精细功能陶瓷
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黏土的主要矿物:高岭石类、蒙脱石类、伊
利石类和水铝英石。
黏土的性质 黏土的性质对陶瓷的生产有很大的影响。它 主要包括可塑性、结合性、离子交换性、触变性、 干燥收缩和烧成收缩、烧结温度与烧结范围和耐
火度等。
黏土的加热变化:黏土是陶瓷的主要原料,陶
瓷在烧成过程中所发生的一系列物理和化学变化,
是在黏土加热变化的基础上进行的,因此黏土的加
义重大的里程碑。
釉
以石英、长石、硼砂、黏土等为原料制成的东西, 涂在瓷器、陶器外面,烧制后发出玻璃光泽,可增加陶 瓷的机械强度和绝缘性能。
长石:一类含钙、钠和钾的铝硅酸盐类矿物。
瓷器烧成温度高,质地致密坚硬,表 面有光亮的釉彩。
随着科学进步与发展,由瓷器又衍生
出许多种类的陶瓷。
陶瓷都是以黏土为主要原料与其他天
③在瓷器中,石英对坯体的力学强度有着很 大的影响,合理的石英颗粒能大大提高瓷器坯体
的强度,否则效果相反。同时,石英也能使瓷坯
的透光度和白度得到改善。
④在釉料中,二氧化硅是生成玻璃质的主要
组分,增加釉料中石英含量能提高釉的熔融温度
与黏度,并减少釉的线胀系数。同时它是赋予釉
以高的力学强度、硬度、耐磨性和耐化学侵蚀性 的主要因素。
观与原子尺度的纳米层次来研究功能陶瓷 的性能与结构,以期进一步开拓功能陶瓷
新的应用领域。
无论从应用的广度,还是市场占有率来看,在 当前及以后相当一段时间内,功能陶瓷在现代陶瓷 中仍将占据主导地位。 因此,功能陶瓷今后在性能方面应向着高效能、 高可靠性、低损耗、多功能、超高功能以及智能化 方向发展。 在设备技术方面向着多层、多相乃至超微细结 构的调控与复合、低温活化烧结、立体布线、超细 超纯、薄膜技术等方向发展。
①根据原料工艺特性分为:可塑性原料(也称瘠
性原料)、熔剂性原料。 ②根据原料的用途分为:瓷坯原料、瓷釉原料、 色彩及彩料原料。 ③根据原料的矿物组成分为:黏土质原料、硅 质原料、长石质原料、钙质原料、镁质原料。 ④根据原料获得的方式分为:矿物原料、化工 原料。
陶瓷制品的结构是决定其性能和品质的内因,
然矿物原料经粉碎混炼—成形一煅烧等
过程制成的。 如常见的日用陶瓷、建筑陶瓷、电 瓷等传统陶瓷。
由于陶瓷的主要原料取之于自然界的硅
酸盐矿物(如黏土、长石、石英等),所以可 归为硅酸盐类材料和制品。
从原始瓷器的出现到近代的传统陶瓷, 这一阶段持续了四千余年。
先进陶瓷阶段
20世纪以来,随着人类对宇宙的探索、原子
石英是作为瘠性原料加入到陶瓷坯料中的,
它是陶瓷坯体中主要组分之一,它在陶瓷生产 中的作用不仅在坯体成形时,而且在烧成时都
有重要的影响。其作用概括如下:
①在烧成前是瘠性原料,可对泥料的可塑性起 调节作用,能降低坯体的干燥收缩,缩短干燥时间 并防止坯体变形。 ②在烧成时,石英的加热膨胀可部分地抵消坯 体收缩的影响,当玻璃质大量出现时,在高温下石 英能部分熔解于液相中,增加熔体的强度,而未熔 解的石英颗粒,则构成坯体的骨架,可防止坯体发 生软化变形等缺陷。
而制品的结构是由原料的种类和工艺过程来保证的。 陶瓷制品所选用的原料,首先是保证供给其经
过加工后能生成所需要的晶相和玻璃相,其次是保
证能适应在加工处理过程中制品的各种工艺性能。
综合陶瓷制品对于原料的两方面要求,
根据原料的工艺特性可以把所需要的陶瓷原
料主要归纳为三大类: 具有可塑性的黏土类原料、具有非可塑
和耐火材料,以及各种外加剂如助磨剂、助 滤剂、解凝剂、增塑剂和增强剂等。
(2)黏土类原料
黏土类原料是日用陶瓷和工业用陶瓷的主
要原料之一。 黏土是多种微细的矿物的混合体,其矿物
的粒径多数小于2um,主要是由黏土矿物和其
他矿物组成的并具有一定特性的(其中主要是
具有可塑性)土状岩石。
我国黏土原料资源丰富,产地遍及全国。
性的石英类原料和熔剂原料。
一般来说,黏土类原料往往是既有加工所需 的可塑性,也能在烧成后形成结构晶相的原料; 石英类原料既是非可塑性原料,同时也是能 生成晶相的原料;
熔剂原料也具有非可塑性质。
除上述的陶瓷坯体中所需的三大原料外, 陶瓷釉料还常常需用各种特殊的熔剂原料, 包括采用各种化工原料。
陶瓷工业中需用的辅助材料主要是石膏
热变化是陶瓷制品烧成的基本理论基础。
黏土在加热过程中的变化包括两个阶段:脱水 阶段与脱水后产物的继续转化阶段。
黏土作用概括为五个方面:
1)黏土的可塑性是陶瓷坯泥赖以成形的基础。
2)黏土使注浆泥料与釉料具有悬浮性与稳定性。
3)黏土一般呈细分散颗粒,同时具有结合性。
4)黏土是陶瓷坯体烧结时的主体,黏土中的 Al2O3含量和杂质含量是决定陶瓷坯体的烧结程 度、烧结温度和软化温度的主要因素; 5)黏土是形成陶器主体结构和瓷器中莫来石 晶体的主要来源。
此时可认为,广义的陶瓷概念已是用
陶瓷生产方法制造的无机非金属固体材料
和制品的统称。 但是,这一阶段的先进陶瓷,无论从 原料、显微结构中所体现的晶粒、晶界、 气孔、缺陷等在尺度上还只是处在微米级 的水平,故又可称之为微米级先进陶瓷。
纳米陶瓷阶段
到20世纪90年代,陶瓷研究已进入第三个阶 段--纳米陶瓷阶段。 所谓纳米陶瓷,是指显微结构中的物相就有 纳米级尺度的陶瓷材料。它包括晶粒尺寸、晶界
是为了有别于传统陶瓷而言的。
先进陶瓷有时也称为精细陶瓷(Fine Ceramics)、 新型陶瓷(New Ceramics)、特种陶瓷(Special Ceramics)和高技术陶瓷(High-Tech. Ceramics)等。
在先进陶瓷阶段,陶瓷制备技术飞速发展。 在成形方面,有等静压成形、热压注成形、注 射成形、离心注浆成形、压力注浆成形等成形方法; 在烧结方面,则有热压烧结、热等静压烧结、反应 烧结、快速烧结、微波烧结、自蔓延烧结等。 在先进陶瓷阶段,采用的原料已不再使用或很 少使用黏土等传统原料,而已扩大到化工原料和合 成矿物,甚至是非硅酸盐、非氧化物原料,组成范 围也延伸到无机非金属材料范围。
原料大部分是天然的矿物原料或岩石原料,其中多为硅酸 盐矿物。 这些天然的矿物原料或岩石原料种类繁多,资源蕴藏丰富, 且分布极广。
某些陶瓷材料制品对原料的要求很高,需要采用均一
且高纯度的人工合成原料。
(1)原料分类
通常,陶瓷原料的分类是根据不同的
工艺特性、传统习惯及原料性质等不同角 度进行的。综合起来,可分为以下四类:
(3)石英类原料
①石英的种类。 自然界中的二氧化硅结晶矿物可以统称为石英。 其中最纯的石英晶体统称为水晶。 在陶瓷工业中,常用的石英类原料和材料有下
列几种:脉石英、砂岩、石英岩、石英砂、隧石和
硅藻土。
②石英原料的性质 石英的外观视其种类不同而异,有的呈乳白 色,有的呈灰白半透明状态,表面具有玻璃光泽 或脂肪光泽,莫氏硬度值为7,相对密度因晶型而 异,波动于2.22—2.65g/cm3之间。
发展起了巨大促进作用,功能陶瓷的应用 领域也随之更为广泛。
目前,功能陶瓷主要用于电、磁、光、
声、热和化学等信息的检测、转换、传输、
处理和存储等,并已在电子信息、集成电路、
计算机、能源工程、超声换能、人工智能、 生物工程等众多近代科技领域显示出广阔的 应用前景。
举例:几种主要的功能陶瓷
根据功能陶瓷组成结构的易调性和可
(4) 长石类原料
长石是陶瓷原料中最常用的熔剂性原料,在
陶瓷生产中用作坯料、釉料、色料、熔剂等的基
本组分,其用量较大,是陶瓷三大原料之一。
长石的种类和一般性质:长石是地壳上分布 广泛的造岩矿物。
长石呈架状硅酸盐结构,化学成分 为不含水的碱金属与碱土金属铝硅酸盐, 主要是钾、钠、钙和少量钡的铝硅酸盐, 有时含有微量的铯、锶等金属离子。
根据架状硅酸盐的结构特点,长石 可分为四种基本类型:
钠长石、钾长石、钙长石和钡长石。
生产中的钾长石,实际上是含钾为主的
钾钠长石;
而所谓的钠长石,实际上是含钠为主的
钾钠长石。
钠长石与钙长石一般呈白色或灰白色,
相对密度为2.62 g/cm3,其他一般物理性质
与钾钠长石近似。
长石在陶瓷原料中是作为熔剂使用 的,因而长石在陶资生产中的作用主要
通过对复杂多元氧化物系统的化学、物理及
组成、结构、性能和使用效能间相互关系的研究, 已陆续发现了一大批具有优异性能或特殊功能的 功能陶瓷,并可借助于离子臵换、掺杂等方法调 节、优化其性能,功能陶瓷材料研究已开始从经
验式的探索逐步走向按所需性能来进行材料设计。
3、功能陶瓷的应用和展望
功能陶瓷的不断开发,对科学技术的
宽度、第二相分布、气孔尺寸、缺陷尺寸等均在
纳米量级的尺度上。
纳米陶瓷是当今陶瓷材料研究中一个 十分重要的发展趋向,它将促使陶瓷材料
的研究从工艺到理论、从性能到应用都提
高到一个崭新的阶段。
2、功能陶瓷的定义、范围和分类
从性能上可把先进陶瓷分为结构陶瓷 (Structral ceramics)和功能陶瓷(Functional Ceramics)两大类。
陶瓷的研究进程分为三个阶段
新石器时代 先进陶瓷阶段 纳米陶瓷阶段
新石器时代
远在几千年前的新石器时代,我们的祖先就 已经用天然黏土作原料,塑造成各种器皿,再在
火堆中烧成坚硬的可重复使用的陶器,由于烧成
温度较低,陶瓷仅是一种含有较多气孔、质地疏 松的未完全烧成制品。
以后大约在2000年前的东汉晚期,人们 利用含铝较高的天然瓷土为原料,加上釉的 发明,以及高温合成技术的不断改进,使陶 瓷步入瓷器阶段,这是陶瓷技术发展史上意
控性,可以制备超高绝缘性、绝缘性、半 导性、导电性和超导电性陶瓷; 根据功能陶瓷能量转换和耦合特性, 可以制备压电、光电、热电、磁电和铁电 等陶瓷。
根据功能陶瓷对外场条件的敏感效应,
则可制备热敏、气敏、湿敏、压敏、磁敏
和光敏等敏感陶瓷。
二十世纪90年代,开始的纳米功能陶
瓷的研究,表明人们已开始深入到介于宏
能工业的兴起和电子工业的迅速发展,从性质、
品种到质量等方面,对陶瓷材料均提出越来越高 的要求。从而,促使陶瓷材料发展成为一系列具
有特殊功能的无机非金属材料。
如氧化物陶瓷、压电陶瓷、金属陶瓷等各种
高温和功能陶瓷。
这时,陶瓷研究进入第二个阶段——先进陶 瓷阶段。
先进陶瓷(Advanced ceramics)又称现代陶瓷,
在材料及应用方面的主要研究热点:
智能化敏感陶瓷及其传感器;
高转换率、高可靠性、低损耗、大功率的压电陶瓷及
其换能器;
超高速大容量超导计算机用光纤陶瓷材料;
多层封装立体布线用的高导热低介电常数陶瓷基板材
料; 量大面广、低烧、高比容、高稳定性的多层陶瓷电容 器材料等。
4、制备陶瓷材料的原料
陶瓷材料制品由多相的无机非金属材料所构成,所用
结构陶瓷是指具有力学和机械性能及部 分热学和化学功能的先进陶瓷(现代陶瓷), 特别适于高温下应用的则称为高温结构陶瓷。
功能陶瓷是指那些利用电、磁、声、 光、热、力等直接效应及其耦合效应所提
供的一种或多种性质来实现某种使用功能
的先进陶瓷(现代陶瓷)。
功能陶瓷的特点
品种多、产量大、价格低、应用广、 功能全、技术高、更新快。
石英的主要化学成分为SiO2,常含有少量杂
质成分,如Al2O3、Fe2O3、CaO、MgO、TiO2等。
石英是具有强耐酸侵蚀力的酸性氧化物,除
氢氟酸外,一般酸类对它都不产生作用。
当石英与碱性物质接触时,则能起反应而生
成可溶性的硅酸盐。
在高温中与碱金属氧化物作用生成硅酸盐与 玻璃态物质。
③石英在陶瓷生产中的作用
表现为它的熔融和熔化其他物质的性质。
长石在陶瓷生产中的作用如下:
① 长石在高温下熔融,形成黏稠的玻 璃熔体,是பைடு நூலகம்料中碱金属氧化物(K2O、
Na2O)的主要来源,能降低陶瓷坯体组分
的熔化温度,有利于成瓷和降低烧成温度。
②熔融后的长石熔体能熔解部分高 岭土分解产物和石英颗粒。液相中Al2O3 和SiO2互相作用,促进莫来石晶体的形 成和长大,赋予了坯体的力学性能和化
第十三章 精细功能陶瓷材料
一、陶瓷材料与功能陶瓷
1、陶瓷材料的发展概况 2、功能陶瓷的定义、范围和分类
3、功能陶瓷的性能与工艺特征
4、功能陶瓷的应用和展望 5、制备陶瓷材料的原料
1、陶瓷材料的发展概况
陶瓷在人类生活和社会建设中是不可缺 少的材料,它和金属材料、高分子材料并列 为当代三大固体材料。 我国的陶瓷研究历史悠久、成就辉煌, 它是中华文明的伟大象征之一,在我国的文 化和发展史上占有极其重要的地位。
利石类和水铝英石。
黏土的性质 黏土的性质对陶瓷的生产有很大的影响。它 主要包括可塑性、结合性、离子交换性、触变性、 干燥收缩和烧成收缩、烧结温度与烧结范围和耐
火度等。
黏土的加热变化:黏土是陶瓷的主要原料,陶
瓷在烧成过程中所发生的一系列物理和化学变化,
是在黏土加热变化的基础上进行的,因此黏土的加
义重大的里程碑。
釉
以石英、长石、硼砂、黏土等为原料制成的东西, 涂在瓷器、陶器外面,烧制后发出玻璃光泽,可增加陶 瓷的机械强度和绝缘性能。
长石:一类含钙、钠和钾的铝硅酸盐类矿物。
瓷器烧成温度高,质地致密坚硬,表 面有光亮的釉彩。
随着科学进步与发展,由瓷器又衍生
出许多种类的陶瓷。
陶瓷都是以黏土为主要原料与其他天
③在瓷器中,石英对坯体的力学强度有着很 大的影响,合理的石英颗粒能大大提高瓷器坯体
的强度,否则效果相反。同时,石英也能使瓷坯
的透光度和白度得到改善。
④在釉料中,二氧化硅是生成玻璃质的主要
组分,增加釉料中石英含量能提高釉的熔融温度
与黏度,并减少釉的线胀系数。同时它是赋予釉
以高的力学强度、硬度、耐磨性和耐化学侵蚀性 的主要因素。
观与原子尺度的纳米层次来研究功能陶瓷 的性能与结构,以期进一步开拓功能陶瓷
新的应用领域。
无论从应用的广度,还是市场占有率来看,在 当前及以后相当一段时间内,功能陶瓷在现代陶瓷 中仍将占据主导地位。 因此,功能陶瓷今后在性能方面应向着高效能、 高可靠性、低损耗、多功能、超高功能以及智能化 方向发展。 在设备技术方面向着多层、多相乃至超微细结 构的调控与复合、低温活化烧结、立体布线、超细 超纯、薄膜技术等方向发展。
①根据原料工艺特性分为:可塑性原料(也称瘠
性原料)、熔剂性原料。 ②根据原料的用途分为:瓷坯原料、瓷釉原料、 色彩及彩料原料。 ③根据原料的矿物组成分为:黏土质原料、硅 质原料、长石质原料、钙质原料、镁质原料。 ④根据原料获得的方式分为:矿物原料、化工 原料。
陶瓷制品的结构是决定其性能和品质的内因,
然矿物原料经粉碎混炼—成形一煅烧等
过程制成的。 如常见的日用陶瓷、建筑陶瓷、电 瓷等传统陶瓷。
由于陶瓷的主要原料取之于自然界的硅
酸盐矿物(如黏土、长石、石英等),所以可 归为硅酸盐类材料和制品。
从原始瓷器的出现到近代的传统陶瓷, 这一阶段持续了四千余年。
先进陶瓷阶段
20世纪以来,随着人类对宇宙的探索、原子
石英是作为瘠性原料加入到陶瓷坯料中的,
它是陶瓷坯体中主要组分之一,它在陶瓷生产 中的作用不仅在坯体成形时,而且在烧成时都
有重要的影响。其作用概括如下:
①在烧成前是瘠性原料,可对泥料的可塑性起 调节作用,能降低坯体的干燥收缩,缩短干燥时间 并防止坯体变形。 ②在烧成时,石英的加热膨胀可部分地抵消坯 体收缩的影响,当玻璃质大量出现时,在高温下石 英能部分熔解于液相中,增加熔体的强度,而未熔 解的石英颗粒,则构成坯体的骨架,可防止坯体发 生软化变形等缺陷。
而制品的结构是由原料的种类和工艺过程来保证的。 陶瓷制品所选用的原料,首先是保证供给其经
过加工后能生成所需要的晶相和玻璃相,其次是保
证能适应在加工处理过程中制品的各种工艺性能。
综合陶瓷制品对于原料的两方面要求,
根据原料的工艺特性可以把所需要的陶瓷原
料主要归纳为三大类: 具有可塑性的黏土类原料、具有非可塑
和耐火材料,以及各种外加剂如助磨剂、助 滤剂、解凝剂、增塑剂和增强剂等。
(2)黏土类原料
黏土类原料是日用陶瓷和工业用陶瓷的主
要原料之一。 黏土是多种微细的矿物的混合体,其矿物
的粒径多数小于2um,主要是由黏土矿物和其
他矿物组成的并具有一定特性的(其中主要是
具有可塑性)土状岩石。
我国黏土原料资源丰富,产地遍及全国。
性的石英类原料和熔剂原料。
一般来说,黏土类原料往往是既有加工所需 的可塑性,也能在烧成后形成结构晶相的原料; 石英类原料既是非可塑性原料,同时也是能 生成晶相的原料;
熔剂原料也具有非可塑性质。
除上述的陶瓷坯体中所需的三大原料外, 陶瓷釉料还常常需用各种特殊的熔剂原料, 包括采用各种化工原料。
陶瓷工业中需用的辅助材料主要是石膏
热变化是陶瓷制品烧成的基本理论基础。
黏土在加热过程中的变化包括两个阶段:脱水 阶段与脱水后产物的继续转化阶段。
黏土作用概括为五个方面:
1)黏土的可塑性是陶瓷坯泥赖以成形的基础。
2)黏土使注浆泥料与釉料具有悬浮性与稳定性。
3)黏土一般呈细分散颗粒,同时具有结合性。
4)黏土是陶瓷坯体烧结时的主体,黏土中的 Al2O3含量和杂质含量是决定陶瓷坯体的烧结程 度、烧结温度和软化温度的主要因素; 5)黏土是形成陶器主体结构和瓷器中莫来石 晶体的主要来源。
此时可认为,广义的陶瓷概念已是用
陶瓷生产方法制造的无机非金属固体材料
和制品的统称。 但是,这一阶段的先进陶瓷,无论从 原料、显微结构中所体现的晶粒、晶界、 气孔、缺陷等在尺度上还只是处在微米级 的水平,故又可称之为微米级先进陶瓷。
纳米陶瓷阶段
到20世纪90年代,陶瓷研究已进入第三个阶 段--纳米陶瓷阶段。 所谓纳米陶瓷,是指显微结构中的物相就有 纳米级尺度的陶瓷材料。它包括晶粒尺寸、晶界
是为了有别于传统陶瓷而言的。
先进陶瓷有时也称为精细陶瓷(Fine Ceramics)、 新型陶瓷(New Ceramics)、特种陶瓷(Special Ceramics)和高技术陶瓷(High-Tech. Ceramics)等。
在先进陶瓷阶段,陶瓷制备技术飞速发展。 在成形方面,有等静压成形、热压注成形、注 射成形、离心注浆成形、压力注浆成形等成形方法; 在烧结方面,则有热压烧结、热等静压烧结、反应 烧结、快速烧结、微波烧结、自蔓延烧结等。 在先进陶瓷阶段,采用的原料已不再使用或很 少使用黏土等传统原料,而已扩大到化工原料和合 成矿物,甚至是非硅酸盐、非氧化物原料,组成范 围也延伸到无机非金属材料范围。
原料大部分是天然的矿物原料或岩石原料,其中多为硅酸 盐矿物。 这些天然的矿物原料或岩石原料种类繁多,资源蕴藏丰富, 且分布极广。
某些陶瓷材料制品对原料的要求很高,需要采用均一
且高纯度的人工合成原料。
(1)原料分类
通常,陶瓷原料的分类是根据不同的
工艺特性、传统习惯及原料性质等不同角 度进行的。综合起来,可分为以下四类:
(3)石英类原料
①石英的种类。 自然界中的二氧化硅结晶矿物可以统称为石英。 其中最纯的石英晶体统称为水晶。 在陶瓷工业中,常用的石英类原料和材料有下
列几种:脉石英、砂岩、石英岩、石英砂、隧石和
硅藻土。
②石英原料的性质 石英的外观视其种类不同而异,有的呈乳白 色,有的呈灰白半透明状态,表面具有玻璃光泽 或脂肪光泽,莫氏硬度值为7,相对密度因晶型而 异,波动于2.22—2.65g/cm3之间。
发展起了巨大促进作用,功能陶瓷的应用 领域也随之更为广泛。
目前,功能陶瓷主要用于电、磁、光、
声、热和化学等信息的检测、转换、传输、
处理和存储等,并已在电子信息、集成电路、
计算机、能源工程、超声换能、人工智能、 生物工程等众多近代科技领域显示出广阔的 应用前景。
举例:几种主要的功能陶瓷
根据功能陶瓷组成结构的易调性和可
(4) 长石类原料
长石是陶瓷原料中最常用的熔剂性原料,在
陶瓷生产中用作坯料、釉料、色料、熔剂等的基
本组分,其用量较大,是陶瓷三大原料之一。
长石的种类和一般性质:长石是地壳上分布 广泛的造岩矿物。
长石呈架状硅酸盐结构,化学成分 为不含水的碱金属与碱土金属铝硅酸盐, 主要是钾、钠、钙和少量钡的铝硅酸盐, 有时含有微量的铯、锶等金属离子。
根据架状硅酸盐的结构特点,长石 可分为四种基本类型:
钠长石、钾长石、钙长石和钡长石。
生产中的钾长石,实际上是含钾为主的
钾钠长石;
而所谓的钠长石,实际上是含钠为主的
钾钠长石。
钠长石与钙长石一般呈白色或灰白色,
相对密度为2.62 g/cm3,其他一般物理性质
与钾钠长石近似。
长石在陶瓷原料中是作为熔剂使用 的,因而长石在陶资生产中的作用主要
通过对复杂多元氧化物系统的化学、物理及
组成、结构、性能和使用效能间相互关系的研究, 已陆续发现了一大批具有优异性能或特殊功能的 功能陶瓷,并可借助于离子臵换、掺杂等方法调 节、优化其性能,功能陶瓷材料研究已开始从经
验式的探索逐步走向按所需性能来进行材料设计。
3、功能陶瓷的应用和展望
功能陶瓷的不断开发,对科学技术的
宽度、第二相分布、气孔尺寸、缺陷尺寸等均在
纳米量级的尺度上。
纳米陶瓷是当今陶瓷材料研究中一个 十分重要的发展趋向,它将促使陶瓷材料
的研究从工艺到理论、从性能到应用都提
高到一个崭新的阶段。
2、功能陶瓷的定义、范围和分类
从性能上可把先进陶瓷分为结构陶瓷 (Structral ceramics)和功能陶瓷(Functional Ceramics)两大类。
陶瓷的研究进程分为三个阶段
新石器时代 先进陶瓷阶段 纳米陶瓷阶段
新石器时代
远在几千年前的新石器时代,我们的祖先就 已经用天然黏土作原料,塑造成各种器皿,再在
火堆中烧成坚硬的可重复使用的陶器,由于烧成
温度较低,陶瓷仅是一种含有较多气孔、质地疏 松的未完全烧成制品。
以后大约在2000年前的东汉晚期,人们 利用含铝较高的天然瓷土为原料,加上釉的 发明,以及高温合成技术的不断改进,使陶 瓷步入瓷器阶段,这是陶瓷技术发展史上意
控性,可以制备超高绝缘性、绝缘性、半 导性、导电性和超导电性陶瓷; 根据功能陶瓷能量转换和耦合特性, 可以制备压电、光电、热电、磁电和铁电 等陶瓷。
根据功能陶瓷对外场条件的敏感效应,
则可制备热敏、气敏、湿敏、压敏、磁敏
和光敏等敏感陶瓷。
二十世纪90年代,开始的纳米功能陶
瓷的研究,表明人们已开始深入到介于宏
能工业的兴起和电子工业的迅速发展,从性质、
品种到质量等方面,对陶瓷材料均提出越来越高 的要求。从而,促使陶瓷材料发展成为一系列具
有特殊功能的无机非金属材料。
如氧化物陶瓷、压电陶瓷、金属陶瓷等各种
高温和功能陶瓷。
这时,陶瓷研究进入第二个阶段——先进陶 瓷阶段。
先进陶瓷(Advanced ceramics)又称现代陶瓷,
在材料及应用方面的主要研究热点:
智能化敏感陶瓷及其传感器;
高转换率、高可靠性、低损耗、大功率的压电陶瓷及
其换能器;
超高速大容量超导计算机用光纤陶瓷材料;
多层封装立体布线用的高导热低介电常数陶瓷基板材
料; 量大面广、低烧、高比容、高稳定性的多层陶瓷电容 器材料等。
4、制备陶瓷材料的原料
陶瓷材料制品由多相的无机非金属材料所构成,所用
结构陶瓷是指具有力学和机械性能及部 分热学和化学功能的先进陶瓷(现代陶瓷), 特别适于高温下应用的则称为高温结构陶瓷。
功能陶瓷是指那些利用电、磁、声、 光、热、力等直接效应及其耦合效应所提
供的一种或多种性质来实现某种使用功能
的先进陶瓷(现代陶瓷)。
功能陶瓷的特点
品种多、产量大、价格低、应用广、 功能全、技术高、更新快。
石英的主要化学成分为SiO2,常含有少量杂
质成分,如Al2O3、Fe2O3、CaO、MgO、TiO2等。
石英是具有强耐酸侵蚀力的酸性氧化物,除
氢氟酸外,一般酸类对它都不产生作用。
当石英与碱性物质接触时,则能起反应而生
成可溶性的硅酸盐。
在高温中与碱金属氧化物作用生成硅酸盐与 玻璃态物质。
③石英在陶瓷生产中的作用
表现为它的熔融和熔化其他物质的性质。
长石在陶瓷生产中的作用如下:
① 长石在高温下熔融,形成黏稠的玻 璃熔体,是பைடு நூலகம்料中碱金属氧化物(K2O、
Na2O)的主要来源,能降低陶瓷坯体组分
的熔化温度,有利于成瓷和降低烧成温度。
②熔融后的长石熔体能熔解部分高 岭土分解产物和石英颗粒。液相中Al2O3 和SiO2互相作用,促进莫来石晶体的形 成和长大,赋予了坯体的力学性能和化
第十三章 精细功能陶瓷材料
一、陶瓷材料与功能陶瓷
1、陶瓷材料的发展概况 2、功能陶瓷的定义、范围和分类
3、功能陶瓷的性能与工艺特征
4、功能陶瓷的应用和展望 5、制备陶瓷材料的原料
1、陶瓷材料的发展概况
陶瓷在人类生活和社会建设中是不可缺 少的材料,它和金属材料、高分子材料并列 为当代三大固体材料。 我国的陶瓷研究历史悠久、成就辉煌, 它是中华文明的伟大象征之一,在我国的文 化和发展史上占有极其重要的地位。