数字钟的设计
Multisim仿真—数字钟的设计
数字钟的设计一、设计任务数字钟设计二、设计条件基于Multisim 10 仿真软件的调试三、设计功能要求1、时间以12小时为一个周期;2、显示时、分、秒。
四、电路中允许使用的主要元器件555:时钟电路74LS161:计数器4511:数码管驱动7400:与非门7404:非门SEVEN_SEG_COM_K:共阴数码管五、提供的参考电路:1、时钟秒位的参考电路2、时、分、秒功能仿真参考电路说明:后期将为同学们提供在面包板上插接实际电路的机会,但实验室只能提供555、74LS161、4511、7400、7404、SEVEN_SEG_COM这些元器件,所以必须按上述元器件设计完整的时、分、秒电路。
3.1 时钟秒位的参考电路(10进制和6进制计数器及数码管显示)电路说明:先画以555芯片为中心的时钟电路部分,然后再画74LS161、4511、数码管为中心的显示电路部分。
①按照电路图选择放置元器件:点击中的放置电阻、电容和电感;点击放置电源和地。
②点击中的放置LM555CM时钟元件。
③点击中的放置共阴极数码管。
④点击中的放置计数器74LS161N、与非门7400N(一个芯片中含4个与非门资源)、非门7404N (一个芯片中含6个非门资源)。
⑤点击中的放置数码管驱动4511BD_5V。
⑥点击元器件的管脚按照电路图进行连线。
⑦点击仿真按钮进行仿真。
3.2 时、分、秒功能仿真参考电路电路说明:先画以555芯片为中心的时钟电路部分,然后再画秒位时钟电路、分位时钟电路、小时位时钟电路。
①按照电路图选择放置元器件:点击中的放置电阻、电容和电感;点击放置电源和地。
②点击中的放置LM555CM 时钟元件。
③点击中的放置共阴极数码管。
④点击中的放置计数器74LS161N、与非门7400N(一个芯片中含4个与非门资源)、非门7404N(一个芯片中含6个非门资源)。
⑤点击中的放置数码管驱动4511BD_5V。
⑥点击元器件的管脚按照电路图进行连线。
基于FPGA的数字钟设计
数字钟的设计一、 设计要求设计一个数字钟,要求用数码管分别显示时、分、秒的计数,同时可以进行时间设置,并且要求在整点的时候能够实现报时功能。
二、 设计原理计数器在正常工作下是对1Hz的频率计数,在调整时间状态下是对调整的时间模块进行计数;控制按键来选择是正常计数还是调整时间,并决定是调整时还是分;时间显示的LED数码管采用动态扫描实现;在整点到达时,还具有整点报时功能。
三、 电路符号数字钟电路符号如下图所示。
CLK2为分频之前的信号,CLR为清零端,CCK 为校时允许端。
MC为分信号调整端,HC为时信号调整端。
HH[3..0]为时高位,HL[3..0]为时低位,MH[3..0]为分高位,ML[3..0]为分低位,SH[3..0]为秒高位,SL[3..0]为秒低位。
DOUT[6..0]是数码管驱动,SEG[5..0]是位选择信号,RING是整点报时信号。
四、 设计方法本设计的电子时钟包括:分频模块、计时模块、校时模块、动态扫描译码显示模块和整点报时模块。
下面通过各个模块的设计来了解电子时钟的构成:一、 分频模块程序附录:module clk2clk1s(clk,clk1s); input clk;output clk1s;reg clk1s;reg [3:0] cnt;always@(posedge clk)if(cnt==4'b1111)beginclk1s<=~clk1s;cnt<=0;endelsecnt<=cnt+1; endmodule波形仿真:二、 计时模块六十进制计数器六十进制计数器程序附录:六十进制计数器模块:module m60(clk,clr,qh,ql,cao);input clk,clr;output cao;output[3:0] qh,ql;reg [3:0] qh,ql;reg cao;always @(posedge clk or negedge clr) beginif(clr==0)beginqh<=4'h0;ql<=4'h0;cao<=0;endelse if(ql==9)beginql<=0;if(qh==5)beginqh<=0;cao<=1;endelse qh=qh+1;endelsebeginql<=ql+1;cao<=0;endendendmodule二十四进制计数器模块:module m24(clk,clr,qh,ql);input clk,clr;output[3:0] qh,ql;reg [3:0] qh,ql;always @(posedge clk or negedge clr) beginif(clr==0)beginqh<=4'h0;ql<=4'h0;endelse if(qh==2)beginql<=ql+1;if(ql==3)beginqh<=0;ql<=0;endendelse if(ql==9)beginqh<=qh+1;ql<=0;endelseql<=ql+1; end endmodule波形仿真:清零清零正常计时三、 校时模块四、 动态译码显示模块CCK 为0不支持校时,有进位信号时产生分(时)脉冲程序附录:1、位扫描信号(HH,HL,MH,ML,SH,SL逐位扫描,并输出)module sel(clk,hh,hl,mh,ml,sh,sl,out);input clk;input [3:0] hh,hl,mh,ml,sh,sl;output [3:0] out;reg [3:0] out;reg [3:0] ss=0;always @(posedge clk)beginif(ss<4'b0101)ss<=ss+1;elsess<=0;endalways @(posedge clk)begincase(ss)4'd0:out<=sl;4'd1:out<=sh;4'd2:out<=ml;4'd3:out<=mh;4'd4:out<=hl;4'd5:out<=hh;endendmodule仿真图:2、段扫描信号(选择数码管点亮哪一位)module seg(clk,seg);input clk;output [5:0] seg;reg [5:0] seg;reg [3:0] ss=0;always @(posedge clk)beginif(ss<4'b0101)ss<=ss+1;elsess<=0;endalways @(posedge clk)begincase(ss)4'd0:seg<=6'b111110;4'd1:seg<=6'b111101;4'd2:seg<=6'b111011;4'd3:seg<=6'b110111;4'd4:seg<=6'b101111;4'd5:seg<=6'b011111;default:seg<=6'b111111;endcaseend3、4—7译码module decode4_7(decodeout,indec); output[6:0] decodeout;input[3:0] indec;reg[6:0] decodeout;always @(indec)begincase(indec)4'd0:decodeout=7'b1111110;4'd1:decodeout=7'b0110000;4'd2:decodeout=7'b1101101;4'd3:decodeout=7'b1111001;4'd4:decodeout=7'b0110011;4'd5:decodeout=7'b1011011;4'd6:decodeout=7'b1011111;4'd7:decodeout=7'b1110000;4'd8:decodeout=7'b1111111;4'd9:decodeout=7'b1111011;default: decodeout=7'b0000000;endcaseendendmodule五、 整点报时模块六、 数字钟仿真图数字钟的设计注:动态扫描的时钟频率尽量要快。
多功能数字钟电路设计
多功能数字钟电路设计1设计内容简介数字钟是一个简单的时序组合逻辑电路,数字钟的电路系统主要包括时间显示,脉冲产生,报时,闹钟四部分。
脉冲产生部分包括振荡器、分频器;时间显示部分包括计数器、译码器、显示器;报时和闹钟部分主要由门电路构成,用来驱动蜂鸣器。
2设计任务与要求Ⅰ以十进制数字形式显示时、分、秒的时间。
Ⅱ小时计数器的计时要求为“24翻1”,分钟和秒的时间要求为60进位。
Ⅲ能实现手动快速校时、校分;Ⅳ具有整点报时功能,报时声响为四低一高,最后一响为整点。
Ⅴ具有定制控制(定小时)的闹钟功能。
Ⅵ画出完整的电路原理图3主要集成电路器件计数器74LS162六只;74LS90三只;CD4511六只;CD4060六只;三极管74LS191一只;555定时器1只;七段式数码显示器六只,74LS00 若干;74LS03(OC) 若干;74LS20 若干;电阻若干,等4设计方案数字电子钟的原理方框图如图(1)所示。
该电路由秒信号发生器、“时,分,秒”计数器、译码器及显示器、校时电路、整点报时电路、闹钟定时等电路组成。
秒信号产生器决定了整个计时系统的精度,故用石英晶体振荡器加分频器来实现。
将秒信号送入“秒计时器”,“秒计时器”采用六十进制计数器,每累计60秒发出一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。
“分计数器”也采用六十进制计数器,每60分钟,发出一个“时脉冲”,该信号经被送到“时计数器”作为“时计数器”的时钟脉冲,而“时计数器”采用二十四进制计数器,实现“24翻1”的计数方式,可实现对一天二十四小时的累计。
译码显示电路将“时”、“分”、“秒”计数器的输出状态通过七段式显示译码器译码,通过刘伟LED 七段显示器显示出来。
整点报时电路是根据计时系统的输出状态产生一脉冲信号,然后触发一音频发生器实现整点报时,定时电路与此类似。
校时电路是用“时”、“分”、“秒”显示数5电路设计5.1秒信号发生器秒信号发生器是数字钟的核心部分,它的精度和稳定度决定了数字钟的质量,通常用晶体整荡器产生的脉冲经过整形、分频获得1 Hz的秒脉冲。
数字钟课程设计
如果说有那么一丝渺茫的希望,在哪里? 换个思路。不做表, 把钟???
潜在客户是那 些??
八、演示的最后
一、设计任务 钟表的数字化给人们生产生活带来了极大的方便, 而且大大地扩展了钟表原先的报时功能。诸如,定时报 警、按时自动打铃、时间程序自动控制、定时广播、定 时启闭路灯、定时开关烘箱、通断动力设备,甚至各种 定时电气的自动启动等,所有这些,都是以钟表数字化 为基础的。 要求设计一个数字钟,以此: 1.了解数字钟的设计、组装与调试方法; 2.熟悉集成电路的使用方法。
555计时器的内部结构图
A
∞
A
∞
五、原理图的设计
多谢振荡器的模拟电路图
五、原理图的设计
2.2 计数器模块原理 在数字钟的控制电路中,分和秒的控制都是一样的,都是由 一个十进制计数 器和一个六进制计数器串联而成的,在电路的设 计中我采用的是统一的器件 74LS161N 的反馈置数法来实现十进制 功能和六进制功能,根据74LS161 的结构 把输出端的0101 (十进 制为5)用一个与非门74LS00 引到Load 端便可置0,这 样就实现了 六进制计数。同样,在输出端的1001 (十进制为9)用一个与非门 74LS00 引到Load 端便可置0,这样就实现了十进制计数。在分和秒 的进位时, 用秒计数器的Load 端接分计数器的CLK控制时钟脉冲, 脉冲在上升沿来时计数 器开始计数。时计数器可由两个十进制计 数器串接并通过反馈接成二十四制计数器。
显示器组
计时模块
显示 切换
闹钟模块
五、原理图的设计
显示切换仿真图:
五、原理图的设计
5.1 发声部分原理 本设计的发声部分有两部分:整点报时和闹铃 两者都采用简单而实用的蜂鸣器,简化电路。
数电课设--数字钟的设计
数电课设--数字钟的设计摘要:该设计主要是设计一种基于数字电路实现的数字钟,用于显示当前时间,同时设计一个简单的时间调整系统来实现对数字钟的时间调整。
本设计实现了数字钟的时间显示、时间调整等功能,具有简单、实用等优点。
关键词:数字钟、计数器、时间调整系统一、引言数字钟是一种时钟显示设备,它可以在显示面板上显示当前时间,数字钟的普及改变了人们观念上的关于时间知识的变革。
本课设就是要通过设计一个数字钟,来综合应用我们所学的数字电路知识,通过数字电路的设计实现时间的显示及调整。
二、数字钟的设计原理数字钟的设计离不开计数器和定时器,计数器的作用是进行计数操作,进而对时间进行处理,定时器的作用是用来控制计数器的计数和复位,使其能够按照固定的时间序列不断进行计数。
数字钟的显示部分采用数码显示管显示当前时间,数码显示管显示的时间单位有小时、分钟和秒。
三、数字钟的设计方案数字钟的设计方案可以分为两部分,一部分是计数器及定时器的设计,另一部分是时间调整系统的设计。
下面分别进行介绍。
(一)计数器及定时器的设计计数器采用7474型D触发器进行设计,二进制计数器采用模8计数模式,带有异步复位功能。
其中,D触发器的Vcc接+5V电源,GND接地,CLK接定时器的输出,D接Q的输出,Q接下一级触发器D端。
计数器采用8253/8254型定时器,应该根据标准时钟的频率和预置值计算计数器的频率和复位时间。
时间调整功能通常是通过8255接口芯片实现。
(二)时间调整系统的设计时间调整系统通过单片机实现,主要实现以下功能:上下键切换修改时间单位、按键快速调整修改时间数字、按键高频稳定范围设置、判断闹钟是否开启、日历选择等。
四、数字钟的实现数字钟的实现可以参考实验教材进行,实现前需要明确以下几点:1. 根据实际需求确定数字钟的参数:例如显示的时间格式,以及是否需要设置闹钟等。
2. 设计好数字钟的原理图,并选择适合的元件进行接线。
3. 进行电路调试和测试,对电路进行稳定性测试等。
数字时钟课程设计报告
一.设计题目数字时钟仿真设计二.设计目的和要球1)目的掌握数字时钟的工作原理和设计方法,学会用Multisim10软件操作实验内容,掌握设计性试验的实验方法。
数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更长的使用寿命,因此得到了广泛的应用。
数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。
因此,我们此次设计数字钟就是为了了解数字钟的原理,从而学会制作数字钟。
而且通过数字钟的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法。
且由于数字钟包括组合逻辑电路和时序电路。
通过它可以进一步学习和掌握各种组合逻辑电路与时序电路的原理和方法。
2)要求(1)设计一个具有时、分、秒的十进制数字显示的计时器。
(2)具有手动校时、校分的功能。
(3)通过开关能实现小时的十二进制和二十四进制转换。
(4)具有整点报时的功能,应该是每个整点完成相应点数的报时,如3点钟响3声。
三.设计原理1)总体方案设计数字时钟由振荡器、分频器、计数器、译码现实、报时等电路组成。
其中,振荡器和分频器组成标准信号发生器,直接决定计时系统的精度。
由不同进制的计数器、译码器和显示器组成计时系统。
将标准秒信号送入采用六十进制的“秒计数器”,每累计60s就发出一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。
“分计数器”也采用六十进制计数器,每累计60min,发出一个“时脉冲”信号,该信号将被送到“时计数器”。
“时计数器”采用二十四进制或十二进制计时器,可实现对一天24h 或12h 的累计。
译码显示电路将“时”、“分”、“秒”计数器的输出状态通过六位七段译码器显示器显示出来,可进行整点报时,计时出现误差时,可以用校时电路校时、校分。
数字时钟的原理框图如图1所示。
2)单元电路设计1.秒脉冲产生电路秒脉冲产生电路用一个1Hz 的秒脉冲时钟信号源代替。
多功能数字钟电路设计
多功能数字钟电路设计
1.时钟显示:设计一个数字时钟显示电路,可以显示当前的时间(小
时和分钟)。
可以使用七段显示器来显示数字。
2.闹钟功能:设计一个闹钟功能,可以设置闹钟时间,并在到达闹钟
时间时发出提示声音或闹铃。
3.温度显示:设计一个温度传感器电路,并将当前温度显示在数字时
钟上。
4.日历功能:设计一个日历功能,可以显示当前的日期和星期。
5.定时器功能:设计一个定时器功能,可以设置一个特定的时间间隔,并在到达时间间隔时发出提示声音或闹铃。
6.闹钟休眠功能:设计一个闹钟休眠功能,可以设置一个特定的时间
间隔,在此时间间隔内按下按钮可以将闹钟功能暂时关闭。
7.闹钟重复功能:设计一个闹钟重复功能,可以设置一个特定的时间
间隔,使闹钟在每天相同的时间段重复响铃。
8.亮度调节功能:设计一个亮度调节功能,可以调整数字时钟的显示
亮度。
这些功能可以根据需求进行组合设计,可以使用逻辑门、计数器、显
示器驱动器、温度传感器、按钮等元件来完成电路设计。
数电课程实验报告——数字钟的设计
.《数字电子技术》课程设计报告设计题目: 数字钟班级学号:1407080701221 1407080701216 1407080701218学生:志强企海清指导教师:周玲时间:2016.6.15-2016.6.16《数字电子技术》课程设计一、设计题目:数字钟的设计一、设计任务与要求:1.时钟显示功能,能够以十进制显示“时”、“分”、“秒”。
其中时为24进制,分秒为60进制。
2. 其他功能扩展:(1)设计一个电路实现时分秒校准功能。
(2)闹钟功能,可按设定的时间闹时。
(3)设计一个电路实现整点报时功能等。
在59分51秒、53秒、55秒、57秒输出750Hz 音频信号,在59分59秒时输出1000Hz信号,音频持续1s,在1000Hz荧屏结束时刻为整点。
二、设计方案:数字电子钟由石英晶体振荡器、分频器、计数器、译码器显示器和校时电路组成。
振荡器产生稳定的高频脉冲信号,作为数字钟的时间基准,然后经过分频器输出标准秒脉冲。
秒计数器满60后向分计数器进位,分计数器满60后向小时计数器进位,小时计数器按照“24翻1”规律计数。
计数器的输出分别经译码器送显示器显示。
计时出现误差时,可以用校时电路校时、校分。
三、芯片选定及各单元功能电路说明:实验器材及主要器件(1)CC4511 6片(2)74LS90 5片(3)74LS92 2片(4)74LS191 1片(5)74LS00 5片(6)74LS04 3片(7)74LS74 1片(8)74LS2O 2片(9)555集成芯片1片(10)共阴七段显示器6片(11)电阻、电容、导线等若干①振荡器石英晶体振荡器的特点是振荡频率准确、电路结构简单、频率易调整。
它还具有压电效应,在晶体某一方向加一电场,则在与此垂直的方向产生机械振动,有了机械振动,就会在相应的垂直面上产生电场,从而机械振动和电场互为因果,这种循环过程一直持续到晶体的机械强度限止时,才达到最后稳定。
这用压电谐振的频率即为晶体振荡器的固有频率。
数字电子时钟设计
数字电子时钟设计数字电子时钟是一种简单易用、精度高、使用方便的时钟仪器。
在现代化的生活中,数字电子时钟已经成为人们生活和工作中不可缺少的一部分。
本文将介绍数字电子时钟的设计及其原理。
1. 数字电子时钟的结构数字电子时钟一般由数字显示器、电源、时钟芯片、振荡电路和控制电路等几个部分组成。
数字显示器:数字电子时钟采用的是七段数码管作为显示器,显示出当前时刻的时间。
电源:数字电子时钟的电源一般采用直流电源,可以通过普通的插座或者电池供电。
时钟芯片:时钟芯片是数字电子时钟的核心部分,可以提供高精度的时钟信号,并且可以根据用户设置的时间来进行计时。
振荡电路:振荡电路是数字电子时钟的发挥器,用于产生一个稳定的高精度的时钟信号。
控制电路:控制电路主要用于对数字电子时钟进行各种设置,并且可以控制数字电子时钟的各种功能。
2. 数字电子时钟的操作原理数字电子时钟的操作原理是通过时钟芯片来实现的。
时钟芯片可以提供一个高精度的时钟信号,这个时钟信号可以被控制电路所接收,并且控制电路可以将这个信号转化为秒、分、时等时间单位。
随着科技的发展,数字电子时钟的精度越来越高,可以达到秒级甚至毫秒级的精度。
这些高精度的时钟芯片可以通过电子时钟所连接的振荡电路来产生非常稳定的时钟信号。
3. 数字电子时钟设计的技术要求数字电子时钟的设计需要考虑以下几个方面的技术要求:(1)高精度的时钟信号数字电子时钟的时钟信号需要具有高精度,通常要求时钟误差不超过几秒钟。
这就需要时钟芯片具有非常高的精度的时钟信号源,同时还需要连接高精度的振荡电路。
(2)显示效果清晰明了数字电子时钟的显示效果要求非常的清晰明了,这就需要采用高质量的七段数码管,并且数量要足够,以显示出完整的时间信息。
(3)快速响应、稳定性好由于数字电子时钟是人们生活和工作中不可缺少的一部分,因此数字电子时钟的响应速度和稳定性也非常的重要,需要在设计时特别注重。
4. 数字电子时钟的优点和缺点数字电子时钟有以下几个优点:(1)高精度稳定数字电子时钟可以提供高精度的时钟信号,并且可以保持这个时钟信号的稳定性,误差范围非常小。
数电课程设计数字钟的设计
数电课程设计数字钟的设计数电课程设计。
数字钟的设计。
1仿真电路显示时,分,秒。
2采用二十四小时制或者十二小时制。
3具有校时功能。
可以对小时和分单独校时,对分校时的时候,停止分向小时进位。
校时时钟源可以手动输入或借用电路中的时钟。
4具有正点报时功能,正点前10秒开始,蜂鸣器一秒响一秒停地响五次。
5为了保证计时准确,稳定,由晶体振荡器提供标准时间的基准信号。
本科生课程设计题目课程专业班级学号姓名指导教师完成时间数电课程设计。
数字钟的设计。
1仿真电路显示时,分,秒。
2采用二十四小时制或者十二小时制。
3具有校时功能。
可以对小时和分单独校时,对分校时的时候,停止分向小时进位。
校时时钟源可以手动输入或借用电路中的时钟。
4具有正点报时功能,正点前10秒开始,蜂鸣器一秒响一秒停地响五次。
5为了保证计时准确,稳定,由晶体振荡器提供标准时间的基准信号。
目录1设计的目的及任务 (3)1.1课程设计的目的...............................................(3)1.2课程设计的任务与要求 (3)2电路设计总方案及原理框图 (3)2.1数字电子钟基本原理...........................................(3)2.2原理框图.. (4)3.单元电路设计及元件选择 (4)3.1六十进制计数器..................................................(4)3.2二十四进制计数器................................................(5)3.3显示屏..........................................................(6)3 .4校时电路.. (6)3.5报时电路 (7)4电路仿真 (8)4.1Multii................................................... ......(8)4.2数字钟总电路图..................................................(8)4.3仿真电路测试结果 (9)5电路实验结果.............................................(10)6收获与体会. (10)参考文献 (11)数电课程设计。
数字钟课程设计报告
数字钟课程设计报告前言:随着科技的不断进步,数字化已经成为了各个领域的主流趋势。
数字技术也在教育领域得到广泛应用。
数字化教育为学生提供了更好的学习方式和体验,同时也给教育工作者带来了更多的创新空间。
本文将围绕数字化教育,探讨数字钟课程设计报告。
数字钟的设计:数字钟是一个数字化的学习工具,在各学科的教学中都得到了广泛应用。
数字钟的设计可以遵循以下步骤:1.确定教学目标:数字钟的设计必须遵循教学目标,以便为教师和学生提供最佳的学习体验,使教学更加生动有趣。
2.选择数字钟的类型:根据教学目标和特点,可以选择不同类型的数字钟,例如计时器、倒计时器、时间轴等。
3.选择数字钟的功能:数字钟的功能会影响到教学效果,因此需要根据教学目标和教学特性选择数字钟的功能。
4.美化数字钟的界面:美化数字钟的界面能够增加学生的学习兴趣,提高教学效果,从而实现教学目标。
数字钟的应用:数字钟是一种数字化教学工具,可以在各个学科的教学中得到广泛应用。
下面以数学为例,详细说明数字钟在数学教学中的应用。
数字钟可以用于教学观念的讲解。
在数学教学中,学习时间的观念非常重要。
使用数字钟可以帮助学生了解时间的本质,为学生认识到时间的重要性打下基础。
数字钟也可以用于学习数学运算。
例如,教师可以设置数字钟来进行加减乘除的计算,帮助学生提高计算速度和精确度。
数字钟还可以用于检查作业。
教师可以在数字钟上设置一个时间限制,让学生在规定时间内完成作业。
如果学生没有完成作业,数字钟将会提醒他们完成。
数字钟的优势:数字化教育工具的吸引力取决于它们的功能和灵活性。
数字钟虽然看起来简单,但它的实际用途非常重要。
它能够帮助教师更好地了解学生的学习情况,同时也能够更好地帮助学生提升学习效果。
数字钟优势如下:1、灵活性:数字钟可以根据教学需要进行设计和选择,可以在不同的学科中得到广泛应用。
2、互动性:数字钟可以与学生互动式地使用。
通过使用数字钟可以促进学生互动,提高学生的学习效果,帮助学生主动掌握学习内容。
数字电子钟设计报告(显示、调整、报时、万年历、闹钟、秒表)
目录一、引言 (2)二、方案论证选择 (3)2.1设计要求 (3)1.基本要求 (3)2.发挥部分 (3)2.2系统框图 (3)分钟+调整 (3)秒钟 (3)时钟+调整 (3)秒表 (3)闹钟功能 (3)定时报闹 (3)万年历功能 (3)三、电路仿真与设计 (4)3.1核心芯片及芯片管脚图 (4)3.2时、分计数电路模块设计 (4)3.3切换电路模块设计 (5)3.4调整电路模块设计 (6)(1)方案一:利用74125的三态。
(6)(2)方案二:利用74162的置数端(LOAD),置数调整。
(7)3.5整点报时电路模块设计 (8)3.6秒表电路模块设计 (9)3.6定时报闹电路模块设计 (11)3.7万年历电路模块设计 (12)四、遇到的问题.......................................................................... 错误!未定义书签。
五、心得体会.............................................................................. 错误!未定义书签。
一、引言电子钟亦称数显钟(数字显示钟),是一种用数字电路技术实现时、分、秒计时的装置,与机械时钟相比,直观性为其主要显著特点,且因非机械驱动,具有更长的使用寿命,相较石英钟的石英机芯驱动,更具准确性。
电子钟已成为人们日常生活中必不可少的必需品,广泛用于个人家庭以及车站、码头、剧院、办公室等公共场所,给人们的生活、学习、工作、娱乐带来极大地方便。
相对于其他时钟类型,它的特点可归结为“两强一弱”:比机械钟强在观时显著,比石英钟强在走时准确,但是它的弱点为显时较为单调。
数字钟的核心即数字电子技术课程中有关时序逻辑电路、组合逻辑电路的内容。
这些也是我们学电子的学生应该掌握的最基本知识。
通过这次试验,不仅可以加深我对数字电子技术课程的理解,也可以提高自己的动手能力以及实际问题中解决问题的能力,培养对数字电子技术的兴趣。
多功能数字钟设计实验报告
多功能数字钟设计实验报告多功能数字钟设计实验报告一、引言数字钟是一种常见的时间显示设备,其简洁明了的显示方式受到了广泛的欢迎。
然而,随着科技的不断发展,人们对于数字钟的功能要求也越来越高。
本实验旨在设计一款多功能数字钟,以满足人们对于时间显示设备的更多需求。
二、设计原理1. 时间显示:数字钟应能准确地显示当前的时间,包括小时、分钟和秒钟。
为了实现精确的时间显示,我们采用了基于晶体振荡器的时钟电路,并结合数码管显示技术,使得时间能够以数字形式直观地呈现。
2. 日期显示:除了时间显示外,数字钟还应具备日期显示的功能。
我们通过添加一个实时时钟模块,可以获取当前的日期信息,并通过数码管显示出来。
3. 闹钟功能:为了提醒用户重要的时间节点,我们在数字钟中加入了闹钟功能。
用户可以设置闹钟的时间,并在到达设定时间时,数字钟会发出声音或震动来提醒用户。
4. 温湿度显示:为了更好地满足用户的需求,我们还在数字钟中添加了温湿度显示功能。
通过接入温湿度传感器,数字钟可以实时监测当前的温度和湿度,并将其显示在数码管上。
5. 其他功能:除了以上功能外,我们还可以根据用户需求进行扩展,如倒计时功能、闪烁效果等。
三、实验步骤1. 硬件设计:根据设计原理,我们需要选择合适的元器件进行电路的搭建,包括晶体振荡器、数码管、实时时钟模块、温湿度传感器等。
2. 电路连接:根据电路原理图,将各个元器件按照正确的连接方式进行连接,确保电路的正常工作。
3. 程序编写:通过编写合适的程序代码,实现数字钟的各项功能。
包括时间显示、日期显示、闹钟功能、温湿度显示等。
4. 调试测试:在完成硬件连接和程序编写后,我们需要对数字钟进行调试测试,确保各项功能的正常运行。
可以通过模拟不同的时间、设置不同的闹钟时间等来测试数字钟的稳定性和准确性。
5. 优化改进:根据实际测试结果,我们可以对数字钟进行优化改进,提高其性能和稳定性。
例如,优化显示效果、增加功能扩展等。
数字电子钟的设计电路图pcb图
数字电子钟的设计与制作一、设计概述1.设计任务➢时钟脉冲电路设计➢60进制计数器设计➢24进制计数器设计➢“秒”,“分”,“小时”脉冲逻辑电路设计➢“秒”,“分”,“小时”显示电路设计➢“分”,“小时”校时电路➢整点报时电路2.功能特性➢设计的数字钟能直接显示“时”,“分”,“秒”,并以24小时为一计时周期。
➢当电路发生走时误差时,要求电路具有校时功能。
➢要求电路具有整点报时功能,报时声响为四低一高,最后一响正好为整点。
3.原理框图图 1 原理框图二、设计原理数字钟是一个将“时”,“分”,“秒”显示于人的视觉器官的计时装置。
它的计时周期为24小时,显示满刻度为23时59分59秒,另外应有校时功能和报时功能。
因此,一个基本的数字钟电路主要由译码显示器、“时”,“分”,“秒”计数器、校时电路、报时电路和振荡器组成。
干电路系统由秒信号发生器、“时、分、秒”计数器、译码器及显示器、校时电路、整点报时电路组成。
秒信号产生器是整个系统的时基信号,它直接决定计时系统的精度,一般用石英晶体振荡器加分频器来实现。
将标准秒信号送入“秒计数器”,“秒计数器”采用60进制计数器,每累计60秒发现胡一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。
“分计数器”也采用60进制计数器,每累计60分钟,发出一个“时脉冲”信号,该信号将被送到“时计数器”。
“时计数器”采用24进制计时器,可实现对一天24小时的累计。
译码显示电路将“时”、“分”、“秒”计数器的输出状态菁七段显示译码器译码,通过六位LED七段显示器显示出来。
整点报时电路时根据计时系统的输出状态产生一脉冲信号,然后去触发一音频发生器实现报时。
校时电路时用来对“时”、“分”、“秒”显示数字进行校对调整的。
三、设计步骤1.计数器电路根据计数周期分别组成两个60进制(秒、分)和一个24进制(时)的计数器。
把它们适当连接就可以构成秒、分、时的计数,实现计时功能。
CC4518的符号如图,一个芯片集成了两个完全相同的十进制计数器,其异步清零信号CR是高电平有效。
数字时钟ad纯数字电路
数字时钟的AD纯数字电路设计需要使用数字逻辑元件来实现。
以下是一个简单的数字时钟AD纯数字电路设计步骤:
1. 产生频率为1Hz的矩形波:使用一个频率为1Hz的振荡器,可以采用RC振荡电路或石英晶体振荡器来实现。
2. 数字钟的“时”设计:使用一个24进制计数器来实现,计数器的计数序列从00、01、…、23、00循环。
当计数到23小时59分59秒时,再来一个秒脉冲,重新开始启动。
可以采用反馈置数或反馈清零法进行24进制计数。
3. 分、秒的设计:使用一个60进制计数器来实现,计数器的模是60,个位是十进制,十位是六进制。
计数器的计数规律是从00、01、…、59、00循环。
4. 译码显示:使用一个译码器将计数器的输出转换成七段数码管的信号,从而在数码管上显示时间。
5. 校时电路:使用一个比较器将当前时间与设定时间进行比较,当两者相同时,输出一个校时信号,使时钟自动调整到设定时间。
可以通过10s脉冲进行校正,也能手动产生单次脉冲校正至时/分计数器。
可以设置一变量来控制实现校正或正常计数。
以上是一个简单的数字时钟AD纯数字电路设计步骤,可以根据需要进行修改和优化。
数电课程实验报告-数字钟的设计
《数字电子技术》课程设计报告设计题目: 数字钟班级学号:1407080701221 1407080701216 1407080701218学生姓名:谢志强陈企张海清指导教师:周玲时间:2016.6.15-2016.6.16《数字电子技术》课程设计一、设计题目:数字钟的设计一、设计任务与要求:1.时钟显示功能,能够以十进制显示“时”、“分”、“秒”。
其中时为24进制,分秒为60进制。
2. 其他功能扩展:(1)设计一个电路实现时分秒校准功能。
(2)闹钟功能,可按设定的时间闹时。
(3)设计一个电路实现整点报时功能等。
在59分51秒、53秒、55秒、57秒输出750Hz音频信号,在59分59秒时输出1000Hz信号,音频持续1s,在1000Hz荧屏结束时刻为整点。
二、设计方案:数字电子钟由石英晶体振荡器、分频器、计数器、译码器显示器和校时电路组成。
振荡器产生稳定的高频脉冲信号,作为数字钟的时间基准,然后经过分频器输出标准秒脉冲。
秒计数器满60后向分计数器进位,分计数器满60后向小时计数器进位,小时计数器按照“24翻1”规律计数。
计数器的输出分别经译码器送显示器显示。
计时出现误差时,可以用校时电路校时、校分。
三、芯片选定及各单元功能电路说明:实验器材及主要器件(1) CC4511 6片(2) 74LS90 5片(3) 74LS92 2片(4) 74LS191 1片(5) 74LS00 5片(6) 74LS04 3片(7) 74LS74 1片(8) 74LS2O 2片(9) 555集成芯片 1片(10)共阴七段显示器 6片(11)电阻、电容、导线等若干①振荡器石英晶体振荡器的特点是振荡频率准确、电路结构简单、频率易调整。
它还具有压电效应,在晶体某一方向加一电场,则在与此垂直的方向产生机械振动,有了机械振动,就会在相应的垂直面上产生电场,从而机械振动和电场互为因果,这种循环过程一直持续到晶体的机械强度限止时,才达到最后稳定。
多功能数字钟电路设计
多功能数字钟电路设计
多功能数字钟电路可以用来显示时间、日期、闹钟和定时器等功能。
下面是一个简单的多功能数字钟电路设计,它基于CD4511七段译码器和CD4543 BCD-七段译码器。
1. 时间显示功能
为了显示时间,我们需要使用CD4543 BCD-七段译码器。
该译码器接收来自实时时钟(RTC)模块的BCD编码输出。
RTC模块可以用来跟踪时间和日期,它通常包括一个晶体振荡器、计数器和存储器。
BCD 编码输出通过CD4543译码器转换为七段LED显示。
2. 日期显示功能
类似于时间显示功能,日期显示也需要使用RTC模块。
RTC模块可以提供年份、月份和日期的BCD编码输出。
这些编码输出通过CD4543译码器转换为七段LED显示。
3. 闹钟功能
闹钟功能可以通过计时器和比较器实现。
我们可以使用555定时器作
为计时器,它可以生成一个固定的时间间隔。
然后,我们可以使用一个比较器来比较当前时间和闹钟时间。
如果它们匹配,闹钟就会响起。
4. 定时器功能
定时器功能可以通过555定时器来实现。
我们可以设置计时器的时间间隔,并使用CD4511七段译码器来显示剩余时间。
当定时器完成计时时,它可以触发一个报警器或执行其他操作。
总之,多功能数字钟电路可以实现时间、日期、闹钟和定时器等多种功能。
这些功能可以通过RTC模块、CD4511七段译码器、CD4543 BCD-七段译码器和555定时器等元件来实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 数字钟的设计数字钟是一个典型的数字系统,其设计与实现方法比较多。
数字钟的基本结构就是各种进制计数器的组合,如60进制计数器、12/24进制计数器等。
这些计数器再辅以其它的逻辑控制电路,如时间校正电路、复位电路、报警电路等,就构成了具有实用功能的数字钟。
1.1 设计要求利用VHDL 设计一个数字电子钟,使其具有如下基本功能:⑴ 能够实现时、分、秒计时并以数字形式显示,时、分、秒各占2位;⑵ 小时为24进制,分和秒为60进制;⑶ 能够通过按键调整时间和复位;⑷ 可以进行整点报时;⑸ 能够输出用于6位数码管动态扫描显示的控制信息。
1.2 设计方案数字电子钟实际上就是对一个标准的秒信号(1Hz )进行计数并显示的电路,整个系统大致包括秒信号发生器、秒计数器、分计数器、时计数器、译码及扫描显示电路、校时电路和报时电路等几个组成部分。
系统的组成框图如图 1 - 1所示。
图 1 - 1 数字钟的系统组成框图1.3 模块设计⒈ 秒计数器模块秒计数模块实质上是一个60进制计数器。
clk 作为秒计数模块的输入时钟信号,reset 为复位端口,bcd1,bcd10分别为秒计数器的个位和十位BCD 码输出端口,co 为进位端,为分计数器提供计数脉冲。
其外部接口电路如图 1 - 2所示,相应的VHDL 程序如下: 七段译码器秒计数器 分计数器 时计数器 校时电路秒信号发生器 报时电路图 1 - 2 秒计数器模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY cnt60 IS --定义实体PORT(clk,reset:IN STD_LOGIC; --clk :1Hz 脉冲,reset :复位端口co:OUT STD_LOGIC; --60进制计数器进位端口bcd1,bcd10:OUT STD_LOGIC_VECTOR(3 DOWNTO 0)); --计数器个位和十位输出端口END cnt60;ARCHITECTURE rtl OF cnt60 IS --定义结构体SIGNAL bcd1t,bcd10t: STD_LOGIC_VECTOR(3 DOWNTO 0); --定义信号量BEGINbcd1<=bcd1t;bcd10<=bcd10t;PROCESS(clk,reset) --计数器个位计数BEGINIF reset='1' THEN bcd1t<="0000"; --复位端有效,个位输出为0ELSIF(clk'EVENT AND clk='1')THEN --时钟上升沿有效IF bcd1t="1001"THEN --计数器个位为9时,重新回0bcd1t<="0000";ELSE --否则自动累加1bcd1t<=bcd1t+'1';END IF;END IF;END PROCESS;PROCESS(clk,reset) --计数器十位计数BEGINIF reset='1' THEN bcd10t<="0000"; --复位端有效,十位输出为0ELSIF( clk'EVENT AND clk='1')THENIF bcd1t="1001" THEN --计数器个位为9时IF bcd10t<5 THEN --十位小于5时,十位累加1bcd10t<=bcd10t+'1';ELSE --十位为5时,十位回0bcd10t<="0000";END IF;END IF;END IF;END PROCESS;PROCESS(clk,bcd1t,bcd10t) --进位处理进程BEGINIF clk'EVENT AND clk='1' THENIF bcd1t="1001" AND bcd10t="0101" THEN --当十位为5,个位为9时,进位为1co<='1';ELSE --其余为0co<='0';END IF;END IF;END PROCESS;END rtl;⒉ 分计数器模块分钟计数模块和秒计数模块均为60进制计数器,参考程序如秒计数器。
⒊ 小时计数器模块 小时计数模块实质上是一个24进制的计数器。
clk 为小时计数器的脉冲输入端,reset 为复位端口,bcd1,bcd10为小时计数器的个位和十位输出端口,其外部接口电路如图 1 - 3所示,相应的VHDL 程序如下:图 1 - 3 小时计数器模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY cnt24 ISPORT(clk,reset:IN STD_LOGIC; --clk:时计数脉冲,reset:复位端口bcd1,bcd10:OUT STD_LOGIC_VECTOR(3 DOWNTO 0)); --时计数器的个位和十位输出END cnt24;ARCHITECTURE rtl OF cnt24 ISSIGNAL bcd1t,bcd10t: STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINbcd1<=bcd1t;bcd10<=bcd10t;PROCESS(clk,reset)BEGINIF reset='1' THENbcd1t<="0000";bcd10t<="0000"; --复位端有效,计数器个位、十位输出为0ELSIF(clk'EVENT AND clk='1')THEN --否则时钟上升沿有效时IF bcd1t="0011"AND bcd10t="0010"THEN --若计数达到23,个位十位均回0bcd1t<="0000"; bcd10t<="0000";ELSIF bcd1t="1001"THEN --否则如果个位输出为9时,bcd1t<="0000"; --个位回0,十位加1bcd10t<=bcd10t+'1';ELSE --否则个位加1,十位保持不变bcd1t<=bcd1t+'1';END IF;END IF;END PROCESS;END rtl;⒋译码扫描显示模块根据系统显示的要求,本设计需要6个数码管。
数码管一般分为共阴和共阳两种基本类型。
显示的方法一般有两种:一种是静态显示,另一种是动态显示。
所谓的静态显示是指显示某一字符时,数码管的相应段恒定的导通或是截止。
静态显示时,较小的驱动电流就可以获得一个较高的显示亮度,但每一个数码管都需要一个七段译码器来驱动,这种方式占用的I/O资源比较多,因此数码管较多时一般采用动态扫描方式。
所谓的动态扫描显示是指轮流点亮各个数码管。
即将所有数码管的段输入信号连接在一起,通过位控信号选通其中一个数码管并把段数据写入,因此每一时刻只有一个数码管是点亮的。
为了能持续看到数码管显示的内容,必须对数码管进行扫描,即依次并循环点亮各个数码管,利用人眼的视觉暂留及发光器件的余辉效应,在合适的扫描频率下,人眼就会看到多个数码管同时点亮。
扫描显示模块接口电路如图 1 - 4所示。
其中clk为动态扫描信号,din0、din1、din2、din3、din4、din5分别为秒计数器、分计数器和小时计数器的个位与十位BCD码输入信号,sg为七段数码管的输出,bt为数码管的位控信号。
译码扫描显示模块的VHDL程序代码如下:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY disp ISPORT ( clk: IN STD_LOGIC; --动态扫描时钟,这里选择1Khzdin0,din1,din2,din3,din4,din5:IN STD_LOGIC_VECTOR(3 DOWNTO 0);--待显示的6个BCD码数sg: OUT STD_LOGIC_VECTOR(6 DOWNTO 0); --数码管的段控端bt: OUT STD_LOGIC_VECTOR(5 DOWNTO 0)); --数码管的位控端END disp;ARCHITECTURE rtl OF disp ISSIGNAL s: STD_LOGIC_VECTOR(2 DOWNTO 0); --信号量,6个数码管轮流计数值SIGNAL num:STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINP1:PROCESS(clk) --6进制计数器BEGINIF clk'EVENT AND clk= '1' THENIF s="101"THEN s<="000" ;ELSE s<=s+'1';END IF;END IF;END PROCESS P1;P2:PROCESS(s,din0,din1,din2,din3,din4,din5)BEGINIF s="000" THEN bt<="111110";num<=din0; --数码管显示din0的值ELSIF s="001" THEN bt<="111101";num<=din1; --数码管显示din1的值ELSIF s="010" THEN bt<="111011";num<=din2; --数码管显示din2的值ELSIF s="011" THEN bt<="110111";num<=din3; --数码管显示din3的值ELSIF s="100" THEN bt<="101111";num<=din4; --数码管显示din4的值ELSIF s="101" THEN bt<="011111";num<=din5; --数码管显示din5的值ELSE bt<="111111"; num<="1111";END IF;END PROCESS P2;sg<= "0111111" WHEN num = "0000" ELSE"0000110" WHEN num = "0001" ELSE"1011011" WHEN num = "0010" ELSE"1001111" WHEN num = "0011" ELSE"1100110" WHEN num = "0100" ELSE"1101101" WHEN num = "0101" ELSE"1111101" WHEN num = "0110" ELSE"0000111" WHEN num = "0111" ELSE "1111111" WHEN num = "1000" ELSE"1101111" WHEN num = "1001" ELSE"1110111" WHEN num = "1010" ELSE"1111100" WHEN num = "1011" ELSE"0111001" WHEN num = "1100" ELSE"1011110" WHEN num = "1101" ELSE"1111001" WHEN num = "1110" ELSE "1110001" WHEN num = "1111" ELSE"0000000";END rtl;⒌ 校时模块由计数器的计数过程可知,正常计数时,当秒计数器计数到59,再来一个脉冲,秒计数器清零,而进位信号作为分计数器的计数脉冲,使分计数器计数加1。