a(b+1)(b−1)13.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=kx的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为______.【答案】2【解析】解:一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B,令x=0,则y=k,令y=0,则x=−k,故点A、B的坐标分别为(−k,0)、(0,k),则△OAB的面积=12OA⋅OB=12k2,而矩形ODCE的面积为k,则12k2=k,解得:k=0(舍去)或2,故答案为2.分别求出矩形ODCE与△OAB的面积,即可求解.本题考查的是反比例函数与一次函数的交点问题,计算矩形ODCE与△OAB的面积是解题的关键.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠PAQ的大小为______°;(2)当四边形APCD是平行四边形时,ABQR的值为______.【答案】30 √3【解析】解:(1)由折叠的性质可得:∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,∵∠QRA+∠QRP=180°,∴∠D+∠C=180°,∴AD//BC,∴∠B+∠DAB=180°,∵∠DQR+∠CQR=180°,∴∠DQA+∠CQP=90°,∴∠AQP=90°,∴∠B=∠AQP=90°,∴∠DAB=90°,∴∠DAQ=∠QAP=∠PAB=30°,故答案为:30;(2)由折叠的性质可得:AD=AR,CP=PR,∵四边形APCD是平行四边形,∴AD=PC,∴AR=PR,又∵∠AQP=90°,AP,∴QR=12∵∠PAB=30°,∠B=90°,∴AP=2PB,AB=√3PB,∴PB=QR,=√3,∴ABQR故答案为:√3.(1)由折叠的性质可得∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,由平角的性质可得∠D+∠C=180°,∠AQP=90°,可证AD//BC,由平行线的性质可得∠DAB=90°,即可求解;(2)由平行四边形和折叠的性质可得AR=PR,由直角三角形的性质可得AP=2PB= 2QR,AB=√3PB,即可求解.本题考查了翻折变换,平行四边形的性质,直角三角形的性质,熟练运用这些性质解决问题是本题的关键.三、解答题(本大题共9小题,共90.0分)>1.15.解不等式:2x−12【答案】解:去分母,得:2x−1>2,移项,得:2x>2+1,合并,得:2x>3,.系数化为1,得:x>32【解析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.【答案】解:(1)如图线段A1B1即为所求.(2)如图,线段B1A2即为所求.【解析】(1)分别作出A,B的对应点A1,B2即可.(2)作出点A1的对应点A2即可.本题考查作图−旋转变换,轴对称变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.观察以下等式:第1个等式:13×(1+21)=2−11,第2个等式:34×(1+22)=2−12,第3个等式:55×(1+23)=2−13,第4个等式:76×(1+24)=2−14.第5个等式:97×(1+25)=2−15.…按照以上规律,解决下列问题:(1)写出第6个等式:______;(2)写出你猜想的第n个等式:______(用含n的等式表示),并证明.【答案】118×(1+26)=2−162n−1n+2×(1+2n)=2−1n【解析】解:(1)第6个等式:118×(1+26)=2−16;(2)猜想的第n个等式:2n−1n+2×(1+2n)=2−1n.证明:∵左边=2n−1n+2×n+2n=2n−1n=2−1n=右边,∴等式成立.故答案为:118×(1+26)=2−16;2n−1n+2×(1+2n)=2−1n.(1)根据题目中前5个等式,可以发现式子的变化特点,从而可以写出第6个等式;(2)把上面发现的规律用字母n表示出来,并运用分式的混合运算法则计算等号的右边的值,进而得到左右相等便可.本题考查数字的变化类,解答本题的关键是明确题意,发现式子的变化特点,写出相应的等式,并证明猜想的正确性.18.如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)【答案】解:由题意,在Rt△ABD中,tan∠ABD=ADBD,∴tan42.0°=ADBD≈0.9,∴AD≈0.9BD,在Rt△BCD中,tan∠CBD=CDBD,∴tan36.9°=CDBD≈0.75,∴CD≈0.75BD,∵AC=AD−CD,∴15=0.15BD,∴BD=100米,∴CD=0.75BD=75(米),答:山高CD为75米.【解析】根据三角函数的定义和直角三角形的性质解答即可.本题考查了解直角三角形的应用−仰角俯角问题,注意方程思想与数形结合思想的应用.19.某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式20204()时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a−x2020年4月份 1.1a 1.43x______【答案】1.04(a−x)【解析】解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a−x)元.故答案为:1.04(a−x).(2)依题意,得:1.1a=1.43x+1.04(a−x),解得:x =213, ∴1.43x 1.1a=1.43⋅213a 1.1a=0.22a 1.1a=0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.(1)由线下销售额的增长率,即可用含a ,x 的代数式表示出2020年4月份的线下销售额;(2)根据2020年4月份的销售总额=线上销售额+线下销售额,即可得出关于x 的一元一次方程,解之即可得出x 的值(用含a 的代数式表示),再将其代入1.43x1.1a 中即可求出结论. 本题考查了一元一次方程的应用以及列代数式,找准等量关系,正确列出一元一次方程是解题的关键.20. 如图,AB 是半圆O 的直径,C ,D 是半圆O 上不同于A ,B 的两点,AD =BC ,AC 与BD 相交于点F.BE 是半圆O 所在圆的切线,与AC 的延长线相交于点E . (1)求证:△CBA≌△DAB ;(2)若BE =BF ,求证:AC 平分∠DAB . 【答案】(1)证明:∵AB 是半圆O 的直径, ∴∠ACB =∠ADB =90°,在Rt △CBA 与Rt △DAB 中,{BC =ADBA =AB,∴Rt △CBA≌Rt △DAB(HL);(2)解:∵BE =BF ,由(1)知BC ⊥EF , ∴∠E =∠BFE ,∵BE 是半圆O 所在圆的切线, ∴∠ABE =90°,∴∠E +∠BAE =90°, 由(1)知∠D =90°,∴∠DAF +∠AFD =90°, ∵∠AFD =∠BFE , ∴∠AFD =∠E ,∴∠DAF =90°−∠AFD ,∠BAF =90°−∠E , ∴∠DAF =∠BAF , ∴AC 平分∠DAB .【解析】(1)根据圆周角定理得到∠ACB =∠ADB =90°,根据全等三角形的判定定理即可得到结论;(2)根据等腰三角形的性质得到∠E =∠BFE ,根据切线的性质得到∠ABE =90°,根据三角形的内角和以及角平分线的定义即可得到结论.本题考查了切线的性质,全等三角形的判定和性质,圆周角定理,正确的识别图形是解题的关键.21. 某单位食堂为全体960名职工提供了A ,B ,C ,D 四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为______,扇形统计图中“C”对应扇形的圆心角的大小为______°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【答案】60 108【解析】解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),则最喜欢C套餐的人数为240−(60+84+24)=72(人),∴扇形统计图中“C”对应扇形的圆心角的大小为360°×72240=108°,故答案为:60、108;(2)估计全体960名职工中最喜欢B套餐的人数为960×84240=336(人);(3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为612=12.(1)用被调查的职工人数乘以最喜欢A套餐人数所占百分比即可得其人数;再由四种套餐人数之和等于被调查的人数求出C对应人数,继而用360°乘以最喜欢C套餐人数所占比例即可得;(2)用总人数乘以样本中最喜欢B套餐的人数所占比例即可得;(3)画树状图列出所有等可能结果,从中找到符合条件的结果数,利用概率公式求解可得答案.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.22.在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y =ax 2+bx +1,使其顶点仍在直线y =x +m 上,求平移后所得抛物线与y 轴交点纵坐标的最大值.【答案】解:(1)点B 是在直线y =x +m 上,理由如下: ∵直线y =x +m 经过点A(1,2), ∴2=1+m ,解得m =1, ∴直线为y =x +1,把x =2代入y =x +1得y =3, ∴点B(2,3)在直线y =x +m 上;(2)∵直线y =x +1与抛物线y =ax 2+bx +1都经过点(0,1),且B 、C 两点的横坐标相同,∴抛物线只能经过A 、C 两点,把A(1,2),C(2,1)代入y =ax 2+bx +1得{a +b +1=24a +2b +1=1,解得a =−1,b =2;(3)由(2)知,抛物线为y =−x 2+2x +1,设平移后的抛物线为y =−x +px +q ,其顶点坐标为(p 2,p 24+q),∵顶点仍在直线y =x +1上, ∴p 24+q =p2+1,∴q =p 24−p2−1,∵抛物线y =−x +px +q 与y 轴的交点的纵坐标为q , ∴q =p 24−p 2−1=−14(p −1)2+54,∴当p =1时,平移后所得抛物线与y 轴交点纵坐标的最大值为54.【解析】(1)根据待定系数法求得直线的解析式,然后即可判断点B(2,3)在直线y =x +m 上;(2)因为直线经过A 、B 和点(0,1),所以经过点(0,1)的抛物线不同时经过A 、B 点,即可判断抛物线只能经过A 、C 两点,根据待定系数法即可求得a 、b ; (3)设平移后的抛物线为y =−x +px +q ,其顶点坐标为(p 2,p 24+q),根据题意得出p 24+q =p2+1,由抛物线y =−x +px +q 与y 轴交点的纵坐标为q ,即可得出q =p 24−p 2−1=−14(p −1)2+54,从而得出q 的最大值.本题考查了待定系数法求一次函数的解析式和二次函数的解析式,二次函数的图象与几何变换,二次函数的性质,题目有一定难度.23. 如图1,已知四边形ABCD 是矩形,点E 在BA 的延长线上,AE =AD.EC 与BD 相交于点G ,与AD 相交于点F ,AF =AB . (1)求证:BD ⊥EC ;(2)若AB =1,求AE 的长;(3)如图2,连接AG ,求证:EG −DG =√2AG .【答案】(1)证明:∵四边形ABCD 是矩形,点E 在BA 的延长线上, ∴∠EAF =∠DAB =90°, 又∵AE =AD ,AF =AB , ∴△AEF≌△ADB(SAS), ∴∠AEF =∠ADB ,∴∠GEB +∠GBE =∠ADB +∠ABD =90°, 即∠EGB =90°, 故BD ⊥EC ,(2)解:∵四边形ABCD 是矩形, ∴AE//CD ,∴∠AEF =∠DCF ,∠EAF =∠CDF , ∴△AEF∽△DCF , ∴AE DC=AF DF,即AE ⋅DF =AF ⋅DC ,设AE =AD =a(a >0),则有a ⋅(a −1)=1,化简得a 2−a −1=0, 解得a =1+√52或1−√52(舍去),∴AE =1+√52.(3)如图,在线段EG 上取点P ,使得EP =DG ,在△AEP 与△ADG 中,AE =AD ,∠AEP =∠ADG ,EP =DG , ∴△AEP≌△ADG(SAS),∴AP =AG ,∠EAP =∠DAG ,∴∠PAG =∠PAD +∠DAG =∠PAD +∠EAP =∠DAE =90°, ∴△PAG 为等腰直角三角形,∴EG −DG =EG −EP =PG =√2AG .【解析】(1)证明△AEF≌△ADB(SAS),得出∠AEF =∠ADB ,证得∠EGB =90°,则结论得出;(2)证明△AEF∽△DCF ,得出AEDC =AFDF ,即AE ⋅DF =AF ⋅DC ,设AE =AD =a(a >0),则有a ⋅(a −1)=1,化简得a 2−a −1=0,解方程即可得出答案;(3)在线段EG上取点P,使得EP=DG,证明△AEP≌△ADG(SAS),得出AP=AG,∠EAP=∠DAG,证得△PAG为等腰直角三角形,可得出结论.本题是四边形综合题,考查了矩形的性质,相似三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.。
芜湖市2020版中考数学试卷(I)卷
芜湖市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)对任意实数a,下列各式一定不成立的是()A . a2=(-a)2B . a3=(-a)3C . |a|=|-a|D . a2≥02. (2分)下列运算正确的是()A . (a+b)2=a2+b2B . 3a2-2a2=a2C . -2(a-1)=-2a-1D . a6÷a3=a23. (2分)三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,则这个三角形的周长是().A . 8B . 8或10C . 10D . 8和104. (2分)几个相同的小正方体所搭成的几何体的俯视图及左视图如图所示,构成该几何体的小正方形体个数最多是()俯视图:左视图:A . 5个B . 7个C . 8个D . 9个5. (2分)一次函数y=kx+b(k≠0)与反比例函数y=(k≠0)的图象如图所示,则下列结论中正确的是()A . k>0,b>0B . k>0,b<0C . k<0,b>0D . k<0,b<06. (2分)为了解我校八年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计。
下列判断:①这种调查方式是抽样调查;②800名学生是总体;③每名学生的数学成绩是个体;④200名学生是总体的一个样本;⑤200名学生是样本容量。
其中正确的判断有()A . 1个B . 2个C . 3个D . 4个7. (2分)已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()A . 6种B . 5种C . 4种D . 3种8. (2分)如图所示,△ABC中,AH⊥BC于H,E,D,F分别是AB,BC,AC的中点,则四边形EDHF是()A . 一般梯形B . 等腰梯形C . 直角梯形D . 直角等腰梯形二、填空题 (共10题;共10分)9. (1分) (2016八上·抚宁期中) 观察下列各式: =2 , =3 , =4 ,…请你根据你找到的规律写出第6个等式是________.10. (1分)(2020·长春模拟) 因式分解:a3-16a=________。
2020年安徽省中考数学试题(有答案)
A.3B.-3C. D.
2.下列多项式中,能用公式法分解因式的是…………………………………………………………【】
A.x2-xyB.x2+xyC.x2-y2D.x2+y2
3. 2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学计数法可表示为………………………………………………【】
因为一分队到塌方处并打通道路需要 (小时),故二分队在塌方处需停留0.5小时,所以二分队在营地不休息赶到A镇需2.5+0.5+ =8(小时) ……3分
(2)一分队赶到A镇共需 +1=7(小时)
(Ⅰ)若二分队在塌方处需停留,则后20千米需与一分队同行,故4+a=5,即a=1,这与二分队在塌方处停留矛盾,舍去; ……5分
又∵PC∥DR,∴△PCQ∽△RDQ
又∵点R是DE中点,∴DR=RE。
,∴QR=2PQ。
又∵BP=PR=PQ+QR=3PQ…………8分
∴BP∶PQ∶QR=3∶1∶2……10分
六、(本题满分12分)
21.解:(1) = ……5分
∵ ,∴函数的最大值是 。
答:演员弹跳的最大高度是 米。……7分
(2)当x=4时, =3.4=BC,所以这次表演成功。……12分
又DE=AB=1.5
∴CE=CD+DE=CD+AB= (米)
答:此时风筝离地面的高度约是18.8米。………8分
四、(本题共2小题,每小题8分,共16分)
17、解:设这个月的石油价格相对上个月的增长率为x。根据题意得
(1+x)(1-5%)=1+14%……5分
解得x=20%答这个月的石油价格相对上个月的增长率为20%.……8分
2020年安徽省中考数学试题(全解全析)
2020年安徽省中考数学试题(全解全析)考生须知:1.本试卷满分120分,考试时间为120分钟.2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内.3.请按照题号顺序在答题卡各题目的区域内作答,超出答题区域的答案无效;在草稿纸上、试题纸上答案无效.4.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.5.保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀.一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.下列各数中比2-小的数是( )A. 3-B. 1-C. 0D. 2 【答案】A【解析】∵|-3|=3,|-1|=1,又0<1<2<3,∴-3<-2,所以,所给出的四个数中比-2小的数是-3,故选:A【点评】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.2.计算()63a a -÷的结果是( )A. 3a -B. 2a -C. 3aD. 2a【答案】C【解析】解:()63a a -÷ 63a a =÷3.a =故选C .【点评】本题考查的是乘方符号的处理,考查同底数幂的除法运算,掌握以上知识是解题的关键. 3.下列四个几何体中,主视图为三角形的是( ) A.B. C. D.【答案】A【解析】主视图是从物体正面看,所得到的图形.A 、圆锥的主视图是三角形,符合题意;B 、球的主视图是圆,不符合题意;C 、圆柱的主视图是长方形,不符合题意;D 、正方体的主视图是正方形,不符合题意.故选A .4.安徽省计划到2022年建成54 700 000亩高标准农田,其中54 700 000用科学记数法表示为( )A. 0.547B. 80.54710⨯C. 554710⨯D. 75.4710⨯【答案】D【解析】解:54700000=5.47×107, 故选:D .【点评】本题考查了科学记数法,掌握科学记数法的表示方法是解题关键.5.下列方程中,有两个相等实数根的是( )A. 212x x +=B. 21=0x +C. 223x x -=D. 220x x -= 【答案】A 【解析】A.212x x +=变形为2210x x -+=,此时△=4-4=0,此方程有两个相等的实数根,故选项A 正确;B.21=0x +中△=0-4=-4<0,此时方程无实数根,故选项B 错误;C.223x x -=整理为2230x x --=,此时△=4+12=16>0,此方程有两个不相等的实数根,故此选项错误;D.220x x -=中,△=4>0,此方程有两个不相等的实数根,故选项D 错误.故选:A.【点评】本题主要考查根的判别式,熟练掌握根的情况与判别式间的关系是解题的关键.6.冉冉的妈妈在网上销售装饰品.最近一周, 每天销售某种装饰品的个数为:11,10,11,13,11,1315,.关于这组数据,冉冉得出如下结果,其中错误的是( )A. 众数是11B. 平均数是12C. 方差是187D. 中位数是13 【答案】D【解析】将这组数据从小到大的顺序排列:10,11,11,11,13,13,15,A .这组数据的众数为11,此选项正确,不符合题意;B .这组数据的平均数为(10+11+11+11+13+13+15)÷7=12,此选项正确,不符合题意;C .这组数据的方差为22221(1012)(1112)3(1312)2(1512)7⎡⎤-+-⨯+-⨯+-⎣⎦=187,此选项正确,不符合题意;D .这组数据的中位数为11,此选项错误,符合题意,故选:D .【点评】本题考查了众数、平均数、方差、中位数,熟练掌握他们的意义和计算方法是解答的关键. 7.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A. ()1,2-B. ()1,2-C. ()2,3D. ()3,4 【答案】B【解析】∵一次函数3y kx =+的函数值y 随x 的增大而减小,∴k ﹤0,A .当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C .当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意, 故选:B .【点评】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.8.如图,Rt ABC 中,90C ∠=︒ ,点D 在AC 上,DBC A ∠=∠.若44,5AC cosA ==,则BD 的长度为( )A. 94B. 125C. 154D. 4【答案】C【解析】∵∠C=90°, ∴cos =AC A AB, ∵445AC cosA ==,, ∴AB=5,根据勾股定理可得22AB AC -,∵DBC A ∠=∠, ∴cos ∠DBC=cosA=45, ∴cos ∠DBC=BC BD =45,即3BD =45 ∴BD=154, 故选:C .【点评】本题考查了解直角三角形和勾股定理,求出BC 的长是解题关键.9.已知点,,A B C 在O 上.则下列命题为真命题的是( )A. 若半径OB 平分弦AC .则四边形OABC 是平行四边形B. 若四边形OABC 是平行四边形.则120ABC ∠=︒C. 若120ABC ∠=︒.则弦AC 平分半径OBD. 若弦AC 平分半径OB .则半径OB 平分弦AC【答案】B解析】A .∵半径OB 平分弦AC ,∴OB ⊥AC ,AB=BC ,不能判断四边形OABC 是平行四边形,假命题;B .∵四边形OABC 是平行四边形,且OA=OC,∴四边形OABC 是菱形,∴OA=AB=OB ,OA ∥BC ,∴△OAB 是等边三角形,∴∠OAB=60º,∴∠ABC=120º,真命题;C .∵120ABC ∠=︒,∴∠AOC=120º,不能判断出弦AC 平分半径OB ,假命题;D .只有当弦AC 垂直平分半径OB 时,半径OB 平分弦AC ,所以是假命题,故选:B .【点评】本题主要考查命题与证明,涉及垂径定理及其推论、菱形的判定与性质、等边三角形的判定与性质等知识,解答的关键是会利用所学的知识进行推理证明命题的真假.10.如图ABC 和DEF 都是边长为2的等边三角形,它们的边,BC EF 在同一条直线l 上,点C ,E 重合,现将ABC ∆沿着直线l 向右移动,直至点B 与F 重合时停止移动.在此过程中,设点移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图像大致为( )A. B. C. D.【答案】A【解析】C 点移动到F 点,重叠部分三角形的边长为x,由于是等边三角形,则高为2x ,面积为y=x·2x ·122,B 点移动到F 点,重叠部分三角形的边长为(4-x),4x ,面积为y=(4-x )4x ·12)24x -,由二次函数图象的性质可判断答案为A,故选A.【点评】本题考查三角形运动面积和二次函数图像性质,关键在于通过三角形面积公式结合二次函数图形得出结论.二、填空题(本大题共4小题,每小题5分,满分20分)11.1=______.【答案】21=3-1=2.故填:2.【点评】此题主要考查实数的运算,解题的关键是熟知算术平方根的性质.12.分解因式:2ab a -=______.【答案】a (b +1)(b ﹣1).【解析】解:原式=2(1)a b -=a (b +1)(b ﹣1),故答案为a (b +1)(b ﹣1).13.如图,一次函数()0y x k k =+>的图象与x 轴和y 轴分别交于点A 和点B 与反比例函数k y x=上的图象在第一象限内交于点,C CD x ⊥轴,CE y ⊥轴,垂足分别为点,D E ,当矩形ODCE 与OAB ∆的面积相等时,k 的值为__________.【答案】2 【解析】解: 矩形ODCE ,C 在k y x=上, ,ODCE S k ∴=矩形把0x =代入:,y x k =+,y k ∴=()0,,B k ∴把0y =代入:,y x k =+,x k ∴=-(),0,A k ∴-21,2ABO S k ∴=由题意得:21,2k k = 解得:2,0k k ==(舍去)2.k ∴=故答案为:2.【点评】本题考查的是一次函数与反比例函数的性质,掌握反比例函数中k 的几何意义,一次函数与坐标轴围成的三角形面积的计算是解题的关键.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处,折痕为AP ;再将,PCQ ADQ ∆∆分别沿,PQ AQ 折叠,此时点,C D 落在AP 上的同一点R 处.请完成下列探究:()1PAQ∠的大小为__________︒;()2当四边形APCD是平行四边形时ABQR的值为__________.【答案】(1). 30 (2). 3【解析】解:(1)由题意可知,∠D+∠C=180°,∴AD∥BC,由折叠可知∠AQD=∠AQR,∠CQP=∠PQR,∴∠AQR+∠PQR=1()902DQR CQR∠+∠=︒,即∠AQP=90°,∴∠B=90°,则∠A=180°-∠B=90°,由折叠可知,∠DAQ=∠BAP=∠PAQ,∴∠DAQ=∠BAP=∠PAQ=30°,故答案为:30;(2)若四边形APCD为平行四边形,则DC∥AP,∴∠CQP=∠APQ,由折叠可知:∠CQP=∠PQR,∴∠APQ=∠PQR,∴QR=PR,同理可得:QR=AR,即R为AP的中点,由(1)可知,∠AQP=90°,∠PAQ=30°,且AB=AQ,设QR=a,则AP=2a,∴QP=12AP a=,∴223AP QP a-=,∴33AB a QR a ==, 故答案为:3.【点评】本题考查了四边形中的折叠问题,涉及了平行四边形的性质,勾股定理等知识点,解题的关键是读懂题意,熟悉折叠的性质.三、解答题15.解不等式:2112x -> 【答案】32x > 【解析】解:2112x -> 212x ->23x >32x >. 【点评】此题主要考查不等式的求解,解题的关键是熟知其解法.16.如图1,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段,M N 在网格线上,()1画出线段AB 关于线段MN 所在直线对称的线段11A B (点11A B 分别为,A B 的对应点);()2将线段11B A ,绕点1B ,顺时针旋转90︒得到线段12B A ,画出线段12B A .【答案】(1)如图所示,11A B 即为所作;(2)如图所示,12B A即为所作.【解析】(1)先找出A,B两点关于MN对称的点A1,B1,然后连接A1B1即可;(2)根据旋转的定义作图可得线段B1A2.【点评】本题主要考查作图-旋转与轴对称,解题的关键是掌握旋转变换和轴对称的定义与性质.四、解答题17.观察以下等式:第1个等式:121 12 311⎛⎫⨯+=-⎪⎝⎭第2个等式:321 12 422⎛⎫⨯+=-⎪⎝⎭第3个等式:521 12 533⎛⎫⨯+=-⎪⎝⎭第4个等式:721 12 644⎛⎫⨯+=-⎪⎝⎭第5个等式:921 12 755⎛⎫⨯+=-⎪⎝⎭······按照以上规律.解决下列问题:()1写出第6个等式____________;()2写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1)112112866⎛⎫⨯+=-⎪⎝⎭;(2)2121122nn n n-⎛⎫⨯+=-⎪+⎝⎭,证明见解析.【解析】(1)由前五个式子可推出第6个等式为:112112866⎛⎫⨯+=-⎪⎝⎭;(2)2121122nn n n-⎛⎫⨯+=-⎪+⎝⎭,证明:∵左边=2122122111222n n n nn n n n n n--+-⎛⎫⨯+=⨯==-⎪++⎝⎭=右边,∴等式成立.【点评】本题是规律探究题,解答过程中,要注意各式中相同位置数字的变化规律,并将其用代数式表示出来.18.如图,山顶上有一个信号塔AC,已知信号塔高15AC=米,在山脚下点B处测得塔底C的仰角36.9CBD∠=︒,塔顶A的仰角42ABD∠=︒.求山高CD(点,,A C D在同一条竖直线上).(参考数据:36.90.75,36.90.60,42.00.90tan sin tan︒≈︒≈︒≈)【答案】75米【解析】解:设山高CD=x米,则在Rt△BCD中,tanCDCBDBD∠=,即tan36.9xBD︒=,∴4tan36.90.753x xBD x=≈=︒,在Rt△ABD中,tanADABDBD∠=,即tan4243ADx︒=,∴44tan420.9 1.233AD x x x=⋅︒≈⋅=,∵AD-CD=15,∴1.2x-x=15,解得:x=75.∴山高CD=75米.【点评】本题考查了解直角三角形的应用,属于常考题型,正确理解题意、熟练掌握三角函数的知识是解题的关键.五、解答题19.某超市有线上和线下两种销售方式.与2019年4月份相比.该超市2020年4月份销售总额增长10%,其中线上销售额增长43%.线下销售额增长4%,()1设2019年4月份的销售总额为a 元.线上销售额为x 元,请用含,a x 的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);()2求2020年4月份线上销售额与当月销售总额的比值.【答案】()1()1.04a x -;()21.5【解析】解:()12020年线下销售额为()1.04a x -元,故答案为:()1.04a x -.()2由题意得:()1.43 1.04 1.1,x a x a +-=0.390.06,x a ∴=2,13x a ∴= ∴ 2020年4月份线上销售额与当月销售总额的比值为:21.432113 1.3.1.1135a a ⨯=⨯=答:2020年4月份线上销售额与当月销售总额的比值为:1.5【点评】本题考查的列代数式及一元一次方程的应用,掌握列一元一次方程解决应用题是解题的关键. 20.如图,AB 是半圆O 的直径,,C D 是半圆O 上不同于,A B 的两点,AD BC AC =与BD 相交于点,F BE 是半圆O 所任圆的切线,与AC 的延长线相交于点E ,()1求证:CBA DAB ∆∆≌;()2若,BE BF =求AC 平分DAB ∠.【答案】()1证明见解析;()2证明见解析.【解析】()1证明:,AD BC =,AD BC ∴=,ABD BAC ∴∠=∠ AB 为直径,90,ADB BCA ∴∠=∠=︒,AB BA =CBA DAB ∴≌.()2证明:,90,BE BF ACB =∠=︒,FBC EBC ∴∠=∠90,,ADC ACB DFA CFB ∠=∠=︒∠=∠,DAF FBC EBC ∴∠=∠=∠ BE 为半圆O 的切线,90,90,ABE ABC EBC ∴∠=︒∠+∠=︒90,ACB ∠=︒90,CAB ABC ∴∠+∠=︒,CAB EBC ∴∠=∠,DAF CAB ∴∠=∠AC ∴平分DAB ∠.【点评】本题考查的是圆的基本性质,弧,弦,圆心角,圆周角之间的关系,直径所对的圆周角是直角,三角形的全等的判定,切线的性质定理,三角形的内角和定理,掌握以上知识是解题的关键.六、解答题21.某单位食堂为全体名职工提供了,,,A B C D 四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查,根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:()1在抽取的240人中最喜欢A 套餐的人数为 ,扇形统计图中“C ”对应扇形的圆心角的大小为 ;()2依据本次调查的结果,估计全体960名职工中最喜欢B 套餐的人数;()3现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【答案】(1)60,108°;(2)336;(3)12【解析】(1)最喜欢A 套餐的人数=25%×240=60(人),最喜欢C 套餐的人数=240-60-84-24=72(人),扇形统计图中“C ”对应扇形的圆心角为:360°×72240=108°, 故答案为:60,108°;(2)最喜欢B 套餐的人数对应的百分比为:84240×100%=35%, 估计全体960名职工中最喜欢B 套餐的人数为:960×35%=336(人);(3)由题意可得,从甲、乙、丙、丁四名职工中任选两人,总共有6种不同的结果,每种结果发生的可能性相同,列举如下:甲乙,甲丙,甲丁,乙丙,乙丁,丙丁,其中甲被选到的情况有甲乙,甲丙,甲丁3种,故所求概率P=36=12. 【点评】本题考查了条形统计图和扇形统计图,用样本估计总体,用列举法求概率,由图表获取正确的信息是解题关键.七、解答题22.在平而直角坐标系中,已知点()()()1,2.2,3.2,1A B C ,直线y x m =+经过点A .抛物线21y ax bx =++恰好经过,,A B C 三点中的两点.()1判断点B 是否在直线y x m =+上.并说明理由;()2求,a b 的值;()3平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y 轴交点纵坐标的最大值.【答案】(1)点B 在直线y x m =+上,理由见解析;(2)a=-1,b=2;(3)54 【解析】(1)点B 在直线y x m =+上,理由如下:将A (1,2)代入y x m =+得21m =+,解得m=1,∴直线解析式为1y x , 将B (2,3)代入1y x ,式子成立,∴点B 在直线y x m =+上;(2)∵抛物线21y ax bx =++与直线AB 都经过(0,1)点,且B ,C 两点的横坐标相同,∴抛物线只能经过A ,C 两点,将A ,C 两点坐标代入21y ax bx =++得124211a b a b ++=⎧⎨++=⎩, 解得:a=-1,b=2;(3)设平移后所得抛物线的对应表达式为y=-(x-h )2+k ,∵顶点在直线1y x 上, ∴k=h+1,令x=0,得到平移后抛物线与y 轴交点的纵坐标为-h 2+h+1,∵-h 2+h+1=-(h-12)2+54, ∴当h=12时,此抛物线与y 轴交点的纵坐标取得最大值54. 【点评】本题考查了求一次函数解析式,用待定系数法求二次函数解析式,二次函数的平移和求最值,求出两个函数的表达式是解题关键.八、解答题23.如图1.已知四边形ABCD 是矩形.点E 在BA 的延长线上.. AE AD EC =与BD 相交于点G ,与AD 相交于点,.F AF AB =()1求证:BD EC ⊥;()2若1AB =,求AE 的长;()3如图2,连接AG ,求证:2EG DG AG -=.【答案】(1)见解析;(2)152+;(3)见解析 【解析】(1)∵四边形ABCD 是矩形,∴∠BAD=∠EAD=90º,AO=BC ,AD ∥BC ,在△EAF 和△DAB ,AE AD EAF DAB AF AB =⎧⎪∠=∠⎨⎪=⎩,∴△EAF ≌△DAB(SAS),∴∠E=∠BDA ,∵∠BDA+∠ABD=90º,∴∠E+∠ABD=90º,∴∠EGB=90º,∴BG ⊥EC ;(2)设AE=x ,则EB=1+x ,BC=AD=AE=x ,∵AF ∥BC ,∠E=∠E ,∴△EAF∽△EBC,∴EA AFEB BC=,又AF=AB=1,∴11xx x=+即210x x--=,解得:15x+=,15x-=(舍去)即AE=15+;(3)在EG上截取EH=DG,连接AH,在△EAH和△DAG,AE ADHEA GDAEH DG=⎧⎪∠=∠⎨⎪=⎩,∴△EAH≌△DAG(SAS),∴∠EAH=∠DAG,AH=AG,∵∠EAH+∠DAH=90º,∴∠DAG+∠DAH=90º,∴∠EAG=90º,∴△GAH是等腰直角三角形,∴222AH AG GH+=即222AG GH=,∴GH=2AG,∵GH=EG-EH=EG-DG,∴2EG DG AG-=.【点评】本题主要考查了矩形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、直角定义、相似三角形的判定与性质、解一元二次方程等知识,涉及知识面广,解答的关键是认真审题,提取相关信息,利用截长补短等解题方法确定解题思路,进而推理、探究、发现和计算.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中毕业学业考试数 学 试 卷温馨提示:1.数学试卷共8页,三大题,共24小题.请你仔细核对每页试卷下方页码和题数,核实无误后再答题.考试时间共120分钟,请合理分配时间.一、选择题(本大题共10小题,每小题4分,共40分.) 在每小题给出的四个选项中,只有一项是符合题意的,请把你认为正确的选项前字母填写在该题后面的括号中.1. 的相反数是( )A . 8B .C .D . 2. 下列几何图形中,一定是轴对称图形的有 ( ).A . 2个B . 3个C . 4个D . 5个3. 改革开放让芜湖经济有了快速的发展,2007年我市的GDP 达到了581亿元,用科学记数法可记作( ).A .元B . 元C . 元D . 元4. 下列运算正确的是( ) A .B.C .D .5. 为了解2008年6月1日“限塑令”实施情况,当天某环保小组对3600户购物家庭随机抽取600户进行调查,发现其中有156户使用了环保购物袋购物,据此可估计该3600户购物家庭当日使用环保购物袋约有( ) A.936户B.388户 C.1661户 D.1111户 6. ). A.6到7之间B.7到8之间C.8到9之间D.9到10之间8-8-1818-858110⨯95.8110⨯105.8110⨯958.110⨯222()a b a b +=+325a a a =632a a a ÷=235ab ab +=7.若,则的值为( )A .B .C .0D .48.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为( ). A . cm B . 9 cm C . cm D . cm9.函数在同一直角坐标系内的图象大致是 ( )10.将一正方体纸盒沿下右图所示的线剪开,展开成平面图,其展开图的形状为( ).二、填空题(本大题共6小题,每小题5分,共30分)11.函数中自变量x 的取值范围是 . 12.如图,已知点E 是圆O 上的点, B 、C 分别是劣弧的三等分点, ,则的度数为 .如图, , ,, 于D ,cm , cm ,则BE 的长是 cm .13.在平面直角坐标系中,直线向上平移1个单位长度得到直线.直线与反比例函数的图象的一个交点为,则的值等于 . 14.如果圆锥的底面半径为3cm ,母线长为6cm ,那么它的侧面积等于 .23(2)0m n -++=2m n +4-1-(45)+45622y ax b y ax bx c =+=++和23x y x +=-AD 46BOC ∠=AED ∠90ACB ∠=AC BC =BE CE ⊥AD CE ⊥3.2AD =2DE =xoy y x =l l ky x=(2)A a ,k 2cm 得 分 评卷人15.已知,则代数式的值为 16. 从下列图中选择四个拼图板,可拼成一个矩形,正确的选择方案为 . (只填写拼图板的代码)三、解答题(本大题共8小题,共80分.)解答应写明文字说明和运算步骤.17.(本题共两小题,每小题6分,满分12分) (1) 计算:.解:(2) 解不等式组解:18. (本小题满分8分)在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC ,小丽同学在点A 处,测得条幅顶端D 的仰角为30°,再向条幅方向前进10米后, 又在点B 处测得条幅顶端D 的仰角为45°,已知测点A 、B 和C 离地面高度都为1.44米,求条幅顶端D 点距离地面的高度.(计算结果精确到0.1米, 参考数据:.) 解:113x y -=21422x xy y x xy y----026312()cos 304sin 6022-++-+36;445(2)82.x x x x -⎧+⎪⎨⎪--<-⎩≥①②2 1.414,3 1.732≈≈得 分 评卷人 得 分评卷人19.(本小题满分8分)下表给出1980年至今的百米世界记录情况:)请你根据以上成绩数据,求出该组数据的众数为.(2)请在下图中用折线图描述此组数据.20.(本小题满分8分)在抗震救灾活动中,某厂接到一份订单,要求生产7200顶帐篷支援四川灾区,后来由于情况紧急,接收到上级指示,要求生产总量比原计划增加20%,且必须提前4天完成生产任务,该厂迅速加派人员组织生产,实际每天比原计划每天多生产720顶,请问该厂实际每天生产多少顶帐篷?解:21. (本小题满分8分)如图,在梯形中,,,,于点E ,F 是CD 的中点,DG 是梯形的高. (1)求证:四边形AEFD 是平行四边形;(2)设,四边形DEGF 的面积为y ,求y 关于x 的函数关系式.(1)证明:(2)解:22.(本小题满分9分) 六一儿童节,爸爸带着儿子小宝去方特欢乐世界游玩,进入方特大门,看见游客特别多,小宝想要全部玩完所有的主题项目是不可能的.(1)于是爸爸咨询导游后,让小宝上午先从A .太空世界、B .神秘河谷、C . 失落帝国中随机选择两个项目, 下午再从D . 恐龙半岛、E .西部传奇、F . 儿童王国、G . 海螺湾中随机选择三个项目游玩,请用列举法或树形图说明当天小宝符合上述条件的所有可能的选择方式. (用字母表示)(2)在 (1)问的选择方式中, 求小宝恰好上午选中A .太空世界,同时下午选中G . 海螺湾这两个项目的概率. 解:ABCD AD BC ∥AB DC AD ==60C ∠=°AE BD ⊥ABCD AE x =得 分 评卷人得 分 评卷人23. (本小题满分12分)在Rt △ABC 中,BC =9, CA =12,∠ABC 的平分线BD 交AC 与点D , DE ⊥DB 交AB 于点E .(1)设⊙O 是△BDE 的外接圆,求证:AC 是⊙O 的切线; (2)设⊙O 交BC 于点F ,连结EF ,求的值.(1)证明:(2)解: 24.(本小题满分15分)如图,已知 ,,现以A 点为位似中心,相似比为9:4,将OB 向右侧放大,B 点的对应点为C .(1) 求C 点坐标及直线BC 的解析式;(2) 一抛物线经过B 、C 两点,且顶点落在x 轴正半轴上,求该抛物线的解析式并画出函数图象;(3) 现将直线BC 绕B 点旋转与抛物线相交与另一点P ,请找出抛物线上所有满足到直线AB距离为的点P . 解:EFAC(4,0)A (0,4)B 32得 分评卷人得 分 评卷人2008年芜湖市初中毕业学业考试数学试题参考答案一、选择题(本大题共10小题,每题4分,满分40分)二、填空题(本大题共6小题,每题5分,满分30分)11.x>3 12.69°13.214.18π15.416.①①①①三、解答题(本大题共8小题,共80分)解答应写明文字说明和运算步骤.17.(本小题满分12分)(1)解:原式·····································5分······································6分(2)解:由①式得:,····································2分由①式得:,········································4分①原不等式组的解集为. ·······································6分18.(本小题满分8分)解:在Rt①BCD中,,①.·································2分在Rt①ACD中,,①.····································4分①.①. ·································5分①(米) ·································7分①条幅顶端D点距离地面的高度为(米). ·······························8分19.(本小题满分8分)解:(1)9.77,0.21; ······················································································2分(2)3314=++-54=-324x x--≥47x≤451082x x-+<-2x>27x<≤tan451CDBC==CD BC=tan30CDAC==CDAB BC=+10CDCD=+3CD=+513.66CD===≈13.66 1.4415.1+=··························· 8分20.(本小题满分8分)解: 设实际需要x 天完成生产任务,根据题意得: ································· 1分········································· 3分化简得:,整理得,解得:···································· 6分(顶) ································· 7分答:该厂实际每天生产帐篷1440顶. ································ 8分 21.(本小题满分8分) (1) 证明: ①,①梯形ABCD 为等腰梯形.①①C =60°,①,又①,①.①.①.由已知,①AE ①DC . ································· 2分 又①AE 为等腰三角形ABD 的高, ①E 是BD 的中点, ①F 是DC 的中点, ①EF ①BC . ①EF ①AD .①四边形AEFD 是平行四边形. ··································· 4分 (2)解:在Rt①AED 中, ,①,①.在Rt①DGC 中 ①C =60°,并且,①. ····························· 6分 由(1)知: 在平行四边形AEFD 中,又①,①,7200(120%)72007204x x ⨯+-=+121014x x -=+12(4)10(4)x x x x +-=+22480x x +-=126,8()x x ==-不合题意,舍去7200(120%)61440⨯+÷=AB DC =120BAD ADC ∠=∠=AB AD =30ABD ADB ∠=∠=30DBC ADB ∠=∠=90BDC ∠=AE BD ⊥30ADB ∠=AE x =2AD x =2DC AD x ==DG =2EF AD x ==DG BC ⊥DG EF ⊥①四边形DEGF 的面积, ① . ···································· 8分 22.(本小题满分9分) 解:(1)用列举法:( AB ,DEF ) , ( AB ,DEG ) , ( AB ,DFG ) , ( AB ,EFG ) , ( AC ,DEF ) , ( AC ,DEG ), ( AC ,DFG ) ( AC ,EFG ), ( BC ,DEF ) , ( BC ,DEG ), ( BC ,DFG ), ( BC ,EFG ) 共12种可能的选择方式. ········· 6分 用树形图法:············································································································· 6分 (2) 小宝恰好上午选中A .太空世界,同时下午选中G . 海螺湾这两个项目的概率为. ······························································································· 9分 23.(本小题满分12分)(1) 证明:由已知DE ①DB ,①O 是Rt①BDE 的外接圆,①BE 是①O 的直径,点O 是BE 的中点,连结OD , ························································································ 1分 ①,①. 又①BD 为①ABC 的平分线,①. ①,①.①,即① ······················································ 4分 又①OD 是①O 的半径, ①AC 是①O 的切线. ··············································· 5分 (2) 解:设①O 的半径为r ,在Rt①ABC 中, ,① ····························································· 7分 ①,,①①ADO ①①ACB .12EF DG =212332y x x x =⨯=(0)x >61122P ==90C ∠=90DBC BDC ∠+∠=ABD DBC ∠=∠OB OD =ABD ODB ∠=∠90ODB BDC ∠+∠=90ODC ∠=22222912225AB BC CA =+=+=15AB =A A ∠=∠90ADO C ∠=∠=①.①. ①.① ··········································· 10分 又①BE 是①O 的直径.①.①①BEF ①①BAC①. ········································································· 12分 24.(本小题满分15分) 解: (1)过C 点向x 轴作垂线,垂足为D ,由位似图形性质可知: ①ABO ①①ACD , ①. 由已知,可知: . ①.①C 点坐标为. ················ 2分直线BC 的解析是为: 化简得: ·········································· 3分 (2)设抛物线解析式为,由题意得: ,解得: ①解得抛物线解析式为或. 又①的顶点在x 轴负半轴上,不合题意,故舍去. AO OD AB BC =15159r r-=458r =454BE =90BFE ∠=4534154EF BE AC BA ===49AO BO AD CD ==(4,0)A -(0,4)B 4,4AO BO ==9AD CD ==(5,9)409450y x --=--4y x =+2(0)y ax bx c a =++>24925540c a b c b ac =⎧⎪=++⎨⎪-=⎩111144a b c =⎧⎪=-⎨⎪=⎩222125454a b c ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩2144y x x =-+22144255y x x =++22144255y x x =++①满足条件的抛物线解析式为·······················································5分(准确画出函数图象) ·······························································7分(3)将直线BC绕B点旋转与抛物线相交与另一点P,设P到直线AB的距离为h,故P点应在与直线AB平行,且相距和上. ··················8分由平行线的性质可得:两条平行直线与y轴的交点到直线BC的距离也为.如图,设与y轴交于E点,过E作EF①BC于F点,在Rt①BEF中,,①.①可以求得直线与y轴交点坐标为 ········································10分同理可求得直线与y轴交点坐标为 ······················································11分①两直线解析式;.根据题意列出方程组:①;①①解得:;;;①满足条件的点P有四个,它们分别是,,, ······15分[注:对于以上各大题的不同解法,解答正确可参照评分!]244y x x=-+244y x x=-+1l2l1lEF h==45EBF ABO∠=∠=6BE=1l(0,10)2l(0,2)-1:10l y x=+2:2l y x=-24410y x xy x⎧=-+⎨=+⎩2442y x xy x⎧=-+⎨=-⎩11616xy=⎧⎨=⎩2219xy=-⎧⎨=⎩332xy=⎧⎨=⎩4431xy=⎧⎨=⎩1(6,16)P2(1,9)P-3(2,0)P4(3,1)P第11页共11页。